
Improved security analysis of Fugue-256⋆

Praveen Gauravaram1, Lars R. Knudsen1, Nasour Bagheri2, and Lei Wei3

1 Department of Mathematics, Technical University of Denmark, Denmark
2 Shahid Rajaee Teacher Training University, Iran

3 School of Physical and Mathematical Sciences (SPMS),
Nanyang Technological University (NTU), Singapore.

Abstract. Fugue is a cryptographic hash function designed by Halevi, Hall and Jutla and was one
of the fourteen hash algorithms of the second round of NIST’s SHA3 hash competition. We consider
Fugue-256, the 256-bit instance of Fugue. Fugue-256 updates a state of 960 bits with a round trans-

formation R parametrized by a 32-bit message word. Twice in every state update, this transform
invokes an AES like round function called SMIX. Fugue-256 relies on a final transformation G

to output digests that look random. G has 18 rounds where each round invokes SMIX twice and
finally the 960-bit output of the G transform is mapped with a transform τ to a 256-bit digest.

In this paper, we present some improved as well as new analytical results of Fugue-256 (with length-
padding). First we improve Aumasson and Phans’ integral distinguisher on the 5.5 rounds of the
G transform to 16.5 rounds, thus showing weak diffusion in the G transform. Next we improve the
designers’ meet-in-the-middle preimage attack on Fugue-256 from 2480 time and memory to 2416.
Next we study the security of Fugue-256 against free-start distinguishers and free-start collisions. In
this direction, we use an improved variant of the differential characteristic of the G transform shown
by the designers to present an efficient distinguisher for the τ (G)(.) transform showing another weak

diffusion property of G. We then extend this distinguisher to some interesting practical free-start
distinguishers and free-start collisions for the length padded Fugue-256 in 233 complexity. Finally,
we show that free-start collision attacks on the length-padded Fugue-256 can be found in just O(1)
without relying on the differential properties of the G transform and even without inverting it.
Keywords: Fugue-256, Hash function analysis, SHA-3 hash competition

1 Introduction

Fugue [6] is a cryptographic hash function designed by Halevi, Hall and Jutla and was one of the fourteen
second round SHA-3 hash function candidates in the NIST’s hash function competition [11, 12] . Fugue
was not selected for the final round of the competition. Among all the second round candidates, so far,
Fugue seems to be the hash function which has received the least amount of external analysis [13, 4].
Hence, it is significant to improve the analysis Fugue and develop a deeper understanding of this design.

The Fugue design can be viewed as an enhancement to the Grindahl hash function designed by
Knudsen et al. [10] in which a large evolving internal state is maintained and the message words inserted
into the state are processed using a round transformation and the complete state is maintained. After all
the message words are processed, an extensive final transformation is applied to the state and part of its
output is used as the digest. The Fugue design has two main instances called Fugue-256, denoted F-256
and Fugue-512, denoted F-512 that produce digests of sizes 256 bits and 512 bits respectively and other
instances such as Fugue-224 and Fugue-384 are related to these two designs. All versions of Fugue can
hash messages of lengths upto 264 − 1 bits. This paper focuses on the analysis of Fugue-256.

F-256 maintains an internal state S of 960 bits as a 4×30 matrix with each column containing a 32-bit
word Si for i = 0, . . . , 29. It updates S by using a round transformation R parametrized by a message
word of 32 bits. Once all message words are processed, the state undergoes through a final transformation
G, composed of 5 rounds of G1 and 13 rounds of G2. Finally, a transform τ maps the output state to a
digest of size eight words and the composition of τ and G is denoted by τ(G(.)). The main component of
F-256 is a 16-byte to 16-byte permutation transformation called SMIX which consists of a substitution
box SBox followed by a linear transformation SMIX-T resembling the round functions of the AES block
cipher [3].

⋆ A short version of this paper will be published in the Lecture Notes in Computer Science (LNCS) proceedings
of Australasian Conference on Information Security and Privacy (ACISP), 2011, Springer.

By using proof-oriented methods, the designers proved that mounting a collision attack on F-256
would require a work factor of at least 2128 and finding a (second) preimage requires a work factor of
2256 [6, § 1.2]. They also claimed that since the round transformation and final transformation of F-
256 are invertible, a generic meet in the middle attack can be applied to F-256 to find a preimage in
2480. Khovratovich [8] showed a collision attack on the internal states of F-256 and F-512 with time
and memory complexities of 2352 and 2480 respectively. Aumasson and Phan [2, 1] showed an efficient
distinguisher on the transform τ(G(.)) of F-256 which distinguishes it from a random function. In this
attack, they showed pairs of input states to the G transform that differ on average in only 66 bits such
that their digests are the same for all pairs found. They also showed an integral distinguisher on the 5.5
rounds of the G transform and on a tweaked variant of the G transform. Turan and Uyan [14] showed
practical semi-free start collisions and semi-free start near-collisions by using hill-climbing techniques for
the reduced versions of F-256 where the final R transform had reduced rounds.

In this paper, we present improved analytical results on F-256 building upon the previous analysis
considered by the designers [6] and Aumasson and Phan [2, 1]. First we improve the known integral
distinguisher [2] on the 5.5 rounds of the G transform of F-256 to 16.5 rounds. This attack shows that
G transform has weak diffusion. We then improve the designers’ generic meet-in-the-middle preimage
attack on any instance of Fugue with n-bit internal state from a complexity of 2n/2 to 2n/2−16. We further
improve this attack on F-256 by a factor of 248 by exploiting the freedom available in the message words
and in some state words. Next we consider the problem of doing free-start distinguisher and free-start
collision attacks for Fugue-256. In this direction, we first present an efficient distinguisher for the τ(G(.))
transform by using an improved variant of the differential characteristic for the G transform considered
by the designers in the PRF analysis of F-256. This distinguisher when extended to F-256 shows an
interesting free-start distinguisher for F-256 in 233 work factor. We note that similarly the distinguisher
of the Aumasson and Phan on the τ(G(.)) transform can be extended to a free-start distinguisher for
F-256 for a similar complexity with some subtle changes. These distinguishers also produce free-start
collisions for no additional cost. Finally, we show that it is indeed “trivial” to show much efficient free-
start collisions for the length-padded Fugue-256 in O(1) without relying on the differential characteristics
of the G transform and even without inverting it. We remark that this type of free-start collision attack
is different from the well known trivial free-start collision attack on F-256 that requires inverting R and
G transforms twice for the unpadded F-256.

The paper is organised as follows: In §2 and §3, the description of F-256 and some notation used in
the paper are provided. Analysis is presented in §4, §5, §6, §7 followed by the conclusion in §8.

