
SØREN STEFFEN THOMSEN / 001856

CRYPTOGRAPHI C HASH FUNCT IONS
CRYPT0GRAPH1C HA5H FUNCT10N5
C2YP7 0 6 2 4PH1C H45H FUNC710N5
C2797 0 6 2 49H1C H45H F0 7C710 75
0 2797 0 6 2 49810 8 45 8 50 7 0710 75

Department of Mathematics
Technical University of Denmark
November 14, 2005

Hash, x. There is no definition for
this word—nobody knows what
hash is.

Ambrose Bierce, The Devil’s Dictionary, 1906

Contents

1 Introduction 1
1.1 Hash functions in short . 1
1.2 About this report . 1
1.3 Conventions . 3

2 Hash functions 5
2.1 Properties . 5
2.2 The typical construction . 6
2.3 Applications of hash functions 7

2.3.1 Digital signatures . 7
2.3.2 Commitment schemes 8
2.3.3 Password protection schemes 8
2.3.4 Data integrity . 8
2.3.5 Proof-of-work systems 9

2.4 A brief history of hash functions 9

3 Dobbertin’s attack on MD4 11
3.1 Description of MD4 . 11
3.2 The attack . 12

3.2.1 Reaching the goal . 12
3.2.2 Inner almost-collision 15
3.2.3 Right initial value . 17

3.3 The algorithm . 19
3.4 Summary . 20

4 Wang’s attack on MD5 21
4.1 Description of MD5 . 21
4.2 Introduction to the attack . 22
4.3 The idea . 23
4.4 Details . 24

4.4.1 Origin of the conditions 24
4.4.2 Message modification 26
4.4.3 Propagating carries . 28

i

4.5 Detailed examination of the second iteration 30
4.5.1 Conditions on theT-values 30
4.5.2 Conditions on step variables 34

4.6 Modifications by Kĺıma . 46
4.6.1 An overview . 47
4.6.2 Details . 47

4.7 Possible additional improvements 47
4.8 An implementation . 49
4.9 Constructing meaningful collisions 50

5 AES-based hash functions 52
5.1 Block cipher-based hash functions in general 52

5.1.1 Fast double-length schemes 53
5.1.2 DES and MDC-2 . 54
5.1.3 Using AES . 54
5.1.4 Related-key attack on AES256 55

5.2 Extending AES to support 256-bit blocks 55
5.3 Alternative constructions . 56

5.3.1 The Lucks scheme . 56
5.3.2 The Knudsen-Preneel scheme 56

5.4 Summary . 63

6 General results on the Merkle-Damg̊ard construction 65
6.1 The motivation for using MD-strengthening 65
6.2 Joux’s multicollisions . 66
6.3 Kelsey/Schneier’s 2nd preimage attack 67

6.3.1 Expandable messages . 67
6.3.2 Finding a 2nd preimage 68

7 Hash functions based on modular arithmetic 69
7.1 A simple hash function . 69
7.2 The Chaum-van Heijst-Pfitzmann hash function 70
7.3 MASH-1 and MASH-2 . 71

8 The SMASH hash function 73
8.1 The design of SMASH . 73

8.1.1 The construction . 73
8.1.2 The compression function 74

8.2 Analysis . 75
8.2.1 The forward prediction property 76
8.2.2 Inverting the compression function 76
8.2.3 Complexity of (2nd) preimage attacks 76

8.3 An attack . 76
8.3.1 The idea . 76

ii

8.3.2 Breaking a variant . 77
8.3.3 Breaking SMASH . 78

8.4 Possible improvements to SMASH 79
8.4.1 Using the secure compression function for everyj steps . 80
8.4.2 Using differentf functions in each step 80
8.4.3 Further dependency on the message 81
8.4.4 Using more than one fixed, bijective mapping 83

9 Future directions 87
9.1 A brief discussion on strategy . 87
9.2 Merkle-Damgård or not Merkle-Damgård? 88
9.3 A discussion on efficiency . 89
9.4 The NIST Cryptographic Hash Workshop 90
9.5 Summary . 91

A Conditions on step variables in the Wang MD5 attack 93
A.1 First iteration . 93
A.2 Second iteration . 96

B An implementation of the Dobbertin MD4 attack 98

C An implementation of the Wang MD5 attack 104

D An implementation of the Wang MD4 attack 127

E The individual steps of MD4 136

iii

Chapter 1

Introduction

In this first chapter, cryptographic hash functions are verybriefly introduced, and a
short summary of each of the following chapters is given. Finally, the conventions
used throughout the report are described.

1.1 Hash functions in short

Cryptographic hash functions (or simplyhash functions) map strings of arbitrary
length to strings of a fixed lengthn. It should be easy to compute the output string,
which is called thehash value, thehash resultor simply thehash. The hash value
may also be thought of as thefingerprint of some message. There are 2n different
hash values for a given hash function, and the idea is that theprobability that some
message hashes to a given hash value is 2−n. Hence, the hash should truly be a
fingerprint of the message, and although it is clear that several messages hash to
the same value, it should be computationally infeasible to find two such messages
in practice.

To be specific, one often considers three different kinds ofattackson hash
functions (for any attack it is assumed that the attacker cancompute the hash of
any message). These can be stated informally as follows:

The collision attack. Find two messages that hash to the same value

The preimage attack. Find a message that hashes to a given value

The 2nd preimage attack. Given a message, find a different message which hashes
to the same value

A more thorough introduction to hash functions is given in Chapter 2.

1.2 About this report

The area of cryptographic hash functions is attracting great attention in the crypto-
graphic community at the moment. Most importantly this increased interest is due

1

to a fairly large number of interesting and disturbing collision attacks on hash func-
tions still widely in use. Moreover, many hash functions still considered secure are
based on hash functions that have been broken.

This document describes various results on hash functions.These include at-
tacks, proofs of security, and suggestions to new hash functions based on existing
material. First, in Chapter 2, an introduction to hash functions, including some
applications and the history of hash functions, is given.

In Chapter 3 the collision attack [12] on MD4 by Hans Dobbertin is described.
This attack excited greater interest in cryptanalysis of hash functions, and mod-
ifications of the technique used by Dobbertin were applied inattacks on SHA-0
[6, 2], MD5 [45], SHA-1 [2, 44] etc. An implementation of thisattack can be
found in Appendix B. An implementation using a different technique, developed
by Xiaoyun Wang et al. [43], has been implemented for comparison (see Appendix
D).

This brings us to Chapter 4, which contains the description,including the au-
thor’s own modifications, improvements and implementationof a collision attack
on MD5 developed by Xiaoyun Wang et al. [45] and modified by Vlastimil Kĺıma
[25]. This attack makes use of a differential pattern discovered by Xiaoyun Wang.
She also discovered good differential patterns of other hash functions like MD4,
RIPEMD etc., and thus she has helped reduce the complexity offinding collisions
for a number of hash functions. Currently, she is working to reduce the complexity
of finding collisions for SHA-1 to a practically applicable level. Her latest attack
[44] has complexity 263.

Some suggestions for using AES or AES components to form a secure hash
function are presented in Chapter 5. These include a suggestion based on error-
correcting codes. It turns out to be difficult to construct efficient and convenient
AES-based hash functions, but in the light of recent attackson dedicated hash
functions, it might still be worth considering such alternatives.

In Chapter 6, some general results on the Merkle-Damgård construction are
presented. First, some motivation for using the Merkle-Damgård construction is
given, and after that some generic attacks on the construction are described.

Chapter 7 presents a number of hash functions that are based on modular arith-
metic. Hash functions of this type have some advantages to more common con-
structions, although they are fairly inefficient.

An attack on a new hash function proposal, SMASH, is described in Chapter 8,
and some proposals (in part developed by the author) to improvements of SMASH

that hopefully render it secure, are presented.
The final chapter is a discussion on actions to be taken as a consequence of

recent attacks, and possible strategies for selecting hashfunctions to be used in
many years to come. This discussion includes some points from the Cryptograhic
Hash Workshop hosted by NIST on October 31 to November 1, 2005.

The reader is assumed to possess some prior knowledge of cryptographic tools
such as number theory, probability theory, modular arithmetic etc. Prior knowledge
of specific hash function designs is not required. Seehttp://www.student.dtu.

2

dk/∼s001856/exam/ for links to this report, program code and other resources.

1.3 Conventions

In this document aword is a 32-bit entity. Arithmetic operations are performed
modulo 232 unless explicitly stated otherwise. Numbering generally starts from 0,
so for instance bit number 0 of a word is the least significant bit, message block
number 0 is the first message block etc. Numbers have a subscript h when they are
written in hexadecimal form, and a subscriptb when written in binary form, unless
it is clear from the context which form is being used. Binary and hexadecimal
numbers are always written inthis font.

Some symbols and operators and their meanings in this context are given in
Table 1.1.

3

Notation Meaning

⊕ The exclusive-or (XOR) operator.

∧ The logic AND operator.

∨ The logic (inclusive) OR operator.

¬X The bitwise complement ofX.

X≪s X rotated left cyclically byspositions.

a modn The least non-negative integerr such thata = kn+ r for some
integerk.

adivn The number of times thatn dividesa (i.e. the value ofk above).

m0‖m1 The concatenation ofm0 andm1.

|m| The bit length ofm.

0s, 1s The concatenation ofs0-bits, ors1-bits, respectively.

a← b a is assigned the value ofb.

a
.
= b a must equal b, meaning that it is a requirement thata equalsb.

X[s] Bit no. sof X.

X[s− t] The set of bitss to t of X, t > s.

δX The modular difference betweenX andX′, i.e.X′−X.

∆X The XOR difference betweenX andX′, i.e.X⊕X′.

∇X A list 〈s, t, . . .〉 of the bit positions at whichX andX′ differ. Each
position is preceded by+ (may be omitted) or−, where+s indi-
cates thatX[s] = 0 andX′[s] = 1, and−s indicates thatX[s] = 1
andX′[s] = 0. If s is not present in the list, thenX[s] = X′[s].

∇X[s] The signed differenceX′[s]−X[s].

Table 1.1: The meaning of symbols and operators used in this report.

4

Chapter 2

Hash functions

In this chapter some properties of hash functions are presented in more detail than
the short description in Chapter 1. Some applications of hash functions are men-
tioned, and a short history of hash functions is presented inthe final section.

2.1 Properties

As mentioned in the introduction, there exist three basic kinds of attacks on hash
functions. One could also define some properties of hash functions depending on
their resistance to these attacks. Hence, we might define thefollowing semi-formal
properties of a hash functionH : {0,1}∗→{0,1}n:

Preimage resistance.H is said to be preimage resistant if given a valueh∈{0,1}n
it is infeasible to find a messagem such thatH(m) = h.

2nd preimage resistance.H is said to be 2nd preimage resistant if given a message
m it is infeasible to findm′ 6= msuch thatH(m′) = H(m).

Collision resistance. H is said to be collision resistant if it is infeasible to find two
different messagesm andm′ such thatH(m) = H(m′).

Variants of the attacks exist as well. Using the brute-forcemethod, the com-
plexity of a collision attack is 2n/2 (this attack is also called thebirthday attack),
and the complexity of a (2nd) preimage attack is 2n. Most attacks in practice are
collision attacks, since these are usually easier to mount than preimage attacks.
Note that a hash function which is collision resistant is also 2nd preimage resistant,
since a 2nd preimage is also a collision. However, it is not implied in general that a
collision resistant hash function is preimage resistant.

A hash function often makes use of a fixedinitial value. Attacks that require
alteration of this fixed value are calledfree-startor pseudo-attacks.

5

2.2 The typical construction

Usually a message ispaddedbefore being processed by the hash function. The
padding makes it possible to split the message intoblocksof equal sizeµ. Most
hash functions use the so-called Merkle-Damgård construction, see Construction 1
and Figure 2.1.

Construction 1 (The Merkle-Damgård construction). The padded messagem is
split into t blocksm0, . . . ,mt−1 of eachµ bits. Leth0 = v be an initialn-bit value
defined by the hash function, and letf : {0,1}n×{0,1}µ→{0,1}n be acompres-
sion function. Define

hi+1 = f (hi ,mi) for 0≤ i < t

The hash ofm is thenH(m) = ht .

f f f

h0 = v m0 m1 mt−1

h1 h2

ht−1

H(m) = ht

· · ·

Figure 2.1: The Merkle-Damgård construction.m = m0‖m1‖· · ·‖mt−1 is the message
including padding,v is an initial value, andH(m) is the final hash value.

The intermediate valuesh1, . . . ,ht−1 are calledchaining valuesor chaining vari-
ables. Padding is usually performed as in Rule 1.

Rule 1 (Padding rule). Let m be the message to be padded,|m| = τ. Let µ be
the block size of the hash function. Append a1-bit to m. Then appendw 0-bits,
and finally (theMD-strengthening) append au-bit representation ofτ. u is a fixed
number depending on the hash function, andw is the least non-negative integer
such that the length in bits of the padded message is a multiple of µ.

Note that some hash functions (such as SHA-1) require thatτ < 2u, while
others (e.g. MD5) use the convention that theu least significant bits ofτ are used
in the padding.

When MD-strengthening is used in the Merkle-Damgård construction it is pos-
sible to prove (the proof is given in Section 6.1) that if the compression function is
collision resistant, then so is the entire hash function. Ifwe were to remove the MD-
strengthening part of Rule 1 (and no other changes were made to the process), then
we would not be able to make this proof. For instance, letH be the hash function,f
the compression function andv the initial value, assume thatH(m0‖m1) = H(m1)

6

(i.e. m0‖m1 andm1 collide underH), and thatf (m0,v) = v. Then for the two mes-
sages, the input to the compression function when processing m1 is identical, and
so there is no collision for the compression function.

The compression function usually contains a number of steps, where in each
step a part of the message block and the compression state areused to manipulate
the compression state. At the end, when the whole message block has been in-
cluded at least once in the computations, the initial state is often added to the final
state to give the output of the compression function. Without this feed forward
the compression function would be easily invertible, whichwould make free-start
preimages easy to find. Invertible compression functions also facilitate true (2nd)
preimage attacks of lower complexity than using the brute force method, as de-
scribed in Section 8.2.3.

2.3 Applications of hash functions

Hash functions are used in a number of cryptographic contexts, such as digital
signatures, password protection schemes and data integrity, and keyed versions of
hash functions (which are not covered here) are used as message authentication
codes. Hash functions could also be used as pseudo-random number generators,
but only in such cases where the randomness of the hash function has been suf-
ficiently examined and deemed appropriate for this purpose [30, §9.2.6]. In fact,
FIPS 186 [18] defines an approved pseudo-random number generator based on
SHA-1 for use in generating secret parameters for the Digital Signature Algorithm,
also defined in [18].

Hash functions are also used in non-cryptographic contextsfor storing data in
hash tables. The hash functions used for this purpose, however, cannot be com-
pared with cryptographic hash functions except that both types are mappings from
a large domain to a smaller range.

Some common applications of hash functions are now described in a little more
detail, along with some reasoning as to why the hash functionshould be resistant
against the three kinds of attacks mentioned.

2.3.1 Digital signatures

A digital signature is used for a number of purposes, including:

ensuring authenticity the recipient of a digitally signed message may be confi-
dent that the sender is the person he claims to be.

preventing repudiation the signer of a message cannot subsequently claim that
he did not sign the message.

These properties only hold when the digital signature is secure.
For efficiency reasons, a message is usually hashed before itis signed. Hashing

is usually much faster than signing and verifying, and hencetime is saved if a short

7

hash is signed instead of the entire message. This also yields a shorter signature.
A weakness of the hash function, however, could be exploitedby an adversary to
forge a digital signature. For instance, if the adversary isable to produce meaning-
ful collisions of the hash function, he may get some person tosign a message and
then subsequently claim that the signer in fact signed another message.

2.3.2 Commitment schemes

Two people who would like to agree on some valueV in a fashion so that one per-
son cannot make his choice based on the choice of the other person, may use hash
functions for this purpose in the following way: Person A decides on a valueVA

of V, appends anonce NA, which is some random value that is only used once, to
VA, and then computes the hash ofVA‖NA. The nonce is appended because often
the number of possible values ofV is so small that an adversary can compute the
hash of all possibilities ofV. Appending a nonce of a reasonable length prevents
this. Person A then sends this hash to B, who decides on his ownvalueVB without
being able to see what A chose. He may then computeH(VB‖NB), whereNB is
B’s own nonce, and send this hash to A. Now A and B can exchange nonces and
choices ofV, and verify that the other person in fact did choose the valueof V that
he claimed.
Of course, one may come up with a number of other contexts in which it is re-
quired that some party (or parties) commits to a certain piece of information prior
to revealing what that information is.

2.3.3 Password protection schemes

For obvious reasons, passwords should never be stored in plain text. Instead, the
hash of the password may be stored. When a password needs to beverified, the
hash of the password is compared to the stored hash, and if they match there is a
very good probability that the password is correct. Hash functions used for this
purpose must be preimage resistant, since it should not be possible to compute the
actual password from its hash.

2.3.4 Data integrity

When a message needs to be stored for a long time, and it is important that any
alterations of the message can be detected, one may compute the hash of the mes-
sage and store this value safely instead of the entire message. The integrity of the
message can be checked at a later time by computing the hash again, and compar-
ing this value with the stored hash. This way the problem of ensuring data integrity
is reduced to the shorter hash instead of the entire message.

Hash functions used for this purpose should be at least 2nd preimage resistant,
since otherwise an adversary may replace the original message with a 2nd preimage,
and this forgery would not be detected using the technique described. In fact, the

8

hash function should even be collision resistant to preventthe originator of the
message from playing the part of the adversary in the forgeryjust described.

2.3.5 Proof-of-work systems

An attempt to fight spam is the so-called proof-of-work system Hashcash[20]. In
this scheme, the sender of an e-mail must prove that he has performed an amount of
work in the process of sending the e-mail. To prove this, the sender must compose
a certain header for the email, which is a string consisting of the sender’s e-mail
address, the current date and a random number such that the SHA-1 hash of the
entire header has all zeroes as the firstk bits. This requires 2k evaluations of the
SHA-1 compression function on the average (here,k is “currently” 19, but this
could increase as computing power increases).
The recipient can quite easily check that the header has beencomposed in the cor-
rect manner. The theory behind this system is that spammers who submit thousands
of e-mails will be severely troubled by having to construct the header.

2.4 A brief history of hash functions

The need for cryptographic hash functions first arose in contexts of digital au-
thentication such as password protection. The term used forhash functions in the
beginning wasone-way functions, indicating that these functions should be preim-
age resistant. Whitfield Diffie and Martin E. Hellman were thefirst [11] to define
such one-way functions. The ideas of 2nd preimage and collision resistance were
developed in the following years, but it took a while for formal definitions to ap-
pear.

Diffie and Hellman also showed [11] how a secure cryptosystemcould be used
to create a hash function. Around 1980 the first concrete schemes, the Davies-
Meyer and the Matyas-Meyer-Oseas schemes, appeared, but already at that time
these schemes used in conjunction with DES,theencryption algorithm of the time,
did not provide sufficient security.

It was not until 1988 that an applicable construction based on DES, the MDC-2
construction, was developed [32, 5]. About the same time, one of the first dedicated
hash functions, MD2 [37], was developed by Ronald Rivest. MD2 was superseded
by MD4 [36], which in turn was replaced (1991) by MD5 [38], thefirst hash func-
tion to be in widespread use. In 1993, the National Instituteof Standards and
Technology (NIST) approved [15] the SHA hash function, a hash function built
upon the ideas of MD4 and later to become known as SHA-0. SHA-0was with-
drawn by the NSA shortly after its publication, and in 1995 itwas superseded by
SHA-1 [16], which uses the same compression function as SHA-0, but a slightly
different message expansion. All the mentioned dedicated hash functions are now
considered broken. In 2001, NIST published (in the draft version of [17]) a new
set of hash functions including SHA-256, which is currentlyNIST’s preferred hash

9

r r r r r r r r r r r r r r r r r r

19
88

19
90

19
91

19
92

19
93

19
95

19
96

20
00

20
01

20
05

MD2, MDC-2

MD4

MD5

HAVAL, RIPEMD

SHA-0

SHA-1, MASH-1

RIPEMD-160, TIGER

WHIRLPOOL

SHA-256

SMASH

Figure 2.2: The “year of birth” of a number of hash functions

function.
The last couple of years have seen an increase in the amount ofcryptanalytic

work on hash functions, and especially the work of Xiaoyun Wang et al. [43, 44, 45]
has increased the focus on hash functions in the cryptographic community. Since
the attacks of Wang are all directed towards hash functions of the so-called MD4
family, and since these attacks seem fairly generic, the cryptographic community is
currently facing the dilemma of whether to keep improving existing hash functions
of this family, or to abandon the MD4 family and start considering alternatives
constructions only. The WHIRLPOOL hash function, which is similar to AES and
cannot be considered MD4-like, was developed in 2000 and hasnot yet been bro-
ken. A new proposal of the year 2005, SMASH, is based on completely different
principles to those of the MD4 family. However, it was brokenshortly after its
publication.

Figure 2.2 shows the years of birth of all the hash functions mentioned, and
a few others which have gained some attention. The only ones of these which
are still considered secure and applicable are RIPEMD-160,SHA-256, TIGER,
and WHIRLPOOL. The first two are MD4-like. TIGER is optimised for the 64-bit
architecture.

10

Chapter 3

Dobbertin’s attack on MD4

MD4 [36] is a hash function introduced in 1990 by Ronald Rivest, one of the
creators of the RSA cryptosystem. It was superseded the following year by MD5.
This attack was developed by Hans Dobbertin and published [12] in 1998.

3.1 Description of MD4

MD4 uses Construction 1, and Rule 1 for padding (withu = 64). The sizeµ of
each message block is 512 bits, and the output of the compression function and the
full hash function is 128 bits. The initial value of MD4 is

Q−3 = 67452301h

Q−2 = 10325476h

Q−1 = 98badcfeh

Q0 = efcdab89h

The compression function consists of 48 steps, and it works as follows. Let
three functions be defined:

f0(X,Y,Z) = F(X,Y,Z) = (X∧Y)∨ (¬X∧Z)

f1(X,Y,Z) = G(X,Y,Z) = (X∧Y)∨ (X∧Z)∨ (Y∧Z)

f2(X,Y,Z) = H(X,Y,Z) = X⊕Y⊕Z

These are also referred to asif, maj, andxor respectively.
Define three constants,

k0 = 0

k1 = 5a827999h

k2 = 6ed9eba1h

The messagem is split into 16 wordsm0, . . . ,m15. LetWt be the message word
used in stept. ThenWt = mu, whereu is found in the table below for increasingt
(read from left to right, then down).

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Each step also contains a rotation value,St , which can be derived from the table
below.

St
t div16

0 1 2

t
m

od
4 0 3 3 3

1 7 5 9
2 11 9 11
3 19 13 15

r = t div16 is theround number, i.e. there are three rounds of 16 steps each. Now
the compression function can be stated as in Algorithm 3.1. In this context, the
valuesQi are referred to as step variables.

Algorithm 3.1 The MD4 compression function

Input: (Q−3,Q−2,Q−1,Q0) andm0, . . . ,m15

for t = 0 to 47do
Qt+1← (fr(Qt ,Qt−1,Qt−2)+Qt−3+kr +Wt)

≪St {Here, r = t div16}
end for
return (Q45+Q−3,Q46+Q−2,Q47+Q−1,Q48+Q0)

When reading the attack described in the following, it may behelpful to consult
Appendix E which is a list of the individual steps of MD4.

3.2 The attack

This chapter describes a collision attack on all 48 steps of MD4. The messages
that collide are both 512 bits, i.e. one block excluding padding. The two messages
m andm′ are very similar. In fact,m′i = mi for all 0≤ i < 16 excepti = 12, and
m′12 = m12+1.

3.2.1 Reaching the goal

Working backwards from the end, it is clear that the difference between the two
inputs being onm12, if there is a collision after step 35, there is a collision for the
entire message digest, sincem12 is not used as input in steps later than 35. Hence,
our goal is to achieve a collision after step 35. In the following, step variablesQi

are related to messagem, and step variablesQ′i are related to messagem′.
In step 35 the step operation is

Q36← (Q32+H(Q35,Q34,Q33)+m12+k2)
≪15,

12

and hence, sincem′12 = m12+1, if we require thatQ′32
.
= Q32−1 and all other step

variables are equal for the two messages, then we get

Q′36 = (Q′32+H(Q′35,Q
′
34,Q

′
33)+m′12+k2)

≪15

= (Q32−1+H(Q35,Q34,Q33)+m12+1+k2)
≪15

= Q36.

In other words, a collision is achieved ifδQ32=−1, andδQi = 0 for i ∈{33,34,35}.
Moving backwards one step further, in step 34 the step operation is

Q35← (Q31+H(Q34,Q33,Q32)+m4+k2)
≪11.

Since it is required thatδQ35
.
= 0, butδQ32

.
=−1 andδQ33

.
= δQ34

.
= 0, the value

of δQ31 must be non-zero. The simplest solution is to requireδQ31
.
= 1 and hope

that the difference out of theH function (which is thexor function) is−1. This
happens with a fairly good probability, which is seen from the following. What is
needed is that

Q34⊕Q33⊕Q32 = (Q34⊕Q33⊕Q′32)+1⇔
Q34⊕Q33⊕ (Q′32+1) = (Q34⊕Q33⊕Q′32)+1.

This can be simplified to

X⊕ (Y +1) = (X⊕Y)+1.

It is clear that this equation holds if the last (least significant) bit of bothX and

Y is 0. This happens with probability
(

1
2

)2
. However, the equation also holds if

the last two bits ofY are01, and the last two bits ofX are00. This happens with

probability
(

1
2

)4
. This argument can be re-applied for values of the last bits of Y of

011, 0111, etc., which yields an accumulated probability of

32

∑
j=1

(
1
2

)2 j

+
1

264 ≈
1

1− 1
4

−1+
1

264 ≈
1
3
.

This seems high enough that we can keep the requirementδQ31
.
= 1.

The same calculations will show that ifδQ30 = δQ29 = 0, then the probability
of success in each of the steps 32 and 33 will be about1

3, and hence we require
these differences.

ForδQ28 circumstances change as the basic function used in step 31 isnot xor,
but rather themaj function. The step operation of step 31 is

Q32← (Q28+G(Q31,Q30,Q29)+m15+k1)
≪13.

Hence, we must find a value ofδQ28 such that with a good probability,δQ32 =
−1. The simplest solution is to require

G(Q31,Q30,Q29) = G(Q′31,Q
′
30,Q

′
29),

13

which is equivalent to

G(Q31,Q30,Q29) = G(Q31+1,Q30,Q29). (3.1)

If this is achieved, then with a very good probabilityδQ28
.
=−219 will work, since

this difference may turn into−1 by the rotation of 13. In fact, this happens unless
a borrow bit propagates from bit 19 past bit 31, i.e. there is no 1-bit among bits
19–31 ofG(Q31,Q30,Q29) + m15 + k1 (see Section 4.4.3 for more on this). The
probability of this happening is only 2−13.

The probability that (3.1) holds should be evaluated. If bit0 of Q31 is 0, then
adding 1 does not produce a carry, and in this case (3.1) holdsif bit 0 of Q30 and
Q29 are equal, because then those two determine the majority independently of the
third. Similarly, if the last two bits ofQ31 are01, adding 1 causes both these bits
to flip, and again the equation holds ifQ30 andQ29 agree on the last two bits. This
argument again repeats, and hence the overall probability reduces to about13 (same
computation as forδQ31). Hence, it makes sense to requireδQ28

.
=−219.

The requirement onδQ27 is chosen in the exact same way to be 223 with a
probability of success in step 30 of, again, about1

3.
In step 29 two of the input variables to themaj function, Q28 andQ27, differ.

However, the difference occurs on different bit positions,4 positions apart, and
hence it would not be unreasonable to say that these two differences are indepen-
dent – at least for the most significant terms in the calculation of the probability of
success. Thus, we deduce that the probability of success in step 29 whenδQ26

.
= 0

is
(

1
3

)2
= 1

9, which is probably the best we can hope for, so we keep this require-
ment.

We can keep working our way back to step 20 following the same principles.
The required differences and the probability of success foreach step are shown in
Table 3.1. Here,P20 = 1 because in the following we require that the values of the
step variables after step 19 areadmissible, i.e. that

G(Q20,Q19,Q18) = G(Q′20,Q
′
19,Q18). (3.2)

Note that we always introduce a requirement onδQi−3 in stepi, becauseQi−3 is
the “oldest” step variable being used in that step.

The probability of success through all 16 steps can be computed as
(

1
3

)19 ≈
2−30, but in practice the probability is quite a lot better (about2−22 according to
[12]).

To see why we cannot go back any further, first observe that theinput word
used in step 19 ism12. The computation taking place is

Q20← (Q16+G(Q19,Q18,Q17)+m12+k1)
≪13 and (3.3)

Q′20← (Q′16+G(Q19+25,Q18,Q17)+m12+1+k1)
≪13

, (3.4)

and we require thatδQ20
.
= −225. With a good probability this can be translated

into
Q′20

≪19−Q20
≪19 =−212. (3.5)

14

Step (i) δQi−3 Pi Function Input word

19 ? m12

20 0 1 G m1

21 0 1
9 G m5

22 25 1
3 G m9

23 −225 1
3 G m13

24 0 1
9 G m2

25 0 1
9 G m6

26 214 1
3 G m10

27 −26 1
3 G m14

28 0 1
9 G m3

29 0 1
9 G m7

30 223 1
3 G m11

31 −219 1
3 G m15

32 0 1
3 H m0

33 0 1
3 H m8

34 1 1
3 H m4

35 −1 1 H m12

Table 3.1: Required differences on the “oldest” step variables used in each step and the
probabilities of success (Pi) in steps 20–35.

We have the possibility to manipulateδQ16 only. Hence, to satisfy (3.5) we must
requireδQ16

.
= −212 and see what the possibility is thatG(Q19+ 25,Q18,Q17) =

G(Q19,Q18,Q17)− 1 so that the other terms in (3.3) and (3.4) even out. This is
clearly impossible, and so there must be some other, “complex” difference (i.e.
one where more than one bit is set)δQ16, and therefore we shall try to achieve the
required differences on subsequent step variables by what we could call “qualified
trial and error”.

3.2.2 Inner almost-collision

We now know what difference(δQ17,δQ18,δQ19,δQ20) to aim for after step 19,
wherem12 is used as input word. We call this difference aninner almost-collision.
m12 is also used as input word in step 12, and so we shall try to find initial values
of the registers before step 12 that cause the right difference after step 19.

Sincemi = m′i for i < 12, δQi = 0 for i < 13. In step 12, the operations taking

15

place are

Q13 ← (Q9 +F(Q12,Q11,Q10)+m12)
≪3 and

Q′13 ← (Q9 +F(Q12,Q11,Q10)+m12+1)≪3.

Hence, forQ13 andQ′13 we require that

Q′13
≪29−Q13

≪29 .
= 1.

By continuing this way the following requirements are identified:

Q′13
≪29−Q13

≪29 .
= 1 (3.6)

Q′14
≪25−Q14

≪25 .
= F(Q′13,Q12,Q11)−F(Q13,Q12,Q11) (3.7)

Q′15
≪21−Q15

≪21 .
= F(Q′14,Q

′
13,Q12)−F(Q14,Q13,Q12) (3.8)

Q′16
≪13−Q16

≪13 .
= F(Q′15,Q

′
14,Q

′
13)−F(Q15,Q14,Q13) (3.9)

Q′13−Q13
.
= G(Q16,Q15,Q14)−G(Q′16,Q

′
15,Q

′
14) (3.10)

Q′14−Q14
.
= G(Q17,Q16,Q15)−G(Q17,Q

′
16,Q

′
15) (3.11)

Q′19
≪23−Q19

≪23 .
= Q′15+G(Q18,Q17,Q

′
16)− (3.12)

Q15−G(Q18,Q17,Q16)

Q′20
≪19−Q20

≪19 .
= Q′16+G(Q′19,Q18,Q17)+1− (3.13)

Q16−G(Q19,Q18,Q17)

Here, of course,

Q′20−Q20
.
= −225 and (3.14)

Q′19−Q19
.
= 25 (3.15)

as required in the previous section.
Since equations (3.6)-(3.13) have 14 unknowns, we have 6 degrees of freedom.

From (3.6)-(3.8) we see that good choices ofQ13, Q′13 andQ12 are

Q13 = −1

Q′13 = 0

Q12 = 0,

since then (3.6) is satisfied, andF being theif function, (3.7) and (3.8) can be
simplified quite a lot to

Q11
.
= Q′14

≪25−Q14
≪25 and (3.16)

Q14
.
= Q15

≪21−Q′15
≪21

. (3.17)

The requirements (3.11), (3.12) and (3.13) respectively can be rewritten as follows:

16

Q′14
.
= Q14−G(Q17,Q

′
16,Q

′
15)+G(Q17,Q16,Q15) (3.18)

Q′15
.
= Q15−G(Q18,Q17,Q

′
16)+G(Q18,Q17,Q16)+ (3.19)

Q′19
≪23−Q19

≪23

Q′16
.
= Q16−G(Q′19,Q18,Q17)+G(Q19,Q18,Q17)+ (3.20)

Q′20
≪19−Q20

≪19−1

The only two requirements that we have not touched yet are (3.10) and (3.9).
These can be rewritten into

G(Q16,Q15,Q14)−G(Q′16,Q
′
15,Q

′
14)

.
= 1 (3.21)

F(Q′15,Q
′
14,0)−F(Q15,Q14,−1)−Q′16

≪13
+Q16

≪13 .
= 0 (3.22)

For future reference letζ denote the left-hand side of (3.22).
Now, we can chooseQi, i ∈ {15, . . . ,20}, computeQ14, Q′14, Q′15, andQ′16

from (3.17)-(3.20), and then check that (3.21) and (3.22) hold. If they do, and if
the solution is admissible (3.2), we have found the desired inner almost-collision.

Assuming that we have done this, if we choosem13 arbitrarily and compute
Q11 from (3.16), the other input words used in steps 12–19, and the valuesQ9 and
Q10 can be computed from the step operations:

m12 ← Q20
≪19−Q16−G(Q19,Q18,Q17)−k1 (3.23)

m14 ← Q15
≪21−Q11−Q14 (3.24)

m15 ← Q16
≪13−F(Q15,Q14,−1) (3.25)

m0 ← Q17
≪29+1−G(Q16,Q15,Q14)−k1 (3.26)

m4 ← Q18
≪27−Q14−G(Q17,Q16,Q15)−k1 (3.27)

m8 ← Q19
≪23−Q15−G(Q18,Q17,Q16)−k1 (3.28)

Q10 ← Q14
≪25−m13 (3.29)

Q9 ← −1−Q10−m12 (3.30)

3.2.3 Right initial value

All that is left is to find values of the un-assigned input words so that the step
variables into step 12 are right. This can be done deterministically by looking at
the assignments that take place in each step. Don’t forget that m0, m4, andm8 are
fixed at this point. We can choosem1, m2, m3 andm5 randomly and then compute
Qi, 0< i ≤ 6.

The value ofQ9 that we are aiming for is computed in step 8 as

Q9← (Q5 +F(Q8,Q7,Q6)+m8)
≪3. (3.31)

To make things simple, we fixQ8 at−1, so

F(Q8,Q7,Q6) = Q7,

17

and then we fixQ7:

Q7 = Q9
≪29−Q5−m8

– which causes (3.31) to be satisfied.
Now, we must make sure thatQ7 andQ8 are assigned these values. This is

done by settingm6 andm7 correctly. The operations performed in steps 6 and 7 are

Q7 ← (Q3 +F(Q6,Q5,Q4)+m6)
≪11 and

Q8 ← (Q4 +F(Q7,Q6,Q5)+m7)
≪19.

HenceQ7 has the right value if

m6← (Q9
≪29−Q5−m8)

≪21−Q3−F(Q6,Q5,Q4), (3.32)

andQ8 gets the correct value if

m7←−1−Q4−F(Q7,Q6,Q5). (3.33)

To make sure thatQ10 is correct, we observe that in step 9,

Q10← (Q6 +F(Q9,Q8,Q7)+m9)
≪7.

