ERATA
Topology Optimization —
Theory, Methods and Applications

Main changes in the 2nd printing

Martin P. Bendsge and Ole Sigmund

October 7, 2003

In the following we write the changes that were done in the second print-
ing of our book (due late fall 2003). A number of references have also been
updated.

p. 34, Eq. (1.26) changed to

Eiju(z) = ((p* K)(2)) By, p € L*(92)

(e K)w) = == [pK@=pay, <K>=[Ky,

[ooag<vi 0<p@ <1, ceo,
2

p. 53, Eq. (1.35) index on C changed:

min min { /Zw C’ijqawapqd()}
n

E€Eaq dlva +fk=0in 2,]
ok -n=t* on Fk
k=1,...M

p. 54, index on E° changed:

M

Bi = Ag'pp(z) PV E,,, Y wheij(ul)enm (uk) -
k=1

p. 55, Eq. (1.36) p corrected to h:

i l
min - I(u)

s.t. rap(u,v) = /Qh(m)E%kleij(u)skl(v)dQ =[(v), forallv e U,

/ B(£)A2 <V, hinin < h < iy < 00 |
(7

p. 55, Eq. (1.37) changed to

min c(h)
hel=(2),
hmm<h<hmax<00
[h(z)dR<V

¢(h) = max {21@) _ /Q h(x)E?jklaij(v)akl(v)dQ} .

velU
p- 80, last line in figure text:
“lower” changed to “higher”

p- 81, 3rd line in figure text:
added “hatched area”

p- 188, Fig. 3.14 corrected to:

p:0.5 EPD—’ 3 i@—‘[b&
===Bound =00 __a= | Ca ‘

Computed 7 a=="" [l A (O 4 !

.....
1 ==
-——
| =
——
0 0,2 04 0.6

p=0.5,A=0.2 p=0.5,A=0.5 p=0.5,A=0.8

Energy

p. 234, 1. 14:
“ TAu >” corrected to “uTAu > 0"

p- 234, 3rd line of last paragraph:
“Modern interior” changed to “Modern interior point algorithms solve
SDP’s like (4.20) in polynomial time [33].”

p. 236, Eq. (4.25) 72 changed to 7:

min {7’ — fTu}

u, 7

174 .
s.t.: B [uTKiu—QgiTu] <7, +1=1,....,m.

p. 239, Eq. (4.31) changed to:

li

+ —
Lmin Y (g +qp)
q; .20,qi >0, i=1 0

i=1,...,m
B(qt—q7)=f

p- 239, 1. 4 of last paragraph:
“... primal-dual LP-methods” changed to “primal-dual interior point LP-
methods or the simplex algorithm”

p. 240, Eq. (4.32) changed to:

1
min{—uT < siKZ—> u—fTu+7'2}
u77— 2
€S

VE; b’
st —7< 2Z Zlugr, 1€ R .
7

p. 250, Eq. (4.44) V, changed to Vr:

M
. T
. 1nf}c {VT— E £k uk}
AP>0,u”, T —
Al AkF=1 h=1

M

1
s.t.:;wukTKiuk—TSO, 1=1,...,m.

p. 250, Eq. (4.45) V; changed to V7 and A; changed to K;:
M T
: k ¢k k
sklgf’; {VT — Z s© P x }
{c\/lzl(sky:l k=t

M
T .
S.t.:leC K; xk—27§0, 1=1,....m.
k=1

p- 255, first equation, A; changed to K;:

F(x) = — min [_max {guTKi(x)u _ fTuH ,

u i=1,....m

3

Figure 1: Topology optimization of the inverter. Left: half design domain
with symmetry boundary conditions and right: resulting topology.

p- 271, 6th to last line changed to:

> fixeddofs = [nely/2+1-(nely/20):nely/2+1+(nely/20)];

The Matlab code and description for mechanism synthesis in Appendix 5.1.5
on page 269 has been updated and improved to:

5.1.5 A 104 line MATLAB code for compliant mechanism syn-
thesis

The Matlab code for compliance minimization described in the previous
section can be changed to a code for mechanism synthesis by changing 13
lines, deleting one and adding 6 new lines of code.!