2 F-256 hash function

F-256 parses the 256-bit initial value (IV) as eight 4-byte words IV0, . . . , IV7. It initializes a state S of 30
4-byte words Si for i = 0, . . . , 29, as a 4 × 30 matrix by assigning Sj = 0 for j ∈ [0, 21] and Sj = IVj−22

for j ∈ [22, 29]. This state of F-256 is called initial state. Hereafter, we denote by Si∼j the consecutive
words of a state S from the index i to j (including i and j). Streams of 4-byte message word inputs are
processed from this state using a round transformation R. If the input message is not a multiple of 32
then F-256 pads the message with sufficient 0 bits so that the padded message is a multiple of 32. The
padded message is appended with an additional 64 bits (i.e two 4-byte words) that represent the binary
encoding of the length of the unpadded message in big-endian notation. Once the length encoded message
is processed with the R transform, a final transformation G is applied to the internal state to obtain
an output state of 30 words. The eight words S1∼4,S15∼18 of the output state are used as the digest.
The transforms R and G are discussed below where the addition + is addition of vectors of four bytes
in GF(28), and hence is the same as 32-bit exclusive-or and for 4-byte vectors a and b, a+ = b means
a = a + b.

Round transformation (R). The R transform takes a state S and a 4-byte message word m as inputs
and outputs a new thirty column state. The transformation R calls a sequence of functions: TIX(m),
ROR3, CMIX, SMIX, ROR3, CMIX, SMIX.

– The function TIX(m) has the following steps:

• S10+ = S0; S0 = m

• S8+ = S0; S1+ = S24

– The function ROR3 rotates the state to the right by three columns, that is Si = Si−3 mod 30.
– The column mix function CMIX has the following steps:

• S0+ = S4; S1+ = S5; S2+ = S6

• S15+ = S4; S16+ = S5; S17+ = S6

– The SMIX transform operates only on the first four columns S0∼3 of the state S that are viewed
as a 4 × 4 matrix of 16 words. Each byte of these columns first undergoes an SBox transform which
is the one as in AES [3] and the resulting matrix undergoes an SMIX-T transform denoted by a
16 × 16 matrix N of 256 bytes. That is, S′

0∼3
= N.(S0∼3) where N is multiplied (.) with a 16-byte

4 × 1 column matrix output of SBox. Similarly, (S0∼3) = N.(S′

0∼3
) where (S′

0∼3
) is a 16-byte 4 × 1

column matrix.

Final transformation (G). The G transform takes the output S of the R transform and produces a
final state of 30 words. The function G consists of 5 rounds of G1, 13 rounds of G2 and a binary addition
of two state words. The five rounds of G1 are denoted by G11, . . . ,G15 and thirteen rounds of G2 are
denoted by G21, . . . ,G213. These operations on a state S are given by:

– Function G1: It is a sequence of functions: ROR3, CMIX, SMIX, ROR3, CMIX, SMIX.
– Function G2: It has the following steps:

• S4+ = S0; S15+ = S0; ROR15; SMIX
• S4+ = S0; S16+ = S0; ROR14; SMIX

– S4+ = S0; S15+ = S0

In the above, ROR15 and ROR14 mean rotations of the state S to the right by 15 and 14 columns
respectively. The resultant state is called final state.

256-bit digest. After discarding the words S0,S5∼14 and S19∼29 from the final state, the concatenation
of the words S1∼4 and S15∼18 is used as the digest. This step of producing the digest from the G transform
is denoted by τ(G(S)) where S is the input state of G.

3 Notation

In this section, we introduce some notation on F-256 and definitions that are used later in our analysis.
Notation specific to some parts of the analysis will be introduced in the relevant sections.

In any round i of R, the internal state (also the starting state of Round i) is denoted by State-i
and its words are denoted by Si

0
, Si

1
, . . . , Si

29
, i.e, Si

1∼29
. The internal state words after the first SMIX

in a round i are denoted by Si.5
0 , . . . , Si.5

29 , i.e, Si.5
0∼29. In any round i of R, the internal state words

after the first ROR3, CMIX and SBox transformations are denoted by x′i
0
, . . . , x′i

29
, xi

0
, . . . , xi

29
and

x̂i
0
, . . . , x̂i

29
respectively and those after the second ROR3, CMIX and SBox transformations are denoted

by y′i
0 , . . . , y′i

29, yi
0, . . . , y

i
29 and ŷi

0, . . . , ŷ
i
29 respectively. We indicate any non-zero difference in the state

words by placing δ before those words. For example, differences in the words of State-i are denoted by
δSi

0, . . . , δS
i
29, i.e, δSi

0∼29. A message word inserted in the ith round of R is denoted by mi. Message
words in the rounds from i to j are denoted by mi ∼ mj and differences in the message words in these
rounds by δmi ∼ δmj .

4 Integral distinguisher for the 16.5 rounds of the G transform of F-256

Our integral attack is a first order integral attack. We follow the notation of [9] for the bytes included in
the integral as follows: The symbol C (for Constant) in the ith byte means that the values of all ith bytes
in the attack are equal. The symbol A (for All) means that all bytes in the attack are different, and the
symbol S (for Sum) means that the sum of all ith bytes is predictable and we write ? when the sum of
the bytes is not predictable. We count the rounds of the G transform from 0 to 17 and a state in any
round i where i = 0, 0.5, 1, . . . , 16, 16.5, 17 is denoted by Si and the words of Si by Si

0∼29
.

Integral distinguisher on the 5.5 rounds of the G transform [2]. Aumasson and Phan [2] presented
an integral distinguisher for 5.5 rounds of the G function. Their distinguisher fixes all the bytes of the
state S0 except for the first byte of S0

2
at the start of the G transform. All possible values are assigned

to the first byte of S0
2 . They have shown that for S0

2 = A‖C‖C‖C one would receive S5.5
0 =?‖?‖?‖?, S5.5

1 =
A‖?‖?‖?, S5.5

2
= S‖?‖?‖?, S5.5

3
= S‖?‖?‖? which presumably shows a non-randomness property in the

first 5.5 rounds of the G function. In addition, this attack was extended to a tweaked version of G-
function. We improve their attack on 5.5 rounds of G-function such that it can be applied to 16.5 rounds
out of 18 rounds.

4.1 Improved attack

A closer analysis of integrals reveals that the values of the integral before the ROR functions of G2 play
a crucial role on the success of the distinguisher. It turns out that this word remains unchanged through
many rounds of G2 before being affected by other words. However, for the given integral, all bytes of
S5.5

0
are unknown (’?’) and out of control of the adversary. Hence, the integral of Aumasson and Phan

does not seem to extend to more rounds of the G transform. Our analysis revealed an integral that runs
for more rounds. The propagation of our integral has been depicted in Table 3 in Appendix B. It should
be mentioned that values with notation A and C in the integral are unchanged through SBox, but values
with notation S are unknown (?) after SBox.