This means that we must fixm9 as follows:

m9←Q10
≪25−Q6−F(Q9,−1,Q7). (3.34)

To obtain the correctQ11, we look at step 10:

Q11← (Q7 +F(Q10,Q9,Q8)+m10)
≪11.

Hence,m10 must be assigned the value

m10←Q11
≪21−Q7−F(Q10,Q9,−1). (3.35)

Finally, we make sure thatQ12 is correct. In step 11,

Q12← (−1+F(Q11,Q10,Q9)+m11)
≪19,

and therefore form11 we get

m11←Q12
≪13+1−F(Q11,Q10,Q9). (3.36)

We are now ready to state the actual algorithm that finds collisions for the MD4
hash function.

18

3.3 The algorithm

Dobbertin’s collision attack can be stated as in Algorithm 3.2. Here,c(ζ) is the
number of times that 16 dividesζ, whereζ is the 32-bit word defined in Section
3.2.2 (hence,c(ζ) = 8⇒ ζ = 0).

Note that in practice it is a good idea to introduce counters that ensure that a
bad set of step variables chosen in the beginning does not cause the program to
deadlock. For instance, one may introduce a criteria that the program tries to flip
bits of Q15, . . . ,Q20 at most 100000 times before selecting completely new values
of these step variables. Also, one may limit the number of times that the program
choosesm1, . . . ,m5 before starting all over.

The algorithm has been implemented in the C programming language. This
implementation (which can be found in Appendix B) was able tofind collisions in
1.97 seconds on average on a standard PC (based on a sample of 1000 collisions).

Algorithm 3.2 Dobbertin’s MD4 collision attack

Ensure: m andm′, wherem′i = mi for all i except 12, andm′12 = m12+ 1, form a
collision of MD4
repeat

repeat
ChooseQ15, . . . ,Q20 at random, and from (3.14), (3.15), (3.20), (3.19),
(3.17) and (3.18) computeQ′20,Q

′
19,Q

′
16,Q

′
15,Q14 andQ′14 (in that order).

until (3.21) holds
SaveQ15, . . . ,Q20 as basic values.
while c(ζ) < 8 do

repeat
Change one random bit in each of the basic values, and compute
Q′20,Q

′
19,Q

′
16,Q

′
15,Q14 andQ′14 again.

until (3.21) holds andc(ζ) does not decrease
Save theseQ15, . . . ,Q20 as new basic values.

end while{Now (3.21) and (3.22) are satisfied, i.e. we have an inner-almost
collision}

until G(Q20,Q19,Q18) = G(Q′20,Q
′
19,Q18) {Now the inner-almost collision is ad-

missible}
Choose m13 at random, computeQ11 from (3.16), and mi (i ∈
{0,4,8,12,14,15}), Q10 andQ9 from (3.23), . . . , (3.30).
repeat

Choosem1,m2,m3,m5 randomly, computeQ1, . . . ,Q6 from the step opera-
tions, and computem6,m7,m9,m10,m11 from (3.32), . . . , (3.36).

until m andm′ form a collision

19

3.4 Summary

Dobbertin’s attack on MD4 has been described. The attack finds collisions of
MD4 in about two seconds on a standard PC. An implementation can be found in
Appendix B.

A faster technique for finding collisions of MD4 has been developed [43] since
the attack of Dobbertin. This attack has complexity 28 according to the authors and
thus can be carried out in a fraction of a second. It makes use of a different differ-
ential pattern than the one found by Dobbertin, and like the attack mentioned in the
following chapter, it also makes use of message modification. An implementation
can be found in Appendix D, but it comes with no further explanation (although
the same techniques are used in the MD5 attack explained in the following chap-
ter). This implementation has complexity 210 and finds MD4 collisions in around
2 ms on a standard PC, which makes it about 1000 times faster than the Dobbertin
implementation.

20

Chapter 4

Wang’s attack on MD5

In this chapter a collision attack on MD5 [38] is presented. The attack was de-
veloped by Wang et al. [45], and it has complexity at most 237 according to the
authors. A modification by Vlastimil Kĺıma [25] improves the complexity slightly.

First, the MD5 hash function is described. Then, the generalidea of the attack
is explained, and after that we shall go deeper into the details, and also describe
issues related to an implementation of the attack.

4.1 Description of MD5

MD5 is a hash function that takes as input a message of arbitrary length and returns
a hash value of 128 bits. Each message block is 512 bits, padded as in Rule 1 with
u = 64 (the least significantu bits of |m| are used in the MD-strengthening). The
overall construction is that of Construction 1.

The initial value is

Q−3 = 67452301h

Q−2 = 10325476h

Q−1 = 98badcfeh

Q0 = efcdab89h

The compression function of MD5 takes as input the 128-bit value (Q−3, Q−2,
Q−1, Q0) and a 512-bit message block which is split into sixteen 32-bit words,
m0, . . . ,m15.

In each stept (0≤ t < 64) of the compression function a constant,kt , is used
in the step operation. This constant can be computed as follows:

kt ← ⌊abs(sin(t +1))×232⌋.

Of course, in a software implementation one would usually precompute these val-
ues and place them in an array.

21

The order in which the message words are processed can also bedescribed
mathematically. LetWt be the message word used in stept. ThenWt = mi where

i =







t for t < 16
(5t +1) mod 16 for 16≤ t < 32
(3t +5) mod 16 for 32≤ t < 48
7t mod 16 for 48≤ t < 64

We often call steps 0–15round 1, steps 16–31round 2etc.
Each step also contains a rotation value,St , which can be derived from the table

below.

St
t div16

0 1 2 3

t
m

od
4 0 7 5 4 6

1 12 9 11 10
2 17 14 16 15
3 22 20 23 21

In each step a bitwise functionft of three variables is used. The definition of
these is

ft(X,Y,Z) =







F(X,Y,Z) = (X∧Y)∨ (¬X∧Z) for t < 16
G(X,Y,Z) = (X∧Z)∨ (Y∧¬Z) for 16≤ t < 32
H(X,Y,Z) = X⊕Y⊕Z for 32≤ t < 48
I(X,Y,Z) = Y⊕ (X∨¬Z) for 48≤ t < 64

The compression function performs the operations of Algorithm 4.1.

Algorithm 4.1 The MD5 compression function

Input: (Q−3,Q−2,Q−1,Q0) andm0, . . . ,m15

for t = 0 to 63do
Qt+1←Qt +(ft(Qt ,Qt−1,Qt−2)+Qt−3+kt +Wt)

≪St

end for
return (Q61+Q−3,Q62+Q−2,Q63+Q−1,Q64+Q0)

4.2 Introduction to the attack

The attack makes use of differential cryptanalysis (see [3]), using not the ordinary
XOR differential, but rather a combination of a kind of signed XOR differential
and a modular differential. What is meant by a signed XOR differential is that
one keeps track of not only which bits differ, but also whether the bit difference is
positive (0→ 1) or negative (1→ 0).

22

Wang somehow found a differential yielding with high probability a collision
on two two-block messages. For each step a particular characteristic must hold,
and this gives rise to a number of conditions on the intermediate register values.

The number of bit conditions is much higher than 64, and sincea collision can
be expected after about 264 executions of the hash function using exhaustive search,
this doesn’t seem very promising. However, a large number ofthe conditions can
be ensured to hold by performing modifications of the message. These will be
described in the following.

As mentioned, collisions found by this attack consist of two-block messages.
In the following we use the termiteration for the processing of a block, e.g.the
first iteration means the processing of the first message block. Similarly,the first
part of the attackmeans finding a usable first message block. When we refer tothe
two messageswe mean the colliding messages.

Let M = m0‖m1‖· · ·‖m15 andM̂ = m̂0‖m̂1‖· · ·‖m̂15 be the two blocks of the
“first” message, and letM′ = m′0‖m′1‖· · · ‖m′15 andM̂′ = m̂′0‖m̂′1‖· · ·‖m̂′15 be the
two blocks of the colliding message. Then

δmi =







231 for i ∈ {4,14}
215 for i = 11
0 for all otheri

(4.1)

and

δm̂i =







231 for i ∈ {4,14}
−215 for i = 11
0 for all otheri

(4.2)

The modular difference on the chaining values after processing the first block is

δQi =

{
231 for i =−3
225+231 for i ∈ {0,−1,−2} (4.3)

Both blocks produce intermediate collisions from step 23 tostep 34, i.e. in both
iterations,Qi = Q′i for 24≤ i ≤ 35.

4.3 The idea

The general idea of the attack will now be described.
For the first part of the attack do the following:

• Choose a random message blockM.

• For each step, do the step operation, and ensure that the conditions on the
step variable are satisfied by performing modification of themessage word
used. If some conditions cannot be satisfied this way, start over.

• Check that all required differences hold. If so, we have found a usable near-
collision. Otherwise, start over.

23

For the second part of the attack, do the following:

• Initialise the registers using the chaining values from thefirst iteration.

• Choose a random message blockM̂.

• For each step, do the step operation, and ensure that the conditions on the
step variable are satisfied by performing modification of themessage word
used. If some conditions cannot be satisfied this way, start over.

• Check that all required differences hold. If so, we have found a collision.
Otherwise, start over.

After having successfully performed the steps above, we have found a collision
between two two-block messages, namely(M,M̂) and(M′,M̂′), where (4.1) and
(4.2) hold.

4.4 Details

In this section (hopefully) all the details, possible pitfalls and some tricks of the
attack shall be explained. It shall generally be assumed that the reader is either
familiar with [45] or has the paper close at hand (note that inthis context numbering
starts from 0, whereas in [45] numbering starts from 1).

For convenience we define

Tt = ft(Qt ,Qt−1,Qt−2)+Qt−3+kt +Wt

and
Rt = Tt

≪St ,

and henceQt+1 = Qt +Tt
≪St = Qt +Rt .

4.4.1 Origin of the conditions

As mentioned, a very specific characteristic must hold aftereach step for the full
attack to work. The characteristics can, of course, be foundin [45], but they are
more carefully explained and slightly corrected in [21] forthe first iteration, and
Section 4.5 of this document gives a fairly detailed description of the conditions
of the second iteration. All the conditions that are considered “correct” in this
document can be found in Appendix A.

For the characteristic to hold after each step, several conditions on the step
variables must be satisfied. We now consider the first iteration. For instance, in
step 11 the operation performed is

Q12←Q11+(F(Q11,Q10,Q9)+Q8+k11+m11)
≪22,

24

and we have the following (required) differences on the values involved:

δQ12
.
= −27−213+231

δQ11
.
= 230+231

∇Q11
.
= 〈30,31〉

∇Q10
.
= 〈−12,13,31〉

∇Q9
.
= 〈−0,1,6,7,−8,−31〉

δQ8
.
= 20−215−217−223

δm11 = 215

SinceδQ12−δQ11 =−27−213−230 we require

δT11 = δ(F(Q11,Q10,Q9)+Q8+k11+m11)
.
=−28−217−223,

and since we haveδ(Q8 +m11) = 20−217−223, we require that

δ f11
.
=−20−28.

This is achieved by applying certain conditions on bits 0 and8 of Q11, Q10 and
Q9. Note thatF is the if function, meaning that whenQ11 is a 1 then the bit of
Q10 at that bit position is chosen as output, and otherwise the bit of Q9 at that bit
position is chosen. Since we have∇Q9

.
= 〈−0,1,6,7,−8,−31〉, if we make sure

thatQ11[0] = Q11[8] = 0, then we get at leastδ f11 =−20−28. Since there are also
differences on other bits involved inf11, we must make sure that these differences
disappearin the function. This is done by ensuring thatQ11[12] = Q11[13] = 0,
Q11[1] = Q11[6] = Q11[7] = 1, Q10[30] = Q9[30], and since the differences on bit
31 of Q10 and Q9 have opposite signs, we know that the difference onQ11[31]
disappears.

In order for the signed XOR differences to be possible we mustfurther require
that e.g.Q11[30] = 0 andQ10[12] = 1. Note that as discovered in [21] we do not
strictly require that there is a negative signed XOR difference onQ9[31], and a
positive one onQ10[31] and Q11[31], it could be vice versa (see e.g. [21, Table
11]).

Now some of the conditions on the involved variables have been explained.
Other steps cause other conditions. Note that we optimistically expect that

δT11 =−28−217−223⇒ δR11 =−27−213−230.

This is indeed the case for most values ofT11, but not all. This is a fairly important
issue, which will be covered in greater detail in Section 4.4.3. For now, we always
assume that

T ′−T = δT⇒ (T ′)≪S−T≪S = (δT)≪S.

25

4.4.2 Message modification

As mentioned, most of the conditions on step variables can beensured to hold
by performing message modifications. These message modifications were only
described superficially in [45], and a little more in depth in[43]. The description
given here is more detailed, and the additional ideas are theauthor’s own.

Conditions in thefirst round of the compression function can be ensured by
choosingQt+1 randomly, but satisfying the conditions, and then applyingthe fol-
lowing single-message modification:

mt ← (Qt+1−Qt)
≫St −F(Qt ,Qt−1,Qt−2)−Qt−3−kt . (4.4)

Hence, we do not need to choosemt randomly, then computeQt+1, then correct
Qt+1 to satisfy the conditions, and finally recomputemt (as suggested in [45]).

This method only works in the first round, because oncemt is defined we cannot
simply redefine it. Therefore, message modifications in the second round must be
performed in some other way.

In the second round we computeQt+1 and check if the conditions hold, starting
with the lowest bit number. If some condition does not hold, we may be able to
correctQt+1 as follows: LetWt = mu, i.e. Wt was first used in stepu. The step
operation of stepu is

Qu+1 = Qu+(F(Qu,Qu−1,Qu−2)+Qu−3+ku +mu)
≪Su. (4.5)

If we need to correctQt+1[n], then we may changemu[n−St]. However, this causes
Qu+1 to change, so this is only possible if there is no condition onQu+1[n−St +Su].
Assuming there is no condition on that bit, we prevent the change of mu from
causing changes in other bits ofQu+1 by checking ifQu+1[n−St +Su] is a0 or a1,
and then we add respectively subtract 2(n−St) mod 32 from mu, causing a change on
the desired bit ofmu.

If there is a condition onQu+1[n−St +Su] we have to try something else. Look-
ing again at the step operation (4.5) of stepu, we may instead (provided there are no
conditions preventing this) flipQu−3[n−St] by adding or subtracting 2(n−St) mod 32

(if Qu−3[n−St] is a 0 or a 1 respectively), and then respectively subtract or add
2(n−St) mod 32to mu, causing these two changes to cancel out. Now we have changed
the desired bit ofmu without changingmu+Qu−3.

Of course, in both the mentioned cases we must subsequently perform single-
message modification (according to (4.4)) on all the messagewords that take part in
the same step operation as the step variable that we changed,i.e. in the first case we
perform modifications onmu+1, mu+2, mu+3 andmu+4, and in the second case we
perform modifications onmu−1, mu−2, mu−3 andmu−4. If one of these subscripts
to m is less than 0 or greater than 15, then the whole operation is impossible.

Even in cases where none of the methods mentioned so far can beused, we may
have a chance of correctingQt+1[n]. In (4.5) we have a few other variables to try.
However, all the remaining variables occur inside theF function, so a change only

26

has the desired effect if we are able to control bitn−St of Qu, Qu−1 andQu−2, or
these bits just happen to have the right conditions on them for our purposes. If, for
instance, we are able to correctQu−1[n−St], then this only makes a difference if
Qu[n−St] = 1 (sinceF is theif function in the first round). It may even be possible
to changeQu[n−St], but sinceQu occurs twice in (4.5), this is fairly complicated,
as it will affect Qu+1[n−St]. The best thing would be to avoid changes in more
than one bit of one step variable.
Now it would probably be in its place with an example.

Example. There are three conditions onQ18 in the first iteration (on bits 17, 29,
and 31). Assume that we just computedQ18 and found thatQ18[17] was correct,
but Q18[29] was not. The step operation of step 17 is

Q18 = Q17+(G(Q17,Q16,Q15)+Q14+ t17+m6)
≪9,

so we have to changem6[20]. The step operation in step 6 is

Q7 = Q6+(F(Q6,Q5,Q4)+Q3+k6+m6)
≪17

Just changingm6[20] would affectQ7[5], but there are already conditions on all
bits of Q7, so we must try something else. Let’s try changingQ3 as well. There
is no condition onQ3[20], so we flip this bit, but sinceQ4[20]

.
= Q3[20], we need

to flip Q4[20] as well.Q4 takes part in theF function of step 6, so this only works
if Q6[20] = 1 (and henceQ4[20] does not affect this step at all), which holds if the
conditions onQ6 are satisfied. Now, since the change onQ4 has no effect in this
step, we can add or subtract 220 from m6 depending on whether flippingQ3[20] was
equivalent to respectively subtracting or adding 220 to Q3 – this way we make sure
thatQ3+m6 does not change by this operation, butm6[20] has changed as desired.
Of course, we must also perform single-message modificationon m2, m3, m4 and
m5, i.e. we compute

m2 ← (Q3−Q2)
≫17−F(Q2,Q1,Q0)−Q−1−k2

m3 ← (Q4−Q3)
≫22−F(Q3,Q2,Q1)−Q0−k3

m4 ← (Q5−Q4)
≫7−F(Q4,Q3,Q2)−Q1−k4

m5 ← (Q6−Q5)
≫12−F(Q5,Q4,Q3)−Q2−k5

We then re-computeQ18, where bit 29 is now correct. Since this change could
propagate to bits of higher order, we have to correct low-order bits before high-
order bits.

Note that we would not be able to perform this particular multi-message mod-
ification onQ18[17], because we would have to changem6[8], Q3[8], andQ4[8],
and sinceQ6[8] = 0, this would cause the outcome of step 6 to change, which is
not allowed since all bits ofQ7 are fixed. However,Q18[31] can be changed in the
same way asQ18[29].

27

4.4.3 Propagating carries

The issues of this section were not addressed by Wang et al. [43, 45]. In [21] the
processing of the first block of the message is explained in detail with respect to
the added conditions caused by these issues.

In the Wang MD5 attack we often expect a differenceδTt on Tt to “survive” a
rotation, meaning that

T ′t −Tt = δTt ⇒ (T ′t)
≪St −Tt

≪St = (δTt)
≪St , (4.6)

or equivalently
(δTt)

≪St = δRt .

However, this does not always hold. For instance, if a carry caused byδTt prop-
agates from the low-order bits past bit(31−St), or if a carry from the high-order
bits propagates past bit 31 (we call these two valueslimits, which means we can
talk about both in the same way), then the propagation is in a sense “split in two”
by the rotation, and then (4.6) does not hold. Hence, since weexpect the equation
to hold, we must make sure that no carries propagate too far.
Note that Daum [10] also describes these issues, but here we use a different ap-
proach in that we try to define exact conditions that must holdfor (4.6) to hold,
instead of determining the probability that (4.6) holds. The following analysis is
therefore the author’s own.

There are a number of ways of ensuring that (4.6) holds. If, for instance,δTt =
28− 210+ 229, andSt = 17, then we can prevent the carry caused by the term 28

from propagating past bit 9, the carry caused by the term−210 from propagating
past bit 14, and the carry caused by the term 229 from propagating past bit 31, and
(4.6) will be satisfied. This can be done by ensuring that

1. 0 ∈ Tt [8−9],

2. 1 ∈ Tt [10−14], and

3. 0 ∈ Tt [29−31].

For random words, this occurs with a total probability of

P = (1−2−2)(1−2−5)(1−2−3)≈ 0.64.

The conditions imposed are sufficient, but not necessary for(4.6) to hold. In fact,
a test will show that if (1)does nothold, then (2) is a redundant condition, and if
(1) holds then (2)musthold also. Why so?

When we talk about carries propagating or not propagating past some bit, we
are really not being precise enough; it depends if we are looking at the arithmetic
operation as an addition or a subtraction. If we look at it as an addition, then a carry
caused by a power of 2 which is negativemustpropagate past the limit. We could
also look at this as a subtraction by a positive power of 2, andin this case the carry

28

must notpropagate past the limit. However, it is an advantage to group terms into
those with exponent less than or equal to 31−St and those with exponent greater
than 31−St , and then always consider an addition by these terms. When wedo
this, we must make sure that if the term with the greatest exponent within each of
the two “buckets” is positive, then a carry does not propagate past the limit, and if
the term is negative then a carrydoespropagate past the limit.

In the example above, we need a carry to propagate past bit 14 when we con-
sider addition, and that is why either a carry must propagatefrom bits 8 and 9 into
bit 10, from where it will keep propagating past bit 14 (whichis the case when
(1) does not hold),or a carry must be produced in bits 10–14, which happens
whenever (2) holds. The probability that these two conditions as well as (3) hold
is P = (1− (1− 2−2)× 2−5)× (1− 2−3) ≈ 0.85, which is quite a lot better than
P = 0.64 as we had before.

Conversely, assume instead thatδTt = −28 + 210− 229 (notice that all signs
have changed). Now, no carry must propagate past bit 14. For this to hold there
must be a0 among bits 10–14or bits 8 and 9 must both be0. First note that
210− 28 = 29 + 28. Hence, the first condition ensures that any carry out of bit
9 is “caught”. The second condition ensures that thereis no carry out of bit 9.
Obviously, for the high-order bits, we now require that there is a1 among bits
29–31.

In the cases where a bucket of terms consists of all negative terms, for instance
two negative terms, the rules are slightly different. For instance, in the running
example, if all signs were negative (i.e.δTt =−28−210−229) then we would need
a carry to propagate past bit 14. The terms−28−210 could instead be expressed
as 28 +29+211+212+ . . ., so in order for a carry to propagate past bit 14 we need
either a1 among bits 11–14, or a1 in bit 10 anda1 among bits 8–9.

To summarize, a technique for stating conditions could be expressed as follows:

• Place terms ofδTt in two buckets, one with powers of two with exponents
greater than 31−St (the limit for this bucket is 31), and one with the remain-
ing terms (the limit for this bucket is 31−St).

• For each bucket, check the sign of the term with the greatest exponent. If it
is positive, a carry must not propagate past the limit, and ifit is negative a
carrymustpropagate past the limit.

• Express the sum of the terms of each bucket as a sum of positiveterms only.
Note that this is always possible since we reduce modulo 232 – this is actually
equivalent to looking at the bit representation ofδTt : 2s is a term if and only
if Tt [s] = 1.

• Check which conditions must hold onTt for a carry to propagate or not prop-
agate past the limit.

It is the author’s hope that it is clear from the examples how to perform the last
step.

29

4.5 Detailed examination of the second iteration

In this section we perform a fairly detailed examination of all the conditions that
must be fulfilled in the second iteration for the attack to work. The examination
will be done in much the same way (although perhaps not quite as thoroughly)
as the examination of [21], which only concerned the first part of the attack. It is
definitely with this fine work in mind that this section is written. Note that although
it may be instructive to follow this section thoroughly, it is not imperative for the
understanding of the attack.

We start by looking at the conditions on theT-values. In some cases the exact
conditions on theT-values become quite complicated, and then we shall define
more strict conditions, that are sufficient but not always necessary – however, we
aim at defining conditions that are not much less probable than the “optimal” ones.

4.5.1 Conditions on theT-values

Step 0 Q1←Q0 +(F(Q0,Q−1,Q−2)+Q−3+ m̂0+k0)
≪7

We haveδQ0 = 225+231. We needQ1 = 225+231.
Hence,δT0

.
= 0.

Conditions on T0: None.

Step 1 Q2←Q1 +(F(Q1,Q0,Q−1)+Q−2+ m̂1+k1)
≪12

We haveδQ1 = 225+231. We needδQ2 = 25 +225+231.
Hence,δT1

.
= 225.

Conditions on T1: δT1 = 225 must not propagate past bit 31, and hence we require
0 ∈ T[25−31] (P = 1−2−7).

Step 2 Q3←Q2 +(F(Q2,Q1,Q0)+Q−1+ m̂2+k2)
≪17

We haveδQ2 = 25 +225+231. We needδQ3 = 25 +211+216+225+231.
Hence,δT2

.
= 226+231.

Conditions on T2: 226 must not propagate past bit 30, and(231)≪17 .
= +216, so we

must require0 ∈ T[26−30] (P = 1−2−5) andT[31] = 0 (P = 2−1).

Step 3 Q4←Q3 +(F(Q3,Q2,Q1)+Q0+ m̂3+k3)
≪22

We haveδQ3 = 25 +211+216+225+231. We needδQ4 =−21 +25 +225+231.
Hence,δT3

.
=−211−221−226.

Conditions on T3: −211−221−226 must propagate past bit 31, so we must require
1∈ T[27−31] (P= 1−2−5), orT[26] = 1∧1∈ T[22−25], or a more complicated
but less probable combination.

Step 4 Q5←Q4 +(F(Q4,Q3,Q2)+Q1+ m̂4+k4)
≪7

We haveδQ4 =−21 +25 +225+231. We needδQ5 = 1+26 +28+29 +231.
Hence,δT4

.
= 21 +22−218+225+226−230+231.

30

Conditions on T4: 21 + 22− 218 must propagate past bit 24, 225 + 226− 230 must
propagate past bit 30, and(231)≪7 .

= +26. Hence, we must require0 ∈ T[2−18]
(P = 1− 2−17), or some other combination, but this one is very likely to occur.
Also, we must requireT[30] = 1 (P = 2−1, or some other combination which is
much less likely), andT[31] = 0 (P = 2−1) to make sure that adding 231 causes a
positive change.

Step 5 Q6←Q5+(F(Q5,Q4,Q3)+Q2+ m̂5+k5)
≪12

We haveδQ5 = 1+26 +28 +29 +231. We needδQ6 =−216−220+231.
Hence,δT5

.
=−24−28−220−226−228−229.

Conditions on T5: −24−28 must propagate past bit 19, and−220−226−228−229

must propagate past bit 31. Hence, we require that1 ∈ T[9−19] (P = 1−2−11),
and that1 ∈ T[30−31] or T[29] = T[28] = T[27] = 1 (P = 1− (2−2)(1−2−3) =
25/32).

Step 6 Q7←Q6+(F(Q6,Q5,Q4)+Q3+ m̂6+k6)
≪17

We haveδQ6 =−216−220+231. We needδQ7 =−26−227+231.
Hence,δT6

.
= 23−210−221+231.

Conditions on T6: 23−210 must propagate past bit 14,−221 must propagate past bit
30, and(231)≪17 .

=+216. This means that we require1∈T[10−14] (P= 1−2−5),
1 ∈ T[21− 30] (P = 1− 2−10), and thatT[31] = 0 (P = 2−1) so that adding 231

causes a positive change.

Step 7 Q8←Q7+(F(Q7,Q6,Q5)+Q4+ m̂7+k7)
≪22

We haveδQ7 =−26−227+231. We needδQ8 = 215−217−223+231.
Hence,δT7

.
=−21 +25 +216+225−227.

Conditions on T7: −21+25 must not propagate past bit 9, and 216+225−227 must
propagate past bit 31. Hence, we require that0 ∈ T[4−9] (P = 1−2−6), and that
1 ∈ T[27−31] (P = 1−2−5).

Step 8 Q9←Q8+(F(Q8,Q7,Q6)+Q5+ m̂8+k8)
≪7

We haveδQ8 = 215−217−223+231. We needδQ9 = 1+26 +231.
In this step, things are a little more complicated. Since we have the term 20 from
δQ5 which is not removed byδ f8, but we don’t need 27 in δQ9, we use(−231 +

1)≪7 ?
= −26 + 27 to create 26 in δQ9. Also, we use(28 + 29)≪7 to cancel out

215−217. Hence,δT8
.
= 1+28 +29 +216+225−231.

Conditions on T8: 1+ 28 + 29 + 216 must not propagate past bit 24, 225 must not
propagate past bit 30, and(231)≪7 .

= −26. Hence, we require0 ∈ T[16− 24]
(P = 1−2−9), 0 ∈ T[25−30] (P = 1−2−6), andT[31] = 1 (P = 2−1).

Step 9 Q10←Q9 +(F(Q9,Q8,Q7)+Q6+ m̂9+k9)
≪12

We haveδQ9 = 1+26 +231. We needδQ10 = 212+231.
Hence,δT9

.
= 20−220−226.

31

Conditions on T9: 20 must not propagate past bit 19, and−220−226 must propagate
past bit 31. Hence, we require0 ∈ T[0− 19] (P = 1− 2−20) and1 ∈ T[27− 31]
(P = 1−2−5).

Step 10 Q11←Q10+(F(Q10,Q9,Q8)+Q7+ m̂10+k10)
≪17

We haveδQ10 = 212+231. We needδQ11 = 231.
Hence,δT10

.
=−227.

Conditions on T10: −227 must propagate past bit 31, so we require1 ∈ T[27−31]
(P = 1−2−5).

Step 11 Q12←Q11+(F(Q11,Q10,Q9)+Q8+ m̂11+k11)
≪22

We haveδQ11 = 231. We needδQ12 =−27−213+231.
Hence,δT11

.
=−217−223.

Conditions on T11: −217−223 must propagate past bit 31, so we require1∈T[24−
31] (P = 1−2−8).

Step 12 Q13←Q12+(F(Q12,Q11,Q10)+Q9+ m̂12+k12)
≪7

We haveδQ12 =−27−213+231. We needδQ13 = 224+231.
Hence,δT12

.
= 1+26 +217.

Conditions on T12: 1+26 +217 must not propagate past bit 24. Hence we require
0 ∈ T[17−24] (P = 1−2−8).

Step 13 Q14←Q13+(F(Q13,Q12,Q11)+Q10+ m̂13+k13)
≪12

We haveδQ13 = 224+231. We needδQ14 = 231.
Hence,δT13

.
=−212.

Conditions on T13: −212 must propagate past bit 19, so we require1 ∈ T[12−19]
(P = 1−2−8).

Step 14 Q15←Q14+(F(Q14,Q13,Q12)+Q11+ m̂14+k14)
≪17

We haveδQ14 = 231. We needδQ15 = 23 +215+231.
Hence,δT14

.
= 218+230.

Conditions on T14: 218 + 230 must not propagate past bit 31. Hence we require
0 ∈ T[30−31] (P = 1−2−2).

Step 15 Q16←Q15+(F(Q15,Q14,Q13)+Q12+ m̂15+k15)
≪22

We haveδQ15 = 23 +215+231. We needδQ16 =−229+231.
Hence,δT15

.
=−27−213−225.

Conditions on T15: −27 must propagate past bit 9, and−213−225 must propagate
past bit 31. Hence, we require1 ∈ T[7− 9] (P = 1− 2−3) and 1 ∈ T[26− 31]
(P = 1−2−6).

32

Step 16 Q17←Q16+(G(Q16,Q15,Q14)+Q13+ m̂1+k16)
≪5

We haveδQ16 =−229+231. We needδQ17 = 231.
Hence,δT16

.
= 224.

Conditions on T16: 224 must not propagate past bit 26. Hence, we require0 ∈
T[24−26] (P = 1−2−3).

Step 17 Q18←Q17+(G(Q17,Q16,Q15)+Q14+ m̂6+k17)
≪9

We haveδQ17 = 231. We needδQ18 = 231.
Hence,δT17

.
= 0.

Conditions on T17: None.

Step 18 Q19←Q18+(G(Q18,Q17,Q16)+Q15+ m̂11+k18)
≪14

We haveδQ18 = 231. We needδQ19 = 217+231.
Hence,δT18

.
= 23.

Conditions on T18: 23 must not propagate past bit 17, so we require0 ∈ T[3−17]
(P = 1−2−15).

Step 19 Q20←Q19+(G(Q19,Q18,Q17)+Q16+ m̂0+k19)
≪20

We haveδQ19 = 217+231. We needδQ20 = 231.
Hence,δT19

.
=−229.

Conditions on T19: −229 must propagate past bit 31, so we require1 ∈ T[29−31]
(P = 1−2−3).

Steps 20 and 21 In both these steps we haveδQt = 231 and we needδQt+1 = 231

so there are no conditions onTt . Hence, we leave out further details of these two
steps.

Step 22 Q23←Q22+(G(Q22,Q21,Q20)+Q19+ m̂15+k22)
≪14

We haveδQ22 = 231. We needδQ23 = 0.
Hence,δT22

.
=±217. SinceδQ19 = +217 we actually getδT22 = +217.

Conditions on T22: 217 must not propagate past bit 17, so we requireT[17] = 0
(P = 2−1).

Steps 23–33 In all these steps we haveδQt = 0 and we needδQt+1 = 0, so again,
there are no requirements onTt sinceδTt

.
= 0.

Step 34 Q35←Q34+(H(Q34,Q33,Q32)+Q31+ m̂11+k34)
≪16

We haveδQ34 = 0. We needδQ35 = 231.
Hence,δT34

.
=±215. Sinceδm̂11 =−215 we actually getδT34 =−215.

Conditions on T34: −215 must propagate past bit 15, so we requireT[15] = 1 (P =
2−1).

33

Steps 35–60 In all these steps we haveδQt = 231 and we needδQt+1 = 231, so
there are no requirements onTt .

Step 61 Q62←Q61+(I(Q61,Q60,Q59)+Q58+ m̂11+k61)
≪10

We haveδQ61 = 231 and we needδQ62 =−225+231.
Hence,δT50

.
=−215.

Conditions on T61: −215 must propagate past bit 21, so we require1 ∈ T[15−21]
(P = 1−2−7).

Steps 62 and 63 In the last two steps we haveδQt = −225 + 231 and we need
δQt+1 =−225+231, so there are no requirements onTt .

One way (and probably the best way) to check that the conditions onTt hold,
is, givenQt andQt+1, to compute

Tt = (Qt+1−Qt)
≫St+1,

and then check this value. In fact, since (in the first round) we selectQt+1 before
we have a value ofmt , we can computeTt as described and then computemt based
on the value ofTt , i.e. by

mt = Tt −F(Qt ,Qt−1,Qt−2)−Qt−3−kt .

In subsequent rounds, or whenever we don’t use theT-value to update a mes-
sage word, we simply discard the value after having confirmedthat the conditions
on it hold.

4.5.2 Conditions on step variables

Here we examine the conditions on the step variables when processing the second
message block. We have the same requirements on∇Qt as Wang et al. in [45],
except for bit 31 where we often have a relative condition in contrast with the
absolute conditions in [45]. These will be explained.

First note that for the characteristics to hold at the beginning of the second
iteration, we must requireQ−2[25]

.
= 0, Q−1[25]

.
= 1, Q−1[26]

.
= 0 andQ0[25]

.
= 0.

All the conditions derived in this section can be looked up inAppendix A.2.
Note that to save space, instead of e.g.i ∈ {1,2,3,4,7,8,9,26} we may writei ∈
{1..4,7..9,26}.

Step 0 Q1←Q0 +(F(Q0,Q−1,Q−2)+Q−3+ m̂0+k0)
≪7

We haveδQ−3 = 231. We needδT0 = 0.
Hence,δ f0

.
= 231.

34

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q0 〈25,±31〉
Q−1 〈−25,26,±31〉
Q−2 〈25,±31〉

SinceQ0,Q−1,Q−2 all differ on bit 31, we require that∇Q−1[31]
.
= ∇Q−2[31]

implying that Q−1[31]
.
= Q−2[31] (note that Wang et al. state that∇Q−1[31]

.
=

∇Q−2[31]
.
= +1, but they only requireQ−1[31]

.
= Q−2[31], not that they are both

0). To avoid further differences we requireQ0[26]
.
= 0. Also, since∇Q1[25]

.
= +1,

we requireQ1[25]
.
= 0.

Step 1 Q2←Q1+(F(Q1,Q0,Q−1)+Q−2+ m̂1+k1)
≪12

We haveδQ−2 = 225+231. We needδT1 = 225.
Hence,δ f1

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q1 〈25,±31〉
Q0 〈25,±31〉
Q−1 〈−25,26,±31〉

Hence, we require thatQ1[26]
.
= 1 and thatQ0[31]

.
= Q−1[31]. Also, since∇Q2

.
=

〈5,25,±31〉, we requireQ2[5]
.
= Q2[25]

.
= 0.