As the default problem, we consider the inverter design problem sketched
in Fig. 5.5. The optimization problem for compliant mechanism synthesis
was discussed in Sec 2.6. The solution obtained by running the modified
code which is named ‘topm’ with the command line input

topm(40,20,0.3,3.0,1.2)

is seen in Fig. 1(right).

Instead of listing the whole program we just show a list of the changes.
This list is obtained by comparing the compliance minimization program
‘top.m’ with the inverter design program ’topm.m’ using the UNIX com-
mand ‘diff top.m topm.m’. This results in output where ‘<’ means lines in
‘top.m’ and ‘>’ means lines in ’topm.m’. In the following we briefly discuss

the changes.
First we rename the code from ‘top’ to ‘topm’

1,2c1,2
< %%h% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, OCTOBER 1999 %%%

!Note that the code described uses linear analysis. Therefore, it can only be used to
gain insight into compliant mechanism synthesis by topology optimization. For practical
problems one should modify the code to include geometrically non-linear modelling (c.f.
Sec. 2.6.5).

< function top(nelx,nely,volfrac,penal,rmin);

> %h%% A 104 LINE COMPLIANT MECHANISM DESIGN CODE BY OLE SIGMUND, MAY 2002 %%%
> function topm(nelx,nely,volfrac,penal,rmin);

Instead of calculating the output displacement (objective funtion) in
the main program we return it from the FE subroutine and we remove its
initialization
12¢12
< [U]=FE(nelx,nely,x,penal);

> [U,c]=FE(nelx,nely,x,penal);
15d14
< c=20.;

The expression for the sensitivities (2.23) depends on the solution to the
adjoint load case (second column of the displacement matrix U)

20,22¢19,21

< Ue = U([2%n1-1;2%nl; 2%n2-1;2%n2; 2*%n2+1;2%n2+2; 2*ni+1;2*n1+2],1);
< c = ¢ + x(ely,elx) penal*Ue’*KE*Ue;

< dc(ely,elx) = -penal*x(ely,elx)”(penal-1)*Ue’*KExUe;

> Uel = U([2*n1-1;2*%nl; 2%n2-1;2%n2; 2*n2+1;2*n2+2; 2*nl+1;2*n1+2],1);
> Ue2 = U([2%n1-1;2%nl; 2*n2-1;2%n2; 2*%n2+1;2*n2+2; 2*ni+1;2*n1+2],2);
> dc(ely,elx) = penal*x(ely,elx) (penal-1)*Uel’*KE*Ue2;

We improve the convergence criteria for the bi-sectioning algorithm

39,40c¢38,39

< 11 = 0; 12 = 100000; move
< while (12-11 > 1le-4)

> 11 = 0; 12 = 100000; move = 0.1;

> while (12-11)/(12+11) > le-4 & 12 > 1e-40

0.2;

To stabilize convergence we use a damping factor of 0.3 instead of 0.5
and we take care of the possibility of positive sensitivities

42c41
< xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./Imid)))));

> xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*(max(1le-10,-dc./1mid)).~0.3))));
We return the output displacement to the main program

66c65
< function [U]=FE(nelx,nely,x,penal)

> function [U,Uout]=FE(nelx,nely,x,penal)

We allocate force and displacement vectors for the real and the adjoint
load cases

69¢c68
< F = sparse(2*(nely+1)*(nelx+1),1); U

> F = sparse(2*(nely+1)*(nelx+1),2); U = sparse(2*(nely+1)#*(nelx+1),2);

zeros(2*(nely+1)*(nelx+1),1);

Finally, we define the boundary conditions and the input and output
points. Furthermore, we add external springs with stiffness 0.1 to the input
and output points and we save the value of the output displacement to be
returned to the main program.

78,80c77,84

< % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

< F(2,1) = -1;

< fixeddofs = union([1:2:2*%(nely+1)],[2*(nelx+1)*(nely+1)]);
> % DEFINE LOADS AND SUPPORTS (HALF FORCE INVERTER)
> din=1;

> dout=2%nelx*(nely+1)+1;

> F(din,1) = 1;

> F(dout,2) = -1;

> K(din,din) = K(din,din) + 0.1;

> K(dout,dout) = K(dout,dout) + 0.1;
>

fixeddofs = union([2:2*(nely+1):2x(nely+1)*(nelx+1)], [2*(nely+1):-1:2x(nely+1)-31);
85a90
> Uout = U(dout,1);
100,119d104