In our integral, we fix whole state bytes of S0, except for the second byte of S0
4 where we consider

all possible values. The word S0
4

propagates to S5
28

with probability 1. Hence, the ROR3 transform in
the 5th round of G1 (i.e 4th round of G) shifts this word as one of the inputs to the SMIX. Hence,
we obtain S5.5

0 =?‖?‖S‖?. It means that we know the sum of the values (S) for this word. On the other
hand, this word is propagated to S16

4
with probability 1.

In the next step, we have S16
4

+ = S16
0

which destroys our integral. However, after the ROR15 function
in the 16th round of G, S16

0
and S16

4
are propagated to S16

15
and S16

19
respectively. Now if we assume that

the adversary has also access to S16
19 then he can combine S16

15 and S16
19 and retrieve the integral values as

S16.5
4

= S16.5
15

⊕ S16.5
19

.
Hence, we have an integral which applies to 16.5 out of 18 rounds of the G transform. The compu-

tational complexity of attack is 256 evaluations of 16.5 rounds of the G transform and memory is 256
bytes. The probability of receiving an S byte at S16.5

4 for G is 1 whereas this probability for a random
permutation is 2−8. Hence the success probability to distinguish 16.5 rounds of the G function from a
random permutation is 1 − 2−8. Our findings illustrate the weak diffusion of the G transform.

5 Improved meet-in-the-middle preimage attacks on Fugue

5.1 Generic meet-in-the-middle preimage attack on Fugue [6, p.77]

The designers of Fugue noted the application of a generic meet-in-the-middle preimage attack on any
t-bit instance of Fugue [6, p.77] (along with length padding) with n-bit (n/32-word) internal state in 2n/2

time and memory complexity. For a given digest Y , this attack finds a preimage for Fugue as follows:

1. Forward process: Choose 2n/2 messages of equal length and process them along with their 64-bit
length padding to the corresponding internal states at State-i of some round i of R from the initial
state of Fugue. Store these messages and their internal states at State-i in a Table L1.

2. Backward process: Fill the output state words S1∼4 and S15∼18 with the digest Y . Build 2n/2 final
states by choosing random values for the remaining 22 words and invert the final transformation G
from these states to build 2n/2 internal states at State-i . Store these state values in a Table L2.

3. Due to birthday paradox, an internal state in L1 collides with an internal state in L2 with a good
probability and this event is called a collision match. The internal state State-i at which the collision
match occurs is called the middle state. Finally, produce the concatenation of message blocks excluding
the two length padding blocks from the Forward process that contributed to the collision match as
the preimage of Y . Note that this attack generates a preimage of size at least (n/2)/32 words.

In summary, the complexity of this preimage attack is influenced by the internal state size. On F-256
and F-512, the time and memory complexities of this attack are 2480 and 2576 respectively.

5.2 Improved generic meet-in-the-middle preimage attack on Fugue

Let State-i’ be the internal state in any round i of the R transform after the step Si
10

= Si
0
⊕ Si

10
. This

is a (n − 32)/32-word internal state without the word Si
0 and except for the word Si

10 in the State-i’ all
other words are the same as in the n/32-word State-i . Instead of looking for a collision match at State-i
in the generic MIM attack, if we look for it at State-i’ , we can improve the generic attack complexity by
a factor of 216. The improved attack works as follows:

1. Forward process: This step is similar to the Forward process step of the generic MIM attack except
that length padding message words are not processed and 2n/2−16 messages are processed till the
internal states at State-i’ of some round i of R. Finally, 2n/2−16 messages and corresponding internal
states at State-i’ are stored in a Table L1.

2. Backward process: The following steps are executed as part of this process:

(a) Establish the valid length-padding for the attack:

– Fill the words S1∼4 and S15∼18 of the final state with the digest Y .
– Use the freedom available in the remaining n− t words of the final state and invert the final

state until the desired length-padding word in the first round of R (in the backward direction)
after the G transform is obtained. This requires about 232 inversions for the G transform.

– To obtain the desired length-padding word in the second round of R (in the backward direc-
tion), we use freedom in the words S0 and S10 of this round of R and follow the steps 2 and 3
of the structural pseudo differentiator of F-256 explained in §6.3.

(b) Generate required number of messages with length-padding and internal states:
– Let j and j − 1 be the rounds of the R transforms where we have obtained the two valid

length-padding words. Now, we also have obtained a fixed (n−32)/32-word state State-(j-1)’
at round j − 1 where only the word Sj−1

0
is not fixed. We use 32-bit freedom in this word

combined with the word Sj−1

10
which is xored with Sj−1

0
to generate 232 n/32-word internal

states State-(j-1). By inverting these 232 internal states through the round j − 2 we obtain
232 internal states and message words at round j − 2 of the R transform.

– We repeat the above step for every fixed (n− 32)/32-word state in every round by using the
freedom in the word S0 for a sufficient number of rounds until we generate 2n/2−16 messages
and corresponding internal states. That is, we need at least (n/2 − 16)/32 R transform
inversions from the round j−1 and ((n/2−16)/32)+2 in total to account for length padding.
This means that the size of each of 2n/2−16 messages is ((n/2 − 16)/32) + 2 words. All these
internal states and messages are stored in a Table L2. For instance, F-256 requires a total at
least 17 rounds of R inversions and F-512 requires at least 20 such rounds.

(c) The complexity of this process is about 2n/2−16 operations of the R transform and similar memory
and 232 operations of the G transform.

3. Find a collision match at the middle state between the internal states in the tables L1 and L2. The
complexity of this improved attack is on average 2n/2−16 time and memory and generates a preimage
of size at least twice of the one due to the generic MIM preimage attack.

As an illustration, the improved attack finds a preimage of size at least 29 (resp. 35) message words
with a complexity of 2464 (resp.2560) time and memory for F-256 (resp. F-512). We remark that these
preimage attack bounds are the same as the trivial internal collision attack on these instances of Fugue
pointed out by Khovratovich [8].