Step 2 Q3←Q2+(F(Q2,Q1,Q0)+Q−1+ m̂2+k2)
≪17

We haveδQ−1 = 225+231. We needδT2 = 226+231.
Hence,δ f2

.
= 225 (using 225+225 = 226).

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q2 〈5,25,±31〉
Q1 〈25,±31〉
Q0 〈25,±31〉

Since we require that the differences on bit 31 disappear, wemust requireQ1[31]
.
=

¬Q0[31]. The differences on bit 25 are just what we need, but we needQ1[5]
.
=

Q0[5]. Also, since

∇Q3
.
= 〈−5,−6,7,−11,12,−16, . . . ,−20,21,−25, . . . ,−29,30,±31〉,

we requireQ3[5] = Q3[6] = Q3[11] = Q3[16] = . . . = Q3[20] = Q3[25] = . . . =
Q3[29] = 1 andQ3[7] = Q3[12] = Q3[21] = Q3[30] = 0.

35

Step 3 Q4←Q3 +(F(Q3,Q2,Q1)+Q0+ m̂3+k3)
≪22

We haveδQ0 = 225+231. We needδT3 =−211−221−226.
Hence,δ f3

.
=−211−221−225−226+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q3 〈−5,−6,7,−11,12,−16, . . . ,−20,21,−25, . . . ,−29,30,±31〉
Q2 〈5,25,±31〉
Q1 〈25,±31〉

Since we get+225 from this, but we needed−225, we use instead−226, which we
already require, so this becomes−227. I.e. we require insteadδ f3

.
=−211−221+

225−227+231. Hence, we must requireQ2[11]
.
= 1 andQ1[11]

.
= 0, Q2[21]

.
= 0 and

Q1[21]
.
= 1, Q2[27]

.
= 1 andQ1[27]

.
= 0, andQ2[31]

.
= Q1[31]. Also, to avoid further

differences we must requireQ2[i]
.
= Q1[i] for i ∈ {5..7,12,16..20,26,28..30} (note

that we already requiredQ1[5]
.
= Q0[5]), andQ1[5]

.
= 0 (implying altogether that

Q2[5]
.
= Q1[5]

.
= Q0[5]

.
= 0). Finally, from

∇Q4
.
= 〈1,2,3,−4,5,−25,26,±31〉

we get (trivial) conditions onQ4.

Step 4 Q5←Q4 +(F(Q4,Q3,Q2)+Q1+ m̂4+k4)
≪7

We haveδQ1 = 225 + 231 andδm̂4 = 231. We needδT4 = 21 + 22− 218 + 225 +
226−230+231.
Hence,δ f4

.
= 21 +22−218+226−230+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q4 〈1,2,3,−4,5,−25,26,±31〉
Q3 〈−5,−6,7,−11,12,−16, . . . ,−20,21,−25, . . . ,−29,30,±31〉
Q2 〈5,25,±31〉

To create the requiredδ f4 we needQ3[1]
.
= 1 andQ2[1]

.
= 0, Q3[2]

.
= 1 andQ2[2]

.
=

0, Q4[18]
.
= 1 and since 226−230 =−226−227−228−229 (and we can produce the

latter but not the former), we also requireQ2[26]
.
= 1 (already required, henceforth

written a.r.), andQ4[i] = 1 for i ∈ {27,28,29}. For the last term, 231, to appear
we also requireQ3[31]

.
= Q2[31]. To avoid further differences we requireQ3[3]

.
=

Q2[3], Q3[4]
.
= Q2[4], andQ4[i]

.
= 0 for i ∈ {6,7,11,12,16,17,19..21,30}. Finally,

we get the trivial conditions onQ5 from

∇Q5
.
= 〈0,−6,7,8,−9,−10,−11,12,±31〉.

36

Step 5 Q6←Q5+(F(Q5,Q4,Q3)+Q2+ m̂5+k5)
≪12

We haveδQ2 = 25 +225+231. We needδT5 =−24−28−220−226−228−229.
Hence,δ f5

.
=−24−25−28−220−225−226−228−229+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q5 〈0,−6,7,8,−9,−10,−11,12,±31〉
Q4 〈1,2,3,−4,5,−25,26,±31〉
Q3 〈−5,−6,7,−11,12,−16, . . . ,−20,21,−25, . . . ,−29,30,±31〉

To create the desiredδ f4 we must requireQ5[4]
.
= 1, Q5[5]

.
= 0, Q3[8]

.
= 1 and

Q4[8]
.
= 0, Q5[20]

.
= 0, Q5[26]

.
= 0, Q5[28]

.
= 0, Q5[29]

.
= 0 andQ4[31]

.
= Q3[31]. To

avoid further differences we must requireQ4[i]
.
= Q3[i] for i ∈ {0,9,10}, Q4[6]

.
= 0,

Q4[7]
.
= 0, Q4[11]

.
= 0, Q4[12]

.
= 0 (the latter four a.r.),Q5[i]

.
= 0 for i ∈ {1,2,3},

andQ5[i]
.
= 1 for i ∈ {16..19,21,27,30}. Finally, we get the trivial conditions from

∇Q6
.
= 〈16,−17,20,−21,±31〉.

Step 6 Q7←Q6+(F(Q6,Q5,Q4)+Q3+ m̂6+k6)
≪17

We haveδQ3 = 25 +211+216+225+231. We needδT6 = 23−210−221+231.
Hence,δ f6

.
= 23−25−210−211−216−221−225.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q6 〈16,−17,20,−21,±31〉
Q5 〈0,−6,7,8,−9,−10,−11,12,±31〉
Q4 〈1,2,3,−4,5,−25,26,±31〉

First, we requireQ6[3]
.
= 0. Since we can create+25 but not−25, we create 25−

26 = −25. Hence, we requireQ6[5]
.
= 0 andQ6[6]

.
= 1. Furthermore, we require

Q6[10]
.
= 1 andQ6[11]

.
= 1. Since we already requiredQ4[16]

.
= 0 andQ5[16]

.
= 1,

we must produce−216 as 216−217, henceQ4[17]
.
= 0 andQ5[17]

.
= 1 (both a.r.).

Continuing, we requireQ5[21]
.
= 1 and Q4[21]

.
= 0 (both a.r.), andQ6[25]

.
= 0.

To avoid further differences we requireQ5[20]
.
= Q4[20] (a.r.),Q5[31]

.
= ¬Q4[31],

Q6[i]
.
= 0 for i ∈ {0,7..9,12}, andQ6[i]

.
= 1 for i ∈ {1,2,4,26}. Finally, from

∇Q7
.
= 〈6,7,8,−9,27,−28,±31〉

we get trivial conditions.

Step 7 Q8←Q7+(F(Q7,Q6,Q5)+Q4+ m̂7+k7)
≪22

We haveδQ4 =−21 +25 +225+231. We needδT7 =−21 +25 +216+225−227.
Hence,δ f7

.
= 216−227+231.

37

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q7 〈6,7,8,−9,27,−28,±31〉
Q6 〈16,−17,20,−21,±31〉
Q5 〈0,−6,7,8,−9,−10,−11,12,±31〉

We first requireQ7[16]
.
= 1, Q5[27]

.
= 1 (a.r.) andQ6[27]

.
= 0, andQ6[31]

.
= Q5[31].

To avoid further differences we requireQ6[6]
.
= 1, Q6[7]

.
= 0, Q6[8]

.
= 0, Q6[9]

.
= 0

(all four a.r.),Q6[28]
.
= Q5[28] (implying Q6[28]

.
= 0), Q7[i]

.
= 0 for i ∈ {17,20,21},

andQ7[i]
.
= 1 for i ∈ {0,10..12}. Finally, since

∇Q8
.
= 〈−15,16,−17,23,24,25,−26,±31〉,

we get some trivial conditions onQ8.

Step 8 Q9←Q8 +(F(Q8,Q7,Q6)+Q5+ m̂8+k8)
≪7

We haveδQ5 = 20 +26 +28 +29 +231. We needδT8 = 20 +28 +29 +216+225−
231.
Hence,δ f8

.
=−26 +216+225.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q8 〈−15,16,−17,23,24,25,−26,±31〉
Q7 〈6,7,8,−9,27,−28,±31〉
Q6 〈16,−17,20,−21,±31〉

We cannot create−26 directly, but we can create 26 + 27 + 28− 29 = −26, by
requiring thatQ8[i]

.
= 1 for i ∈ {6,7,8,9}. Furthermore, we requireQ7[16]

.
= 1

(a.r.),Q6[25]
.
= 0 (a.r.) andQ7[25]

.
= 1, andQ7[31]

.
= ¬Q6[31]. To avoid further

differences we also requireQ7[i]
.
= Q6[i] for i ∈{15,23,24,26} (implying Q7[26]

.
=

1), Q7[17]
.
= 0 (a.r.), Q8[i]

.
= 0 for i ∈ {27,28} and Q8[i]

.
= 1 for i ∈ {20,21}.

Finally, we get the trivial conditions from

∇Q9
.
= 〈−0,1,−6,−7,−8,9,±31〉.

Step 9 Q10←Q9 +(F(Q9,Q8,Q7)+Q6+ m̂9+k9)
≪12

We haveδQ6 =−216−220+231. We needδT9 = 20−220−226.
Hence,δ f9

.
= 20 +216−226+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q9 〈−0,1,−6,−7,−8,9,±31〉
Q8 〈−15,16,−17,23,24,25,−26,±31〉
Q7 〈6,7,8,−9,27,−28,±31〉

38

We requireQ8[0]
.
= 0 andQ7[0]

.
= 1 (the latter a.r.),Q9[16]

.
= 1, Q9[26]

.
= 1 and

Q8[31]
.
= Q7[31]. To avoid further differences, we requireQ8[1]

.
= Q7[1], Q8[i]

.
= 1

for i ∈ {6..9} (all four a.r.),Q9[i]
.
= 0 for i ∈ {15,17,23..25}, andQ9[i]

.
= 1 for

i ∈ {27,28}. Finally, we get one trivial condition from

∇Q10
.
= 〈12,±31〉.

Step 10 Q11←Q10+(F(Q10,Q9,Q8)+Q7+ m̂10+k10)
≪17

We haveδQ7 =−26−227+231. We needδT10 =−227.
Hence,δ f10

.
= 26 +231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q10 〈12,±31〉
Q9 〈−0,1,−6,−7,−8,9,±31〉
Q8 〈−15,16,−17,23,24,25,−26,±31〉

We cannot create 26 directly, but we can create−26− 27− 28 + 29 by requir-
ing Q10[i]

.
= 1 for i ∈ {6..9}, andQ9[31]

.
= Q8[31]. To avoid further differences

we require thatQ9[12]
.
= Q8[12], Q10[i]

.
= 0 for i ∈ {0,1}, and Q10[i]

.
= 1 for

i ∈ {15..17,23..26}. There are no conditions onQ11 yet, as∇Q11
.
= 〈±31〉.

Step 11 Q12←Q11+(F(Q11,Q10,Q9)+Q8+ m̂11+k11)
≪22

We haveδQ8 = 215−217−223+231 andδm̂11 =−215. We needδT11 =−217−223.
Hence,δ f11

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q11 〈±31〉
Q10 〈12,±31〉
Q9 〈−0,1,−6,−7,−8,9,±31〉

To createδ f11 we simply requireQ10[31]
.
= Q9[31]. To avoid further differences

we also requireQ11[12]
.
= 0 andQ11[i]

.
= 1 for i ∈ {0,1,6..9}. Furthermore, trivial

conditions are added by

∇Q12
.
= 〈−7,13,14,15,16,17,18,−19,±31〉.

Step 12 Q13←Q12+(F(Q12,Q11,Q10)+Q9+ m̂12+k12)
≪7

We haveδQ9 = 20 +26 +231. We needδT12 = 20 +26 +217.
Hence,δ f12

.
= 217+231.

Conditions: We have the following bit differences on the arguments to the f func-

39

tion.
Qt ∇Qt

Q12 〈−7,13,14,15,16,17,18,−19,±31〉
Q11 〈±31〉
Q10 〈12,±31〉

Since we previously requiredQ10[17]
.
= 1, we cannot produce+217 directly, but

we can produce−217+ 218 by requiringQ11[17]
.
= 0, Q10[18]

.
= 0 andQ11[18]

.
=

1. Furthermore we requireQ11[31]
.
= Q10[31], and to avoid further differences

Q11[i]
.
= Q10[i] for i ∈ {7,13..16,19} (implying Q11[15]

.
= Q11[16]

.
= 1, condition

on Q11[7] a.r.), andQ12[12]
.
= 1. From

∇Q13
.
= 〈−24,−25,−26,−27,−28,−29,30,±31〉

we get some additional conditions.

Step 13 Q14←Q13+(F(Q13,Q12,Q11)+Q10+ m̂13+k13)
≪12

We haveδQ10 = 212+231. We needδT13 =−212.
Hence,δ f13

.
=−213+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q13 〈−24,−25,−26,−27,−28,−29,30,±31〉
Q12 〈−7,13,14,15,16,17,18,−19,±31〉
Q11 〈±31〉

We cannot produce−213 directly, but we can produce 213 + 214+ . . .+ 218− 219

by requiringQ13[i]
.
= 1 for i ∈ {13..19}. We also requireQ12[31]

.
= Q11[31], and to

avoid further differences we requireQ12[i]
.
= Q11[i] for i ∈ {24..30}, andQ13[7]

.
=

0. There are no trivial conditions added by∇Q14
.
= 〈±31〉.

Step 14 Q15←Q14+(F(Q14,Q13,Q12)+Q11+ m̂14+k14)
≪17

We haveδQ11 = 231 andδm̂14 = 231. We needδT14 = 218+230.
Hence,δT14

.
= 218+230.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q14 〈±31〉
Q13 〈−24,−25,−26,−27,−28,−29,30,±31〉
Q12 〈−7,13,14,15,16,17,18,−19,±31〉

We first requireQ14[18]
.
= 0 andQ14[30]

.
= 1. Then, to avoid further differences

we requireQ13[31]
.
= ¬Q12[31], Q14[i]

.
= 0 for i ∈ {24..29} andQ14[i]

.
= 1 for i ∈

{7,13..17,19}. Finally we have a few additional, trivial conditions from∇Q15
.
=

〈3,15,±31〉.

40

Step 15 Q16←Q15+(F(Q15,Q14,Q13)+Q12+ m̂15+k15)
≪22

We haveδQ12 =−27−213+231. We needδT15 =−27−213−225.
Hence,δ f15

.
=−225+231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q15 〈3,15,±31〉
Q14 〈±31〉
Q13 〈−24,−25,−26,−27,−28,−29,30,±31〉

We first requireQ15[25]
.
= 0 andQ14[31]

.
= Q13[31]. To avoid further differences

we also requireQ14[i]
.
= Q13[i] for i ∈ {3,15} (the latter a.r.), andQ15[i]

.
= 1 for

i ∈ {24,26..30}. Finally, one trivial condition is added by∇Q16
.
= 〈−29,±31〉.

Step 16 Q17←Q16+(G(Q16,Q15,Q14)+Q13+ m̂1+k16)
≪5

We haveδQ13 = 224+231. We needδT16 = 224.
Hence,δ f16

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion – which is now theG function.

Qt ∇Qt

Q16 〈−29,±31〉
Q15 〈3,15,±31〉
Q14 〈±31〉

Bearing in mind thatG(Q16,Q15,Q14) is equivalent toF(Q14,Q16,Q15), we first
require thatQ16[31]

.
= Q15[31], and to avoid further differencesQ14[29]

.
= 0 (a.r.)

and Q14[i]
.
= 1 for i ∈ {3,15} (implying Q13[3]

.
= 1 since we already required

Q14[3]
.
= Q13[3], condition onQ14[15] a.r.). We get no additional, trivial condi-

tions from∇Q17
.
= 〈±31〉.

Step 17 Q18←Q17+(G(Q17,Q16,Q15)+Q14+ m̂6+k17)
≪9

We haveδQ14 = 231. We needδT17 = 0.
Hence,δ f17

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q17 〈±31〉
Q16 〈−29,±31〉
Q15 〈3,15,±31〉

To produce 231 we requireQ17[31]
.
= Q16[31], and to avoid further differences we

requireQ17[i]
.
= Q16[i] for i ∈ {3,15}, andQ15[29]

.
= 1 (a.r.). We get no additional,

trivial conditions from∇Q18
.
= 〈±31〉.

41

Step 18 Q19←Q18+(G(Q18,Q17,Q16)+Q15+ m̂11+k18)
≪14

We haveδQ15 = 23 +215+231 andδm̂11 =−215. We needδT18 = 23.
Hence,δ f18

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q18 〈±31〉
Q17 〈±31〉
Q16 〈−29,±31〉

We requireQ18[i]
.
= Q17[i] for i ∈ {29,31}. We get one additional condition from

∇Q19
.
= 〈17,±31〉.

Step 19 Q20←Q19+(G(Q19,Q18,Q17)+Q16+ m̂0+k19)
≪20

We haveδQ16 =−229+231. We needδT19 =−229.
Hence,δ f19

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q19 〈17,±31〉
Q18 〈±31〉
Q17 〈±31〉

We requireQ19[31]
.
= Q18[31] andQ17[17]

.
= 0. We get no additional conditions

from ∇Q20
.
= 〈±31〉.

Step 20 Q21←Q20+(G(Q20,Q19,Q18)+Q17+ m̂5+k20)
≪5

We haveδQ17 = 231. We needδT20 = 0.
Hence,δ f20

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q20 〈±31〉
Q19 〈17,±31〉
Q18 〈±31〉

We requireQ20[31]
.
= Q19[31] andQ18[17]

.
= 1. We get no additional conditions

from ∇Q21
.
= 〈±31〉.

Step 21 Q22←Q21+(G(Q21,Q20,Q19)+Q18+ m̂10+k21)
≪9

We haveδQ18 = 231. We needδT21 = 0.
Hence,δ f21

.
= 231.

42

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q21 〈±31〉
Q20 〈±31〉
Q19 〈17,±31〉

We requireQ21[i]
.
= Q20[i] for i ∈ {17,31}. We get no additional conditions from

∇Q22
.
= 〈±31〉.

Step 22 Q23←Q22+(G(Q22,Q21,Q20)+Q19+ m̂15+k22)
≪14

We haveδQ19 = 217+231. We needδT22 = 217.
Hence,δ f22

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q22 〈±31〉
Q21 〈±31〉
Q20 〈±31〉

We requireQ22[31]
.
= Q21[31]. Note thatδQ23

.
= 0.

Step 23 Q24←Q23+(G(Q23,Q22,Q21)+Q20+ m̂4+k23)
≪20

We haveδQ20 = 231 andδm̂4 = 231. We needδT23 = 0.
Hence,δ f23

.
= 0.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q23 〈〉
Q22 〈±31〉
Q21 〈±31〉

We requireQ23[31]
.
= 0. Note thatδQ24

.
= 0.

Step 24 Q25←Q24+(G(Q24,Q23,Q22)+Q21+ m̂9+k24)
≪5

We haveδQ21 = 231. We needδT24 = 0.
Hence,δ f24

.
= 231.

Conditions: We have the following bit differences on the arguments to the f func-
tion.

Qt ∇Qt

Q24 〈〉
Q23 〈〉
Q22 〈±31〉

We requireQ24[31]
.
= ¬Q23[31], implying Q24[31]

.
= 1. Note thatδQ25

.
= 0.

43

Step 25 Q26←Q25+(G(Q25,Q24,Q23)+Q22+ m̂14+k25)
≪9

We haveδQ22 = 231 andδm̂14 = 231. We needδT25 = 0.
Hence,δ f25

.
= 0.

Conditions: We have no bit differences on the arguments to thef function, so we
getδ f25 = 0 directly.

Steps 26–33 In all these steps there are no bit differences on the arguments to the
f function, and hence no requirements on the step variables.

Steps 34–47 In all these steps thef function is thexor function, and hence a dif-
ference (on a certain bit position) on an odd number of arguments to thef function
will always produce a difference in the output, and a difference on an even num-
ber of arguments will never produce a difference in the output. Hence, we cannot
ensure any specific behavior of thef function, but it can be easily verified that the
characteristics are always fulfilled during these steps.

Step 48 Q49←Q48+(I(Q48,Q47,Q46)+Q45+ m̂0+k48)
≪6

We haveδQ45 = 231. We needδT48 = 0.
Hence,δ f48

.
= 231.

Conditions:We have the following bit differences on the arguments to thef func-
tion – which is now theI function.

Qt ∇Qt

Q48 〈±31〉
Q47 〈±31〉
Q46 〈±31〉

Let’s take a look at the truth table of theI function:

X Y Z I(X,Y,Z)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Since we have differences on bit 31 for all arguments, we needto finding a pattern
for which flipping all bits always produces a difference on the output. In order
to minimize the number of conditions we require that we only add a condition to
Q48 in this step. The only pattern seems to be wheneverX = Z, which works since
I(0,0,0) = 1 but I(1,1,1) = 0, andI(0,1,0) = 0 but I(1,0,1) = 1. Hence, we have
the conditionQ48[31]

.
= Q46[31].

44

Step 49 Q50←Q49+(I(Q49,Q48,Q47)+Q46+ m̂7+k49)
≪10

We haveδQ46 = 231. We needδT49 = 0.
Hence,δ f49

.
= 231.

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q49 〈±31〉
Q48 〈±31〉
Q47 〈±31〉

The requirements are the same as in step 48, so the condition isQ49[31]
.
= Q47[31].

Step 50 Q51←Q50+(I(Q50,Q49,Q48)+Q47+ m̂14+k50)
≪15

We haveδQ47 = 231 andδm̂14 = 231. We needδT50 = 0.
Hence,δ f50

.
= 0.

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q50 〈±31〉
Q49 〈±31〉
Q48 〈±31〉

In this step there must be no difference in the output of thef function, so we need
to look at the truth table of theI function again. We note that wheneverX = ¬Z
we have the desired behavior, so we requireQ50[31]

.
= ¬Q48[31].

Steps 51–59 In all these steps we have the same situation as in steps 48 and49,
so we requireQt [31]

.
= Qt−2[31] for 51≤ t ≤ 59.

Step 60 Q61←Q60+(I(Q60,Q59,Q58)+Q57+ m̂4+k60)
≪6

We haveδQ57 = 231 andδm̂4 = 231. We needδT60 = 0.
Hence,δ f60

.
= 0.

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q60 〈±31〉
Q59 〈±31〉
Q58 〈±31〉

Again, we need no difference out of thef function, so we requireQ60[31]
.
=

¬Q58[31].

Step 61 Q62←Q61+(I(Q61,Q60,Q59)+Q58+ m̂11+k61)
≪10

We haveδQ58 = 231 andδm̂11 =−215. We needδT61 =−215.
Hence,δ f61

.
= 231.

45

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q61 〈±31〉
Q60 〈±31〉
Q59 〈±31〉

Since we need a difference on bit 31 out of thef function we again requireQ61[31]
.
=

Q59[31]. We have an additional condition onQ62 from ∇Q62
.
= 〈−25,±31〉.

Step 62 Q63←Q62+(I(Q62,Q61,Q60)+Q59+ m̂2+k62)
≪15

We haveδQ59 = 231. We needδT62 = 0.
Hence,δ f62

.
= 231.

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q62 〈−25,±31〉
Q61 〈±31〉
Q60 〈±31〉

We requireQ62[31]
.
= Q60[31], and to prevent the difference on bit 25 ofQ62 from

spreading we also requireQ60[25]
.
= 0. We have an additional condition onQ63

from ∇Q63
.
= 〈−25,±31〉.

Step 63 Q64←Q63+(I(Q63,Q62,Q61)+Q60+ m̂9+k63)
≪21

We haveδQ60 = 231. We needδT63 = 0.
Hence,δ f63

.
= 231.

Conditions:We have the following bit differences on the arguments to thef func-
tion.

Qt ∇Qt

Q63 〈−25,±31〉
Q62 〈−25,±31〉
Q61 〈±31〉

We requireQ63[31]
.
= Q61[31], and to prevent a difference on bit 25 we further-

more requireQ61[25]
.
= 1. We have an additional condition onQ64 from ∇Q64

.
=

〈−25,±31〉 (note that this condition can be omitted, which is explainedin Section
4.7).

4.6 Modifications by Klı́ma

On March 31, 2005, Vlastimil Kĺıma published an article [25] that describes mod-
ifications to the search for a first block of an MD5 collision, using the differential
pattern that was found by Wang et al. Following Kĺıma’s technique, it is possible to
find first block near-collisions in a few minutes. He also introduced possible new

46

techniques for finding the second block, but these did not seem faster than the one
described by Wang et al. – at least according to the speed thatWang et al. claimed
to have reached. For this reason, only the modifications to finding the first block
are covered in this section.

4.6.1 An overview

In his technique, Kĺıma makes clever use of the fact that in the first block there
are no conditions onQ1 andQ2, so instead of letting these two values determine
the values ofm0 andm1, we can letm0 andm1 be determined byQ17 andQ20.
This way, we can ensure that the condition onQ20 holds, and by selecting new
values ofQ17 (determiningQ18 and Q19) until all these three values satisfy the
(9) conditions on them, we are left with 33 conditions (according to Wang et al.,
ignoringT-conditions). We have 31 free bits ofQ20 to try, so on average we should
only need to choose new values forQ1, . . . ,Q19 four times before we find a usable
near-collision. Of course, because ofT-conditions, of which there are 4 with a
combined probability of success of about 1/5, in practice we need more than 4
tries, but the time it takes to choose the first 19Q-values and compute the relevant
message words is still negligible.

4.6.2 Details

The technique is quite simple and elegant, so the best way to describe it might be
in the form of an algorithm, see Algorithm 4.2.

In [25], Kĺıma suggests to computem2, . . . ,m5 before startingQ20 as a counter,
but this is not possible since computing those values requires thatQ1 andQ2 exist
already, and these we cannot compute before we knowm0.

Obviously, if it was possible to perform multi-message modifications in steps
later than 19, then we could do this to decrease the complexity even further. But,
as mentioned, we cannot perform multi-message modifications later than step 18.

4.7 Possible additional improvements

Some of the conditions on step variables in the second iteration can be changed to
improve the attack slightly.

First of all, there is really no need to require∇Q64 = 〈−25,±31〉. For previous
step variables we have this requirement in order to make it possible (or at least
easier) to control the spreading of bit differences throughthe f function. However,
the last step variable,Q64, is never used in anf function, and we just require a
particular modular difference onQ64, namely−225+ 231, so that performing the
final addition with the chaining variable cancels out this difference. Hence, we can
omit completely the conditionQ64[25]

.
= 1, speeding up the process by a factor of

2.

47

Algorithm 4.2 Kĺıma’s MD5 attack

Ensure: M andM′ with the difference defined in (4.1) form a near-collision satis-
fying (4.3).
repeat

ChooseQ3,Q4, . . . ,Q16 arbitrarily, but fulfilling conditions (includingT-
conditions, see [21])
Computem6,m7, . . . ,m15 from theQ-values just chosen
repeat

ChooseQ17 arbitrarily, but fulfilling conditions
Q18←Q17+(G(Q17,Q16,Q15)+Q14+m6+k17)

≪9

Q19←Q18+(G(Q18,Q17,Q16)+Q15+m11+k18)
≪14

until all conditions onQ17, Q18 andQ19 are fulfilled
m1← (Q17−Q16)

≫5−G(Q16,Q15,Q14)−Q13−k16

if Q19[31] = 0 then
Q20← 0
Z← 231−1

else
Q20← 231

Z← 232−1
end if {This is to ensure that the single condition on Q20 is fulfilled}
while Q20≤ Z and not all conditions are fulfilleddo

m0← (Q20−Q19)
≫20−G(Q19,Q18,Q17)−Q16−k19

Q1←Q0 +(F(Q0,Q−1,Q−2)+Q−3+m0+k0)
≪7

Q2←Q1 +(F(Q1,Q0,Q−1)+Q−2+m1+k1)
≪12

Computem2,m3,m4,m5 according to steps 2–5
Compute all remaining step variables. If/when a condition is not fulfilled,
let Q20←Q20+1 and continue

end while
until all conditions are fulfilled

We can even omit the condition onQ63[25], or at least modify the requirements.
The f function call in step 63 (the last step) is

I(Q63,Q62,Q61),

and we already requireQ61[25]
.
= 1. WhenQ63[25] = 1 as we originally required,

then the changes on bit 25 ofQ63 andQ62 cause no change to the (25th bit of the)
output ofI , since we have

I(1,1,1) = I(0,0,1) = 0.

If insteadQ63[25] = 0 then the 25th bit of the output ofI still does not change,
since

I(0,1,1) = I(1,0,1) = 1.

48

However, in this case subtracting 225 from Q63 causes a carry to propagate at least
to bit 26. Assume that it propagates to bits, 26≤ s≤ 31. Then the output of the
f function does not change unless 1∈ Q61[s−26], because wheneverQ61[i] is 0,
thenQ63[i] has no influence on the output of the function. Hence, ifQ63[25] = 0 we
require that for increasingi starting from 26, as long asQ63[i] is 0, Q61[i] must also
be0, and for the firsti for which Q63[i] is 1, Q61[i] must still be0. This improves
the possibility that the requirement is fulfilled from12 to about23.
Note that if the carry propagates to bit 31 and stops there then Q63[31] = 1, and
since we requireQ63[31]

.
= Q61[31], we also know thatQ61[31] = 1. This case also

leads to success (ifQ61[i] = 0 for i ∈ {26, . . . ,30}), because in bit 31 we need a
difference on the output ofI , and this is achieved since we have

I(1,A,1) = ¬I(1,¬A,0)

for any value ofA. Of course, the probability of this happening is very low, only
2−12.
We cannot allow the carry to propagate past bit 31, because then we have

I(0,A,0) = I(0,¬A,1)

for any value ofA.
The two improvements described here reduce the complexity of finding the

second block of the message by a factor of about 3/8.

4.8 An implementation

It seems that an optimal implementation of the Wang MD5 attack would consist
of two parts: the first part, i.e. finding the first block, wouldoptimally be done
using the technique of Kĺıma [25], and the second part, i.e.finding the second
block, would optimally be done using the technique of Wang etal. [45]. Surely
it is possible to combine these two techniques, as the two parts are completely
independent of one another, except for the chaining values to the second part. There
are some conditions on these chaining values, but these are ensured already in the
first part, so any first block satisfying the conditions can beused to find a second
block.

The attack has been implemented in the C programming language. See Ap-
pendix C.

The program was run on a notebook computer with a 1.5 GHz Pentium M
processor on the Linux platform. In these settings it found 100 collisions in a little
over 44 hours, yielding an average of about 261

2 minutes per collision. The first
part took on average about 18.4 minutes, and the second part took a little more
than 8 minutes on average.
Note that without the improvements described in Section 4.7, the average time of
finding a collision would be about 13 minutes longer.

Some of these collisions can be found at
http://www.student.dtu.dk/∼s001856/md5collisions/.

49

4.9 Constructing meaningful collisions

The collisions found following the method described in thischapter are not likely
to be of any use directly. Because of the message modifications, we have very little
room to maneuver towards constructing meaningful colliding messages. However,
we can exploit some document programming language constructs to create collid-
ing messages that, when opened using a standard viewer of that sort of document,
look authentic. The method described here is due to Magnus Daum [10].

For instance, in the Postscript language, an if-then-else construct can be ex-
ploited. This construct has the syntax (where thetypewriter font means the
actual characters, and symbols such asX1 refer to some string)

(X1) (X2) eq {M1} {M2} ifelse

– meaning that if the stringsX1 andX2 are equal, thenM1 is displayed, and other-
wiseM2 is displayed.

Hence, letM1 andM2 be two versions of a document to be signed. One version,
M1, is the one whose MD5 hash will be signed by some party,S. The other version,
M2, is the version that some forger,F, wants the rest of the world to think thatS
signed. Hence,F is going to makeM1 andM2 collide by changing these documents
internally, but in a way such that these changes are not visible in a Postscript viewer
such as Ghostview.F does this by first creating a one-block messageB containing
text that is not shown by Ghostview, for instance a comment, followed by a newline
and the character ’(’. He then computes the MD5 hashh1 of this block without
padding, and subsequently finds a collision(m1,m2) of MD5 with initial valueh1.
He then creates the two Postscript documents

B‖m1) (m1) eq {M1} {M2} ifelse

and
B‖m2) (m1) eq {M1} {M2} ifelse

The first one will displayM1 in Ghostview, and the second one will displayM2.
The two documents collide in MD5 since they only differ in thefirst occurrence of
m1 andm2, and these form a collision when preceded byB.

Note that there is absolutely no restriction onM1 and M2, except that they
should both contain a complete Postscript specification of adocument. They don’t
even have to have the same size. Furthermore, virtually any collision (m1,m2) can
be used to construct this forgery. The only condition is thatneitherm1 nor m2

contains a bracket character, ’(’ or ’)’.
Also note that this kind of exploitation of a collision can beused for other hash

functions as well, unless the collision requires a large number of message blocks.
Hence, it actually removes the necessity that a collision bemeaningful in itself
whenever a forger is able to persuade someone to sign a document that he has only
seen on a computer screen.

50

Two examples of Postscript documents that collide under MD5, but have com-
pletely different appearances in any Postscript viewer, can be found athttp:
//www.student.dtu.dk/∼s001856/md5collisions/meaningful.html.

51

Chapter 5

AES-based hash functions

In 2001 the RIJNDAEL encryption algorithm was selected by NIST as the new
Advanced Encryption Standard, AES. Being standardised, implementations exist
in virtually any programming language on many different combinations of plat-
forms and architectures, and therefore it would be convenient if a cryptographic
hash function based on AES existed. The hash function WHIRLPOOL, although
inspired by AES, does not provide the added convenience of re-using AES com-
ponents. For a description of AES see [19, 42].

AES supports three different key sizes, 128 bits, 192 bits, and 256 bits. By
AESκ we denote the version of AES using keys ofκ bits.

In this chapter some suggestions to a new hash function trulybased on AES
components are given.

5.1 Block cipher-based hash functions in general

There are many advantages of basing a hash function on an existing block cipher.
One advantage is, that if the block cipher is generally believed to be secure, then
this level of security may be transferred to the hash function based on that block
cipher. However, some attacks that are not a real threat to a block cipher may have
much greater consequences for a hash function. This is for instance true in cases
where a block cipher suffers from some weakness based on someproperties of the
key, and the hash function uses message blocks as keys for theencryption function.
Since an adversary in a collision attack has complete control over the message,
he might be able to exploit such weaknesses. Hence, there areextended security
requirements for a block cipher that is to be used as the compression function of
a hash function. In the following, unless the contrary is explicitly mentioned, it
shall be assumed that AES has no weaknesses that can be exploited in mounting
attacks on hash functions based on AES. Hence, we need only care about building
a secure construction using AES.

Three general constructions of block cipher-based hash functions are usually
mentioned in the literature, e.g. in [30, §9.4.1] (Ek is the encryption function of the

52

block cipher using keyk):
The Davies-Meyer construction:

hi+1 = Emi (hi)⊕hi (5.1)

The Matyas-Meyer-Oseas construction:

hi+1 = Ehi (mi)⊕mi (5.2)

The Miyaguchi-Preneel construction:

hi+1 = Ehi (mi)⊕hi⊕mi (5.3)

Other schemes could be considered, of course. If four possibilities of inputs
(mi, hi , mi ⊕ hi , and some constant) are considered as key, plaintext and feed-
forward value, then 43 = 64 schemes can be constructed. Of these it has been
shown [35] that assuming no weakness of the underlying blockcipher can be ex-
ploited, only four are secure (among these are (5.2) and (5.3)). A further eight
(among these are (5.1)) have the only weakness that fixed points can be found (see
more on this in Section 6.3). Do note that if the underlying block cipher uses keys
that are not the same size as the plaintext blocks, then either some transformation of
inputs must be applied, or, of the three schemes mentioned, only the Davies-Meyer
scheme can be used.