5.3 Improved meet-in-the-middle preimage attack on F-256

We further improve the preimage attack on F-256 from §5.2 by exerting control over 3 words of the
29-word middle state. This technique allows us to use a birthday attack to match only 26 words of the
middle state, thereby reducing the complexity of the attack to 2416 from 2464. For this purpose, we reduce
the number of R transforms required in both the Forward process and Backward process of the attack in
§5.2 by 1.5 rounds and control 3 rounds on either side of the middle state deterministically. Let 0 be the
round of the R transform at which we aim for a collision match. Let −1,−2,−3, . . . and 1, 2, 3, . . . be the
respective rounds of the R transforms from the 0th round in the Forward process and Backward process
of the attack. The attack is outlined below:

1. We show that the words S0
17, S0

23 and S0
27 in the middle state (i.e State-0’) can be controlled such

that the internal states evolving from the initial state and the final state of F-256 can be matched
in these words deterministically with a probability of 1 by solving a simple system of equations.
We do this by first assigning fixed values4 to the words S0

17, S0
23 and S0

27 that are controlled by
using the R transforms −3, −2 and −1 in the Forward process and the R transforms 3, 2 and 1 in
the Backward process. In the Forward process, the desired value for the words S0

27, S0
23 and S0

17 is
obtained consecutively by using the freedom available in the message words m−3, m−2 and m−1 in
the R transforms of the rounds −3, −2 and −1 respectively. In the Backward process, the desired
values for the words S0

17, S0
23 and S0

27 are obtained consecutively by using the freedom available in
the words S3

0
, S2

0
and S1

0
in the R transforms of the rounds 3, 2 and 1 respectively. Below we explain

how the word S0
17

can be controlled and a similar explanation follows for controlling the words S0
23

and S0
27.

(a) Controlling the word S0
17

: Below we will show how we can obtain the desired word S0
17

of the
middle state from the final state and initial state of F-256 through the Backward process and
Forward process respectively.

i. Backward process: The word S0
17

in the middle state of the 0th round R transform will be
the word S2

29 in the State-2’ of the 2nd round R transform. Now x′2
2 = S170 , x2

2 = x′2
2 ⊕ x′2

6 .
Now x̂2

2
= SBox(x2

2
). Note that (S2.5

1
, S2.5

2
, S2.5

3
) = (S3

4
, S3

5
, S3

6
). For the final state of F-256

inverted till the R transform in round 3 by following the Backward process algorithm in §5.2,
the State-3’ of the 3rd round R transform is fixed. Therefore, we can only use S2.5

0 input
to N to obtain the desired x̂2

2
and therefore, we can obtain the desired S0

17
. The matrix N

has a property that by controlling one of the input words, we can obtain one desired output
word by solving a system of 4 equations in 4 unknowns for a negligible complexity. This
property is also applicable for N. Hence, we can find a S2.5

0
such that N.(S2.5

0
, S2.5

1
, S2.5

2
, S2.5

3
)

produces the desired word x̂2
2. This process also determines the message word m2 which is

SBox(x̂2
3
) = x2

3
= x′2

3
. Note that S2.5

0
= y′2

3
= y2

3
, ŷ2

3
= SBox(y2

3
) and the state words S3

1∼29

of the state State-3’ are determined by the final state of F-256. Now we vary S3
0

such that
N.(S3

0 , S3
1 , S3

2 , S3
3) produces the desired ŷ2

3. Once we have found the candidate S3
0 , we can

determine S3
10

= S3
0
⊕ x′3

13
of the state State-3.

ii. Forward process: For an initial state of F-256 processed till the end of the −2nd R transform
by using the Forward process algorithm of §5.2, the State-(-1) of the −1th round R transform
is fixed. This implies that y′−1

17
has already been fixed. To obtain the desired value of S0

17
, we

need to control y′−1

6
which is y′−1

17
⊕ S0

17. The word y′−1

6
is the same as S−1.5

3
. Note that the

words S−1

1∼29
had already been fixed. Hence, we can determine the words (x̂−1

0
, x̂−1

1
, x̂−1

2
), the

first three word input to N, as follows:

A. x̂−1

0
= SBox(S−1

27
⊕ S−1

1
⊕ S−1

24
)

B. x̂−1

1
= SBox(S−1

28
⊕ S−1

2
)

C. x̂−1

2
= SBox(S−1

29
⊕ S−1

3
)

Having determined the words x̂−1

0
, x̂−1

1
and x̂−1

2
, we can use the freedom available in the

message word m−1 to determine the candidate x̂−1

3
such that we obtain the desired S−1.5

3
=

y−1

6
and therefore, we obtain the desired word S0

17
= y−1

6
⊕ y′−1

17
in the middle state.

Note that this attack produces a preimage for F-256 of size at least 32 words excluding the length-
padding words.

Remark 1. It is difficult to exert control over more than 3 words in the middle state of the 0th round
R transform deterministically with a probability of 1 as the message word m−3 from the −3rd round R
transform influences the starting internal state of the 0th round R transform.

6 A free-start distinguisher for F-256 (with length padding)

Designers of Fugue considered a differential characteristic in the analysis of the PRF mode of F-256 [6,
§12.4.2]. This characteristic was not fully specified in the documentation although the designers claim
that this path does not lead to any active SMIX-es in many rounds of G without any proof. This path

4 These three words can have different values but they must be fixed.

via some R transforms was used to prove that the probability of obtaining partial collision on the internal
state (at the start of the G transform) for the F-256 PRF is at most 2−142. The designers also noted
that this argument applies for a known or chosen key/Initial Value (IV) model of F-256 [5]. However, no
analysis was provided by the designers for the case where an attacker can have free start initial values
leading to a free-start distinguisher for F-256 and see whether it is possible to obtain partial collisions
on the internal state for this case.

In this section by using an improved differential characteristic of the designers we show a distinguisher
for the τ(G(.)) transform in much similar style as done by Aumasson and Phan [2, 1]. Then we extend
it to a free-start distinguisher on F-256 that result in a pair of chosen IVs (or free IVs) that are close to
each other on average in 332 bits of 960-bit initial state producing partial collisions on the internal state
where 80% of the internal state has a collision. Our findings, however, do not contradict the designers’
arguments for the known or chosen key/Initial Value (IV) model of F-256 [5]. However, they complement
the analysis of the designers by considering free-start initial value case.

To make presentation easier, we show our analysis by developing the differential characteristic from
scratch considering that a variant of it was not specified in the design documentation of Fugue [6]. Later
in the section we point out the difference between our path and the one considered by the designers. We
present in §6.1 and §6.2 the tools required to do this attack which is explained in §6.3.

6.1 Differential property of SMIX-T

Recall that SMIX-T is a linear transform represented as a 16×16 matrix N and N.(S0∼3) = (S′

0∼3) and
therefore, N.(S′

0∼3
) = (S0∼3) where (S0∼3) and (S′

0∼3
) are 4×1 column matrices. We note that it is easy to

find an input difference (δS′

0
, δS′

1
, δS′

2
, δS′

3
) to N such that we get an output difference (δS0, δS1, δS2, δS3)

where δS′

0 = 0, δS′

3 = 0 and δS3 = 0. That is, we can find a pair of inputs (S′

0, S
′

1, S
′

2, S
′

3) and
(S′

0
, S′∗

1
, S′∗

2
, S′

3
) to N that collide on the word S3 for any S′

0
and S′

3
where δS′

1
= S′

1
⊕ S′∗

1
and

δS′

2
= S′

2
⊕ S′∗

2
. This attack can be precomputed and the solution for this attack is the solution to

8 linear equations in 8 unknowns which requires negligible computational cost. We can also fix 3 bytes in
one of the differences of δS′

1
and δS′

2
to zeroes which leads to solving 5 linear equations in 5 unknowns.

As shown later in our attack, the difference δS′

1 propagates to more words in the input state of the R
transform compared to δS′

2
. Hence, to minimise the number of active state input bits of our attack, we

fix 3 bytes of δS′

1
to a zero difference and vary the other word for a solution. By running an experiment

for a minimum weight solution, we found δS′

1 = 0x 00000009 and δS′

2 = 0x 5042d427. These differences
are fixed and we call them δ1 and δ2 respectively.

6.2 Efficient distinguisher for the τ(G(S)) transform

We can choose any intermediate state in the G transform and proceed forwards and backwards to compute
its corresponding final and input states. This is called inside-out strategy [1] which we use to distinguish
the τ(G(S)) transform from a random function with a probability of 1.

Forwards from G211. We choose an internal state at the start of the round G211 such that the words
S18 and S19 have the differences δ1 and δ2 computed in § 6.1 and the remaining words (S0∼17 and
S20∼29) have the zero difference. The differences δ1 and δ2 activate SMIX-es in the rounds G211 and
G212 respectively. The digest returned after the G transform depends on the differences δ1 and δ2 but
not on all the state words at the start of the round G211. This observation allows us to find distinct
pairs of states at G211 such that the difference of their respective digests is fixed for all pairs found. A
closer analysis shows that the digest does not depend on the state words S8∼14 and S22∼29 at the start of
the round G211. Hence, in the round G211 we can build many pairs of states by fixing the words S0∼7,
S15∼17 and S20∼21 with the same actual value, the words S18 and S19 with some values that differ by δ1

and δ2 respectively and varying the remaining words with zero difference for all pairs of states to obtain
digests that have the fixed difference.

Backwards from G211. Consider any two internal states at the start of G211 that satisfy the above
constraint of having the words S0∼7, S15∼17 and S20∼21 fixed with the same value (i.e, zero difference) and
the words S18 and S19 fixed to some value but with the differences δ1 and δ2 respectively. When we process

these two states until the end of the round G12 in the backward direction, we get two intermediate states
with the differences δ1 and δ2 appearing in the words S4 and S5. All other words have zero differences.
When the second half of G11 is inverted, we obtain the difference δ1 (resp. δ2) in the words S1, S12

and S27 (resp. S2, S13 and S28). When we invert the remaining half of G11, the differences δ1 and δ2 in
the state words S1 and S2 activate SMIX creating uncontrolled differences in the words S0∼2 and zero
difference in the word S3 as shown in § 6.1. Hence, we get the input state to the G transform with the
difference δ1 (resp. δ2) in the words S9 and S24 (resp. S10 and S25) and uncontrolled differences in the
words S27∼29. That is, only seven words of the input state to the G transform have differences. Recall
that the differences δ1 and δ2 are not chosen arbitrarily and they are determined by the attack described
in § 6.1. For our solution, δ1 and δ2 have the weights of 2 and 12 respectively, and the uncontrolled
differences in the words S27∼29 have, on average, a weight of 48.

Hence, we have shown a method which finds pairs of state inputs (S, S∗) to the G transform that
differ, on average, in 76 bits such that the difference of τ(G(S)) and τ(G(S∗)) remains fixed for all such
pairs found.

6.3 Free-start distinguisher for F-256

In this section, we extend distinguisher on the τ(G(S)) transform to a free-start distinguisher on F-256
hash function. Recall that F-256 uses a 64-bit length padding in the last two rounds of R transform
representing the binary encoded form of the message. Hence, we show our attack on the composition of
3 rounds of R (last 2 rounds are used for the length padding) and τ(G(S)). Note that 0,−1,−2, . . . are
the rounds of R before the G transform and m0, m−1, . . . are their respective message blocks. Recall that
State-i’ is the 29-word internal state (from word 1 to 29) in any round i of the R transform after the step
Si

10
= Si

0
⊕ Si

10
in the forward process. We denote a pair of states at State-i’ of R by (S[i], S[i]′) where

S[i] = S[i]1∼29 and S[i]′ = S[i]′1∼29. The attack is outlined below:

1. Use the freedom available in the state words S8∼14 and S22∼29 in Round G211 of the distinguisher
for the τ(G(S)) transform to find a pair of states (S[0], S[0]′) such that their common message block
is m0 = 0x00000020, which is the last length encoded word of a 32-bit message. The cost of this step
is 232 calls to the Backwards from G211 step of the distinguisher for the τ(G(S)) transform. Note
that by now the actual values of the words S[0]1∼29 and S[0]′

1∼29
in these pair of states are fixed.

This implies that the actual values of the words S0
1∼9 and S0

11∼29 are also fixed and the values of the
words S0

0
and S0

10
are not fixed.

2. Now we use the freedom in the word S0
0 to find a pair of states (S−1, S′−1) that have the same message

block m−1 = 0x00000000 in the −1th R transform. We do this as follows:

(a) The word S0
4 which has the difference δ2 will also be the 1st word input to the second SMIX

transform (in the backward process). This SMIX transform also has the non-zero difference at
input word 0 which is the same as the output of word 3 of the first SMIX transform of −1th

round of the R transform. Moreover, the actual values of the input words 2 and 3 to the second
SMIX transform are already fixed and they are zero difference words. Now we find the actual
values of the input word 0 of the pair of states for the second SMIX transform such that we
obtain the 3rd output word of this second SMIX as 0x00000000. This can be done by solving a
simple system of linear equations.

(b) Having determined the actual value of the input word 0 to the second SMIX transform for the
pair of states of −1th round of the R transform, we can use the freedom in the input word S0

0
of

the first SMIX transform of −1th round of the R transform to force its output 3rd word to the
actual value computed in the above step 2(a). This can be done by solving a simple system of
linear equations. Note that the word S0

3 has δ1 difference and the words S0
1∼2 have zero difference

with their actual values already determined.