All these constructions are so-calledsingle-length, meaning that they produce
a hash result of the same size as the underlying block cipher.The rate of the
constructions above is 1, signifying that one encryption compresses ann-bit block
to produce ann-bit (intermediate) hash. In general, the rate of a block cipher-based
hash function isρ = µ

n, whereµ is the number of bits of message that are processed
by each application of the compression function, andn is the block size of the
underlying block cipher.

Most new hash functions proposed today have a hash result of size at least
256 bits in order to prevent birthday attacks from being effective in years to come.
Since AES is a 128-bit block cipher, a single-length construction should not be
used to form an AES-based hash function. Instead, a double-length scheme may
be considered.

5.1.1 Fast double-length schemes

It is tempting to consider fast double-length schemes such as the Parallel-DM
scheme, proposed in [22]:

h1
i+1 = Em1

i ⊕m2
i
(h1

i ⊕m1
i)⊕h1

i ⊕m1
i

h2
i+1 = Em1

i
(h2

i ⊕m2
i)⊕h2

i ⊕m2
i

– whereE is some block cipher of block lengthn, and the message is split into
2µ-bit blocks(m1

i ,m
2
i), eachmj

i is µ bits of length. The hash rate of this scheme is

53

1, since one encryption is needed to processµ bits of the message. However, rate 1
schemes such as Parallel-DM and the general form

h1
i+1 = EA1(B1)⊕C1

h2
i+1 = EA2(B2)⊕C2

(5.4)

(whereA j , B j andCj are linear combinations ofh1
i , h2

i , m1
i andm2

i) were broken
in [27]. This is not to say that all rate 1 schemes are insecure. At the time of this
attack, however, most block ciphers used 64-bit blocks and∼64-bit keys.

5.1.2 DES and MDC-2

A double-length scheme was used in the 128-bit hash functionMDC-2 using DES.
DES uses 56-bit keys and processes blocks of 64 bits. In each iteration of MDC-2,
64 bits of message are processed by two instances of DES, creating a combined
128-bit output, which is then used to form the 2×56 bits of key for the next itera-
tion:

l1
i+1‖r1

i+1 = Eg1(h1
i)
(mi)⊕mi

l2
i+1‖r2

i+1 = Eg2(h2
i)
(mi)⊕mi,

where|l j
i+1| = |r

j
i+1|, g j are simple functions that remove 8 bits ofh j

i and fix two
other bits, and

h1
i = l1

i ‖r2
i and

h2
i = l2

i ‖r1
i .

Hence, MDC-2 has rate 1/2: 64 bits of message are processed by two applications
of DES to produce a 128-bit output.

Other block ciphers than DES could be used, following the MDC-2 scheme.
However, a rate 1/2 scheme may not be fast enough. On the other hand, any
scheme should keep the work of [27] in mind, and hence schemesof the form (5.4)
are prohibited.

5.1.3 Using AES

AES can be used in a fashion that compresses data by letting a 256-bit message
block be used as the key for AES.

Consider the following scheme:

l1
i+1‖r1

i+1 = Emi (h
1
i)⊕h1

i
l2
i+1‖r2

i+1 = Emi (h
2
i)⊕h2

i ,
(5.5)

whereE is the AES256 encryption function,|mi|= 256 and

h1
i = l1

i ‖r2
i and

h2
i = l2

i ‖r1
i .

(5.6)

54

for 1≤ i < t. If mconsists oft blocks of 256 bits then we defineH(m)= l1
t ‖r1

t ‖l2
t ‖r2

t .
h1

0 andh2
0 are fixed initial values, but they must be different. Otherwise,l1

i = l2
i

andr1
i = r2

i , and henceh1
i = h2

i for all i < t. In fact, if it happens for somek that
h1

k = h2
k thenh1

i = h2
i for all i, k < i < t, so we may fix some bits ofh j

i as was done
in MDC-2. For instance, we might replace (5.6) with

h1
i = (l1

i ‖r2
i)∧¬1b and

h2
i = (l2

i ‖r1
i)∨1b

for 1≤ i < t. We defineH(m) as before.
This scheme has rate 1, since a 256-bit message is processed by two applica-

tions of AES256, each producing 128 bits of output. The scheme is apparentlynot
broken by [27], because it does not fall under the category of(5.4).

5.1.4 Related-key attack on AES256

A related-keyattack [13] exists on 9 rounds of AES256. However, this attack re-
quires 277 plaintexts and takes time 2224. The attack exploits the fact that the AES
key schedule is far from optimal, and so it may be a good idea toconsider new
proposals for the key schedule.

It is an open question whether this related-key attack posesa threat to hash
functions based on AES256.

5.2 Extending AES to support 256-bit blocks

In the original Rijndael design, 256-bit message blocks were supported, but this
feature was omitted in the AES standard. It is easy to see how AES could be
extended to accept larger message blocks. A 256-bit messageblock can be repre-
sented internally as a 4× 8 matrix. Then the functionsSubBytes, ShiftRows and
MixColumns are extended in a natural manner to operate on this larger matrix. The
key expansion is extended to produce twice as much key material, since 15 keys of
256 bits are now needed.

Extending AES to support 256-bit blocks obviously requiresa few changes
to be made to the basic functions of AES. However, when considering software
implementations, most of these changes involve only changes to counters and array
sizes. Hardware implementations are a completely different matter, as in most
cases new hardware would probably have to be built to accommodate larger block
sizes. Note that the hash function suggested in Section 5.1 doesnot require new
implementations of AES itself in software nor in hardware.

When a 256-bit implementation of AES exists, the hash function could be
defined using e.g. the Miyaguchi-Preneel scheme (5.3).

55

5.3 Alternative constructions

Other constructions than (5.1)-(5.3) should be considered. In this section, two
alternatives are mentioned.

5.3.1 The Lucks scheme

In [29], Stefan Lucks proposed two new constructions to improve the security of
the Merkle-Damgård construction: thewide-pipeconstruction and thedouble-pipe
construction. These are both extensions of the MD-construction.

The wide-pipe construction requires the existence of two compression func-
tions, f : {0,1}s×{0,1}µ→ {0,1}s and f ′ : {0,1}s→ {0,1}n, wheres> n, f is
used in the usual way, andf ′ is a final compression yielding the hash. Withs> n
this makes finding collisions for the compression function harder, but this construc-
tion is not suitable for block cipher-based hash functions,since usually the block
size of the cipher is not large enough to substitutes.

The double-pipe construction uses only one compression function, f : {0,1}n×
{0,1}n+µ→{0,1}n, whereµ≥ n is the size of a message block. The hash function
has the outline

h1
i+1 = f (h1

i ,h
2
i ‖mi)

h2
i+1 = f (h2

i ,h
1
i ‖mi),

(5.7)

(where(h1
0,h

2
0) is an initial pair of values) and the final hash value is defined

H = f (h∗,h1
t ‖h2

t ‖0µ−n) (5.8)

for some initial valueh∗.
When based on a block cipherB, this scheme has rateµ2n, and it requires thatB

support key sizes that are different from the block sizes. Furthermore, the lesser of
these sizes,n, must still be large enough that attacks requiring time 2n/2 are infea-
sible, i.e.n should preferably be at least 256. As mentioned in the previous section,
AES can be extended to support block and key sizes of virtually any multiple of 32
bits, although other combinations than the standard ones have not been thoroughly
examined.

5.3.2 The Knudsen-Preneel scheme

In [28], Knudsen and Preneel determine some necessary (but possibly not suffi-
cient) conditions on multiple constructions to achieve a particular level of security,
and they propose such constructions based on error-correcting codes.

Following the reasoning and the assumptions of [28], it is possible to create
a hash function based on standard (n = 128) AES128 for which finding collisions
has the complexity (at most) 2128 by using 3 parallel chains (i.e.ν = 3), and this
yields a hash function of rate 1/3. Several other combinations with the same (upper
bound on the) security level are possible.

56

Basing the construction on error-correcting codes

Knudsen and Preneel propose to base the construction of linear combinations of
the chaining values and the message blocks that take part in each iteration on error-
correcting codes. This way it is possible to ensure that whentwo sets of chaining
values and message blocks differ, then inputs to at leastd encryption functions
differ, whered is the minimum distance of the code.

A simple differential attack exists on the Knudsen-Preneelconstruction when
codes of minimum distance greater than 3 are used, since in these cases the con-
jectured complexities of attacks are too optimistic. However, for d = 3 we can
hope that the complexity of a collision attack is exactly theconjectured 2n, which
is good enough when the hash function is based on AES.

In the following, two hash functions following the principles of [28] shall be
described.

A hash function of 5 parallel chains

Using the(5,3,3) shortened Hamming code overGF(22) one obtains a hash func-
tion using five parallel chains. Hence, using standard AES128, a single 128-bit
message block is processed in each iteration, and so the hashfunction has rate 1/5.
The conjectured complexity of a collision attack is 2128. Since the result has size
5×128 bits, it may be further compressed to 256 bits by using anoutput transfor-
mation T: {0,1}640→ {0,1}256. This compression function can be slow because
of the small amount of data that it needs to compress. See Section 5.3.2 for some
proposals.

It is clear that the amount of internal memory needed for a construction such
as this is larger than when a small number of parallel chains are used. In this case,
we need to store from one iteration to the next the 5 chaining values of 128 bits
and the message block also of 128 bits, i.e. a total of 768 bits, or 24 32-bit words.
In environments with limited resources this could be a problem.

The fieldGF(22) is defined by the polynomialp(x) = x2 + x+ 1 (symbols in
bold are elements of the field). Let0 = 0, 1 = 1, α = x andβ = x+ 1. Then the
(5,3,3) code may be defined by the generator matrix

G =





1 0 0 1 1
0 1 0 1 α
0 0 1 1 β



 .

Let us investigate what multiplication byα means in terms of the coefficients. Let
ax+b be some element ofGF(22) defined as above. Thenα(ax+b) = x(ax+b) =
ax2 +bx= a(x+1)+bx= (a+b)x+a. Hence, the most significant coefficient of
the result isa+b, and the least significant coefficient isa. In other words, we may
define this multiplication as a multiplication of a vector bya matrix as follows:

(ax+b)α =
[

a b
]
[

1 1
1 0

]

,

57

and hence we define

Mα =

[
1 1
1 0

]

.

The elements0 and1 have the trivial corresponding matricesM0 andM1. Since
α+1 = β in this field, we define theβ-matrix as

Mβ =

[
1 1
1 0

]

+

[
1 0
0 1

]

=

[
0 1
1 1

]

.

We may now write the generator matrix using elements ofGF(2) as

Ĝ =





M1 M0 M0 M1 M1

M0 M1 M0 M1 Mα
M0 M0 M1 M1 Mβ



 =











1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 1 1











.

We then define a six-element vectorV of chaining values and message blocks, in
this case for instanceV = [h1

i ,h
2
i ,h

3
i ,h

4
i ,h

5
i ,mi], whereh j

i is the jth chaining value.
In order to determine the combinations of chaining values and message blocks used
in each chain, we computeV× Ĝ yielding

(V× Ĝ)T =






















h1
i

h2
i

h3
i

h4
i

h5
i

mi

h1
i ⊕h3

i ⊕h5
i

h2
i ⊕h4

i ⊕mi

h1
i ⊕h3

i ⊕h4
i ⊕mi

h2
i ⊕h3

i ⊕h5
i ⊕mi






















.

We pair up the elements of this vector to obtain the input to the underlying en-
cryption function, which means that withEk the AES encryption function using
the keyk andm0, . . . ,mt−1 the message, we may define the complete hash function
(excluding the output transformation) as

h1
i+1 ← Eh1

i
(h2

i)

h2
i+1 ← Eh3

i
(h4

i)

h3
i+1 ← Eh5

i
(mi)

h4
i+1 ← Eh1

i ⊕h3
i ⊕h5

i
(h2

i ⊕h4
i ⊕mi)

h5
i+1 ← Eh1

i ⊕h3
i ⊕h4

i ⊕mi
(h2

i ⊕h3
i ⊕h5

i ⊕mi)







for 0≤ i < t

58

where(h1
0,h

2
0,h

3
0,h

4
0,h

5
0) is some initial value,h j

0 6= h j ′

0 for j 6= j ′ – in fact preferably
all the h j

0 should be linearly independent. For instance, one could chooseh j
0 =

0 j−110128− j .

Note that in this scheme the message has no influence on the first chaining
value in the first two iterations, and it has no influence on thesecond chaining
value in the first iteration. Hence, a one-block message has no influence on the
first two chaining values, and so the first 256 bits are identical for all one-block
messages. Of course, the output transformation should spoil this relation between
one-block messages.

Using a large code

In order to improve the rate of the hash function one may wish to choose a larger
code over a larger field. For instance, inGF(24) there exists a(17,15,3) code,
which can be used to form a hash function of rate 13/17 using 17 parallel chains.
Hence, this solution requires 2176 bits of memory to store the chaining values, or
68 32-bit words. This does not seem very practical, and it sure wouldn’t be useful
in some environments, but when resources are not too limitedone may consider
using this fairly quick hash function.

A generator matrix for the(17,15,3) code is

G =






























1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 α
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 α2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 α3

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 α4

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 α5

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 α6

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 α7

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 α8

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 α9

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1α10

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1α11

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1α12

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1α13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1α14






























where the fieldGF(24) is defined by the polynomialp(x) = x4 +x+1, andα = x
is a primitive element. Similarly to the previous example, we may exchange each
element ofGF(24) with a 4×4 matrix overGF(2) corresponding to multiplication
by that element. For instance, multiplyingα = xwith the elementax3+bx2+cx+d
yieldsax4 +bx3 +cx2+dx= a(x+1)+bx3 +cx2+dx= bx3+cx2 +(a+d)x+a,

59

so we replaceα by the matrix

Mα =







0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0







.

Obviously, the elements0 and1 have the trivial corresponding matrices, andMα j =

∏ j
i=1 Mα for 1≤ j ≤ 14. This way, we obtain the 4× 4 matrices below, where a

subscriptj means the matrix isMα j .






0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0







1







0 1 1 0
0 0 1 1
1 0 0 0
0 1 0 0







2







1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0







3





1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1







4







0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0







5







1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0







6





0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1







7







1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1







8







1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0







9





1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1







10







1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0







11







0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1







12





0 0 1 0
0 0 0 1
1 0 0 1
1 1 0 1







13







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1







14

As above, we define a vectorV containing the chaining values and the message
blocks, but this time we need twice the number of elements as the combined num-
ber of chaining values and message blocks, and hence we splitthese in a left and a
right part. The vector hence becomes

V = [h1,L
i ,h1,R

i , . . . ,h17,L
i ,h17,R

i ,m1,L
i ,m1,R

i , . . . ,m13,L
i ,m13,R

i]

wherex j,L
i means the 64 leftmost bits ofx j

i , andx j,R
i means the 64 rightmost bits

of x j
i . The combination of chaining values and message blocks to choose as input

to each encryption function is then computed asV × Ĝ, whereĜ is G with the
field elements replaced by their corresponding 4× 4 matrices overGF(2). This
computation shall not be performed here as the resulting vector becomes quite
large. The resulting hash function, however, has the outline of Table 5.1.

60

C.v. Input

h1
i+1 {h1

i ,h
2
i }

h2
i+1 {h3

i ,h
4
i }

h3
i+1 {h5

i ,h
6
i }

h4
i+1 {h7

i ,h
8
i }

h5
i+1 {h9

i ,h
10
i }

h6
i+1 {h11

i ,h12
i }

h7
i+1 {h13

i ,h14
i }

h8
i+1 {h15

i ,h16
i }

h9
i+1 {h17

i ,m1
i }

h10
i+1 {m2

i ,m
3
i }

h11
i+1 {m4

i ,m
5
i }

h12
i+1 {m6

i ,m
7
i }

h13
i+1 {m8

i ,m
9
i }

h14
i+1 {m10

i ,m11
i }

h15
i+1 {m12

i ,m13
i }

h16
i+1 {h1

i ⊕h3
i ⊕h5

i ⊕h7
i ⊕h9

i ⊕h11
i ⊕h13

i ⊕h15
i ⊕h17

i ⊕m2
i ⊕m4

i ⊕m6
i ⊕m8

i ⊕
m10

i ⊕m12
i ,h2

i ⊕ h4
i ⊕ h6

i ⊕ h8
i ⊕ h10

i ⊕ h12
i ⊕ h14

i ⊕ h16
i ⊕m1

i ⊕m3
i ⊕m5

i ⊕
m7

i ⊕m9
i ⊕m11

i ⊕m13
i }

h17
i+1 {h1

i ⊕ (h3,R
i ‖h

4,L
i) ⊕ h6

i ⊕ h7
i ⊕ (h8,R

i ‖h
5,L
i) ⊕ h9

i ⊕ (h9,R
i ‖h

7,L
i) ⊕

(h11,R
i ‖h10,L

i) ⊕ h12
i ⊕ h13

i ⊕ h14
i ⊕ (h14,R

i ‖h11,L
i) ⊕ (h15,R

i ‖h12,L
i) ⊕

(h16,R
i ‖h15,L

i) ⊕ h17
i ⊕ m1

i ⊕ m2
i ⊕ (m2,R

i ‖h
16,L
i) ⊕ (m3,R

i ‖h
17,L
i) ⊕

m4
i ⊕ (m4,R

i ‖m
2,L
i) ⊕ m5

i ⊕ m6
i ⊕ (m6,R

i ‖m
3,L
i) ⊕ m7

i ⊕ (m7,R
i ‖m

4,L
i) ⊕

(m8,R
i ‖m

5,L
i) ⊕ m9

i ⊕ (m9,R
i ‖m

7,L
i) ⊕ m11

i ⊕ (m11,R
i ‖m9,L

i) ⊕
(m13,R

i ‖m12,L
i),h2

i ⊕ (h3,L
i ‖h

3,L
i) ⊕ (h4,R

i ‖h
8,L
i) ⊕ h5

i ⊕ (h5,R
i ‖h

9,L
i) ⊕

(h7,R
i ‖h

11,L
i) ⊕ (h8,L

i ‖h
11,R
i) ⊕ (h9,L

i ‖h
14,L
i) ⊕ h10

i ⊕ (h10,R
i ‖h15,L

i) ⊕
(h11,R

i ‖h16,L
i) ⊕ (h12,R

i ‖h16,R
i) ⊕ h13

i ⊕ (h14,L
i ‖m2,L

i) ⊕ (h15,L
i ‖m3,L

i) ⊕
(h15,R

i ‖m4,L
i)⊕ (h16,R

i ‖m4,R
i)⊕ h17

i ⊕ (h17,R
i ‖m6,L

i)⊕m1
i ⊕ (m2,L

i ‖m
6,R
i)⊕

(m2,R
i ‖m

7,L
i) ⊕ (m3,L

i ‖m
8,L
i) ⊕ (m3,R

i ‖m
8,R
i) ⊕ (m4,R

i ‖m
9,L
i) ⊕ m5

i ⊕
(m5,R

i ‖m
9,R
i) ⊕ (m7,L

i ‖m
11,L
i) ⊕ (m7,R

i ‖m
11,R
i) ⊕ (m9,R

i ‖m
13,L
i) ⊕ m10

i ⊕
(m12,R

i ‖m13,R
i)}

Table 5.1: An outline of the hash function defined by the(17,15,3) code. The first col-
umn is the chaining value being computed, and the second column is a pair (in braces)
representing the input to the encryption function, where the first element is the key and the
second element is the message block.

61

The input to the last chaining value is fairly complex; it consists of 62 XORs.
This obviously adds to the complexity of the entire hash function, and further-
more it is not very practical. Another problem is that we needat least 13 message
blocks of 128 bits in order to perform a single iteration. This could be achieved by
padding, but it would be better to use some message expansionfunction that (for
each iteration) makes each block dependent on all the other blocks. The output
transformationT : {0,1}2176→ {0,1}256 should (again) make all 256 output bits
dependent on all chaining values, since it takes 5 iterations for the message to affect
the first chaining value. In fact,m13

0 never affectsh j
i for j ∈ {6,7,10,11,12,13,14}

and anyi, no matter how large the message is. To avoid this undesirable feature
one could change the order of the elements ofV. For instance, the first 13 chain-
ing values could be computed ash j

i+1← Emj (h
j+2
i), 0 < j ≤ 13, the next two as

h14
i+1←Eh1

i
(h16

i) andh15
i+1←Eh2

i
(h17

i), and last two chaining values would then also
have different specifications, according to the new vectorV. It would then take at
most 9 iterations for any message block to affect all chaining values.

Possible output transformations

As mentioned, the output transformationT should be secure rather than efficient,
since it only has to compress a fixed, limited number of bits into 256 bits. Even
schemes based on fairly slow mathematical operations may beconsidered. It
should be computationally infeasible to find collisions and(2nd) preimages forT
as well.

Hashing the chaining values. Knudsen and Preneel propose some possible out-
put transformations. One such proposal is to compress theν chaining values using
the hash function itself in order to make each bit dependent on every other bit, and
then truncate the result. However, as mentioned in the previous section, a message
block (in this case a chaining value) does not necessarily affect all “new” chaining
values. There are many ways of making sure that the final output depends on all
chaining values. For instance, further iterations of the compression function could
be applied, but this has to be done carefully to make sure thatthe bits are mixed
properly. Also, it might be a good idea to do the final truncation by dropping all
chaining values except the last two, i.e.hν−2 andhν−1, because these two chaining
values have the largest degree of dependency on message blocks and other chaining
values.

A CBC-like application. Applying a CBC-like structure would also have the
effect that all output bits depend on all chaining value bits. For instance, leth j

t be
the final chaining values of the “original” hash function, 0≤ j < ν. DefineH−1 = 0
and compute

H j ← EH j−1(h
j
t) for 0≤ j < ν

62

Repeat this once, i.e. let̂H−1 = 0 and compute

Ĥ j ← EĤ j−1
(H j) for 0≤ j < ν

Define Ĥν−2‖Ĥν−1 as the output. This solution would require an additional 2ν
applications of the AES encryption function. The reason forchoosing two CBC-
like applications is that two output blocks are needed, and only one of the blocks
H j depend on all chaining valuesht

j . To achieve symmetry, the CBC processing is
repeated. This method would probably be faster than the one mentioned above, and
it is also simpler as one does not have to take into account which chaining values
are affected by which message blocks etc.

A method using modular arithmetic. As a final proposal for the output transfor-
mation, consider a compression function based on modular arithmetic, for instance
the Chaum-van Heijst-Pfitzmann hash function discussed in Section 7.2. The fact
that this hash function is quite slow is less significant in this context, since only a
fixed and very limited amount of data needs to be hashed. Additionally, it is proved
that if one is able to find a collision for the Chaum-van Heijst-Pfitzmann hash func-
tion, then one is also able to compute a non-trivial discretelogarithm. However,
since we are really looking for a (complete) hash function entirely based on AES,
this solution might not be feasible.

5.4 Summary

There are many ways of building a hash function based on AES, but doing so in a
secure and efficient manner is not easy. A general problem of block cipher based
hash functions stems from the fact that for each call of the underlying block cipher,
the key scheduling of the block cipher has to be applied (except in cases where
the key is fixed, but none of these schemes are secure according to [35]). In some
block ciphers the key scheduling algorithm is rather slow. This is not particularly
the case for AES.

One of the quickest proposals of those given in this chapter is that of Section
5.1.3, and this one can even be used with AES as a “black box” whenever this
accepts 256-bit keys, which is standard. This version is nottrusted quite as much as
the 128-bit version, however. Do note that key scheduling only has to be performed
once for every two applications of AES, as the two applications in each step use
the same key.

The proposal of Section 5.2 does not work with standard AES implementa-
tions, as it requires the use of 256-bit blocks. It is quite easy to extend AES to
accept this size of blocks, but implementations, especially hardware implemen-
tations, still require some inconvenient changes to be made. The speed would
probably be about the same as in the proposal of Section 5.1.3.

The two proposals making use of error-correcting codes havequite different
properties. The first one uses 5 parallel chains, and hence requires 5× 128 bits

63

of internal memory to pass on the chaining values from step tostep. It is not
faster than using an MDC-2-like construction with AES128. The second proposal
is almost as fast as the two mentioned above, but it requires asignificant amount of
internal memory, namely 17×128 bits. Both proposals come with the additional
challenge of identifying a secure and convenient output transformation. On the
other hand, they both have the advantage that they are able touse AES as a black
box.

Considering the large number of existing implementations of AES in both soft-
ware and hardware, and the recent attacks on MD4-like hash functions, it may be
worth considering any proposal based on AES that is able to use AES as a black
box.

64

Chapter 6

General results on the
Merkle-Damgård construction

In this chapter some general results on all hash functions using the Merkle-Damgård
construction with MD-strengthening are presented.

6.1 The motivation for using MD-strengthening

As mentioned in Chapter 2, the Merkle-Damgård construction with MD-strength-
ening makes it possible to prove Theorem 6.1. Different but equivalent construc-
tions were suggested by Ralph C. Merkle [31] and Ivan Damgård [9] indepen-
dently.

Theorem 6.1. Let H be a hash function based on the Merkle-Damgård construc-
tion, where the message is padded with a number of bits representing the length of
the unpadded message (i.e. MD-strengthening is used), and let f be the compres-
sion function of H. Then, a collision for H implies a collision for f .

Proof. Assume that we have foundx andx′, x 6= x′, such thatH(x) = H(x′). Let m
andm′ respectively be the padded versions ofx andx′. Note that the two messages
are padded in the exact same way if and only if|x| = |x′|. Defineh0 as the initial
value of the hash function, and lethi+1 = f (mi,hi), wheremi, 0≤ i < t, are the
message blocks ofm. Define similarlyh′i+1 = f (m′i ,h

′
i), 0≤ i < t ′.

Sinceht = h′t ′ , either there is a collision forf or (mt−1,ht−1) = (m′t ′−1,h
′
t ′−1). In

the latter case, either there is a collision forf or (mt−2,ht−2) = (m′t ′−2,h
′
t ′−2). This

argument repeats. If|x|= |x′| then either there is a collision forf , or mi = m′i for all
i, 0≤ i < t. In the latter casex = x′, which is impossible. If|x| 6= |x′| then at least
one of the padding blocks differ for the two messages, and hencemt−1− j 6= m′t ′−1− j
for some j, where 0≤ j < min(t, t ′). Thus, there is a collision forf . Note that in
both cases the collision can occur later than the last iteration in which the message
blocks differ, but then there is still a collision forf since the chaining values must
differ.

65

Theorem 6.1 has the implication that if one is able to construct a collision
resistant compression functionf , then a collision resistant hash function can be
easily built from f . However, as we have seen, it is not a simple task to constructa
collision resistant compression function.

In the following sections, some general attacks on the Merkle-Damgård con-
struction are described.

6.2 Joux’s multicollisions

In [23], Antoine Joux develops a new method for finding multicollisions, i.e. sets
of messages{M1, . . . ,M j}, j > 1, that all have the same hash value.

The method of Joux assumes that the attacker has access to a collision finder
C : {0,1}n→ {0,1}µ×{0,1}µ of the hash functionH. C takes as input an initial
chaining valuev of sizen bits and outputs two message blocksM0 andM1 that
collide under one iteration of the compression function given the initial chaining
valuev. C can be assumed to run in timeT, where e.g.T = 2n/2 if C uses the brute
force method.

To find j messages that all have the same hash underH, perform the operations
of Algorithm 6.1, wheref : {0,1}µ×{0,1}n→{0,1}n is the compression function
of H. Since all messages have the same length, and are built from message blocks

Algorithm 6.1 Multicollision finder

Ensure: The j = 2λ different messagesM0
β‖M1

β‖· · ·‖M
λ−1
β , β ∈ {0,1}, all have

the same hash underH.
Let v be the initial value ofH
for i = 0 to λ−1 do

(Mi
0,M

i
1)←C(v)

v← f (Mi
0,v)

end for

that collide under the compression function given the proper initial value, all the 2λ

different concatenations (in the right order) of theλ collisions have the same hash
value underH. This algorithm operates in timeλT on average. IfH was a random
oracle, it would take time 2n(j−1)/ j to find j messages with the same hash. Even
with T = 2n/2, which is always possible,λT < 2n(j−1)/ j as long asλ > 1.

This result is interesting for more than the obvious reasons. For example, it has
been suggested (for instance by Preneel [34]) that the security of a hash function
may be improved by concatenating the hash results of two different hash functions,
alternatively two different applications (using for instance different initial values)
of the same hash function. This is called a cascaded construction. Let a hash func-
tion H be defined asH(m) = H1(m)‖H2(m), whereH1 is ann1-bit hash function,
andH2 is ann2-bit hash function. Assume without loss of generality thatn1 ≤ n2.
Find (in time∼ n22n1/2) at least 2n2/2 messages that all have the same hash under

66

H1. Then, with a probability of about 1/2, two of these messages also collide un-
derH2, and hence we have found a collision ofH in timen22n1/2+2n2/2, including
the time it takes to find the pair that also collides underH2. For a truly random
mapping into(n1 +n2)-bit values, it takes time 2(n1+n2)/2 to find a collision.

Note that ifn1 = n2, and one has access to a collision finder ofH1 running in
time T such thatn2T < 2n2/2, then this method has complexity 2n2/2, which is not
much better than the case where the multicollisions are found by brute force.

Multicollisions can also be used to improve the speed of finding (2nd) preim-
ages of cascaded constructions. The method will not be described here.

6.3 Kelsey/Schneier’s 2nd preimage attack

MD-strengthening was introduced in order to make the hash function more secure.
However, as this section intends to prove, it does not add much resistance against
2nd preimage attacks. The results of this section are due to Kelsey and Schneier
[24], and are in part inspired by the work of Joux described inthe previous section.

Most compression functions havefixed pointsthat can easily be found. A fixed
point in this context is a pair(mi ,hi) such thathi+1 = f (mi ,hi) = hi , where f is the
compression function of the hash function. Hash functions such as MD4, MD5,
SHA-1 etc. are constructed in a way similar to the Davies-Meyer scheme using an
invertible block-cipher-like functionE, i.e. f (mi,hi) = Emi (hi)⊕hi . Fixed points
can be found for the compression function of all such hash functions as follows.
Given message blockmi compute (easily)hi = E−1

mi
(ω), whereω is the neutral

element with respect to⊕, usually 0. Thenhi+1 = Emi (hi)⊕ hi = hi , and hence
(mi,hi) is a fixed point. Note thatmi can be chosen arbitrarily, but it does not give
any control overhi . However, this means that a huge number of fixed points exist
for most compression functions, and these can be easily computed.

This fact can be exploited, which we shall see. However, there is another
(slightly slower) technique for finding 2nd preimages of hash functions based on the
Merkle-Damgård construction that does not require the existence of fixed points in
the compression function. For a description of this technique the reader is referred
to [24].

6.3.1 Expandable messages

An expandable messageis a set of messages of different lengths that have the same
intermediate hash value, excluding padding and MD-strengthening, under some
hash functionH. A (k1,k2)-expandable message (k2 > k1) is a set ofk2− k1 + 1
messages of lengths (number of blocks)k1,k1 + 1, . . . ,k2 that all have the same
intermediate hash.

Expandable messages can be found relatively quickly as follows. Find 2n/2

fixed points(mi ,hi) and the same number of pairs(m′i ,h
′
i) whereh′i = f (m′i,h0),

h0 is the initial value of the hash function (both take time 2n/2). With a good

67

probability there is a match between thehi and theh′i , assume thath′j1 = h j2. This
means that the messagesm′j1, m′j1‖mj2, m′j1‖mj2‖mj2, . . . all have the same hash

value (excluding the padding block), and hence in time about2(n/2)+1 we have
found a(1,k)-expandable message with 1< k≤ K, whereK is the largest number
of blocks that a message can contain inH.

Note that an expandable message is entirely defined by just two message blocks,
so we may denote the expandable message above by(m′j1,mj2).

6.3.2 Finding a 2nd preimage

Expandable messages can be used to find 2nd preimages for very long messages as
follows. Let the target message beM = m0‖· · ·‖mt excluding padding (here,|mt |
may be less than e.g.|m0|). Compute the firstt chaining valueshi , 0< i ≤ t. Find
a (1, t)-expandable message(µ0,µr), and letι be the common intermediate hash
value of these messages. Keep computingf (b j , ι) for random message blocksb j

until some message blockB is found such thatf (B, ι) = hℓ for someℓ, where
0 < ℓ≤ t (i.e. this chaining value was reached by processingm0‖· · ·‖mℓ−1). Then,
a 2nd preimage ofM is the message

M′ = µ0‖µr‖· · · ‖µr
︸ ︷︷ ︸

ℓ−2 blocks

‖B‖mℓ‖mℓ+1‖· · ·‖mt ,

which will be padded in the exact same way asM, since it has the same size.
This procedure is expected to take time 2(n/2)+1 + 2n−log2 t , since finding the

expandable message takes time 2(n/2)+1, and finding a match on the chaining values
takes an expected time of2n

t . Hence,t must be rather large for this attack to be of
any use. Nevertheless, the result is fairly strong as finding2nd preimages using the
brute force method requires time 2n, and this technique can be used for any hash
function based on the Merkle-Damgård construction (as long as fixed points can
be easily found for the compression function, but, as mentioned, even if they can’t
there is a technique that is only slightly slower than the onejust described).

68

Chapter 7

Hash functions based on modular
arithmetic

Most hash functions are based on logical bitwise operationssuch as AND, OR
and XOR, because these operations are fast in both hardware and software. How-
ever, they must be mixed with other kinds of operations in order to introduce non-
linearity, and most often modular additions and rotations are used for this purpose.
Hash functions that are truly based on modular arithmetic doexist. These have not
become very popular, since they are quite inefficient compared to hash functions
based on logical operations, but they do have some advantages like easy scalability,
and in some cases provable security.

7.1 A simple hash function

A simple example of a hash function entirely based on modulararithmetic is the
following. Let p andq be large, secret primes, and letN = pq. Define some integer
a > 1. Letx be the message to be hashed. To compute the hashH(x) perform

H(x) = ax modN.

If one is able to findx andx′ such thatH(x) = H(x′), thenφ(N) divides x− x′.
Hence, two colliding messages are very far apart with respect to modular addition.
Furthermore, if we have found say 10 (independent) collisions (xi ,x′i), then since
φ(N) dividesxi − x′i for all i, there is a good probability that the greatest common
divisor of all these differences is equal toφ(N) – or at least it should be a small
multiple of φ(N). Knowingφ(N) it is simple to findp andq. To do this, solve

ρ2−ρ(N−φ(N)+1)+N = 0

for ρ. The two solutions arep andq, and henceN is factorised. This demonstrates
that finding a small number of collisions is at least as hard asfactoringN.

An alternative demonstration is possible ifx is limited in size, for instance by
requiringx < 4N. In this case, any collision will be a small multiple ofφ(N) apart,

69

and hence only a single collision is needed in practice to findφ(N), and from that
the factorisation ofN. Of course, with such a limitation onx, H can be used only as
a compression function. The compression rate, however, is not very high, as only
two bits of message can be processed in each application ofH.

To resist preimage attacks it should be made sure thatax is always greater than
N. This can be done for instance by appending a1-bit to x on the left.

This scheme has probably never been used in practice, and it obviously has
some disadvantages. Most of these are also present in the hash function MASH-1,
which is described in Section 7.3.

7.2 The Chaum-van Heijst-Pfitzmann hash function

One could fear that the main reason why this hash function is not used in practice
is its tongue twisting name. It sure does have one clear advantage to other hash
functions, which we shall come back to after having defined it.

Definition 7.1 (The Chaum-van Heijst-Pfitzmann hash function). Let p andq be
large (and hence odd) primes such thatp− 1 = 2q. Let Zp be the field where
addition and multiplication is performed modulop (and defineZq similarly), and
let α andβ be primitive elements ofZp. α andβ are public, but it is believed that it
is computationally infeasible to compute logα β. Let m= (m1,m2) be the message
to be hashed such thatmi ∈ Zq, i ∈ {1,2}. The hash ofm is the defined as

h(m)← αm1βm2 mod p.

Hence,h maps elements ofZq2 into Zp, so it might be used as the compression
function of some hash function in order to accommodate messages of arbitrary
length.

Note that we deliberately select the parameters of the hash function large enough
that the discrete logarithm mentioned should be infeasibleto compute.
The interesting point of this (admittedly inefficient) hashfunction is Theorem 7.2.

Theorem 7.2. If a collision of the Chaum-van Heijst-Pfitzmann hash function is
found, then the discrete logarithmlogα β can be computed in negligible time.

Proof. The proof is from [41].
Assume that a collision(m,m′), h(m) = h(m′) andm 6= m′ has been found. Then

αm1βm2 = αm′1βm′2 (mod p)

meaning that
αm1−m′1 = βm′2−m2 (mod p)

First note that ifm1 = m′1 thenm2 = m′2, which is impossible. Hence, gcd(m′2−
m2,q) = 1, since bothm2 and m′2 are at mostq− 1. Thereforem′2−m2 has an
inverse,γ, moduloq. I.e.

(m′2−m2)γ = 1 (mod q)⇒ (m′2−m2)γ = kq+1

70

for some integerk. Sinceβ has orderp−1, andp−1 = 2q it must be the case that
βq =−1 (mod p). Hence,

β(m′2−m2)γ = βkq+1 = (−1)kβ (mod p),

and therefore, ifk is even (meaning that(m′2−m2)γ is odd) then logα β = (m1−
m′1)γ. If k is odd then, sinceαq = −1 (mod p) (just as we showed forβ), the
discrete logarithm can be computed as logα β = (m1−m′1)γ+q.

Computing the discrete logarithm is generally believed to be a difficult task,
and since finding collisions has just been proven to be at least as hard, this is a
strong result. 2nd preimages are always at least as difficult to find as collisions.
However, it is not possible to prove a similar result for preimages, although it does
seem difficult to find these except in rare cases such ash(m) ∈ {1,α,β}.

This hash function can be used as a compression function using the Merkle-
Damgård construction. If|q−1| = n, then each message block isn−1 bits. The
(n+ 1)-bit output of the compression function is then concatenated with the next
message block, and the combined 2n bits are subsequently split into twon-bit en-
tities that play the roles ofm1 andm2 in Definition 7.1.

7.3 MASH-1 and MASH-2

Another hash function based on modular arithmetic is MASH-1(see e.g. [30,
§9.4.3]). The setup of MASH-1 is far from elegant, and like the Chaum-van Heijst-
Pfitzmann hash function it suffers from inefficiency.

Definition 7.3 (MASH-1). Let p andq be two large primes that are kept secret,
and defineN = pq. Let n, the bit length of the hash value, be the greatest multiple
of 16 not greater than|N|. Defineh0 = 0 anda = f0 . . .0h.
If necessary, pad the message with0-bits until it has a length that is a multiple of
n
2. Append an extran

2-bit block containing a representation of the length of the
original message. The padded message consists oft blocksx0, . . . ,xt−1.
Expand each message block by preceding each four-bit nibblewith 1111b, except
the last message block for which the four-bit nibble inserted is instead1010b. The
expanded message blocks are denotedm0, . . . ,mt−1.
Define

hi+1← ((((hi ⊕mi)∨a)2 modN) mod 2n)⊕hi for 0≤ i < t

The hash result isht .

This hash function has the obvious drawback of inefficiency.It also has a
number of other disadvantages. For one, the primesp andq must be chosen by
someone, but at the same time they should be secret. There areways to do this (see
e.g. [4]), but it is not a very practical feature of a hash function.

71

Another problem is the message expansion. Not only does it halve the speed of
the hash function, but it is also inconvenient. However, there would be easy ways
of finding collisions had it not been introduced.

Finally, the security of the hash function is not based on thesize of the modulus,
but on the size of the factors, meaning that ifp andq are about the same size then
a collision can be found in time

√
p≈ 2n/4 and a (2nd) preimage in timep≈ 2n/2.

A collision is found as follows. First factoriseN, which can be done in time much
less than

√
p, then in time

√
p find a collision, say(x,x′), modulo p. Use the

trivial collision (x,x) moduloq, and, using the Chinese remainder theorem, obtain
a collision modulopq= N. This method also in part demonstrates the motivation
for constructing this hash function: ifN cannot be factorised, it does not seem
straight-forward to find collisions and (2nd) preimages. Do note that this is in no
way a proof that if one is able to find for instance a collision,then one can factor
N.

A substitute for MASH-1, called MASH-2, has been proposed. Here, the ex-
ponent of the compression function is 28 +1 instead of 2 as in MASH-1.

72

Chapter 8

The SMASH hash function

SMASH is a hash function proposal by Lars R. Knudsen [26], first presented at
FSE 2005. The proposal is broken [33] in the sense that collisions can be found in
negligible time. We first describe the hash function, then the collision attack, and
finally we try to improve the security of SMASH by making some changes.

8.1 The design of SMASH

The motivation for the development of the SMASH proposal is the fact that, as
previous chapters have shown, quite quickly the hash functions of the MD4 family
are becoming vulnerable. SMASH introduces a design that is different in both the
overall construction and in the compression function.

The idea behind the proposal is to use a bijective mapping in the compression
function, which in this construction makes the compressionfunction invertible.
Due to feed-forward applications of the bijective mapping in the beginning and in
the end, the complete hash function is not invertible. However, it is easy to show
that (2nd) preimages can be found in time 2n/2.

Two different versions of SMASH were proposed; a 256-bit version called
SMASH-256 and a 512-bit version called SMASH-512. It shall be made clear when
the description of the design refers to a particular version(see also [26] for further
details).

8.1.1 The construction

The construction can be expressed as follows. Letm = m0‖m1‖· · · ‖mt−1 be the
message to be hashed, padded as in Rule 1, withu= n

2. Let v be the all-zero vector
of same length asmi. Then compute

h0 ← f (v)⊕v (8.1)

hi+1 ← f (hi ⊕mi)⊕hi⊕θmi for 0≤ i < t (8.2)

ht+1 ← f (ht)⊕ht (8.3)

73

The output of the hash function isht+1. The bijective mappingf : {0,1}n→{0,1}n
(also called thecore function) and the operationθmi will be explained in the fol-
lowing section. Note that in the first general presentation of this construction it is
specified that in a concrete hash function it is not allowed that θ = 0 or θ = 1.

8.1.2 The compression function

The components of the compression function are now described.

The core function

The description of the core function is based on SMASH-256. It consists of a num-
ber of rounds of two types,H andL. These shall be described in the following
subsection.

The outline off is

f (α) = H1◦H3◦H2◦L◦H1◦H2◦H3◦L◦
H2◦H1◦H3◦L◦H3◦H2◦H1(α)

(8.4)

Let α = (a7,a6,a5,a4,a3,a2,a1,a0), i.e. eachai is 32 bits.

H-rounds. As unveiled, there are three kinds ofH-rounds,H1, H2 andH3. The
H j -round consists of the following 8 steps:

1. (a7,a6,a5,a4)← Sj(a7,a6,a5,a4)

2. ai+4← ai+4 +ai
≪r i, j for 0≤ i < 4

3. (a3,a2,a1,a0)← Sj(a3,a2,a1,a0)

4. ai ← ai +ai+4
≪r i+4, j for 0≤ i < 4

5. (a7,a6,a5,a4)← Sj(a7,a6,a5,a4)

6. ai+4← ai+4 +ai
≪r i+8, j for 0≤ i < 4

7. (a3,a2,a1,a0)← Sj(a3,a2,a1,a0)

8. ai ← ai +ai+4
≪r i+12, j for 0≤ i < 4

Here,Sj is a 4-bit (bijective) S-box lookup in bitslice mode, meaning that theith
bit (0≤ i < 32) of the four inputs are viewed as a single 4-bit entity, with the bit
from the first input being the most significant bit. The outputof S is a quadruple,
assembled in the reverse way of the disassembling of the input. The three S-boxes
look as follows.

Sj(x)
x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

j
1 6 13 12 7 15 1 3 10 8 11 5 0 2 4 14 9
2 1 11 6 0 14 13 5 10 12 2 9 7 3 8 15 4
3 4 2 9 12 8 1 14 7 15 5 0 11 6 10 3 13

74

The rotations are also different in eachH-round:

r i, j
i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

j
1 19 18 17 7 1 7 26 20 0 16 20 5 28 2 20 4
2 22 29 12 4 18 2 13 29 26 20 16 29 18 4 10 9
3 4 21 19 5 24 20 12 16 14 30 3 4 23 15 13 12

L-rounds. There is only one type ofL-round, and it is very simple. The opera-
tions performed are

a3 ← a3⊕ShiftLeft8(a7)
a2 ← a2⊕ShiftLeft8(a6)
a1 ← a1⊕ShiftRight8(a5)
a0 ← a0⊕ShiftRight8(a4)

– where ShiftLeft8 and ShiftRight8 shift the argument by 8 bit positions to the left
and to the right, respectively.

Multiplication by θ

The multiplication byθ is performed inGF(2n), wheren is either 256 or 512,
depending on the variant of SMASH. Hence, before we can perform the multipli-
cation we must convert the factors to elements ofGF(2n). This conversion can be
done in a natural manner by viewing the bits as coefficients toa polynomial, the
most significant bit being the coefficient to the term of the highest degree. The
field is defined via an irreducible polynomial of degreen. For SMASH-256 this
polynomial is

p(θ) = θ256⊕θ16⊕θ3⊕θ⊕1.

Hence,θmi is computed by shiftingmi one bit position to the left (yielding ˜mi),
and if the most significant bit ofmi is 1, the polynomialq(θ) = θ16⊕θ3⊕θ⊕1 is
added (since thenθ255 is shifted toθ256, which equalsq(θ) in this field), meaning
that we compute ˜mi ⊕ 1000bh. I.e. θmi = m̃i if the most significant bit ofmi is 0,
andθmi = m̃i⊕1000bh if the most significant bit ofmi is 1.

For SMASH-512 the field polynomial is

p512(θ) = θ512⊕θ8⊕θ5⊕θ2⊕1.

A similar technique to the one above can be used for multiplication byθ in SMASH-
512.

8.2 Analysis

In this section a few properties of SMASH are mentioned. They were all presented
in [26] as well.

75

8.2.1 The forward prediction property

The construction of SMASH originates aforward predictionproperty: Ifmi⊕m′i =
hi ⊕ h′i = d, thenhi+1⊕ h′i+1 = d⊕ θd = d(1⊕ θ). Repeated applications of this
property, i.e.mi+u⊕m′i+u = d(1⊕ θ)u for 0 < u < t− i, yieldshi+u+1⊕h′i+u+1 =
d(1⊕θ)u+1. This weakness, observed already in [26], was exploited in the attack
of [33]. Note thatd(1⊕ θ) 6= 0 wheneverd 6= 0, even for other hash functions
based on the same construction, since it is required thatθ 6= 1.

The final application off (8.3) helps protect against attacks based on the for-
ward prediction property. Ifht ⊕ h′t = d̃ then the final application off causes
ht+1⊕h′t+1 = f (ht)⊕ f (h′t)⊕ d̃, which seems unpredictable iff is close to a truly
random function.

8.2.2 Inverting the compression function

Since f is a bijective mapping, it can be inverted. This means that the entire com-
pression function can be inverted. Lethi+1 be fixed. Then choosea arbitrarily, and
computeb = f−1(hi+1⊕ a). Sincea = hi ⊕ θmi andb = hi ⊕mi, we findmi and
hi by solving these two simultaneous equations. They always have a solution since
θ 6= 1.

8.2.3 Complexity of (2nd) preimage attacks

Preimage and 2nd preimage attacks of SMASH have much lower complexity than
the usual 2n. First 2n/2 intermediate hash valuesht are precomputed and stored.
Then the same number of pairs(a,b), for which f (a)⊕b equals some fixed value
ht+1, is randomly chosen. Froma andb, ht can be found (as above). With proba-
bility about 1/2 there will be a match on theht . This meet-in-the-middle attack has
complexity about 2n/2+1. Knudsen argues that if this level of security is not high
enough, then a larger hash function should be used anyway, since for any hash
function there is a collision attack based on the birthday paradox of complexity
2n/2.

8.3 An attack

The collision attack [33] that broke SMASH will now be described.

8.3.1 The idea

As mentioned, the attack makes use of the forward predictionproperty. The team
behind [33] first assumes that 1⊕θ has order 3 inGF(2n), i.e. (1⊕θ)3 = 1. This
is not the case for the two proposals of SMASH, but it is permitted in the general
construction, since it is only required thatθ 6= 0 andθ 6= 1. By choosing carefully
the differences between the two messages, this variant of SMASH can be broken

76

with four-block messages, since the difference on the chaining valueh4 becomes
a(1⊕ (1⊕θ)3) = 0. The attack is then extended to break SMASH.

8.3.2 Breaking a variant

In this section the attack on a variant of SMASH, for which 1⊕ θ has order 3, is
described.

In order to make use of the forward prediction property, there must be a well-
defined difference between the two messages,m andm′. Assume without loss of
generality that the first difference occurs in the first block, i.e. inm0. Let

d = m0⊕m′0.

Then the difference on the chaining valueh1 is

a = h1⊕h′1 = f (h0⊕m0)⊕ f (h0⊕m0⊕d)⊕θd. (8.5)

If we requirem1⊕m′1
.
= a, then the difference on the chaining valueh2 becomes

h2⊕h′2 = a⊕θa = a(1⊕θ).

Extending this to the third message block, we make sure thatm2⊕m′2
.
= a(1⊕θ),

and hence we get

h3⊕h′3 = a(1⊕θ)⊕θ(a(1⊕θ)) = a(1⊕θ)2.

Now, for the fourth message block we must deviate from this method, since we
wanth4 = h′4. We achieve this ifh4⊕h′4 = a⊕a(1⊕θ)3. This, in turn, is achieved
if the two inputs to thef function are the same as in the first message block, i.e.
if m3 = h0⊕m0⊕ h3 andm′3 = h0⊕m0⊕ d⊕ h′3. To see why, first note that this
causes the same output difference onf as in (8.5), namelya⊕θd. The difference
onm3 is

m3⊕m′3 = d⊕h3⊕h′3 = d⊕a(1⊕θ)2.

Hence, we have

h4⊕h′4 = a⊕θd⊕h3⊕h′3⊕θ(m3⊕m′3)

= a⊕θd⊕a(1⊕θ)2⊕θ(d⊕a(1⊕θ)2)

= a⊕θd⊕ (1⊕θ)(a(1⊕θ)2)⊕θd

= a⊕a(1⊕θ)3,

and since the order of 1⊕θ is 3, we haveh4 = h′4, and hence a collision.

77

8.3.3 Breaking SMASH

For SMASH-256 the order of 1⊕ θ is (according to [33])(2256−1)/5, and hence
using the technique above would require extremely long messages – in fact they
would be much longer than the maximum message length of the hash function. In-
stead, a slightly different technique is used. Note that if we achieveht⊕h′t = ap(θ),
then we have a collision after thetth message block, sinceap(θ) = 0 (mod p(θ)).

For SMASH-256 we have

p(θ) = θ256⊕θ16⊕θ3⊕θ⊕1, (8.6)

which can be expressed instead in terms of 1⊕θ as

p(θ) = (1⊕θ)256⊕ (1⊕θ)16⊕ (1⊕θ)3⊕ (1⊕θ)2⊕ (1⊕θ)0. (8.7)

In the attack above, if we were to add another message block requiring thatm4⊕
m′4

.
= a⊕a(1⊕θ)3, then we would get

h5⊕h′5 = a⊕a(1⊕θ)3⊕θ(a⊕a(1⊕θ)3) = a(1⊕θ)⊕a(1⊕θ)4.

This shows that we are able to produce any desired polynomialin 1⊕θ (e.g. specif-
ically a multiple of (8.7)) as difference inht : For each blockmi that is processed
we can make sure that the difference onhi+1 equals the difference onhi multiplied
by (1⊕θ) (by placing conditions on the differencemi⊕m′i as just shown form4),
and optionally we can make sure thata (= h1⊕ h′1 = a(1⊕ θ)0) is added to this
difference by ensuring (as form3 in Section 8.3.2) that the input tof is exactly the
same as in the very first step, i.e. when processingm0.

More specifically, to achieveht ⊕h′t = ap(θ) we need at leastt = 257 message
blocks, and for this value oft we needm0⊕m′0 = d 6= 0 (which at the end will
become the term(1⊕ θ)256 of (8.7)). Then, for 1≤ i < 240 (= 256− 16) we
requiremi ⊕m′i

.
= a(1⊕ θ)i−1, and in order to produce the term(1⊕ θ)16 of (8.7)

we require
m240

.
= m0⊕h0⊕h240

and
m′240

.
= m0⊕d⊕h0⊕h′240.

Similarly to the attack on the order-3 variant of SMASH this can be shown to pro-
duce exactlyh241⊕h′241 = a⊕a(1⊕θ)240.

Now, for the next 12 message blocks, i.e. for 240< i < 253, we requiremi ⊕
m′i

.
= a(1⊕θ)i−1−240⊕a(1⊕θ)i−1. In order to produce the term(1⊕θ)3 of (8.7)

we require
m253

.
= m0⊕h0⊕h253

and
m′253

.
= m0⊕d⊕h0⊕h′253.

78

Repeating the arguments we get the following final requirements:

m254
.
= m0⊕h0⊕h254

m′254
.
= m0⊕h0⊕d⊕h′254

m255⊕m′255
.
= a⊕a(1⊕θ)⊕a(1⊕θ)14⊕a(1⊕θ)254

m256
.
= m0⊕h0⊕h256

m′256
.
= m0⊕h0⊕d⊕h′256

This causesh257⊕h′257= ap(θ) = 0 (mod p(θ)), and henceh257= h′257. I.e. using
257 message blocks (≈ 64KB of data) we have found a collision of SMASH-256.
Note that for the first message, 4 message blocks are determined by the attack, and
the rest can be chosen freely. For the second message, only one block,m0, can be
chosen freely.

This attack obviously extends to SMASH-512 as well, since in this case the field
polynomial can be written

p512(θ) = (1⊕θ)512⊕(1⊕θ)8⊕(1⊕θ)5⊕(1⊕θ)4⊕(1⊕θ)2⊕(1⊕θ)1⊕(1⊕θ)0.

This attack requires at least 513 blocks, i.e. approximately 256KB of data.

8.4 Possible improvements to SMASH

In the published version of the design document [26], Knudsen suggests a number
of possible improvements to SMASH that might prevent attacks based on the for-
ward prediction property from being possible. We now look atthese, and also try
to identify other possible improvements. When it makes any difference, the dis-
cussion refers to SMASH-256, but all proposals should be quite easily extendible
to SMASH-512.

First we have to consider which properties of SMASH were exploited in the
attack. First of all, the forward prediction property proved to be a weakness. This
was in part due to the mathematical property of multiplication by θ. Secondly,
and related to the forward prediction property, an attackeris able to choose his
differences on the message blocks (and in fact the entire input to the core function)
completely independently, since a message block is only used in one application of
the compression function. This might not be a weakness in itself, but it should be
noted since it gives an adversary greater freedom in mounting attacks.

Before we begin, a useful concept is defined.

Definition 8.1. Let f : V →V be a bijective mapping. Adifference fixed-pointfor
f is a pair(x,d), d 6= 0, such thatf (x⊕d) = f (x)⊕d.

As it turns out, we would like to be able to construct bijections that have no
difference fixed-points, or for which finding difference fixed points is infeasible.

79

8.4.1 Using the secure compression function for everyj steps

One proposal from [26] for improving the security of the hashfunction is to apply
the secure compression functionf as in (8.3) for everyj steps, withj equal to e.g.
8 or 16.

This change would definitely thwart the specific attack of Section 8.3 on
SMASH-256 wheneverj is at most 256, since for any suchj, the application of
f with feed-forward would break the required difference on the following hi , and
subsequent differences (let alone chaining values) would seemingly be impossible
to predict.

One may argue that this solution is not very elegant. However, it does not
introduce much complexity, and the speed of the hash function is not reduced sig-
nificantly for values ofj like 16 or above. This is a simple fix, but it is unclear
exactly how much the security of the hash function is improved. For instance,
there might be other collision attacks that need less thanj message blocks.

8.4.2 Using different f functions in each step

The idea to use differentf functions in each step was actually first suggested in
[33]. This might complicate the attack of Section 8.3. We shall look at a few
different variants.

Alternating between two f functions

Assume that two versions of the core function,f0 and f1 exist, and replace (8.2)
with

hi+1← fi mod 2(hi ⊕mi)⊕hi⊕θmi for 0≤ i < t.

This solution does not rid SMASH of the forward prediction property, but the attack
above would fail in the processing ofm253, since in this step we would usef1,
whereas we usedf0 when processingm0, and hence we cannot predict the output
of the core function as is needed in the attack.
However, this is only true if it is difficult to find valuesx andx′ such thatf0(x)⊕
f0(x′) = f1(x)⊕ f1(x′). If one finds just a single such pair, the attack will work with
m0 = h0⊕ x andm′0 = h0⊕ x′ and, of course,d = x⊕ x′ (thus leaving us with less
freedom of choice). Whether such pairs exist and can be foundobviously depends
on the choices off0 and f1.
In any case an attacker might find a multiple ofp(θ) expressed in terms of 1⊕ θ
where no odd exponents exist, and then the same technique as above could be used
to find a collision.

Adding some dependency on the step number

Another possibility is to let the argument tof depend on a third value, e.g. some
function of the step number. The most simple way to do this would be to replace

80

(8.2) with
hi+1← f (hi ⊕mi⊕g(i))⊕hi ⊕θmi for 0≤ i < t,

whereg is some simple function.
However, this solution does not provide any resistance against the attack described
in the previous section. Independently of the choice ofg one can produce a colli-
sion in the same way, except that some of the message blocks get different values
becauseg(i) must be added. This is becauseg(i) does not have any influence on the
difference between the two messages. Thus, usingg(i) in other ways, for instance
added tomi before multiplication byθ, does not improve the security either.

Letting f accept a second argument

As a final proposal of this type, one could change thef function by making it
dependent on a second argument, for instancei. This argument could affect the
S-boxes used, or the rotation values, or both. For instance,if there were 8 different
H-rounds, and we still only wanted to use 3 differentH-rounds in each call to the
f function, there would be

(8
3

)
= 56 possible combinations, and hence we might

use as a second argument tof the valuei mod 56, and define some simple relation
between this value and the combination of S-boxes and rotation vectors to use.
There are even more combinations if we accept any triple ofH-rounds (see (8.4))
to be used “in between”L-rounds (as long as they don’t repeat). To be specific,
there are 336×335×334×333≈ 233 such combinations in SMASH-256, so one
might simply supply the last 32 bits ofi as an extra argument tof in this case.
Of course, any of these proposals adds to the complexity of the hash function.
Furthermore, it should be noted that there may not be 8 equally good S-boxes
and/or rotation vectors, which might also be a concern. Finally, this solution does
not rid the hash function of the forward prediction property, although it does make
it resistant against the direct use of the attack previouslydescribed.

8.4.3 Further dependency on the message

In an attempt to get rid of the forward prediction property and in addition reduce
the freedom that an adversary has in choosing message blocksto fit his needs, a
new variant is proposed. The idea is to replace (8.2) with

hi+1← f (hi ⊕mi⊕g(mi−1))⊕hi ⊕θmi for 0≤ i < t, (8.8)

whereg should be a bijective mapping andm−1 could be the all-zero vector.
By making the compression function depend on two different message blocks,

an adversary has much less freedom in the choice of message blocks.
In the attack of Section 8.3, the difference between the two messages is chosen
such that in many steps there is no difference on the input to the core function. The
reason for placingg(mi−1) inside the core function in this new proposal is to ensure
that message block differences must be more complicated forthe input to the core

81

function to be identical for the two messages. In this respect, g (when not equal to
the identity function) also seems to increase the complexity of finding collisions.
The forward prediction property is essentially eliminated, and even more so ifg
does not contain difference fixed-points, or if such are difficult to find.

In addition, the bijective mappingg should not contain any mathematical prop-
erties that could be exploited.g could be a rotation, or it could be a function that
adds three differently rotated versions of the input (cf. [17, the functions (4.4) and
(4.5)]). For 256-bit values, bijective versions exist. Whether they contain (easily
found) difference fixed-points is another matter.

It may also be a good idea to chooseg such that it does not contain fixed-points.
This could be achieved by adding some constant to one of the SHA-256 functions
mentioned. For the sake of symmetry it might also be a good idea to append a zero-
block to the end of the message, such that the padding blockmt−1 is used twice,
just as all other message blocks are. I.e. the final application of (8.8) becomes

ht+1← f (ht ⊕g(mt−1))⊕ht .

Let us analyse this proposal independently of the choice ofg. It can be inverted
as follows. Givenhi+1 choosea at random and computeb = f−1(hi+1⊕a). Then
solve the system of equations

(
a b

)
=

(
hi mi g(mi−1)

)





1 1
θ 1
0 1



 . (8.9)

This system has an infinite number of solutions. In fact, one can even choosehi

andmi independently, and then base one’s choice ofa on these values. Thenb
andmi−1 are fixed (mi−1 is easily computed fromg(mi−1)). However, one cannot
choose bothhi andmi−1 and compute themi that links these choices tohi+1. Of
course, one can start off by fixingmi−1 such thatg(mi−1) = c, and then solve the
resulting system of equations

(
a b⊕c

)
=

(
hi mi

)
(

1 1
θ 1

)

.

This means that as for SMASH, (2nd) preimages can be found in time 2n/2 by a
meet-in-the-middle attack as the one described in Section 8.2.3, except that one
message block is fixed in the computation of each pool ofht -values. It also means
that collisions for the compression function can be easily found. However, it seems
difficult to find useful collisions, since givenhi andmi−1, there is no easy way to
solve (8.9) formi.

Some people would reject this proposal with sole reference to the invertibility
of the compression function. The straight-forward invertibility can be removed by
using as compression function

hi+1← f (hi ⊕mi⊕g(mi−1))⊕hi⊕mi−1⊕g(mi).

82

Now an adversary is faced with the task of finding(mi ,mi−1) such thatmi⊕g(mi)⊕
mi−1⊕g(mi−1) = f−1(a⊕hi+1)⊕a for a givenhi+1 and a chosena. He can choose
one ofmi or mi−1, for instancemi , and then look for anmi−1 such that

mi−1⊕g(mi−1) = f−1(a⊕hi+1)⊕a⊕mi⊕g(mi).

The difficulty of this task depends ong, and it seems thatg might have to be as
strong asf in order to prevent the compression function from being invertible.
This would render the hash function two to three times slowerthan SMASH.

In the following section we consider proposals that use two strong, bijective
mappings, but without the dependency on more than one message block.

8.4.4 Using more than one fixed, bijective mapping

The last proposal made in [26] to improve the security of SMASH is to use more
than one fixed, bijective mapping in the compression function. This solution will
be given more attention than the previous ones.

Of course, there are many possibilities for using more than one fixed, bijective
mapping. We shall look at two proposals. The first one replaces multiplication by
θ with some bijective mappingg:

Proposal 8.1. Let m0‖· · ·‖mt−1 be the padded message, and letv be the all-zero
word. Compute

h0 ← f (v)⊕v

hi+1 ← f (hi ⊕mi)⊕g(mi)⊕hi for 0≤ i < t

ht+1 ← f (ht)⊕ht

whereg is some bijective mapping, for instance a variant off . The hash value is
defined asht+1. See also Figure 8.1(a).

The evaluation off andg can be done in parallel. The second proposal does
not share this property, but may have other advantages, which we shall look at.

Proposal 8.2. Let m0‖· · ·‖mt−1 be the padded message, and letv be the all-zero
word. Compute

h0 ← f (v)⊕v

hi+1 ← g(f (hi ⊕mi)⊕hi)⊕mi for 0≤ i < t

ht+1 ← f (ht)⊕ht

whereg is some bijective mapping, for instance a variant off . The hash value is
defined asht+1. See also Figure 8.1(b).

83

mi

hi ⊕
f g

⊕
hi+1

(a) Proposal 8.1

mi

hi ⊕
f

⊕
g

⊕
hi+1

(b) Proposal 8.2

Figure 8.1: The compression function of the two proposals for improving SMASH.

Both proposals reduce the speed of the hash function compared to SMASH, at
least wheneverg takes about as much time asf . One may consider asg a faster
variant of f such asg1 (compare with (8.4)):

g1(α) = H2◦H3◦H1◦L◦H3◦H1◦H2(α≪128)

It is not recommended to chooseg= f , since this might give an attacker additional
options.

Choosingg = g1 would add about 50% to the running time of the algorithm.
The rotation of the input is added because there is a slight difference in significance
of high-order and low-order bytes in (either version of)f , and this rotation might
make attacks based on the internal structures off andg less likely to succeed. Also
note that the order in which the differentH-rounds are used differ fromf .

Note thatg1 is just one possibility of howg could be chosen. In the following
we shall try to identify some requirements on theg function.

Finding collisions

One way to go about findings collisions of variants of SMASH with two bijective
functions is to ensure that there is no difference in the input to one of the functions
for the two messages that are to form a collision. This reduces the problem to that
of finding a collision for the remaining part.

Analysis of Proposal 8.1. If the input to f is constant, thenhi ⊕h′i = mi⊕m′i =
d 6= 0, and henceg must have a difference fixed-point(mi,d) in order to achieve a

84

collision. Similarly, if the input tog is kept constant, thenmi = m′i andhi ⊕h′i =
d 6= 0, and hencef must have a difference fixed-point(hi⊕mi,d). This means that
if it is infeasible to find difference fixed-points for bothf andg, then this technique
cannot be applied.

Analysis of Proposal 8.2. If the input to f is kept constant, thenhi ⊕h′i = mi ⊕
m′i = d 6= 0 and henceg must have the difference fixed-point(f (hi ⊕mi)⊕hi ,d).
Similarly, if the input tog is kept constant, thenmi = m′i andhi ⊕h′i = d 6= 0, and
hencef must have the difference fixed-point(hi ⊕mi,d). Hence, we can draw the
same conclusion as for Proposal 8.1.

The short analyses above show that the two proposals seem equally vulnerable to
this sort of attack, and iff andg can be found such that difference fixed-points
are infeasible to find, then both proposals are secure to thiskind of attack. Also
note that the analyses prove that the forward prediction property no longer holds,
or at least it would require that the attacker find some property of f or g that can
be exploited.

It is easy to create a function that does not have any difference fixed-points.
Let p be a bijective mapping, and defineq(x) = p(x)⊕ x. Thenq has no dif-
ference fixed-points, sinceq(x⊕ d) = p(x⊕ d)⊕ x⊕ d, and p(x⊕ d) 6= p(x) for
d 6= 0 becausep is bijective. However, these functions are not necessarilybijec-
tive. Whether they can be safely used in place off andg in the two proposals is an
open question.

In Proposal 8.1 it seems that the only alternative kinds of collisions of the
compression function have a difference on all three “terms”, i.e. ∆ f 6= 0, ∆g 6= 0
and∆hi 6= 0. For Proposal 8.2 we may have∆g = ∆mi 6= 0, which can be achieved
in three ways. One of them is mentioned above (∆hi = ∆mi), another has∆hi = 0,
and a third has 06= ∆hi 6= ∆mi. For all possibilities it is necessary to go into the
details of theg and/or f functions in order to find a solution.
Of course, we have not discussed the possibility of finding collisions of the final
application of f . This also requires finding a difference fixed point off , but even
if this is possible it may not be a problem, since an attacker has little control over
the inputht .

Inverting the compression function

In the original SMASH, the compression function can be inverted because the sys-
tem of equations

(
θ 1
1 1

)(
mi

hi

)

=

(
a
b

)

can be solved no matter the choice ofa andb, sinceθ 6= 1. Let us investigate if
Proposals 8.1 and 8.2 are invertible.

85

Inverting Proposal 8.1. Using the same method as in Section 8.2.2, one obtains
the system of equations

hi ⊕g(mi) = a

hi ⊕mi = b

If g is non-linear (which is recommended), this is not a system oflinear equations,
and hence to solve it one must apparently findmi such thatg(mi)⊕mi = a⊕ b.
There does not seem to be any other way, unless one is able to exploit some weak-
ness ofg. This indicates that we may want to chooseg such that it is as strong as
f , and henceg1 might not be a good choice.

Inverting Proposal 8.2. To invert Proposal 8.2 one must choosemi, compute
a = g−1(hi+1⊕mi), and then findhi such thatf (hi ⊕mi)⊕ hi = a. If the g used
in Proposal 8.1 is as strong asf , inverting Proposal 8.2 looks about as difficult as
inverting Proposal 8.1.

If f andg were both truly random bijective mappings, then inverting the compres-
sion function would take time 2n for both proposals. Hence, the (2nd) preimage
attack of Section 8.2.3 would have about the same complexityas a brute-force
attack.

Summary

We have not found any significant differences with regards tosecurity between
Proposal 8.1 and Proposal 8.2. They both have some advantages that the original
proposal of SMASH does not have, including the absence of the forward prediction
property and the difficulty in inverting the compression function. Hence, it seems
that an attack would require some analysis of the bijective mappings, possibly in-
cluding a search for difference fixed-points.
The disadvantage of the proposals is that they are both much slower, about half the
speed of SMASH itself. In this respect, as mentioned, Proposal 8.1 has the advan-
tage that the applications off andg can be parallelised, which would make the
hash function as fast as SMASH.

86

Chapter 9

Future directions

At this point it should be quite clear that discussions aboutthe future direction
of hash functions are needed. Do we trust hash functions based on insecure hash
functions? Should we gain security by reducing efficiency? Should we abandon
the Merkle-Damgård construction, or modify it? These are merely a few of the
topics that should be discussed.

9.1 A brief discussion on strategy

When a car breaks down the owner has the choice of having it repaired, or buying
a new car. The choice depends on the severity of the defects ofthe car. If it is too
expensive or risky to have it repaired, the owner might choose to buy a new one in-
stead. On the other hand, if the repairs are simple, and the car can be expected to be
as good as new afterwards, there is probably no need to replace it. We might use the
same approach when deciding on a new hash function. For instance, SHA-256 can
be seen as a repaired version of SHA-1, whereas WHIRLPOOL is a “new car”. The
important difference between hash functions and cars is that there is no warranty
on a new hash function, and therefore it might be even more risky to choose a new
hash function than to continue with a repaired version of a broken hash function.
At the moment there is a general belief in the cryptographic community that we
still do not know enough about hash functions to make proper decisions. However,
let us try to identify some properties of the two strategies mentioned.

First we look at some advantages of using therepair strategy:

• We know (some of) the weaknesses of the underlying hash function, and
hence we can try to eliminate these

• Extensive analysis has often been performed on the broken hash function,
and hence we may feel confident that some kinds of attacks are inapplicable

• Existing software implementations can often simply be slightly modified to
yield the repaired version. Even hardware implementationsmay be much
easier and cheaper to update.

87

Among the disadvantages are the following:

• The repaired version may suffer from the same fundamental weaknesses as
the broken hash function

• An intended fix might introduce new weaknesses

• Repeated repairs might yield less efficient hash functions.

Of course, the advantages and disadvantages of using thereplacestrategy are
to some extent the complements of the above, but we might add that another advan-
tage of thereplacestrategy is that we get the opportunity to rethink the entirecon-
struction, and hence we might come up with an alternative to the Merkle-Damgård
construction that does not contain the weaknesses described in Chapter 6.

It seems that the risks of the two strategies are comparable.We might not know
much more about the security of a repaired version than we know about the security
of a new hash function – most often we would use well-known components for a
new hash function anyway. In a sense this brings the discussion to the topic of the
following section.

The strategy of constructing a new hash function based on an existing block ci-
pher such as AES does not fall directly into either of the two categories mentioned.
It can be thought of as a combination, and it surely does have some advantages of
both the mentioned strategies. However, as should be clear from Chapter 5, it
is not a simple matter to produce a “more-than-single-length” block cipher based
hash function, and such solutions often become inconvenient.