3. Having obtained a pair of 29-word states (S[−1], S[−1]′) with the common message m−1 = 0x00000000,
we choose pairs (S1

0
, S1

′

0
) and (S1

10
, S1

′

10
) such that S1

0
⊕S1

10
= S[−1]10 and S1

′

0
⊕ S1

′

10
= S[−1]′

10
. Note

that since δS1
10 = 0, we have S1

10 = S1
′

10 and S1
0 = S1

′

0 . Now we have determined a pair of 30-word
states (S1, S1

′

) at the start of the −1th R transform.
4. Invert the 30-word states (S1, S1

′

) for one more round of the R transform and obtain the states
(S−2, S′−2) and corresponding message blocks m−2 of the −2th R transform.

By repeating this attack using the freedom available in the state words in the round G211, we can find
another pair of free-start initial states (S−2, S′−2) together with the corresponding message blocks m−2

such that they have the same digest difference as the first pair of states and their respective messages.
Hence, the complexity of the attack is 233 hashing operations and requires negligible memory. These
pairs of free-start initial states have a symmetrical structure at the input that their difference in twelve
words5 is the same and they differ on average in only 332 bits of the 960-bit input state, thus illustrating
weak state diffusion in F-256. In addition, they also result in free-start collisions for no additional cost.
The differential characteristic and examples which illustrate this distinguisher and free-start collisions
are shown in Appendix A.

6.4 Extending the distinguisher to more R transforms.

When the free-start distinguisher on 3 rounds of R ◦ G of F-256 is extended by one more round of the
R transform, symmetrical pattern in the pairs of free-start input states that produce the same digest
difference can be observed in 6 words (S6∼11 of which 4 have 0 difference). In this case, the actual value
of the length padding accounts for a 2-word message but the cost of the attack remains the same as 233

hashing operations. Similarly, for 5 rounds of R ◦ G of F-256, symmetrical pattern in the pairs of free-
start initial states can be observed in 4 words (S3∼5 having 0 difference) and complexity of the attack
is unchanged. For 6 rounds of R, the whole state gets diffused. Note that the word S0 will always have a
zero difference independent of the number of R transforms we apply in this attack as this word is always
truncated to insert the message word. Hence, our differential characteristic from G211 gets diffused into
the 29-word state after the application of full G and 6 rounds of R that include last 2 rounds to process
length-padding words. This clearly demonstrates weak state diffusion in F-256.

Remark 2. The differential characteristic of our free-start distinguisher can also be viewed as an improved
variant of the characteristic considered by the designers in the analysis of the PRF mode of F-256 [6,
§12.4.2]. The internal state they have considered at the start of the G transform for the partial collisions
differ in the same words as ours and in an additional word of S0. As shown in Section 6.1, with negligible
computational work we can have S0 with zero difference.

Remark 3. We note that one can also extend the distinguisher of Aumasson and Phan on the τ(G(S))
transform to produce a free-start distinguisher for F-256. Our analysis shows that this extension can
produce pairs of input states in the distinguishing attack that differ alike in 9 words (of which 5 have
0 difference) in round -2 of R, in 4 words (of which 3 have 0 difference) in round -3 of R, in 2 words
with 0 difference in round -4 of R and the states get fully diffused in round -5 and in this round the
distinguisher does not hold anymore. The rounds -1 and 0 of R are meant for the length-padding words
that denote the binary representation of messages of size at most 3 words such that the distinguisher
can hold. However, this extension would never produce equal length message words because the word S0

at the G always has a difference activating the SMIX-es of round 0 of R. Hence, the message word in
Round 0 will always have a difference meaning that the message words produced by the distinguisher can
be at most of size 227 words (i.e 232 bits). As we just noted, the distinguisher cannot hold for more than
5 rounds of R that include the last two length-padded rounds. Hence, for this extension to apply to a
maximum of 5 rounds of R, we need to use freedom in the round G212 such that we control the unequal
length padding of word 0 for pairs of states. This takes about 234 work leading to more than 66-bit input
difference at the start of the G transform. The desired length padding in Round -1 can be obtained with
an approach similar to our analysis.

7 On free-start collisions for F-256

Recall from §6.3 that free-start distinguishers for the length-padded F-256 also produce free-start colli-
sions. In this section, we show that we do not need to develop efficient differential characteristics for the
G transform to show free-start collisions for the length-padded F-256 and these collisions for F-256 can
be obtained in constant time “trivially’ even with the inclusion of length-padding. First we discuss some
generic methods of doing free-start collisions for F-256.

5 Here we do not consider the word S0 as it is always be replaced by a message word in a round of R.

7.1 Generic free-start collisions

Free-start collisions without length padding. It is well known that the structure of any instance of
Fugue allows trivial free-start collisions in constant time and negligible memory even if G is ideal. This is
possible by inverting a pair of distinct final states that produce the same digests through G and at least
one round of the R transform. However, to find generic pseudo collisions for Fugue with length padding
some computational work is required as shown below. We focus on Fugue-256 (with length-padding) and
recall that the R transforms are numbered in the order 0,−1,−2, These were not discussed before.

Free-start collisions with equal length words. In this attack, on average 264 distinct final states
(that produce the same digest) are inverted through G and 2 rounds of R for each message in order to
obtain the desired length-padded words in the last 2 rounds of R. Hence, using brute force, it takes on
average 264 hashing operations to find free-start collisions for equal length message words. This attack
produces colliding messages of desired size.

Free-start collisions with unequal length words. In this attack, to obtain each colliding message,
we invert about 232 final states such that we obtain 0x00000000 in the round -1 of the R transform. We
repeat this to obtain another message in the colliding pair. Both these messages will likely have distinct
32-bit length padding words in Round 0 of R. Now we invert the states of this colliding pair to generate
unequal length messages of size at most 232. So total complexity of this attack is at most 234. This attack
does not lead to desired length of message words in the pseudo collisions.

7.2 Free-start collisions for the length-padded F-256 in constant time.

The following algorithm shows a free-start collision attack for F-256 in constant time where we can get
colliding messages of desired size. Let 0,−1,−2, . . . be the R transforms where length padding words are
processed in the rounds −1 and 0 and G transform follows 0th R transform.

1. Consider the 29-word state of the −1th R transform and this state has words S1∼29. Fill in these
words with arbitrary values. Invert 29-word state together with some word S0 through the round −2
and obtain a message word m−2.

2. Now the word S0 of the 30-word state at this round can be varied such that S0⊕S10 is always fixed to
the value of S10 in the 29-word state chosen in the previous step. By using this freedom in the word
S0 and inverting the 29-word state chosen in round -1 of the above step, we can obtain a message
m′−2 6= m−2 in round -2 of R.

3. Now we have found a pair of distinct message words (m′−2, m−2) that collide on the 29-word state
at the −1th R transform. Both of them will have the same length encoded words in the rounds −1
and 0 and hence, would give a collision after the τ(G) transform.