9.2 Merkle-Damgård or not Merkle-Damgård?

Two attacks on the general Merkle-Damgård construction were described in Chap-
ter 6. The multicollision attack of Joux proved that it is notmuch harder to find a
large number of messages with the same hash, than it is to find two such messages
when the Merkle-Damgård construction is used. Hence, if itis infeasible to find
collisions of a hash function based on the Merkle-Damgård construction, then the
results of Joux are of no practical relevance.

The 2nd preimage attack of Kelsey and Schneier proves that it is easier to find a
2nd preimage in a hash function based on the Merkle-Damgård construction than by
exhaustive search, but the attack only works for very long messages. What’s more,
the attack still requires the ability to find collisions. Thus, again, if it is infeasible
to find collisions of a hash function based on the Merkle-Damgård construction
then the attack has no practical relevance, and even when collisionscanbe found,
in practice a 2nd preimage cannot be found for most messages with this method.

The strength of these results lie in the fact that they are directed towards a
general construction, and not towards a specific hash function. The attacks have
significantly reduced the amount of faith in the Merkle-Damgård construction. It is
feared that the techniques could be further improved. Some people argue that (2nd)

88

preimage resistance is much more important than collision resistance, and hence it
is a serious weakness that 2nd preimages in some cases can be found in time not
much longer than collisions. Others would say that in the future we just have to
make sure that it is truly infeasible to find collisions of a hash function, then no
existing attacks on the Merkle-Damgård construction are of any use.

Some “quick fixes” of the construction have been proposed. For instance, as
suggested by Rivest [39], we might let a (small) fixed number of input bits to
the compression function be determined by some function of the iteration number
(in particular Rivest suggests a so-called Abelian square-free sequence), such that
the size of the input to the compression function does not change, but the simple
repeated use of a fixed point is no longer possible.
Another similar proposal by Biham [1] uses the number of message bits processed
thus far as an extra input variable to the compression function.

The latest attack on the Merkle-Damgård construction [24]is less than a year
old, and hence we should probably expect improvements to this attack in the near
future. The attacks may also have motivated many cryptographers to direct their
attention towards finding other weaknesses in the construction. Hence, completely
ignoring existing attacks is probably not a good idea.

9.3 A discussion on efficiency

The first properties required for a cryptographic hash function (as mentioned in
[11]) were one-wayness and efficiency. Surely a hash function must be efficiently
computable, but what is “efficient”?

A hash function is used in many different environments, someof which have
very limited memory and/or processing capabilities. It is the goal of most hash
functions that it be usable in all such environments. Existing hash functions seem
to meet this goal, and hence we may compare the efficiency of any new proposal
with the efficiency of for instance SHA-256. However, according to Moore’s law
we should expect a hash function with twice the running time of SHA-256 to be
as usable in 18 months as SHA-256 is today1. Using twice the amount of work
we can double the hash size with the same “per-bit” security,or we could aim for
greater per-bit security. Note that adding just a single bitto the hash size doubles
the complexity of brute force (2nd) preimage attacks, and adding two bits to the
hash size doubles the complexity of a birthday (collision) attack. However, a 256-
bit hash function will most probably be resistant to all brute force attacks for many
years to come (using again Moore’s law we should expect a birthday attack to be
infeasible for at least 80 years), and therefore, assuming that we are allowed to
construct a hash function that has only half the speed of SHA-256, it is probably
better to aim for a greater per-bit security. As suggested in[1] it might be a good
idea to focus more on ensuring a large degree of dependency oneach input bit

1This does not take into account hardware implementations which often do not benefit from
technological advances for many years.

89

than has traditionally been the case when constructing hashfunctions. The AES
competition showed that in the area of block ciphers such focus is present, and
there is no reason why this should not extend to the area of hash functions.

The industry requests efficient hash functions. It also requests hash functions
with a long lifespan, hash functions that are easily implemented in both software
and hardware, and it does not want to rely on agility, such as for instance scalability.
It may be difficult, if not impossible, to satisfy all these needs at once. Hence, it
makes sense to focus more on security and durability than on efficiency. This can
be seen as more of a long-term investment: while a less efficient hash function may
be somewhat problematic at the moment, if it is durable enough it will “earn back
its price” many times in the long run.

9.4 The NIST Cryptographic Hash Workshop

On October 31 and November 1, 2005, NIST hosted the Cryptographic Hash Work-
shop with the aim of assessing the status of SHA-256 and otherNIST-approved
hash functions, and of discussing both short and long term actions to the recent
attacks on hash functions of the MD4 family.

Although there were many different opinions, it was, of course, suggested that
the industry and others using hash functions stop using MD5 and SHA-1 for any
new product. Although most people seemed to believe that SHA-256 will be bro-
ken, at least theoretically, within the next 10 years, and since there does not seem
to be any alternative equally efficient but more secure hash function, most people
suggested switching to SHA-256. This sparked a great deal ofconcern from some
representatives of the industry, since building completely new hardware is a much
more costly affair than, for instance, extending SHA-1 to 160 rounds.

In general, the urgency of the matter seems to be by far the greatest problem:
it is crucial that MD5 and SHA-1 are phased out as quickly as possible, but since
these changes are difficult and expensive to make, it is important that the substitute
can be expected to have a long lifespan, at least 10 years and preferably more
than that. In the light of these issues, it seems odd that NISTchose to approve a
hash function such as SHA-256, which is based on SHA-1, but has fewer rounds.
Hence, each round of SHA-256 must produce twice as many bits of hash output
as each round of SHA-1. Sure, the SHA-256 round contains a greater amount
of processing than the SHA-1 round (and we have not mentionedthe message
expansion), but it does not look like the ultimate replacement.

No new attacks on hash functions were presented at the workshop. Xaioyun
Wang presented her 263 attack [44] on SHA-1, but gave no additional details, and
she had no paper in the workshop program. Some new hash function proposals
were presented; among these a fairly quick proposal [7] for which finding collisions
is as difficult as factoring a large composite integer. Here,“fairly quick” means
about 26 times slower than SHA-1.

There were suggestions to initiate a hash function competition similar to the

90

AES competition, but at the same time most people agreed thatthe community is
not ready for such a competition at the moment. The AES competition process
was very educational, but when the competition started, thestate of research of
block ciphers was much further ahead than the state of research of hash functions
is today. Hence, it was suggested that first a number of additional hash function
workshops be organised.

It was discussed whether or not it would be a good idea to approve hash func-
tions solely for specific purposes, but most people thought this would not be the
way to go, as hash functions are and always will be used for a huge number of
different purposes, most of which could never have been predicted. Hash functions
were referred to by an attendee of the workshop as the “work horse of cryptog-
raphy”. NIST suggested that a list of all currently known applications of hash
functions be made, so as to better identify the security criteria for new hash func-
tions. The process of producing such a list could be very instructive indeed, but the
list itself may not be very useful for the reason just mentioned.

NIST itself did not reveal much about its intentions, exceptthat it seemed like
NIST is also very much in a state of uncertainty. Another hashworkshop organised
by NIST is supposed to take place at the end of the Crypto 2006 conference, and
hopefully by then NIST and the community is in a better position to make proper
decisions.

9.5 Summary

To sum up, it seems that we can currently make the following statements about the
status of hash functions and requirements for the future.

• MD5 and SHA-1 should no longer be used, at least in environments where
collisions are a threat. Even elsewhere, the use of these hash functions should
be phased out.

• Instead of MD5 and SHA-1, it is advised that a switch to SHA-256 is made,
but it is stressed that this may not be a long-lasting solution.

• Further research on hash functions is desperately needed. It is important that
researchers understand the weaknesses of broken hash functions very well,
and that they identify better design criteria.

• New hash function proposals are needed. Preferably these should differ sig-
nificantly from the hash functions of the MD4 family, and their efficiency
should be comparable with that of SHA-256. The publication should be
preceded with a significant amount of analysis.

• The community should probably try to come to some sort of agreement re-
garding whether or not to worry about the attacks on the Merkle-Damgård

91

construction. This more or less reduces to a decision on whether it is suffi-
cient that a hash function is collision resistant, or whether it should always be
much harder to find (2nd) preimages and multicollisions than to find ordinary
collisions.

• Alternatives and/or fixes to the Merkle-Damgård construction should be de-
veloped.

As we already knew, and as this list shows, a lot of work is needed in the area
of cryptographic hash functions before we can expect to regain confidence in our
claims regarding the security of hash functions. It should be very interesting to
follow the progress in the next few years.

92

Appendix A

Conditions on step variables in
the Wang MD5 attack

In this appendix the conditions on step variables in the WangMD5 attack are
listed. The symbol_ means there is no condition on the bit. The symbolN means
the bit must have the same value as the bit directly above it inthe table. All bits
with the same letter symbol must have the same value. Sometimes there are further
conditions on the relations between letter symbols; in these cases they are stated in
the table caption.

A.1 First iteration

The conditions in the first iteration are taken from [21], except that we ignore what
is referred to asCase 2.

93

Conditions onQt

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 32 1 0

1 _
2 _
3 _ _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ 0 _ _ _ _ 0 _ _ _ _ _ _
4 C _ _ _ _ _ _ _ 0 N N N 1 N N N N N N N 1 N N N N 0 _ _ _ _ _ _
5 C _ _ _ 1 _ 0 _ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 _ _ 1 _ 1
6 B N N N 0 N 1 N 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 N N 0 N 1
7 A 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 1 1 _ _ 1 0 0 0 1 0 _ 0 _ 0 1 0 1 0 1 0 0 0 0 0 0
9 E 1 1 1 1 0 1 1 _ _ _ 1 0 0 0 0 0 _ 1 N 1 1 1 1 0 0 1 1 1 1 0 1
10 A 1 _ _ _ _ _ _ 0 _ _ 1 1 1 1 1 1 _ 0 1 _ _ _ 0 0 1 _ _ _ _ 0 0
11 A 0 _ _ _ _ _ _ _ _ _ _ 0 0 0 1 1 N 0 0 _ _ _ 0 1 1 _ _ _ _ 1 0
12 A 0 _ _ _ _ N N _ _ _ _ 1 0 0 0 0 0 0 1 _ _ _ 1 0 _ _ _ _ _ _ _
13 A 1 _ _ _ _ 0 1 _ _ _ _ 1 1 1 1 1 1 1 _ _ _ _ 0 0 _ _ _ 1 _ _ _
14 A _ 0 _ _ _ 0 0 _ _ _ _ 1 0 1 1 1 1 1 _ _ _ _ 1 1 _ _ _ 1 _ _ _
15 H _ 1 _ _ _ 0 1 _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _
16 H _ 1 _

Table A.1: Conditions in the first iteration, steps 1–16. IfA = B thenC
.
= 1, otherwise

C
.
= 0. Another condition isE

.
= ¬A

94

Conditions onQt

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 32 1 0

15 H _ 1 _ _ _ 0 1 _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _
16 H _ 1 _
17 H _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ N _ _ _ _ _ _ _ _ _ _ _ N _ _ _
18 H _ N _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
19 H _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
20 H _
21 H _ _ _ _ _ _ _ _ _ _ _ _ _ N _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
22 H _
23 0 _
24 1 _

25-45 _
46 I _
47 J _
48 I _
49 J _
50 K _
51 J _
52 K _
53 J _
54 K _
55 J _
56 K _
57 J _
58 K _
59 J _
60 I _ _ _ _ _ 0 _
61 J _ _ _ _ _ 1 _
62 I _ _ _ _ _ 0 _
63 J _ _ _ _ _ 0 _
64 _
−3 _
−2 L _ _ _ _ _ 0 _
−1 L _ _ _ _ 0 1 _
0 L _ _ _ _ 0 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _

Table A.2: Conditions in the first iteration, steps 15–64, and conditions on the chaining
values that serve as initial values for the second iteration(Q−3–Q0). It is a condition that
I

.
= ¬K.

95

A.2 Second iteration

The conditions in the second iteration are derived in Section 4.5.2.

Conditions onQt

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 32 1 0

−3 _
−2 A _ _ _ _ _ 0 _
−1 A _ _ _ _ 0 1 _
0 A _ _ _ _ 0 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _
1 B _ _ _ 0 1 0 _ _ _ 1 _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _ 0 _ _ _ _ _
2 B N N N 1 1 0 _ _ _ 0 N N N N N _ _ _ N 1 _ _ _ N N 0 _ _ 0 0 _
3 B 0 1 1 1 1 1 _ _ _ 0 1 1 1 1 1 _ _ _ 0 1 _ _ 1 0 1 1 N N 1 1 _
4 B 0 1 1 1 0 1 _ _ _ 0 0 0 1 0 0 _ _ _ 0 0 N N 0 0 0 0 1 0 0 0 N

5 A 1 0 0 1 0 _ _ _ _ 1 0 1 1 1 1 _ _ _ 0 1 1 1 0 0 1 0 1 0 0 0 0
6 A _ _ 0 0 1 0 _ _ _ 1 0 _ _ 1 0 _ _ _ 0 1 1 0 0 0 1 0 1 0 1 1 0
7 B _ _ 1 0 1 1 N N _ 0 0 _ _ 0 1 N _ _ 1 1 1 1 0 0 0 _ _ _ _ _ 1
8 B _ _ 0 0 1 0 0 0 _ 1 1 _ _ 1 0 1 _ _ _ _ _ 1 1 1 1 _ _ _ _ N 0
9 B _ _ 1 1 1 0 0 0 _ _ _ _ _ 0 1 0 _ _ N _ _ 0 1 1 1 _ _ _ _ 0 1
10 B _ _ _ _ 1 1 1 1 _ _ _ _ 0 1 1 1 _ _ 0 _ _ 1 1 1 1 _ _ _ _ 0 0
11 B _ _ _ _ _ _ _ _ _ _ _ N 1 0 1 1 N N 0 _ _ 1 1 1 1 _ _ _ _ 1 1
12 B N N N N N N N _ _ _ _ 1 0 0 0 0 0 0 1 _ _ _ _ 1 _ _ _ _ _ _ _
13 A 0 1 1 1 1 1 1 _ _ _ _ 1 1 1 1 1 1 1 _ _ _ _ _ 0 _ _ _ 1 _ _ _
14 A 1 0 0 0 0 0 0 _ _ _ _ 1 0 1 1 1 1 1 _ _ _ _ _ 1 _ _ _ 1 _ _ _
15 C 1 1 1 1 1 0 1 _ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _
16 C _ 1 _

Table A.3: Conditions in the second iteration, chaining values and steps 1–16. It is a
condition thatB

.
= ¬A.

96

Conditions onQt

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 32 1 0

15 C 1 1 1 1 1 0 1 _ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _
16 C _ 1 _
17 C _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ N _ _ _ _ _ _ _ _ _ _ _ N _ _ _
18 C _ N _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
19 C _ _ _ _ _ _ _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
20 C _
21 C _ _ _ _ _ _ _ _ _ _ _ _ _ N _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
22 C _
23 0 _
24 1 _

25-45 _
46 D _
47 E _
48 D _
49 E _
50 F _
51 E _
52 F _
53 E _
54 F _
55 E _
56 F _
57 E _
58 F _
59 E _
60 D _ _ _ _ _ 0 _
61 E _ _ _ _ _ 1 _
62 D _ _ _ _ _ 1 _
63 E _ _ _ _ _ 1 _
64 _

Table A.4: Conditions in the second iteration, steps 15–64.It is a condition thatF
.
= ¬D.

The actual requirement onQ63[25] is somewhat complicated, see Section 4.7.

97

Appendix B

An implementation of the
Dobbertin MD4 attack

The code below is a C program that finds collisions of MD4.

inc lude <s t d i o . h>
inc lude <t ime . h>

t ypede f unsigned long word ;
t ypede f unsigned char by te ;

word m[1 6] , Q[3 7] , Qp [3 7] ;
word Q15 , Q16 , Q17 , Q18 , Q19 , Q20 ;
word a , b , c , d , A, B , C, D;

d e f i n e F (x , y , z) (((x)&(y)) | ((˜ (x))&(z)))
d e f i n e G(x , y , z) (((x)&(y)) | ((x)&(z)) | ((y)&(z)))
d e f i n e H(x , y , z) ((x) ˆ (y) ˆ (z))
d e f i n e r o t (x , s) (((x)<<(s)) ˆ ((x)>>(32−(s))))

d e f i n e r a ndom b i t () (1<<(rand ()&0 x1f))

d e f i n e random word () rand ()
d e f i n e IVA 0x67452301
d e f i n e IVB 0 xefcdab89
d e f i n e IVC 0 x98badcfe
d e f i n e IVD 0x10325476
d e f i n e K1 0x5a827999
d e f i n e K2 0 x6ed9eba1
d e f i n e N 1 / / Number o f c o l l i s i o n s t o f i n d

double c u r r e n t t i m e m i c r o s () {

98

/∗ r e t u r n s c u r r e n t t ime i n m ic roseconds∗ /
s t r u c t t i m e v a l c u r t i m e ;
ge t t i m e o f d a y (& cur t ime , 0) ;
re tu rn ((double) c u r t i m e . t v s e c)∗ 1000000 +

((double) c u r t i m e . t v u s e c) ;
}

d e f i n e c o l l i s i o n () \
Q[21] = r o t (Q[17]+G(Q[2 0] ,Q[1 9] ,Q[18]) +m[1]+ K1 , 3) ;\
Q[22] = r o t (Q[18]+G(Q[2 1] ,Q[2 0] ,Q[19]) +m[5]+ K1 , 5) ;\
Qp[22] = r o t (Q[18]+G(Q[2 1] , Qp [2 0] , Qp [19]) +m[5]+ K1 , 5) ;\
i f (Qp[22]−Q[2 2]) con t inue ;\
Q[23] = r o t (Q[19]+G(Q[2 2] ,Q[2 1] ,Q[20]) +m[9]+ K1 , 9) ;\
Qp[23] = r o t (Qp [19]+G(Qp [2 2] ,Q[2 1] , Qp [20]) +m[9]+ K1 , 9); \
i f (Qp[23]−Q[23] != 0x4000) con t inue ;\
Q[24] = r o t (Q[20]+G(Q[2 3] ,Q[2 2] ,Q[21]) +m[13]+K1 , 13) ;\
Qp[24] = r o t (Qp [20]+G(Qp [2 3] , Qp [2 2] ,Q[21]) +m[13]+K1 , 13) ;\
i f (Qp[24]−Q[24] != 0 x f f f f f f c 0) con t inue ;\

\
Q[25] = r o t (Q[21]+G(Q[2 4] ,Q[2 3] ,Q[22]) +m[2]+ K1 , 3) ;\
Qp[25] = r o t (Q[21]+G(Qp [2 4] , Qp [2 3] , Qp [22]) +m[2]+ K1 , 3); \
i f (Qp[25]−Q[2 5]) con t inue ;\
Q[26] = r o t (Q[22]+G(Q[2 5] ,Q[2 4] ,Q[23]) +m[6]+ K1 , 5) ;\
Qp[26] = r o t (Qp [22]+G(Qp [2 5] , Qp [2 4] , Qp [23]) +m[6]+ K1 , 5) ; \
i f (Qp[26]−Q[2 6]) con t inue ;\
Q[27] = r o t (Q[23]+G(Q[2 6] ,Q[2 5] ,Q[24]) +m[10]+K1 , 9) ;\
Qp[27] = r o t (Qp [23]+G(Qp [2 6] , Qp [2 5] , Qp [24]) +m[10]+K1 ,9) ;\
Q[28] = r o t (Q[24]+G(Q[2 7] ,Q[2 6] ,Q[25]) +m[14]+K1 , 13) ;\
Qp[28] = r o t (Qp [24]+G(Qp [2 7] , Qp [2 6] , Qp [25]) +m[14]+K1 ,13) ;\

\
Q[29] = r o t (Q[25]+G(Q[2 8] ,Q[2 7] ,Q[26]) +m[3]+ K1 , 3) ;\
Qp[29] = r o t (Qp [25]+G(Qp [2 8] , Qp [2 7] , Qp [26]) +m[3]+ K1 , 3) ; \
Q[30] = r o t (Q[26]+G(Q[2 9] ,Q[2 8] ,Q[27]) +m[7]+ K1 , 5) ;\
Qp[30] = r o t (Qp [26]+G(Qp [2 9] , Qp [2 8] , Qp [27]) +m[7]+ K1 , 5) ; \
Q[31] = r o t (Q[27]+G(Q[3 0] ,Q[2 9] ,Q[28]) +m[11]+K1 , 9) ;\
Qp[31] = r o t (Qp [27]+G(Qp [3 0] , Qp [2 9] , Qp [28]) +m[11]+K1 ,9) ;\
Q[32] = r o t (Q[28]+G(Q[3 1] ,Q[3 0] ,Q[29]) +m[15]+K1 , 13) ;\
Qp[32] = r o t (Qp [28]+G(Qp [3 1] , Qp [3 0] , Qp [29]) +m[15]+K1 ,13) ;\

\
Q[33] = r o t (Q[29]+H(Q[3 2] ,Q[3 1] ,Q[30]) +m[0]+ K2 , 3) ;\
Qp[33] = r o t (Qp [29]+H(Qp [3 2] , Qp [3 1] , Qp [30]) +m[0]+ K2 , 3) ; \
Q[34] = r o t (Q[30]+H(Q[3 3] ,Q[3 2] ,Q[31]) +m[8]+ K2 , 9) ;\
Qp[34] = r o t (Qp [30]+H(Qp [3 3] , Qp [3 2] , Qp [31]) +m[8]+ K2 , 9) ; \
Q[35] = r o t (Q[31]+H(Q[3 4] ,Q[3 3] ,Q[32]) +m[4]+ K2 , 11) ;\

99

Qp[35] = r o t (Qp[31]+H(Qp [3 4] , Qp [3 3] , Qp [32]) +m[4]+ K2 , 11) ;\
Q[36] = r o t (Q[32]+H(Q[3 5] ,Q[3 4] ,Q[33]) +m[12]+K2 , 15) ;\
Qp[36] = r o t (Qp[32]+H(Qp [3 5] , Qp [3 4] , Qp [33]) +m[12]+1+ K2 , 15) ;\
i f (Qp[36]==Q[3 6]) break ;

i n t main () {
i n t i , c t r , t r i a l s , s t e p ;
word t , k , Z , Z1 , Z2 ;
double tm ;
i n t seed = t ime (0)&0 x f f f f ;
s r a nd (seed) ;
p r i n t f (” Seed : %d\n” , seed) ;
t r i a l s = 0 ;
tm = c u r r e n t t i m e m i c r o s () ;

f o r (i = 0 ; i < N; i ++) {

whi le (1) {
s t e p = c t r = 0 ;

whi le (1) {
i f ((++ c t r >700 && s tep<2) | | (c t r > 100000)) {

s t e p = c t r = 0 ;
}

i f (! s t e p) {
Q15 = randomword () ;
Q16 = randomword () ;
Q17 = randomword () ;
Q18 = randomword () ;
Q19 = randomword () ;
Q20 = randomword () ;

}

Q[15] = Q15 ˆ r a ndomb i t () ;
Q[16] = Q16 ˆ r a ndomb i t () ;
Q[17] = Q17 ˆ r a ndomb i t () ;
Q[18] = Q18 ˆ r a ndomb i t () ;
Q[19] = Q19 ˆ r a ndomb i t () ;
Q[20] = Q20 ˆ r a ndomb i t () ;

Qp [20] = Q[20]−(1< <25);
Qp [19] = Q[19]+(1< <5);
Qp [16] = Q[16]−G(Qp [1 9] ,Q[1 8] ,Q[1 7]) +

100

G(Q[1 9] ,Q[1 8] ,Q[17]) + r o t (Qp[20] ,19)− r o t (Q[20] , 19)−1 ;
Qp [15] = Q[15]−G(Q[1 8] ,Q[1 7] , Qp [1 6]) +

G(Q[1 8] ,Q[1 7] ,Q[16]) + r o t (Qp[19] ,23)− r o t (Q[1 9] , 2 3) ;
Q[14] = r o t (Q[15] ,21)− r o t (Qp [1 5] , 2 1) ;
Qp [14] = Q[14] − G(Q[1 7] , Qp [1 6] , Qp [1 5]) +

G(Q[1 7] ,Q[1 6] ,Q[1 5]) ;

i f (G(Q[1 6] ,Q[1 5] ,Q[14])−G(Qp [1 6] , Qp [1 5] , Qp[14])−1)
con t inue ;

i f (! s t e p) {
s t e p = 1 ;
Q15 = Q[1 5] ; Q16 = Q[1 6] ; Q17 = Q[1 7] ;
Q18 = Q[1 8] ; Q19 = Q[1 9] ; Q20 = Q[2 0] ;

}

Z = F (Qp [1 5] , Qp[14] ,0)−F (Q[1 5] ,Q[14] ,−1)−
r o t (Qp [16] , 13) + r o t (Q[1 6] , 1 3) ;

Z2 = Z<<(28−(s tep<<2));
Z1 = Z2<<4;

i f (! Z1) {
i f (! Z2) {

i f (++ s t e p == 8) {
i f (G(Q[2 0] ,Q[1 9] ,Q[18])==G(Qp [2 0] , Qp [1 9] ,Q[1 8]))

break ;
s t e p = c t r = 0 ;

}
}
Q15 = Q[1 5] ; Q16 = Q[1 6] ; Q17 = Q[1 7] ;
Q18 = Q[1 8] ; Q19 = Q[1 9] ; Q20 = Q[2 0] ;

}
}

c t r = 0 ;

m[13] = randomword () ;
Q[11] = r o t (Qp[14] ,25)− r o t (Q[1 4] , 2 5) ;
m[12] = r o t (Q[20] ,19)−Q[16]−G(Q[1 9] ,Q[1 8] ,Q[17])−K1 ;
m[14] = r o t (Q[15] ,21)−Q[11]−Q[1 4] ;
m[15] = r o t (Q[16] ,13)−F (Q[1 5] ,Q[14] ,−1) ;
m[0] = r o t (Q[17] ,29)+1−G(Q[1 6] ,Q[1 5] ,Q[14])−K1 ;
m[4] = r o t (Q[18] ,27)−Q[14]−G(Q[1 7] ,Q[1 6] ,Q[15])−K1 ;
m[8] = r o t (Q[19] ,23)−Q[15]−G(Q[1 8] ,Q[1 7] ,Q[16])−K1 ;

101

Q[10] = r o t (Q[14] ,25)−m[1 3] ;
Q[9] = −1−Q[10]−m[1 2] ;

do {
k = 0 ;
i f (++ c t r > 500000) break ;
t r i a l s ++;
k = 1 ;
m[1] = random word () ;
m[2] = random word () ;
m[3] = random word () ;
m[5] = random word () ;

Q[1] = r o t (IVA+F (IVB , IVC , IVD)+m[0] , 3) ;
Q[2] = r o t (IVD+F (Q[1] , IVB , IVC)+m[1] , 7) ;
Q[3] = r o t (IVC+F (Q[2] ,Q[1] , IVB)+m[2] , 1 1) ;
Q[4] = r o t (IVB+F (Q[3] ,Q[2] ,Q[1]) +m[3] , 1 9) ;

Q[5] = r o t (Q[1]+ F (Q[4] ,Q[3] ,Q[2]) +m[4] , 3) ;
Q[6] = r o t (Q[2]+ F (Q[5] ,Q[4] ,Q[3]) +m[5] , 7) ;

t = r o t (Q[9] ,29)−Q[5]−m[8] ;
m[6] = r o t (t ,21)−Q[3]−F (Q[6] ,Q[5] ,Q [4]) ;
m[7] = −1−Q[4]−F (t ,Q[6] ,Q [5]) ;
m[9] = r o t (Q[10] ,25)−Q[6]−F (Q[9] ,−1 , t) ;
m[10] = r o t (Q[11] ,21)− t−F (Q[1 0] ,Q[9] ,−1) ;
m[11] = r o t (Q[12] ,13)+1−F (Q[1 1] ,Q[1 0] ,Q [9]) ;

c o l l i s i o n () ;
} whi le (1) ;
i f (k) break ;

}
}

tm = c u r r e n t t i m e m i c r o s ()− tm ;
p r i n t f (”%d c o l l i s i o n (s) found i n %.2 f secs ,\ n” , N, tm / 1 e6) ;
p r i n t f (” %.2 f s e c s on average\n” , tm / 1 e6 /N) ;

p r i n t f (” \nThe l a s t c o l l i s i o n found was :\ n”) ;
f o r (i = 0 ; i < 16 ; i ++) {

p r i n t f (”m[%2d] = 0x%08 l x ;\ n” , i , m[i]) ;
}
p r i n t f (” \n (m[12] can be exchanged wi th [m12]+1)\ n\n”) ;
re tu rn 0 ;

102

}

103

Appendix C

An implementation of the Wang
MD5 attack

The code below is a C program that finds collisions of MD5.

inc lude <s t d i o . h>
inc lude <t ime . h>

t ypede f unsigned long word ;

s t a t i c word Q[6 5] ;
s t a t i c word T , T2 , s t op ;
s t a t i c word iva , ivb , ivc , i vd ;
s t a t i c word myIVA , myIVB , myIVC , myIVD ;

s t a t i c i n t ok , i , s t a r t o v e r , changed , c t r ;

d e f i n e TRY2 0x10000
d e f i n e TRY1 0 x f f f f

d e f i n e IVA 0x67452301
d e f i n e IVB 0 xefcdab89
d e f i n e IVC 0 x98badcfe
d e f i n e IVD 0x10325476

d e f i n e t 0 0 xd76aa478
d e f i n e t 1 0 xe8c7b756
d e f i n e t 2 0x242070db
d e f i n e t 3 0 xc1bdceee
d e f i n e t 4 0 x f 5 7 c 0 f a f
d e f i n e t 5 0 x4787c62a
d e f i n e t 6 0xa8304613

104

d e f i n e t 7 0 xfd469501
d e f i n e t 8 0x698098d8
d e f i n e t 9 0 x8b44 f7a f
d e f i n e t 10 0 x f f f f 5 b b 1
d e f i n e t 11 0 x895cd7be
d e f i n e t 12 0x6b901122
d e f i n e t 13 0 xfd987193
d e f i n e t 14 0 xa679438e
d e f i n e t 15 0x49b40821
d e f i n e t 16 0 xf61e2562
d e f i n e t 17 0xc040b340
d e f i n e t 18 0 x265e5a51
d e f i n e t 19 0 xe9b6c7aa
d e f i n e t 20 0 xd62f105d
d e f i n e t 21 0x02441453
d e f i n e t 22 0 xd8a1e681
d e f i n e t 23 0 xe7d3fbc8
d e f i n e t 24 0 x21e1cde6
d e f i n e t 25 0xc33707d6
d e f i n e t 26 0 xf4d50d87
d e f i n e t 27 0 x455a14ed
d e f i n e t 28 0 xa9e3e905
d e f i n e t 29 0 x f c e f a 3 f 8
d e f i n e t 30 0 x676f02d9
d e f i n e t 31 0 x8d2a4c8a
d e f i n e t 32 0 x f f f a 3942
d e f i n e t 33 0 x8771f681
d e f i n e t 34 0x6d9d6122
d e f i n e t 35 0 xfde5380c
d e f i n e t 36 0 xa4beea44
d e f i n e t 37 0 x4bdecfa9
d e f i n e t 38 0 xf6bb4b60
d e f i n e t 39 0 xbebfbc70
d e f i n e t 40 0 x289b7ec6
d e f i n e t 41 0 xeaa127 fa
d e f i n e t 42 0 xd4ef3085
d e f i n e t 43 0x04881d05
d e f i n e t 44 0xd9d4d039
d e f i n e t 45 0 xe6db99e5
d e f i n e t 46 0 x1 fa27c f8
d e f i n e t 47 0 xc4ac5665
d e f i n e t 48 0 xf4292244
d e f i n e t 49 0 x432a f f97
d e f i n e t 50 0 xab9423a7

105

d e f i n e t 51 0 xfc93a039
d e f i n e t 52 0 x655b59c3
d e f i n e t 53 0 x8f0ccc92
d e f i n e t 54 0 x f f e f f 4 7 d
d e f i n e t 55 0x85845dd1
d e f i n e t 56 0 x6 fa87e4 f
d e f i n e t 57 0 x fe2ce6e0
d e f i n e t 58 0 xa3014314
d e f i n e t 59 0 x4e0811a1
d e f i n e t 60 0 xf7537e82
d e f i n e t 61 0 xbd3af235
d e f i n e t 62 0 x2ad7d2bb
d e f i n e t 63 0 xeb86d391

word m[1 6] , m1 [1 6] ;

i f d e f i n e d (WIN32) | | d e f i n e d (INTEL COMPILER)
d e f i n e r o t l r o t l
d e f i n e r o t r l r o t r
e l s e
d e f i n e r o t (x , s) (((x)<<(s)) ˆ ((x)>>(32−(s))))
d e f i n e r o t r (x , s) (((x)<<(32−(s))) ˆ ((x)>>(s)))
e n d i f

d e f i n e F (u , v , w) ((w) ˆ ((u) & ((v) ˆ (w))))
d e f i n e G(u , v , w) ((v) ˆ ((w) & ((u) ˆ (v))))
d e f i n e H(u , v , w) ((u) ˆ (v) ˆ (w))
d e f i n e I (u , v , w) ((v) ˆ ((u) | ˜ (w)))

d e f i n e msb equal (x , y) (((˜ x) ˆ (y))&0 x80000000)
d e f i n e b i t s e q u a l (x , n , y) (((˜ (x) ˆ (y))>>n)&1)
d e f i n e random word () (random ()) / / mrand48 ()

double c u r r e n t t i m e m i c r o s () {
/∗ r e t u r n s c u r r e n t t ime i n m ic roseconds∗ /
s t r u c t t i m e v a l c u r t i m e ;
ge t t i m e o f d a y (& cur t ime , 0) ;
re tu rn ((double) c u r t i m e . t v s e c)∗ 1000000 +

((double) c u r t i m e . t v u s e c) ;
}

/ / FIRST BLOCK:

i n l i n e void s e a r c h1 () {

106

/ / i n t i ;
do {

ok = 0 ;

Q[3] = mrand48 () ;
Q[3] &= 0 x f f f 7 f 7 b f ;

Q[4] = random word () ; / / b i t 32 = 0
Q[4] &= 0 x f f 7 f f f b f ;
Q[4] |= 0x00080800 ;
Q[4] ˆ= (Q[3] ˆQ[4])&0 x77f780 ;

Q[5] = random word () ;
Q[5] &= 0 xfd40003f ;
Q[5] |= 0x08400025 ;
Q[5] ˆ= (Q[4] ˆQ[5])&0 x80000000 ;
i f (! (r o t r (Q[5]−Q[4] , 7)>>31)) con t inue ; / / T 4

Q[6] = mrand48 () ;
Q[6] &= 0 x f77 fbc5b ;
Q[6] |= 0 x827fbc41 ; / / 32 = 1
Q[6] ˆ= (Q[5] ˆQ[6])&0 x7500001a ;
i f (r o t r (Q[6]−Q[5] ,12)&0 x80000) con t inue ; / / T 5

Q[7] = 0 x03 fe f820 ;
T = r o t r (Q[7]−Q[6] , 1 7) ; / / T 6
i f (T&0x4000 | | ! ((T>>10)&0 xf)) con t inue ;

m[6] = T − F (Q[6] ,Q[5] ,Q[4])− Q[3] − t 6 ;

Q[8] = random word () ;
Q[8] &= 0 x01f15540 ;
Q[8] |= 0x01910540 ;
T = r o t r (Q[8]−Q[7] , 2 2) ; / / T 7
/ / − t h e s e T−c o n d i t i o n s are a lways s a t i s f i e d

m[7] = T − F (Q[7] ,Q[6] ,Q[5])− Q[4] − t 7 ;

do {
do {

Q[9] = random word () ;
Q[9] &= 0 x f b f 07 f 3d ;
Q[9] |= 0 x7b102f3d ;
Q[9] ˆ= (Q[8] ˆQ[9])&0 x1000 ;
Q[9] ˆ= (˜Q[7] ˆQ[9])&0 x80000000 ;
T = r o t r (Q[9]−Q[8] , 7) ; / / T 8

107

i f (! (T>>31) | | ! (T&0x1000000)) con t inue ;
m[8] = T − F (Q[8] ,Q[7] ,Q[6])− Q[5] − t 8 ;

Q[10] = random word () ;
Q[10] &= 0 x f f 7 f d e 7 c ;
Q[10] |= 0 x401f9040 ;
Q[10] ˆ= (˜Q[9] ˆQ[10])&0 x80000000 ;
T = r o t r (Q[10]−Q[9] , 1 2) ; / / T 9
i f (! (˜ T>>27)) con t inue ;

m[9] = T − F (Q[9] ,Q[8] ,Q[7])− Q[6] − t 9 ;

Q[11] = random word () ;
Q[11] &= 0 x b f f 1 c e f c ;
Q[11] |= 0 x000180c2 ;
Q[11] ˆ= (Q[1 0] ˆQ[11])&0 x80004000 ;
T = r o t r (Q[11]−Q[1 0] , 1 7) ; / / T 10

} whi le (! (˜ T&0x6000) | | ! (T>>27));
m[10] = T − F (Q[1 0] ,Q[9] ,Q[8])− Q[7] − t 10 ;

Q[12] = random word () ;
Q[12] &= 0 x b f f 8 1 f 7 f ;
Q[12] |= 0x00081100 ;
Q[12] ˆ= (Q[1 1] ˆQ[12])&0 x83000000 ;
T = r o t r (Q[12]−Q[1 1] , 2 2) ; / / T 11

} whi le (! (T&0x300) | | ! (T>>24));

m[11] = T − F (Q[1 1] ,Q[1 0] ,Q[9])− Q[8] − t 11 ;

/ / No s t r i c t c o n d i t i o n s on T12
Q[13] = random word () ;
Q[13] &= 0 x f d f f f e 7 f ;
Q[13] |= 0 x410fe008 ;
Q[13] ˆ= (Q[1 2] ˆQ[13])&0 x80000000 ;
m[12] = r o t r (Q[13]−Q[1 2] , 7) −

F (Q[1 2] ,Q[1 1] ,Q[1 0]) − Q[9] − t 12 ;

do {
/ / No s t r i c t c o n d i t i o n s on T13
Q[14] = random word () ;
Q[14] &= 0 x d c f b f f f f ;
Q[14] |= 0 x000be188 ;
Q[14] ˆ= (Q[1 3] ˆQ[14])&0 x80000000 ;
m[13] = r o t r (Q[14]−Q[1 3] , 12) −

F (Q[1 3] ,Q[1 2] ,Q[1 1]) − Q[10] − t 13 ;

108

Q[15] = mrand48 () ;
Q[15] &= 0 x f d f f f f f 7 ; / / Removed 31 = 0
Q[15] |= 0 x21008000 ;
T = r o t r (Q[15]−Q[1 4] , 1 7) ; / / T 14
i f (! (T>>30)) con t inue ;

m[14] = T − F (Q[1 4] ,Q[1 3] ,Q[12])− Q[11] − t 14 ;

Q[16] = randomword () ;
Q[16] |= 0 x20000000 ;
Q[16] ˆ= (Q[1 5] ˆQ[16])&0 x80000000 ;

T = r o t r (Q[16]−Q[1 5] , 2 2) ; / / T 15
m[15] = T − F (Q[1 5] ,Q[1 4] ,Q[13])− Q[12] − t 15 ;
i f ((T&0x380) && (˜ T>>26)) break ;

} whi le (1) ;

c t r = 0 ;
do {

c t r ++;
i f (c t r > TRY1) break ;
Q[17] = randomword () ;
Q[17] &= 0 x f f f d f f f f ;
Q[17] ˆ= (Q[1 6] ˆQ[17])&0 x80008008 ;
Q[18] = Q[17] +

r o t (G(Q[1 7] ,Q[1 6] ,Q[15]) +Q[14]+m[6]+ t17 , 9) ;
Q[19] = Q[18] +

r o t (G(Q[1 8] ,Q[1 7] ,Q[16]) +Q[15]+m[11]+ t18 , 1 4) ;
}
whi le (! ((Q[18]>>17)&1) | |

(Q[1 7] ˆQ[18])&0 xa0000000 | |
(Q[19]&0 x20000) | |
(Q[1 8] ˆQ[19])&0 x80000000) ;

i f (c t r > TRY1) con t inue ;

T = r o t r (Q[17]−Q[1 6] , 5) ; / / T 16
i f (T&0x1000000) con t inue ;

m[1] = T − G(Q[1 6] ,Q[1 5] ,Q[14])− Q[13] − t 16 ;

ok = 0 ;
s t op = ˜Q[19]&0 x80000000 ;
f o r (Q[20] = Q[19]&0 x80000000 ; Q[20] != s t op ; Q[20]++){

T = r o t r (Q[20]−Q[1 9] , 2 0) ; / / T 19

109

i f (! (T>>29)) con t inue ;
m[0] = T − G(Q[1 9] ,Q[1 8] ,Q[17])−Q[16]− t 19 ;

Q[1] = IVB + r o t (0 xd76aa477 + m[0] , 7) ;
Q[2] = Q[1] +

r o t (IVD + F (Q[1] , IVB , IVC) + t 1 + m[1] , 1 2) ;
m[2] = r o t r (Q[3]−Q[2] , 17) − F (Q[2] ,Q[1] , IVB) −

IVC − t 2 ;
m[3] = r o t r (Q[4]−Q[3] , 22) − F (Q[3] ,Q[2] ,Q [1]) −

IVB − t 3 ;
m[4] = r o t r (Q[5]−Q[4] , 7) − F (Q[4] ,Q[3] ,Q[2]) −

Q[1] − t 4 ;
m[5] = r o t r (Q[6]−Q[5] , 12) − F (Q[5] ,Q[4] ,Q [3]) −

Q[2] − t 5 ;

/ / check r e s t
Q[21] = Q[20] +

r o t (Q[17] + G(Q[2 0] , Q[1 9] , Q[1 8]) + t20 + m[5] , 5) ;
i f (! b i t s e q u a l (Q[2 1] , 1 7 ,Q[2 0]) | |

! msb equa l (Q[2 1] , Q[2 0])) con t inue ;

Q[22] = Q[21] +
r o t (Q[18] + G(Q[2 1] , Q[2 0] , Q[1 9]) + t21 + m[1 0] , 9) ;

i f (! msb equa l (Q[2 2] , Q[2 1])) con t inue ;

/ / T 22
T = Q[19] + G(Q[2 2] , Q[2 1] , Q[2 0]) + t22 + m[1 5] ;
i f (T&0x20000) con t inue ;

Q[23] = Q[22] + r o t (T , 1 4) ;
i f (Q[23]>>31) con t inue ;

Q[24] = Q[23] +
r o t (Q[20] + G(Q[2 3] , Q[2 2] , Q[2 1]) + t23 + m[4] , 2 0) ;

i f (! (Q[24] > >31)) con t inue ;

Q[25] = Q[24] +
r o t (Q[21] + G(Q[2 4] , Q[2 3] , Q[2 2]) + t24 + m[9] , 5) ;

Q[26] = Q[25] +
r o t (Q[22] + G(Q[2 5] , Q[2 4] , Q[2 3]) + t25 + m[1 4] , 9) ;

Q[27] = Q[26] +
r o t (Q[23] + G(Q[2 6] , Q[2 5] , Q[2 4]) + t26 + m[3] , 1 4) ;

110

Q[28] = Q[27] +
r o t (Q[24] + G(Q[2 7] , Q[2 6] , Q[2 5]) + t27 + m[8] , 2 0) ;

Q[29] = Q[28] +
r o t (Q[25] + G(Q[2 8] , Q[2 7] , Q[2 6]) + t28 + m[1 3] , 5) ;

Q[30] = Q[29] +
r o t (Q[26] + G(Q[2 9] , Q[2 8] , Q[2 7]) + t29 + m[2] , 9) ;

Q[31] = Q[30] +
r o t (Q[27] + G(Q[3 0] , Q[2 9] , Q[2 8]) + t30 + m[7] , 1 4) ;

Q[32] = Q[31] +
r o t (Q[28] + G(Q[3 1] , Q[3 0] , Q[2 9]) + t31 + m[1 2] , 2 0) ;

Q[33] = Q[32] +
r o t (Q[29] + H(Q[3 2] , Q[3 1] , Q[3 0]) + t32 + m[5] , 4) ;

Q[34] = Q[33] +
r o t (Q[30] + H(Q[3 3] , Q[3 2] , Q[3 1]) + t33 + m[8] , 1 1) ;

/ / T 34
T = Q[31] + H(Q[3 4] , Q[3 3] , Q[3 2]) + t34 + m[1 1] ;
i f (T&0x8000) con t inue ;

Q[35] = Q[34] + r o t (T , 1 6) ;
Q[36] = Q[35] +

r o t (Q[32] + H(Q[3 5] , Q[3 4] , Q[3 3]) + t35 + m[1 4] , 2 3) ;

Q[37] = Q[36] +
r o t (Q[33] + H(Q[3 6] , Q[3 5] , Q[3 4]) + t36 + m[1] , 4) ;

Q[38] = Q[37] +
r o t (Q[34] + H(Q[3 7] , Q[3 6] , Q[3 5]) + t37 + m[4] , 1 1) ;

Q[39] = Q[38] +
r o t (Q[35] + H(Q[3 8] , Q[3 7] , Q[3 6]) + t38 + m[7] , 1 6) ;

Q[40] = Q[39] +
r o t (Q[36] + H(Q[3 9] , Q[3 8] , Q[3 7]) + t39 + m[1 0] , 2 3) ;

Q[41] = Q[40] +
r o t (Q[37] + H(Q[4 0] , Q[3 9] , Q[3 8]) + t40 + m[1 3] , 4) ;

Q[42] = Q[41] +
r o t (Q[38] + H(Q[4 1] , Q[4 0] , Q[3 9]) + t41 + m[0] , 1 1) ;

Q[43] = Q[42] +
r o t (Q[39] + H(Q[4 2] , Q[4 1] , Q[4 0]) + t42 + m[3] , 1 6) ;

Q[44] = Q[43] +
r o t (Q[40] + H(Q[4 3] , Q[4 2] , Q[4 1]) + t43 + m[6] , 2 3) ;

Q[45] = Q[44] +

111

r o t (Q[41] + H(Q[4 4] , Q[4 3] , Q[4 2]) + t44 + m[9] , 4) ;
Q[46] = Q[45] +

r o t (Q[42] + H(Q[4 5] , Q[4 4] , Q[4 3]) + t45 + m[1 2] , 1 1) ;
Q[47] = Q[46] +

r o t (Q[43] + H(Q[4 6] , Q[4 5] , Q[4 4]) + t46 + m[1 5] , 1 6) ;
Q[48] = Q[47] +

r o t (Q[44] + H(Q[4 7] , Q[4 6] , Q[4 5]) + t47 + m[2] , 2 3) ;
i f ((Q[4 8] ˆQ[46])&0 x80000000) con t inue ;

Q[49] = Q[48] +
r o t (Q[45] + I (Q[4 8] , Q[4 7] , Q[4 6]) + t48 + m[0] , 6) ;

i f ((Q[4 9] ˆQ[47])&0 x80000000) con t inue ;

Q[50] = Q[49] +
r o t (Q[46] + I (Q[4 9] , Q[4 8] , Q[4 7]) + t49 + m[7] , 1 0) ;

i f ((˜ Q[5 0] ˆQ[46])&0 x80000000) con t inue ;

Q[51] = Q[50] +
r o t (Q[47] + I (Q[5 0] , Q[4 9] , Q[4 8]) + t50 + m[1 4] , 1 5) ;

i f ((Q[5 1] ˆQ[49])&0 x80000000) con t inue ;

Q[52] = Q[51] +
r o t (Q[48] + I (Q[5 1] , Q[5 0] , Q[4 9]) + t51 + m[5] , 2 1) ;

i f ((Q[5 2] ˆQ[50])&0 x80000000) con t inue ;

Q[53] = Q[52] +
r o t (Q[49] + I (Q[5 2] , Q[5 1] , Q[5 0]) + t52 + m[1 2] , 6) ;

i f ((Q[5 3] ˆQ[51])&0 x80000000) con t inue ;

Q[54] = Q[53] +
r o t (Q[50] + I (Q[5 3] , Q[5 2] , Q[5 1]) + t53 + m[3] , 1 0) ;

i f ((Q[5 4] ˆQ[52])&0 x80000000) con t inue ;

Q[55] = Q[54] +
r o t (Q[51] + I (Q[5 4] , Q[5 3] , Q[5 2]) + t54 + m[1 0] , 1 5) ;

i f ((Q[5 5] ˆQ[53])&0 x80000000) con t inue ;

Q[56] = Q[55] +
r o t (Q[52] + I (Q[5 5] , Q[5 4] , Q[5 3]) + t55 + m[1] , 2 1) ;

i f ((Q[5 6] ˆQ[54])&0 x80000000) con t inue ;

Q[57] = Q[56] +
r o t (Q[53] + I (Q[5 6] , Q[5 5] , Q[5 4]) + t56 + m[8] , 6) ;

i f ((Q[5 7] ˆQ[55])&0 x80000000) con t inue ;

112

Q[58] = Q[57] +
r o t (Q[54] + I (Q[5 7] , Q[5 6] , Q[5 5]) + t57 + m[1 5] , 1 0) ;

i f ((Q[5 8] ˆQ[56])&0 x80000000) con t inue ;

Q[59] = Q[58] +
r o t (Q[55] + I (Q[5 8] , Q[5 7] , Q[5 6]) + t58 + m[6] , 1 5) ;

i f ((Q[5 9] ˆQ[57])&0 x80000000) con t inue ;

Q[60] = Q[59] +
r o t (Q[56] + I (Q[5 9] , Q[5 8] , Q[5 7]) + t59 + m[1 3] , 2 1) ;

i f ((Q[60]&0 x2000000) | | ((˜ Q[6 0] ˆQ[58])&0 x80000000))
con t inue ;

Q[61] = Q[60] +
r o t (Q[57] + I (Q[6 0] , Q[5 9] , Q[5 8]) + t60 + m[4] , 6) ;

i f ((! (Q[61]&0 x2000000)) | | ((Q[6 1] ˆQ[59])&0 x80000000))
con t inue ;

i va = IVA + Q[6 1] ;

T = Q[58] + I (Q[6 1] , Q[6 0] , Q[5 9]) + t61 + m[1 1] ;
i f (! (˜ T&0x3f8000)) con t inue ;

Q[62] = Q[61] + r o t (T , 1 0) ;
i f ((Q[62]&0 x2000000) | | ((Q[6 2] ˆQ[60])&0 x80000000))

con t inue ;

i vd = IVD + Q[6 2] ;
i f (i vd&0x2000000) con t inue ;

Q[63] = Q[62] +
r o t (Q[59] + I (Q[6 2] , Q[6 1] , Q[6 0]) + t62 + m[2] , 1 5) ;

i f ((Q[63]&0 x2000000) | | ((Q[6 3] ˆQ[61])&0 x80000000))
con t inue ;

i v c = IVC + Q[6 3] ;
i f ((! (i v c&0x2000000)) | | (i v c&0x4000000) | |

((i v c ˆ i vd)&0 x80000000))
con t inue ;

p r i n t f (” . ”) ; f f l u s h (s t d o u t) ;

Q[64] = Q[63] +

113

r o t (Q[60] + I (Q[6 3] , Q[6 2] , Q[6 1]) + t63 + m[9] , 2 1) ;
i vb = IVB + Q[6 4] ;
i f ((i vb&0x06000020) | | ((i vb ˆ i v c)&0x80000000)) con t inue ;

myIVA = i va ; myIVB = ivb ; myIVC = i vc ; myIVD = ivd ;
ok = 1 ;
break ;

}

} whi le (! ok) ;

}

/ / SECOND BLOCK:

i n l i n e void modi fy 0 13 () {
do {

Q[1] = random word () ;
Q[1] &= 0 x f 5 f f f 7 d f ;
/ / Q[1] |= 0x04200040 ;
Q[1] |= 0x04200000 ;
Q[1] ˆ= (˜Q[1] ˆ myIVB)&0x80000000 ;

Q[2] = random word () ;
Q[2] &= 0 x f d d f f f d 9 ;
/ / Q[2] |= 0 x0c000840 ;
Q[2] |= 0 x0c000800 ;
/ / Q[2] ˆ= (Q[1] ˆQ[2])&0 x f 01 f 1080 ;
Q[2] ˆ= (Q[1] ˆQ[2])&0 x f01 f10c0 ;

T = r o t r (Q[2]−Q[1] , 1 2) ;
i f (! (˜ T>>25)) con t inue ;

m[1] = T − myIVD − F (Q[1] , myIVB , myIVC) − t 1 ;

Q[3] = random word () ;
Q[3] &= 0 x b f d f e f 7 f ;
Q[3] |= 0 x3e1f0966 ;
Q[3] ˆ= (Q[2] ˆQ[3])&0 x80000018 ;

T = r o t r (Q[3]−Q[2] , 1 7) ;
i f ((T>>31) | | ! ((˜ T>>26)&0x1f)) con t inue ;

m[2] = T − myIVC − F (Q[2] ,Q[1] , myIVB) − t 2 ;

114

Q[4] = random word () ;
Q[4] &= 0 xbbc4e611 ;
Q[4] |= 0x3a040010 ;
Q[4] ˆ= (Q[3] ˆQ[4])&0 x80000601 ;

T = r o t r (Q[4]−Q[3] , 2 2) ;
i f (! (T>>27)) con t inue ;

m[3] = T − myIVB − F (Q[3] ,Q[2] ,Q [1]) − t 3 ;

Q[5] = random word () ;
Q[5] &= 0 xcbe fee50 ;
Q[5] |= 0 x482f0e50 ;
Q[5] ˆ= (˜Q[4] ˆQ[5])&0 x80000000 ;

T = r o t r (Q[5]−Q[4] , 7) ;
i f ((T>>31) | | ! (T&0x40000000)) con t inue ;

m[4] = T − Q[1] − F (Q[4] ,Q[3] ,Q[2]) − t 4 ;

Q[6] = random word () ;
Q[6] &= 0 xe5eeec56 ;
Q[6] |= 0x04220c56 ;
Q[6] ˆ= (Q[5] ˆQ[6])&0 x80000000 ;

T = r o t r (Q[6]−Q[5] , 1 2) ;
i f (! (T>>30)) con t inue ;

m[5] = T − Q[2] − F (Q[5] ,Q[4] ,Q[3]) − t 5 ;

Q[7] = random word () ;
Q[7] &= 0 x f 7 c d f e 3 f ;
Q[7] |= 0x16011e01 ;
Q[7] ˆ= (˜Q[6] ˆQ[7])&0 x80000000 ;
Q[7] ˆ= (Q[6] ˆQ[7])&0 x1808000 ;

T = r o t r (Q[7]−Q[6] , 1 7) ;
i f ((T>>31) | | ! (T&0x7c00)) con t inue ;

m[6] = T − Q[3] − F (Q[6] ,Q[5] ,Q[4]) − t 6 ;

Q[8] = random word () ;
Q[8] &= 0 x e 4 7 e f f f e ;
Q[8] |= 0x043283e0 ; / / Added Q8 [5] = 1 ∗
Q[8] ˆ= (Q[7] ˆQ[8])&0 x80000002 ;

T = r o t r (Q[8]−Q[7] , 2 2) ;

115

i f (! (˜ T&0x3f0) | | ! (˜ T>>27)) con t inue ;
m[7] = T − Q[4] − F (Q[7] ,Q[6] ,Q [5]) − t 7 ;

Q[9] = random word () ;
Q[9] &= 0 xfc7d7ddd ; / / Added Q9 [5] = 0 ∗
Q[9] |= 0 x1c0101c1 ;
Q[9] ˆ= (Q[8] ˆQ[9])&0 x80001000 ;
/ / ∗ so t h a t Q[9]−Q[8] produces a c a r r y i n t o b i t 6

T = r o t r (Q[9]−Q[8] , 7) ;
i f (! (T>>31) | | ! (˜ T&0x7e000000)) con t inue ;

m[8] = T − Q[5] − F (Q[8] ,Q[7] ,Q [6]) − t 8 ;

Q[10] = random word () ;
Q[10] &= 0 x f f f b e f f c ;
Q[10] |= 0x078383c0 ;
/ / Added Q[10] , 3 != Q[9] , 3
/ / so c o r r e c t i o n i n s t e p 19 works :
Q[10] ˆ= (˜Q[9] ˆQ[10])&0 x8 ;
Q[10] ˆ= (Q[9] ˆQ[10])&0 x80000000 ;
T = r o t r (Q[10]−Q[9] , 1 2) ;
i f (! (T>>27)) con t inue ;

m[9] = T − Q[6] − F (Q[9] ,Q[8] ,Q [7]) − t 9 ;

Q[11] = random word () ;
Q[11] &= 0 x f f f d e f f f ;
Q[11] |= 0x000583c3 ;
Q[11] ˆ= (Q[1 0] ˆQ[11])&0 x80086000 ;

T = r o t r (Q[11]−Q[1 0] , 1 7) ;
i f (! (T>>27)) con t inue ;

m[10] = T − Q[7] − F (Q[1 0] ,Q[9] ,Q [8]) − t 10 ;

Q[12] = random word () ;
Q[12] &= 0 x f f f 8 1 f f f ;
Q[12] |= 0x00081080 ;
Q[12] ˆ= (Q[1 2] ˆQ[11])&0 xf f000000 ;

Q[13] = random word () ;
Q[13] &= 0 x b f f f f f 7 f ;
Q[13] |= 0 x3 f0 fe008 ;
Q[13] ˆ= (˜Q[1 2] ˆQ[13])&0 x80000000 ;

Q[14] = random word () ;

116

Q[14] &= 0 x c 0 f b f f f f ;
Q[14] |= 0 x400be088 ;
Q[14] ˆ= (Q[1 3] ˆQ[14])&0 x80000000 ;

T = r o t r (Q[14]−Q[1 3] , 1 2) ;
i f (! ((T>>12)&0 x f f)) con t inue ;

m[13] = T − Q[10] − F (Q[1 3] ,Q[1 2] ,Q[1 1]) − t 13 ;

m[0] = r o t r (Q[1]−myIVB , 7) − myIVA −
F (myIVB , myIVC , myIVD) − t 0 ;

m[11] = r o t r (Q[12]−Q[1 1] , 22) − Q[8] −
F (Q[1 1] ,Q[1 0] ,Q[9]) − t 11 ;

m[12] = r o t r (Q[13]−Q[1 2] , 7) − Q[9] −
F (Q[1 2] ,Q[1 1] ,Q[1 0]) − t 12 ;

m[13] = r o t r (Q[14]−Q[1 3] , 12) − Q[10] −
F (Q[1 3] ,Q[1 2] ,Q[1 1]) − t 13 ;

break ;
} whi le (1) ;

}

i n l i n e void c h e c k r e s t () {
c t r = 0 ;
s t a r t o v e r = 1 ;
do {

c t r ++;

Q[15] = randomword () ;
Q[15] &= 0 x 7 d f f 7 f f 7 ;
Q[15] |= 0x7d000000 ;

T = r o t r (Q[15]−Q[1 4] , 1 7) ;
i f (! (˜ T>>30)) con t inue ;

m[14] = T − Q[11] − F (Q[1 4] ,Q[1 3] ,Q[1 2]) − t 14 ;

Q[16] = randomword () ;
Q[16] &= 0 x 7 f f f f f f f ;
Q[16] |= 0x20000000 ;
/ / Q[16] ˆ= (Q[15] ˆQ[16])&0 x80000000 ;

T = r o t r (Q[16]−Q[1 5] , 2 2) ;
i f (! (T&0x380) | | ! (T>>26)) con t inue ;

117

m[15] = T − Q[12] − F (Q[1 5] ,Q[1 4] ,Q[1 3]) − t 15 ;

changed = 0 ;
Q[17] = Q[16] +

r o t (G(Q[1 6] , Q[1 5] , Q[1 4]) + Q[13] + m[1] + t16 , 5) ;
i f (! b i t s e q u a l (Q[1 7] , 3 ,Q[1 6])) {

m[1] += ((Q[2]>>10)&1) ? −0x40000000 : 0x40000000 ;
Q[2] ˆ= 0x400 ;
Q[17] = Q[16] +

r o t (G(Q[1 6] , Q[1 5] , Q[1 4]) + Q[13] + m[1] + t16 , 5) ;
changed = 1 ;

}
i f (! b i t s e q u a l (Q[1 7] , 1 5 ,Q[1 6])) {

m[1] += ((Q[2]>>22)&1) ? −0x400 : 0x400 ;
Q[2] ˆ= 0x400000 ;
Q[17] = Q[16] +

r o t (G(Q[1 6] , Q[1 5] , Q[1 4]) + Q[13] + m[1] + t16 , 5) ;
changed = 1 ;

}
i f (Q[17]&0 x20000) {

m[1] += ((Q[2]>>24)&1) ? −0x1000 : 0x1000 ;
Q[2] ˆ= 0x1000000 ;
Q[17] = Q[16] +

r o t (G(Q[1 6] , Q[1 5] , Q[1 4]) + Q[13] + m[1] + t16 , 5) ;
changed = 1 ;

}
i f (changed) {

T = r o t r (Q[2]−Q[1] , 1 2) ;
i f (! (˜ T>>25)) re tu rn ;
T = r o t r (Q[3]−Q[2] , 1 7) ;
i f ((T>>31) | | ! ((˜ T>>26)&0x1f)) re tu rn ;

m[2] = T − myIVC − F (Q[2] ,Q[1] , myIVB) − t 2 ;
m[3] = r o t r (Q[4]−Q[3] , 22) − myIVB −

F (Q[3] ,Q[2] ,Q[1]) − t 3 ;
m[4] = r o t r (Q[5]−Q[4] , 7) − Q[1] −

F (Q[4] ,Q[3] ,Q[2]) − t 4 ;
m[5] = r o t r (Q[6]−Q[5] , 12) − Q[2] −

F (Q[5] ,Q[4] ,Q[3]) − t 5 ;
}
i f (Q[17]>>31) con t inue ;

i f ((Q[17]−Q[16])>>29 == 0x7) con t inue ;

Q[18] = Q[17] +

118

r o t (G(Q[1 7] , Q[1 6] , Q[1 5]) + Q[14] + t17 + m[6] , 9) ;
/ / Seems i m p o s s i b l e t o c o r r e c t :
i f (! (Q[18]&0 x20000)) con t inue ;

i f (! b i t s e q u a l (Q[1 8] , 2 9 ,Q[1 7])) {
m[6] += ((Q[7]>>5)&1) ? −0x100000 : 0x100000 ;
Q[7] ˆ= 0x20 ;
Q[18] = Q[17] +

r o t (G(Q[1 7] , Q[1 6] , Q[1 5]) + Q[14] + t17 + m[6] , 9) ;

T = r o t r (Q[7]−Q[6] , 1 7) ;
i f ((T>>31) | | ! (T&0x7c00)) re tu rn ;

T = r o t r (Q[8]−Q[7] , 2 2) ;
i f (! (˜ T&0x3f0) | | ! (˜ T>>27)) re tu rn ;

m[7] = T − Q[4] − F (Q[7] ,Q[6] ,Q[5]) − t 7 ;

m[8] = r o t r (Q[9]−Q[8] , 7) − Q[5] −
F (Q[8] ,Q[7] ,Q[6]) − t 8 ;

m[9] = r o t r (Q[10]−Q[9] , 12) − Q[6] −
F (Q[9] ,Q[8] ,Q[7]) − t 9 ;

m[10] = r o t r (Q[11]−Q[1 0] , 17) − Q[7] −
F (Q[1 0] ,Q[9] ,Q[8]) − t 10 ;

}
i f (Q[18]>>31) {

Q[3] ˆ= 0x400000 ;

T = r o t r (Q[3]−Q[2] , 1 7) ;
i f ((T>>31) | | ! ((˜ T>>26)&0x1f)) re tu rn ;

m[2] = T − myIVC − F (Q[2] ,Q[1] , myIVB) − t 2 ;

T = r o t r (Q[4]−Q[3] , 2 2) ;
i f (! (T>>27)) re tu rn ;

m[3] = T − myIVB − F (Q[3] ,Q[2] ,Q [1]) − t 3 ;

m[4] = r o t r (Q[5]−Q[4] , 7) − Q[1] −
F (Q[4] ,Q[3] ,Q[2]) − t 4 ;

m[5] = r o t r (Q[6]−Q[5] , 12) − Q[2] −
F (Q[5] ,Q[4] ,Q[3]) − t 5 ;

m[6] = r o t r (Q[7]−Q[6] , 17) − Q[3] −
F (Q[6] ,Q[5] ,Q[4]) − t 6 ;

Q[18] = Q[17] +
r o t (G(Q[1 7] , Q[1 6] , Q[1 5]) + Q[14] + t17 + m[6] , 9) ;

119

}

Q[19] = Q[18] +
r o t (Q[15] + G(Q[1 8] , Q[1 7] , Q[1 6]) + t18 + m[1 1] , 1 4) ;

i f (Q[19]&0 x20000) {
Q[11] ˆ= 0x8 ;
T = r o t r (Q[11]−Q[1 0] , 1 7) ;
i f (! (T>>27)) re tu rn ;

m[10] = T − Q[7] − F (Q[1 0] ,Q[9] ,Q [8]) − t 10 ;
m[11] = r o t r (Q[12]−Q[1 1] , 22) − Q[8] −

F (Q[1 1] ,Q[1 0] ,Q[9]) − t 11 ;
m[12] = r o t r (Q[13]−Q[1 2] , 7) − Q[9] −

F (Q[1 2] ,Q[1 1] ,Q[1 0]) − t 12 ;
m[13] = r o t r (Q[14]−Q[1 3] , 12) − Q[10] −

F (Q[1 3] ,Q[1 2] ,Q[1 1]) − t 13 ;
m[14] = r o t r (Q[15]−Q[1 4] , 17) − Q[11] −

F (Q[1 4] ,Q[1 3] ,Q[1 2]) − t 14 ;
Q[19] = Q[18] + r o t (Q[15] + G(Q[1 8] , Q[1 7] , Q[1 6]) +

t18 + m[1 1] , 1 4) ;
}
i f (Q[19]>>31) con t inue ;

/ / check r e s t
T = Q[16] + G(Q[1 9] , Q[1 8] , Q[1 7]) + t19 + m[0] ;
i f (! (T>>29)) con t inue ;
Q[20] = Q[19] + r o t (T , 2 0) ;
i f (Q[20]>>31) con t inue ;

Q[21] = Q[20] +
r o t (Q[17] + G(Q[2 0] , Q[1 9] , Q[1 8]) + t20 + m[5] , 5) ;

i f (! b i t s e q u a l (Q[2 1] , 1 7 ,Q[2 0]) | | Q[21]>>31) con t inue ;

Q[22] = Q[21] +
r o t (Q[18] + G(Q[2 1] , Q[2 0] , Q[1 9]) + t21 + m[1 0] , 9) ;

i f (Q[22]>>31) con t inue ;

T = Q[19] + G(Q[2 2] , Q[2 1] , Q[2 0]) + t22 + m[1 5] ;
i f (T&0x20000) con t inue ; / / p = 1 /2

Q[23] = Q[22] + r o t (T , 1 4) ;
i f (Q[23]>>31) con t inue ;

Q[24] = Q[23] +
r o t (Q[20] + G(Q[2 3] , Q[2 2] , Q[2 1]) + t23 + m[4] , 2 0) ;

120

i f (! (Q[24] > >31)) con t inue ;

Q[25] = Q[24] +
r o t (Q[21] + G(Q[2 4] , Q[2 3] , Q[2 2]) + t24 + m[9] , 5) ;

Q[26] = Q[25] +
r o t (Q[22] + G(Q[2 5] , Q[2 4] , Q[2 3]) + t25 + m[1 4] , 9) ;

Q[27] = Q[26] +
r o t (Q[23] + G(Q[2 6] , Q[2 5] , Q[2 4]) + t26 + m[3] , 1 4) ;

Q[28] = Q[27] +
r o t (Q[24] + G(Q[2 7] , Q[2 6] , Q[2 5]) + t27 + m[8] , 2 0) ;

Q[29] = Q[28] +
r o t (Q[25] + G(Q[2 8] , Q[2 7] , Q[2 6]) + t28 + m[1 3] , 5) ;

Q[30] = Q[29] +
r o t (Q[26] + G(Q[2 9] , Q[2 8] , Q[2 7]) + t29 + m[2] , 9) ;

Q[31] = Q[30] +
r o t (Q[27] + G(Q[3 0] , Q[2 9] , Q[2 8]) + t30 + m[7] , 1 4) ;

Q[32] = Q[31] +
r o t (Q[28] + G(Q[3 1] , Q[3 0] , Q[2 9]) + t31 + m[1 2] , 2 0) ;

Q[33] = Q[32] +
r o t (Q[29] + H(Q[3 2] , Q[3 1] , Q[3 0]) + t32 + m[5] , 4) ;

Q[34] = Q[33] +
r o t (Q[30] + H(Q[3 3] , Q[3 2] , Q[3 1]) + t33 + m[8] , 1 1) ;

/ / S tep 34 T−check
T = Q[31] + H(Q[3 4] , Q[3 3] , Q[3 2]) + t34 + m[1 1] ;
i f (! (T&0x8000)) con t inue ; / / p = 1 /2

Q[35] = Q[34] + r o t (T , 1 6) ;
Q[36] = Q[35] +

r o t (Q[32] + H(Q[3 5] , Q[3 4] , Q[3 3]) + t35 + m[1 4] , 2 3) ;

Q[37] = Q[36] +
r o t (Q[33] + H(Q[3 6] , Q[3 5] , Q[3 4]) + t36 + m[1] , 4) ;

Q[38] = Q[37] +
r o t (Q[34] + H(Q[3 7] , Q[3 6] , Q[3 5]) + t37 + m[4] , 1 1) ;

Q[39] = Q[38] +
r o t (Q[35] + H(Q[3 8] , Q[3 7] , Q[3 6]) + t38 + m[7] , 1 6) ;

Q[40] = Q[39] +
r o t (Q[36] + H(Q[3 9] , Q[3 8] , Q[3 7]) + t39 + m[1 0] , 2 3) ;

Q[41] = Q[40] +
r o t (Q[37] + H(Q[4 0] , Q[3 9] , Q[3 8]) + t40 + m[1 3] , 4) ;

121

Q[42] = Q[41] +
r o t (Q[38] + H(Q[4 1] , Q[4 0] , Q[3 9]) + t41 + m[0] , 1 1) ;

Q[43] = Q[42] +
r o t (Q[39] + H(Q[4 2] , Q[4 1] , Q[4 0]) + t42 + m[3] , 1 6) ;

Q[44] = Q[43] +
r o t (Q[40] + H(Q[4 3] , Q[4 2] , Q[4 1]) + t43 + m[6] , 2 3) ;

Q[45] = Q[44] +
r o t (Q[41] + H(Q[4 4] , Q[4 3] , Q[4 2]) + t44 + m[9] , 4) ;

Q[46] = Q[45] +
r o t (Q[42] + H(Q[4 5] , Q[4 4] , Q[4 3]) + t45 + m[1 2] , 1 1) ;

Q[47] = Q[46] +
r o t (Q[43] + H(Q[4 6] , Q[4 5] , Q[4 4]) + t46 + m[1 5] , 1 6) ;

Q[48] = Q[47] +
r o t (Q[44] + H(Q[4 7] , Q[4 6] , Q[4 5]) + t47 + m[2] , 2 3) ;

i f ((Q[4 8] ˆQ[46])&0 x80000000) con t inue ;

Q[49] = Q[48] +
r o t (Q[45] + I (Q[4 8] , Q[4 7] , Q[4 6]) + t48 + m[0] , 6) ;

i f ((Q[4 9] ˆQ[47])&0 x80000000) con t inue ;

Q[50] = Q[49] +
r o t (Q[46] + I (Q[4 9] , Q[4 8] , Q[4 7]) + t49 + m[7] , 1 0) ;

i f ((˜ Q[5 0] ˆQ[46])&0 x80000000) con t inue ;