4. Invert the state at round -2 to the desired number of rounds and obtain colliding message words and
states in every round. Finally, length encode the message words in the last two rounds of R producing
an internal state collision and hence the free-start collision for the length-padded F-256.

8 Concluding remarks

Fugue is probably the least studied hash function among the second round of SHA-3 candidates. Fugue
is based on a very new mode of operation, and the security properties required on its building blocks
were not clearly defined. Hence, improved analysis of this design to develop a deeper understanding of
it is important. We made this attempt in this paper for the 256-bit instance of Fugue called Fugue-256,
denoted F-256.

We improved the previous integral distinguisher on the final transformation G from 5.5 rounds to
16.5 rounds showing weak diffusion in this transform. Next, we improved the meet-in-the-middle preimage
attack of the designers and reduced its complexity from 2480 time and memory to 2416. Next, we developed
an improved version of the differential characteristic used by the designers in the PRF mode analysis of
F-256 to develop free-start structural distinguishers and free-start collisions for F-256. This analysis
complements the designers’ analysis of the chosen key/Initial Value (IV) model of F-256 [5]. Finally,

we show efficient “trivial” free-start collisions of different type for F-256 without the necessity of the
distinguishers for the final transformation G.

To conclude, in this paper we have developed a further understanding of the design of F-256. Although
our new analytical results do not compromise the security claims of the designers for finding collisions
and (second) preimages in these designs as well as its indifferentiability analysis [7], they show several
interesting properties of these designs such as weak diffusion in G transform through integrals and efficient
distinguishers, weak diffusion for the composition of few rounds of R and G transforms in F-256 through
free-start distinguishers and free-start collisions and the ability to control message and state words as in
the meet-in-the-middle preimage attack on F-256.
Acknowledgments: We would like to thank Charanjit Jutla and Shai Halevi for their many valuable
discussions and comments on the analysis presented in this paper. We also thank Raphael Phan, Jean-
Philippe Aumasson, Søren Thomsen and Christian Rechberger for comments and discussions.

Praveen Gauravaram is supported by the Danish Council for Independent Research: Technology and
Production Sciences (FTP) 09-066486/FTP.

The work in this paper has been supported in part by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

Lei Wei is supported under the Singapore National Research Foundation under Research Grant NRF-
CRP2-2007-03. An earlier version of this paper was submitted to the NIST Hash function email listing
in December 2010. This is a revised version of that paper with some additional analysis and corrections
to the previous version.

References

1. J.-P. Aumasson and R. C.-W. Phan. On the Cryptanalysis of the Hash Function Fugue: Partitioning and
Inside-Out Distinguishers. To appear in IPL Journal,2011.

2. J.-P. Aumasson and R. C.-W. Phan. Distinguisher for Full Final Round of Fugue-256. Presented at second
NIST SHA-3 conference, 2010.

3. J. Daemen and V. Rijmen. The design of Rijndael: AES — the Advanced Encryption Standard. Springer,
2002.

4. ECRYPT II. The SHA-3 Zoo. Available at http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.
5. S. Halevi, W. E. Hall, and C. S. Jutla. Analysis of Fugue-256. Comment to NIST’s hash function forum on

April 4, 2010.
6. S. Halevi, W. E. Hall, and C. S. Jutla. The Hash Function Fugue. Submission to NIST (updated), 2009.
7. S. Halevi, W. E. Hall, C. S. Jutla, and A. Roy. Weak Ideal Functionalities for Designing Random Oracles

with Applications to Fugue. Submission to NIST’s function forum in 2010.
8. D. Khovratovich. Cryptanalysis of hash functions with structures. In M. J. J. Jr., V. Rijmen, and R. Safavi-

Naini, editors, Selected Areas in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages
108–125. Springer, 2009.

9. L. Knudsen and D. Wagner. Integral cryptanalysis. In FSE, volume 2365 of LNCS, pages 112–127. Springer,
2002.

10. L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash Functions. In A. Biryukov, editor,
FSE, volume 4593 of Lecture Notes in Computer Science, pages 39–57. Springer, 2007.

11. NIST. Announcing the Development of New Hash Algorithms for the Revision of Federal Information Pro-
cessing Standard (FIPS) 180-2, Secure Hash Standard, January 2007. This notice by NIST is available
at http://www.csrc.nist.gov/pki/HashWorkshop/timeline.html with the Docket No: 061213336-6336-01.
(Accessed on 2/11/2010).

12. NIST. Second Round Candidates. Official notification from NIST, 2009. Available at
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html (Accessed on
17/02/2011).

13. NIST. Status Report on the Second Round of the SHA-3 Cryptographic Hash Algo-
rithm Competition, February 2011. This Interagency Report 7764 of NIST is available at
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Round2_Report_NISTIR_7764.pdf

(Accessed on 17/02/2011).
14. M. S. Turan and E. Uyan. Near-Collisions for the Reduced Round Versions of Some Second Round SHA-3

Compression Functions Using Hill Climbing. In G. Gong and K. C. Gupta, editors, Progress in Cryptology -

INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science, pages 131–143. Springer, 2010.

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://www.csrc.nist.gov/pki/HashWorkshop/timeline.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html
 http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Round2_Report_NISTIR_ 7764.pdf

A Differential path and examples of free-start structural distinguisher for
F-256

The differential path which demonstrates free-start structural distinguisher for Fugue-256 is shown in
Figure 1. This path shows the differences in the state words (represented as square cells) at the start and
the end of every full round of the G and R transforms. The cells in Magenta color represent δ1, those in
Blue color represent δ2 and those in Red color represent random differences. Cells in Light Green color
are zero difference words chosen at the start of the Forwards phase of the attack with their actual values
fixed from the round G211 and plain cells in the round G211 are zero differences whose actual values
are varied in the attack. The cells in Forest Green and Yellow at the 0th R transform denote the words
S0 and S10 on which we exert the control. The cells in Black color are those whose actual values and
hence the difference remains fixed when the words S8∼14 and S22∼29 of the round G211 are varied for
the attack.

Table 1 shows two pairs of free-start initial states that produce the same digest difference. The message
words in the Round -2 for the first pair of states are 0x452e0fed and 0xb69c87e7 respectively and their
hash values H1 and H∗

1 and digest difference H1 ⊕ H∗

1 are noted in Table2. The message words in the
Round -2 for the second pair of states are 0x3e38f1d5 and 0x3b3e1591 respectively and their hash values
H2 and H∗

2
and digest difference H2 ⊕ H∗

2
are noted in Table2.

B Integrals for the 16.5 rounds of G transform of F-256

In Table 3, we have shown the integrals for the 16.5 rounds of the G transform of F-256 whose analysis
was presented in §4.