Q[51] = Q[50] +
r o t (Q[47] + I (Q[5 0] , Q[4 9] , Q[4 8]) + t50 + m[1 4] , 1 5) ;

i f ((Q[5 1] ˆQ[49])&0 x80000000) con t inue ;

Q[52] = Q[51] +
r o t (Q[48] + I (Q[5 1] , Q[5 0] , Q[4 9]) + t51 + m[5] , 2 1) ;

i f ((Q[5 2] ˆQ[50])&0 x80000000) con t inue ;

Q[53] = Q[52] +
r o t (Q[49] + I (Q[5 2] , Q[5 1] , Q[5 0]) + t52 + m[1 2] , 6) ;

i f ((Q[5 3] ˆQ[51])&0 x80000000) con t inue ;

Q[54] = Q[53] +
r o t (Q[50] + I (Q[5 3] , Q[5 2] , Q[5 1]) + t53 + m[3] , 1 0) ;

i f ((Q[5 4] ˆQ[52])&0 x80000000) con t inue ;

Q[55] = Q[54] +
r o t (Q[51] + I (Q[5 4] , Q[5 3] , Q[5 2]) + t54 + m[1 0] , 1 5) ;

i f ((Q[5 5] ˆQ[53])&0 x80000000) con t inue ;

122

Q[56] = Q[55] +
r o t (Q[52] + I (Q[5 5] , Q[5 4] , Q[5 3]) + t55 + m[1] , 2 1) ;

i f ((Q[5 6] ˆQ[54])&0 x80000000) con t inue ;

Q[57] = Q[56] +
r o t (Q[53] + I (Q[5 6] , Q[5 5] , Q[5 4]) + t56 + m[8] , 6) ;

i f ((Q[5 7] ˆQ[55])&0 x80000000) con t inue ;

Q[58] = Q[57] +
r o t (Q[54] + I (Q[5 7] , Q[5 6] , Q[5 5]) + t57 + m[1 5] , 1 0) ;

i f ((Q[5 8] ˆQ[56])&0 x80000000) con t inue ;

Q[59] = Q[58] +
r o t (Q[55] + I (Q[5 8] , Q[5 7] , Q[5 6]) + t58 + m[6] , 1 5) ;

i f ((Q[5 9] ˆQ[57])&0 x80000000) con t inue ;

Q[60] = Q[59] +
r o t (Q[56] + I (Q[5 9] , Q[5 8] , Q[5 7]) + t59 + m[1 3] , 2 1) ;

i f ((Q[60]&0 x2000000) | | (˜Q[6 0] ˆQ[58])&0 x80000000)
con t inue ;

Q[61] = Q[60] +
r o t (Q[57] + I (Q[6 0] , Q[5 9] , Q[5 8]) + t60 + m[4] , 6) ;

i f ((! (Q[61]&0 x2000000)) | | ((Q[6 1] ˆQ[59])&0 x80000000))
con t inue ;

T = Q[58] + I (Q[6 1] , Q[6 0] , Q[5 9]) + t61 + m[1 1] ;
i f (! (T&0x3f8000)) con t inue ;

Q[62] = Q[61] + r o t (T , 1 0) ;
i f (! (Q[62]&0 x2000000) | | ((Q[6 2] ˆQ[60])&0 x80000000))

con t inue ;

p r i n t f (” : ”) ; f f l u s h (s t d o u t) ;
Q[63] = Q[62] +

r o t (Q[59] + I (Q[6 2] , Q[6 1] , Q[6 0]) + t62 + m[2] , 1 5) ;
i f ((Q[6 3] ˆQ[61])&0 x80000000) con t inue ;

i f (! (Q[63]&0 x2000000)) {
T = Q[63]>>26;
T2 = Q[61]>>26;
i f (! T) con t inue ;

123

whi le (! (T&1)) {
i f (T2&1) break ;
T>>=1; T2>>=1;

}
i f (! (T&1) | | T2&1) con t inue ;

}

p r i n t f (” \n”) ;

s t a r t o v e r = 0 ;
break ;

} whi le (c t r < TRY2) ;
}

i n l i n e void s e a r c h2 () {
do {

modi fy 0 13 () ;
c h e c k r e s t () ;

} whi le (s t a r t o v e r) ;
}

i n t main (i n t argc , char∗ argv []) {
i n t j ;
double t , t f i r s t , t s e c ond ;
FILE ∗ fp1 ;
srandom (t ime (0)) ;
s rand48 (t ime (0)) ;

t = c u r r e n t t i m e m i c r o s () ;
s e a r c h1 () ; / / F ind f i r s t b l oc k
t f i r s t = c u r r e n t t i m e m i c r o s ()− t ;
f o r (j = 0 ; j < 16 ; j ++) m1[j] = m[j] ;

s e a r c h2 () ; / / F ind second b l oc k
t = c u r r e n t t i m e m i c r o s ()− t ;
t s e c ond = t− t f i r s t ;

p r i n t f (” C o l l i s i o n found i n %.2 f m inu tes\n” , t / 1 e6 / 6 0) ;
p r i n t f (” Time of f i r s t b lock : %.2 f m inu tes\n” ,

t f i r s t / 1 e6 / 6 0) ;
p r i n t f (” Time of second b lock : %.2 f m inu tes\n” ,

t s e c ond / 1 e6 / 6 0) ;
p r i n t f (”NOTE: S ince no t a l l c o n d i t i o n s a r e checked ,\ n”) ;
p r i n t f (” t h i s might i n f a c t NOT be a t r u e c o l l i s i o n .\ n”) ;

124

p r i n t f (” P l e a s e v e r i f y . . .\ n\n”) ;
p r i n t f (” F i r s t b lock :\ n”) ;
f o r (j = 0 ; j < 16 ; j ++)

p r i n t f (”m[%d] = 0x%08 l x ;\ n” , j , m1[j]) ;
p r i n t f (” \nThe c o l l i d i n g message has m[4] + 2 ˆ 31 , m[11]+2ˆ15 ,\ n ”) ;
p r i n t f (”m[14]+2ˆ31\ n\n”) ;
p r i n t f (” Second b lock :\ n”) ;
f o r (j = 0 ; j < 16 ; j ++)

p r i n t f (”m[%d] = 0x%08 l x ;\ n” , j , m[j]) ;
p r i n t f (” \nThe c o l l i d i n g message has m[4] + 2 ˆ 31 , m[11]−2ˆ15 ,\n ”) ;
p r i n t f (”m[14]+2ˆ31\ n\n”) ;
p r i n t f (” The two messages have been saved as msg1 . t x t\n”) ;
p r i n t f (” and msg2 . t x t . To v e r i f y on a UNIX− l i k e system ,\ n”) ;
p r i n t f (” use ’md5sum msg1 . t x t msg2 . t x t ’ .\ n\n”) ;

fp1 = fopen (”msg1 . t x t ” , ”w”) ;
f o r (j = 0 ; j < 16 ; j ++) {

f p r i n t f (fp1 , ”%c ” , (char) (m1[j]&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m1[j]>>8)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m1[j]>>16)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) (m1[j] > >24));

}
f o r (j = 0 ; j < 16 ; j ++) {

f p r i n t f (fp1 , ”%c ” , (char) (m[j]&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m[j]>>8)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m[j] >>16)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) (m[j] > >24));

}
f c l o s e (fp1) ;

m1[4] += 0x80000000 ;
m1[11] += 0x8000 ;
m1[14] += 0x80000000 ;
m[4] += 0x80000000 ;
m[11] −= 0x8000 ;
m[14] += 0x80000000 ;

fp1 = fopen (”msg2 . t x t ” , ”w”) ;
f o r (j = 0 ; j < 16 ; j ++) {

f p r i n t f (fp1 , ”%c ” , (char) (m1[j]&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m1[j]>>8)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m1[j]>>16)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) (m1[j] > >24));

}

125

f o r (j = 0 ; j < 16 ; j ++) {
f p r i n t f (fp1 , ”%c ” , (char) (m[j]&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m[j]>>8)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) ((m[j] >>16)&0 x f f)) ;
f p r i n t f (fp1 , ”%c ” , (char) (m[j] > >24));

}
f c l o s e (fp1) ;

re tu rn 0 ;
}

126

Appendix D

An implementation of the Wang
MD4 attack

The code below is a C program that finds collisions of MD4 usingthe technique
of [43].

inc lude <s t d l i b . h>
inc lude <s t d i o . h>
inc lude <t ime . h>

t ypede f unsigned long word ;

word a [1 3] , b [1 3] , c [1 3] , d [1 3] ;
word aa [1 3] , bb [1 3] , cc [1 3] , dd [1 3] ;
word T ;
d e f i n e IVA 0x67452301
d e f i n e IVB 0 xefcdab89
d e f i n e IVC 0 x98badcfe
d e f i n e IVD 0x10325476

word m[1 6] ;
i n t ok = 0 ;

d e f i n e F (u , v , w) ((w) ˆ ((u) & ((v) ˆ (w))))
d e f i n e G(u , v , w) (((u) & (v)) ˆ ((w) & ((u) ˆ (v))))
d e f i n e H(u , v , w) ((u) ˆ (v) ˆ (w))
d e f i n e r o t (x , s) (((x)<<(s)) ˆ ((x)>>(32−(s))))
d e f i n e r o t r (x , s) (((x)<<(32−(s))) ˆ ((x)>>(s)))
d e f i n e K1 (0 x5a827999)
d e f i n e K2 (0 x6ed9eba1)
d e f i n e N 10000

127

double c u r r e n t t i m e m i c r o s () {
/∗ r e t u r n s c u r r e n t t ime i n m ic roseconds∗ /
s t r u c t t i m e v a l c u r t i m e ;
ge t t i m e o f d a y (& cur t ime , 0) ;
re tu rn ((double) c u r t i m e . t v s e c)∗ 1000000 +

((double) c u r t i m e . t v u s e c) ;
}

i n l i n e void s e a r c h () {
ok = 0 ;
do {

/ / Added b1 [14 ,21 ,22 ,24 ,27] = 0
b [1] = random () ;
b [1] &= 0 x f 94 f db7 f ;
b [1] |= 0x00000040 ;

a [2] = random () ;
a [2] &= 0 x f d f f f f f f ;
a [2] |= 0x480 ;
a [2] ˆ= (a [2] ˆ b [1])&0 x2000 ;

/ / Added e x t r a c o n d i t i o n s : d2 , [17 , 18 , 23] = 0
d [2] = random () ;
d [2] &= 0 x f f f f d f f f ;
d [2] |= 0x02000000 ;
d [2] ˆ= (d [2] ˆ a [2])&0 x003c0000 ;

/ / Added c2 [17] = 0
c [2] = random () ;
c [2] &= 0 x f f d 2 d f f f ;
c [2] |= 0x00100000 ;
c [2] ˆ= (d [2] ˆ c [2])&0 x00005000 ;

/ / Added e x t r a c o n d i t i o n s : b2 [17 ,18 ,23] = 0
b [2] = random () ;
b [2] &= 0 x f f 8 0 b f f f ;
b [2] |= 0x00003000 ;
b [2] ˆ= (b [2] ˆ c [2])&0 x00010000 ;
m[7] = r o t r (b [2] , 19) − b [1] − F (c [2] , d [2] , a [2]) ;

a [3] = random () ;
a [3] &= 0 x f f e 2 f f f f ;
a [3] |= 0x00207000 ;
a [3] ˆ= (a [3] ˆ b [2])&0 x02400000 ;

128

m[8] = r o t r (a [3] , 3) − a [2] − F (b [2] , c [2] , d [2]) ;

d [3] = random () ;
d [3] &= 0 x f f b 6 f f f f ;
d [3] |= 0x02307000 ;
d [3] ˆ= (d [3] ˆ a [3])&0 x20000000 ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;

c [3] = random () ;
c [3] &= 0 x f d 8 7 f f f f ;
c [3] |= 0x20010000 ;
c [3] ˆ= (c [3] ˆ d [3])&0 x80000000 ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;

b [3] = random () ;
b [3] &= 0 x 5 f b 7 f f f f ;
b [3] |= 0x02300000 ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;

a [4] = random () ;
a [4] &= 0 x 7 d b f f f f f ;
a [4] |= 0x20000000 ;
a [4] ˆ= (a [4] ˆ b [3])&0 x14000000 ;
m[12] = r o t r (a [4] , 3) − a [3] − F (b [3] , c [3] , d [3]) ;

do {
d [4] = random () ;
d [4] &= 0 x d d b f f f f f ;
d [4] |= 0x94000000 ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;

c [4] = random () ;
c [4] &= 0 x c b f f f f f f ;
c [4] |= 0x02400000 ;
c [4] ˆ= (c [4] ˆ d [4])&0 x40000 ;
m[14] = r o t r (c [4] , 11) − c [3] − F (d [4] , a [4] , b [3]) ;

/ / Added e x t r a c o n d i t i o n : b4 [32] = c4 [32]
/ / (m i s s i ng i n paper !)
b [4] = random () ;
b [4] &= 0 x d f f b f f f f ;
b [4] |= 0x16000000 ;
b [4] ˆ= (b [4] ˆ c [4])&0 x80000000 ;
m[15] = r o t r (b [4] , 19) − b [3] − F (c [4] , d [4] , a [4]) ;

129

a [5] = random () ;
a [5] &= 0 x f b f f f f f f ;
a [5] |= 0 x92000000 ;
a [5] ˆ= 0x40000&(c [4] ˆ a [5]) ;
m[0] = r o t r (a [5] , 3) − a [4] − G(b [4] , c [4] , d [4]) − K1 ;
a [1] = r o t (a [0] + F (b [0] , c [0] , d [0]) + m[0] , 3) ;
d [1] = random () ;
d [1] &= 0 x f f f f f f b f ;
d [1] ˆ= (d [1] ˆ a [1])&0 x480 ;
c [1] = random () ;
c [1] &= 0 x f f f f f b f f ;
c [1] |= 0xc0 ;
c [1] ˆ= (c [1] ˆ d [1])&0 x02000000 ;
m[4] = r o t r (a [2] , 3) − a [1] − F (b [1] , c [1] , d [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;
m[6] = r o t r (c [2] , 11) − c [1] − F (d [2] , a [2] , b [1]) ;

} whi le (0 x40&(a [1] ˆ b [0])) ;

m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;

d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
/ / For a l l p o s s i b l e i n c o r r e c t b i t s , b1 p o i n t s a t d1
i f ((d [5] ˆ a [5])&0 x40000) {

m[4] += (d [1]&0 x2000) ? 0x2000 :−(0x2000) ;
d [1] ˆ= 0x2000 ;
d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;

}

i f ((d [5] ˆ b [4])&0 x2000000) {
m[4] += (d [1]&0 x100000) ? 0x100000 :−(0x100000) ;
d [1] ˆ= 0x100000 ;
d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;

}

130

i f ((d [5] ˆ b [4])&0 x4000000) {
m[4] += (d [1]&0 x200000) ? 0x200000 :−(0x200000) ;
d [1] ˆ= 0x200000 ;
d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;

}

i f ((d [5] ˆ b [4])&0 x10000000) {
m[4] += (d [1]&0 x800000) ? 0x800000 :−(0x800000) ;
d [1] ˆ= 0x800000 ;
d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;

}

i f ((d [5] ˆ b [4])&0 x80000000) {
m[4] += (d [1]&0 x4000000) ? 0x4000000 :−(0x4000000) ;
d [1] ˆ= 0x4000000 ;
d [5] = r o t (d [4] + G(a [5] , b [4] , c [4]) + m[4] + K1 , 5) ;
m[1] = r o t r (d [1] , 7) − d [0] − F (a [1] , b [0] , c [0]) ;
m[2] = r o t r (c [1] , 11) − c [0] − F (d [1] , a [1] , b [0]) ;
m[3] = r o t r (b [1] , 19) − b [0] − F (c [1] , d [1] , a [1]) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;

}

c [5] = r o t (c [4] + G(d [5] , a [5] , b [4]) + m[8] + K1 , 9) ;
i f ((c [5] ˆ d [5])&0 x2000000) {

m[8] += (d [2]&0 x10000) ? 0x10000 :−0x10000 ;
d [2] ˆ= 0x10000 ;
c [5] = r o t (c [4] + G(d [5] , a [5] , b [4]) + m[8] + K1 , 9) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;
m[6] = r o t r (c [2] , 11) − c [1] − F (d [2] , a [2] , b [1]) ;
m[7] = r o t r (b [2] , 19) − b [1] − F (c [2] , d [2] , a [2]) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;

}

i f ((c [5] ˆ d [5])&0 x4000000) {
m[8] += (d [2]&0 x20000) ? 0x20000 :−0x20000 ;

131

d [2] ˆ= 0x20000 ;
c [5] = r o t (c [4] + G(d [5] , a [5] , b [4]) + m[8] + K1 , 9) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;
m[6] = r o t r (c [2] , 11) − c [1] − F (d [2] , a [2] , b [1]) ;
m[7] = r o t r (b [2] , 19) − b [1] − F (c [2] , d [2] , a [2]) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;

}

/ / dangerous t o c o r r e c t t h i s one . . .
i f ((c [5] ˆ d [5])&0 x10000000) {

con t inue ;
}

i f ((c [5] ˆ d [5])&0 x20000000) {
m[8] += (a [3]&0 x800000) ?−0x100000 : 0x100000 ;
a [3] ˆ= 0x800000 ;
c [5] = r o t (c [4] + G(d [5] , a [5] , b [4]) + m[8] + K1 , 9) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[12] = r o t r (a [4] , 3) − a [3] − F (b [3] , c [3] , d [3]) ;

}

i f ((c [5] ˆ d [5])&0 x80000000) {
m[8] += (d [2]&0 x400000) ? 0x400000 :−0x400000 ;
d [2] ˆ= 0x400000 ;
c [5] = r o t (c [4] + G(d [5] , a [5] , b [4]) + m[8] + K1 , 9) ;
m[5] = r o t r (d [2] , 7) − d [1] − F (a [2] , b [1] , c [1]) ;
m[6] = r o t r (c [2] , 11) − c [1] − F (d [2] , a [2] , b [1]) ;
m[7] = r o t r (b [2] , 19) − b [1] − F (c [2] , d [2] , a [2]) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;

}

b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
/ / No c o n d i t i o n s on b3 , 1 6 , c3 , 16 and d3 , 1 6 .
/ / I . e . f l i p t he b i t t h a t b3 , 16 p o i n t s a t .
i f ((b [5] ˆ c [5])&0 x10000000) {

i f (b [3]&0 x8000) {
m[12] += (c [3]&0 x8000) ? 0x8000 :−0x8000 ;
c [3] ˆ= 0x8000 ;
b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;

132

m[14] = r o t r (c [4] , 11) − c [3] − F (d [4] , a [4] , b [3]) ;
}
e l s e {

m[12] += (d [3]&0 x8000) ? 0x8000 :−0x8000 ;
d [3] ˆ= 0x8000 ;
b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;

}
}

/ / Th is t r i c k on ly works s i n c e c3 , 17 != d3 , 17
i f (! (b [5]&0 x20000000)) {

m[12] += (b [3]&0 x10000) ? 0x10000 :−0x10000 ;
b [3] ˆ= 0x10000 ;
b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;
m[14] = r o t r (c [4] , 11) − c [3] − F (d [4] , a [4] , b [3]) ;
m[15] = r o t r (b [4] , 19) − b [3] − F (c [4] , d [4] , a [4]) ;

}

/ / No c o n d i t i o n s on b3 , 1 9 , c3 , 19 and d3 , 1 9 .
/ / I . e . f l i p t he b i t t h a t b3 , 19 p o i n t s a t .
i f (b [5]&0 x80000000) {

i f (b [3]&0 x40000) {
m[12] += (c [3]&0 x40000) ? 0x40000 :−0x40000 ;
c [3] ˆ= 0x40000 ;
b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;
m[14] = r o t r (c [4] , 11) − c [3] − F (d [4] , a [4] , b [3]) ;

}
e l s e {

m[12] += (d [3]&0 x40000) ? 0x40000 :−0x40000 ;
d [3] ˆ= 0x40000 ;
b [5] = r o t (b [4] + G(c [5] , d [5] , a [5]) + m[12] + K1 , 1 3) ;
m[9] = r o t r (d [3] , 7) − d [2] − F (a [3] , b [2] , c [2]) ;
m[10] = r o t r (c [3] , 11) − c [2] − F (d [3] , a [3] , b [2]) ;
m[11] = r o t r (b [3] , 19) − b [2] − F (c [3] , d [3] , a [3]) ;
m[13] = r o t r (d [4] , 7) − d [3] − F (a [4] , b [3] , c [3]) ;

133

}
}

a [6] = r o t (a [5] + G(b [5] , c [5] , d [5]) + m[1] + K1 , 3) ;
i f (! (a [6]&0 x10000000)) con t inue ;
i f (a [6]&0 x20000000) con t inue ;
i f (! (a [6]&0 x80000000)) con t inue ;

d [6] = r o t (d [5] + G(a [6] , b [5] , c [5]) + m[5] + K1 , 5) ;
i f ((d [6] ˆ b [5])&0 x10000000) con t inue ;

c [6] = r o t (c [5] + G(d [6] , a [6] , b [5]) + m[9] + K1 , 9) ;
i f ((c [6] ˆ d [6])&0 x10000000) con t inue ;
i f (! ((c [6] ˆ d [6])&0 x20000000)) con t inue ;
i f (! ((c [6] ˆ d [6])&0 x80000000)) con t inue ;

b [6] = r o t (b [5] + G(c [6] , d [6] , a [6]) + m[13] + K1 , 1 3) ;
a [7] = r o t (a [6] + G(b [6] , c [6] , d [6]) + m[2] + K1 , 3) ;
d [7] = r o t (d [6] + G(a [7] , b [6] , c [6]) + m[6] + K1 , 5) ;
c [7] = r o t (c [6] + G(d [7] , a [7] , b [6]) + m[10] + K1 , 9) ;
b [7] = r o t (b [6] + G(c [7] , d [7] , a [7]) + m[14] + K1 , 1 3) ;
a [8] = r o t (a [7] + G(b [7] , c [7] , d [7]) + m[3] + K1 , 3) ;
d [8] = r o t (d [7] + G(a [8] , b [7] , c [7]) + m[7] + K1 , 5) ;
c [8] = r o t (c [7] + G(d [8] , a [8] , b [7]) + m[11] + K1 , 9) ;
b [8] = r o t (b [7] + G(c [8] , d [8] , a [8]) + m[15] + K1 , 1 3) ;

a [9] = r o t (a [8] + H(b [8] , c [8] , d [8]) + m[0] + K2 , 3) ;
d [9] = r o t (d [8] + H(a [9] , b [8] , c [8]) + m[8] + K2 , 9) ;
c [9] = r o t (c [8] + H(d [9] , a [9] , b [8]) + m[4] + K2 , 1 1) ;
T = b [8] + H(c [9] , d [9] , a [9]) + m[12] + K2 ;
i f (! (T&0x10000)) con t inue ;
b [9] = r o t (T , 1 5) ;

a [10] = r o t (a [9] + H(b [9] , c [9] , d [9]) + m[2] + K2 , 3) ;
i f ((a [1 0] ˆ b [9])&0 x80000000) con t inue ;

ok = 1 ;
} whi le (! ok) ;

}

i n t main () {
i n t i , e r r o r = 0 ;
double tm ;

134

i n t seed = t ime (0)&0 x f f f f ;

srandom (seed) ;
p r i n t f (” Seed : %d\n” , seed) ;
tm = c u r r e n t t i m e m i c r o s () ;

f o r (i = 0 ; i < N; i ++) {
a [0] = IVA ; b [0] = IVB ; c [0] = IVC ; d [0] = IVD ;
s e a r c h () ;

}
tm = c u r r e n t t i m e m i c r o s ()− tm ;
p r i n t f (”%d c o l l i s i o n (s) found i n %.2 f secs ,\ n” , N, tm / 1 e6) ;
p r i n t f (”%.2 f ms on average\n” , tm / 1 e3 /N) ;
a [0] = IVA ; b [0] = IVB ; c [0] = IVC ; d [0] = IVD ;

p r i n t f (” \nThe l a s t c o l l i s i o n found was :\ n”) ;
f o r (i = 0 ; i < 16 ; i ++) {

p r i n t f (”m[%2d] = 0x%08 l x ;\ n” , i , m[i]) ;
}
p r i n t f (” \ nRep lac ing\n m[1] w i th m[1]+0 x80000000 =0x%08lx ,\ n” ,

m[1]+0 x80000000) ;
p r i n t f (” m[2] w i th m[2]+0 x70000000 =0x%08lx , and\n ” ,

m[2]+0 x70000000) ;
p r i n t f (” m[12] w i th m[12]−0 x10000 =0x%08 l x\n” , m[12]−0 x10000) ;
p r i n t f (” does no t change t he MD4 hash of t h i s message .\ n\n”) ;
re tu rn 0 ;

}

135

Appendix E

The individual steps of MD4

For convenience, the 48 individual steps of MD4 are written out below. The nota-
tion is the same as in Chapter 3.

Step no. Step operation

0 Q1← (F(Q0,Q−1,Q−2)+Q−3+m0)
≪3

1 Q2← (F(Q1,Q0,Q−1)+Q−2+m1)
≪7

2 Q3← (F(Q2,Q1,Q0)+Q−1+m2)
≪11

3 Q4← (F(Q3,Q2,Q1)+Q0+m3)
≪19

4 Q5← (F(Q4,Q3,Q2)+Q1+m4)
≪3

5 Q6← (F(Q5,Q4,Q3)+Q2+m5)
≪7

6 Q7← (F(Q6,Q5,Q4)+Q3+m6)
≪11

7 Q8← (F(Q7,Q6,Q5)+Q4+m7)
≪19

8 Q9← (F(Q8,Q7,Q6)+Q5+m8)
≪3

9 Q10← (F(Q9,Q8,Q7)+Q6+m9)
≪7

10 Q11← (F(Q10,Q9,Q8)+Q7+m10)
≪11

11 Q12← (F(Q11,Q10,Q9)+Q8+m11)
≪19

12 Q13← (F(Q12,Q11,Q10)+Q9+m12)
≪3

13 Q14← (F(Q13,Q12,Q11)+Q10+m13)
≪7

14 Q15← (F(Q14,Q13,Q12)+Q11+m14)
≪11

15 Q16← (F(Q15,Q14,Q13)+Q12+m15)
≪19

16 Q17← (G(Q16,Q15,Q14)+Q13+k1 +m0)
≪3

17 Q18← (G(Q17,Q16,Q15)+Q14+k1 +m4)
≪5

18 Q19← (G(Q18,Q17,Q16)+Q15+k1 +m8)
≪9

19 Q20← (G(Q19,Q18,Q17)+Q16+k1 +m12)
≪13

20 Q21← (G(Q20,Q19,Q18)+Q17+k1 +m1)
≪3

21 Q22← (G(Q21,Q20,Q19)+Q18+k1 +m5)
≪5

22 Q23← (G(Q22,Q21,Q20)+Q19+k1 +m9)
≪9

23 Q24← (G(Q23,Q22,Q21)+Q20+k1 +m13)
≪13

24 Q25← (G(Q24,Q23,Q22)+Q21+k1 +m2)
≪3

25 Q26← (G(Q25,Q24,Q23)+Q22+k1 +m6)
≪5

26 Q27← (G(Q26,Q25,Q24)+Q23+k1 +m10)
≪9

136

27 Q28← (G(Q27,Q26,Q25)+Q24+k1+m14)
≪13

28 Q29← (G(Q28,Q27,Q26)+Q25+k1+m3)
≪3

29 Q30← (G(Q29,Q28,Q27)+Q26+k1+m7)
≪5

30 Q31← (G(Q30,Q29,Q28)+Q27+k1+m11)
≪9

31 Q32← (G(Q31,Q30,Q29)+Q28+k1+m15)
≪13

32 Q33← (H(Q32,Q31,Q30)+Q29+k2 +m0)
≪3

33 Q34← (H(Q33,Q32,Q31)+Q30+k2 +m8)
≪9

34 Q35← (H(Q34,Q33,Q32)+Q31+k2 +m4)
≪11

35 Q36← (H(Q35,Q34,Q33)+Q32+k2 +m12)
≪15

36 Q37← (H(Q36,Q35,Q34)+Q33+k2 +m2)
≪3

37 Q38← (H(Q37,Q36,Q35)+Q34+k2 +m10)
≪9

38 Q39← (H(Q38,Q37,Q36)+Q35+k2 +m6)
≪11

39 Q40← (H(Q39,Q38,Q37)+Q36+k2 +m14)
≪15

40 Q41← (H(Q40,Q39,Q38)+Q37+k2 +m1)
≪3

41 Q42← (H(Q41,Q40,Q39)+Q38+k2 +m9)
≪9

42 Q43← (H(Q42,Q41,Q40)+Q39+k2 +m5)
≪11

43 Q44← (H(Q43,Q42,Q41)+Q40+k2 +m13)
≪15

44 Q45← (H(Q44,Q43,Q42)+Q41+k2 +m3)
≪3

45 Q46← (H(Q45,Q44,Q43)+Q42+k2 +m11)
≪9

46 Q47← (H(Q46,Q45,Q44)+Q43+k2 +m7)
≪11

47 Q48← (H(Q47,Q46,Q45)+Q44+k2 +m15)
≪15

137

Bibliography

[1] E. Biham. Recent Advances in Hash Functions: The Way to
Go. Presentation at the Hash Functions Workshop, Krakow, June
2005. Available athttp://www.cs.technion.ac.il/∼biham/Reports/
Slides/hash-func-krakow-2005.ps.gz.

[2] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Colli-
sions of SHA-0 and Reduced SHA-1. In Cramer [8], pages 36–57.

[3] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In A. Menezes and S. A. Vanstone, editors,CRYPTO, volume 537 of
Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[4] D. Boneh and M. K. Franklin. Efficient Generation of Shared RSA Keys
(Extended Abstract). In B. S. K. Jr., editor,CRYPTO, volume 1294 ofLecture
Notes in Computer Science, pages 425–439. Springer, 1997.

[5] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr., C. H. W.
Meyer, J. Oseas, S. Pilpel, and M. Schilling. Data authentication using modi-
fication detection codes based on a public one-way encryption function. U.S.
Patent # 4,908,861, March 1990.

[6] F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk,
editor,CRYPTO, volume 1462 ofLecture Notes in Computer Science, pages
56–71. Springer, 1998.

[7] S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an Efficient and Prov-
able Collision Resistant Hash Function. Cryptology ePrintArchive, Report
2005/193, 2005.http://eprint.iacr.org/.

[8] R. Cramer, editor.Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications ofCryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494
of Lecture Notes in Computer Science. Springer, 2005.

[9] I. Damgård. A Design Principle for Hash Functions. In G.Brassard, editor,
CRYPTO, volume 435 ofLecture Notes in Computer Science, pages 416–427.
Springer, 1989.

138

[10] M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,
Ruhr-Universität Bochum, June 2005.

[11] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, November 1976.

[12] H. Dobbertin. Cryptanalysis of MD4.Journal of Cryptology, 11(4):253–271,
1998.

[13] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting. Improved Cryptanalysis of Rijndael. In B. Schneier, editor,Fast
Software Encryption, volume 1978 ofLecture Notes in Computer Science,
pages 213–230. Springer, 2000.

[14] FIPS 46, Data Encryption Standard. Federal Information Processing Stan-
dards Publication 46, U.S. Department of Commerce/National Bureau of
Standards, National Technical Information Service, Springfield, Virginia,
January 1977. Revised as FIPS 46-1 (1988) and FIPS 46-2 (1993).

[15] FIPS 180, Secure Hash Standard. Federal Information Processing Standards
Publication 180, U.S. Department of Commerce/NIST, National Technical
Information Service, Springfield, Virginia, May 1993.

[16] FIPS 180-1, Secure Hash Standard. Federal InformationProcessing Stan-
dards Publication 180-1, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, Virginia, April 1995. Supersedes
FIPS 180.

[17] FIPS 180-2, Secure Hash Standard. Federal InformationProcessing Stan-
dards Publication 180-2, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, Virginia, August 2002. Super-
sedes FIPS 180 and FIPS 180-1.

[18] FIPS 186, Digital Signature Standard. Federal Information Processing Stan-
dards Publication 186, U.S. Department of Commerce/NIST, National Tech-
nical Information Service, Springfield, Virginia, May 1994. Revised as FIPS
186-1 (1998) and FIPS 186-2 (2000).

[19] FIPS 197, Advanced Encryption Standard (AES). FederalInformation Pro-
cessing Standards Publication 197, U.S. Department of Commerce/NIST, Na-
tional Technical Information Service, Springfield, Virginia, November 2001.

[20] TheHashcashwebsite,http://www.hashcash.org/.

[21] P. Hawkes, M. Paddon, and G. G. Rose. Musings on the Wang et al.
MD5 Collision. Cryptology ePrint Archive, Report 2004/264, 2004. http:
//eprint.iacr.org/.

139

[22] W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of Iterated Hash
Functions Based on Block Ciphers. In Stinson [40], pages 379–390.

[23] A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In M. K. Franklin, editor,CRYPTO, volume 3152 ofLecture
Notes in Computer Science, pages 306–316. Springer, 2004.

[24] J. Kelsey and B. Schneier. Second Preimages onn-bit Hash Functions for
Much Less than 2n Work. In Cramer [8], pages 474–490.

[25] V. Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message
Modifications. Cryptology ePrint Archive, Report 2005/102, 2005. http:
//eprint.iacr.org/.

[26] L. R. Knudsen. SMASH – A Cryptographic Hash Function. InH. Gilbert and
H. Handschuh, editors,Fast Software Encryption, volume 3557 ofLecture
Notes in Computer Science, pages 228–242. Springer, 2005.

[27] L. R. Knudsen, X. Lai, and B. Preneel. Attacks on Fast Double Block Length
Hash Functions.Journal of Cryptology, 11(1):59–72, 1998.

[28] L. R. Knudsen and B. Preneel. Construction of Secure andFast Hash Func-
tions Using Nonbinary Error-Correcting Codes.IEEE Transactions on Infor-
mation Theory, 48(9):2524–2539, September 2002.

[29] S. Lucks. Design Principles for Iterated Hash Functions. Cryptology ePrint
Archive, Report 2004/253, 2004.http://eprint.iacr.org/.

[30] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of Applied
Cryptography. CRC Press, 1997.

[31] R. C. Merkle. A Fast Software One-Way Hash Function.Journal of Cryptol-
ogy, 3(1):43–58, 1990.

[32] C. H. Meyer and M. Schilling. Secure program load with Manipula-
tion Detection Code. InProceedings of the 6th Worldwide Congress on
Computer and Communications Security and Protection (SECURICOM’88),
pages 111–130, 1988.

[33] N. Pramstaller, C. Rechberger, and V. Rijmen. SmashingSMASH. Cryptol-
ogy ePrint Archive, Report 2005/081, 2005.http://eprint.iacr.org/.

[34] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, January 1993.

[35] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Stinson [40], pages 368–378.

140

[36] RFC 1186, The MD4 Message Digest Algorithm. Internet Request for Com-
ments 1186, R. Rivest, October 1990.

[37] RFC 1319, The MD2 Message-Digest Algorithm. Internet Request for Com-
ments 1319, B. Kaliski, April 1992.

[38] RFC 1321, The MD5 Message-Digest Algorithm. Internet Request for Com-
ments 1321, R. Rivest, April 1992.

[39] R. L. Rivest. Abelian square-free dithering for iterated hash func-
tions. Available at http://theory.lcs.mit.edu/∼rivest/
Rivest-AbelianSquareFreeDitheringForIteratedHashFunctions.
pdf, August 2005.

[40] D. R. Stinson, editor.Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 22-26, 1993, Proceedings, volume 773 ofLecture Notes in Computer
Science. Springer, 1994.

[41] D. R. Stinson.Cryptography: Theory and Practice. CRC Press, first edition,
1995.

[42] D. R. Stinson.Cryptography: Theory and Practice. Chapman & Hall/CRC,
second edition, 2002.

[43] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In Cramer [8], pages 1–18.

[44] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. To
appear.

[45] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In
Cramer [8], pages 19–35.

141