Table 1. Two pairs of free-start initial states at Round -2 that produce the same digest difference under F-256.
The underlined differences (thirteen words) in each pair are the same, thus illustrating a symmetrical structure
at the input. The message word m−2 for the first pair of states are 452e0fed and b69c87e7 respectively and
the message word m−2 for the second pair of states are 3e38f1d5 and 3b3e1591 respectively. Digests and their
difference for these two pairs of free-start initial states are noted in Table 6.

(First pair)i 0 1 2 3 4 5 6 7

Si 00000000 60384cec c88579f6 ef3384a7 1122cf88 699f49c9 061dd5c7 d0ec2932
S∗

i 00000000 1b4b4b3b c88579ff bf715080 1122cf88 699f49c9 061dd5ce 80aefd15
δSi 00000000 7b7307d7 00000009 5042d427 00000000 00000000 00000009 5042d427

i 8 9 10 11 12 13 14 15

Si 490b3310 e9515c99 0f318596 5d5cf9cb 8b3ed0d8 f24df5be 0e882d53 a04d1f33
S∗

i bab9bb1a 3f0e6e44 3060b6a1 952343d8 8b3ed0d8 f24df5b7 5ecaf974 a04d1f33
δSi f3b2880a d65f32dd 3f513337 c87fba13 00000000 00000009 5042d427 00000000

i 16 17 18 19 20 21 22 23

Si 55c282ac 7dac1e94 8128362d 9bfb7773 e027a681 26b47a29 31432623 1d8fd2d0
S∗

i 55c282ac 7dac1e9d c653bcab 8fcd7448 c8a9b641 4e4ee6a6 6c9e69b9 b5612464
δSi 00000000 00000009 477b8a86 1436033b 288e10c0 68fa9c8f 5ddd4f9a a8eef6b4

i 24 25 26 27 28 29

Si e6beba51 f632b2d6 6a9e272e 48be89d7 415cc7c3 d0913503
S∗

i 9dcdbd86 4d01224b 4e845d7d c0be7791 6ba488f9 651ff74e

δSi 7b7307d7 bb33909d 241a7a53 8800fe46 2af84f3a b58ec24d

(Second pair)i 0 1 2 3 4 5 6 7

Si 00000000 dfc0c8dc 9f377939 79a8eedf a1494d9a 7c7ec219 57ba13ef 419425ff

S∗

i 00000000 a384d860 9f377930 29ea3af8 a1494d9a 7c7ec219 57ba13e6 11d6f1d8
δSi 00000000 7c4410bc 00000009 5042d427 00000000 00000000 00000009 5042d427

i 8 9 10 11 12 13 14 15

Si 92a4950a ef401399 24a6b3da 885f29bd d2ad82df d4a1c996 61e5f82c f5df2e9c

S∗

i 97a2714e df695c53 dc179321 e45d6bef d2ad82df d4a1c99f 31a72c0b f5df2e9c

δSi 0506e444 30294fca f8b120fb 6c024252 00000000 00000009 5042d427 00000000

i 16 17 18 19 20 21 22 23

Si 6c43db27 a3d7bba2 ff80e3c3 e6e9d43f 7545d720 9ef2661d f366637c 2643cd41
S∗

i 6c43db27 a3d7bbab b85bdda6 8ee38551 b8356608 f0253cc4 7cfb5757 5a907f38
δSi 00000000 00000009 47db3e65 680a516e cd70b128 6ed75ad9 8f9d342b 7cd3b279

i 24 25 26 27 28 29

Si b2a6c9a6 23253798 8cdb1796 cd9ed766 d6336037 251d81be

S∗

i cee2d91a 3acd494c 42729eb7 3e270858 8160fad6 bb1c154c

δSi 7c4410bc 19e87ed4 cea98921 f3b9df3e 57539ae1 9e0194f2

Table 2. Digests and their difference for the pair of free-start initial states presented in Table 1. The digests for
the first pair are (H1, H

∗

1) and those for the second pair are (H2, H
∗

2). Note that H1 = H2 and H∗

1 = H∗

2 showing
free-start collisions.

H1 H∗

1 δH1 H2 H∗

2 δH2

c7d79278 1110cc99 d6c75ee1 c7d79278 1110cc99 d6c75ee1
5bf7c4c7 0c8414e5 5773d022 5bf7c4c7 0c8414e5 5773d022
89887088 a2001d55 2b886ddd 89887088 a2001d55 2b886ddd
d766450d e3e3bdcf 3485f8c2 d766450d e3e3bdcf 3485f8c2
9832fbba 8aeada67 12d821dd 9832fbba 8aeada67 12d821dd
1af7391d df11a14c c5e69851 1af7391d df11a14c c5e69851
b81725a5 ab74f777 1363d2d2 b81725a5 ab74f777 1363d2d2
c073bb41 4d788f18 8d0b3459 c073bb41 4d788f18 8d0b3459

282726250 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 290 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

29

Digest

24

G213

G212

G211

G210

G29

G28

G27

G26

G25

G24

G23

G22

G21

G15

G14

G13

G12

G11

0
th

R

−1
th

R

−2
th

R

Fig. 1. Differential path of the free-start distinguisher on F-256. At Round -2 of R, the two pairs of pseudo initial

states differ alike in the words S0,S2∼7 and S12∼17.

Table 3. The Integral propagation over 16.5 rounds of F-256 G-function. In this table “.”, “,” and “!” denote C, A and S respectively and blank cells are those cells
that we do not consider.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29

G1

1,.. .

G1.5

1,.. .

G2

1,..

G2.5

1,..

G3

1,..

G3.5

1 .,..

G4

1 .,..

G4.5

1 .,..

G5

1 .,.. .

G5.5

1 .,.. ,... ..., ..,. .

G1

2 ,!,! ,!,! ,,,, ,!,! ,... ..., ..,. ,... ..., ..,.

G1.5

2 ??!? ,?,? ,??? .?!? ,!,! ,!,! ,,,, ,!,! !!,! ..., ..,.

G2

2 ??!?

G2.5

2 ??!?

G3

2 ??!?

G3.5

2 ??!?

G4

2 ??!?

G4.5

2 ??!?

G5

2 ??!?

G5.5

2 ??!?

G6

2 ??!?

G6.5

2 ??!?

G7

2 ??!?

G7.5

2 ??!?

G8

2 ??!?

G8.5

2 ??!?

G9

2 ??!?

G9.5

2 ??!?

G10

2 ??!?

G10.5

2 ??!?

G11

2 ??!?

G11.5

2 ??!?

G12

2 ??!?

G12.5

2 ??!?

	Improved security analysis of Fugue-256

