S@REN STEFFEN THOMSEN / 001856

CRYPTOGRAPHIC HASH FUNCT IONS
CRYPTOGRAPH1C HASH FUNCT10NS
C2YP70624PH1C H45H FUNC710N>5

Department of Mathematics
Technical University of Denmark
November 14, 2005

Hash, x. There is no definition for
this word—nobody knows what
hash is.

Ambrose Bierce, The Devil’s Dictionary, 1906

Contents

1 Introduction 1
1.1 Hashfunctionsinshort 1
1.2 Aboutthisreport 1
1.3 Conventions 3

2 Hash functions 5
2.1 Properties e 5
2.2 Thetypical construction 6
2.3 Applications of hash functions 7

2.3.1 Digitalsignatures 0o 7
2.3.2 Commitmentschemes 8
2.3.3 Password protection schemes 8
2.3.4 Dataintegrity 8
2.3.5 Proof-of-work systems, 9
2.4 A brief history of hash functions 9

3 Dobbertin’s attack on MD4 11
3.1 Descriptionof MD4 o 11
3.2 Theattack 12

3.21 Reachingthegoal. 12
3.2.2 Inner almost-collision 15
3.2.3 Rightinitialvalue 17
3.3 Thealgorithm 19
34 Summary ... e 20

4 Wang's attack on MD5 21
4.1 Descriptionof MD5 oo 21
4.2 Introductiontotheattack 22
43 Theidea e 23
44 Details. 24

4.4.1 Originoftheconditions 24
4.4.2 Message modification 26
4.4.3 Propagatingcarries 28

4.5 Detailed examination of the second iteration 30
45.1 Conditionsonth&-values. 30
452 Conditionsonstepvariables 34

4.6 ModificationsbyKlima 46
46.1 Anoverview 47
46.2 Details a7

4.7 Possible additional improvements 7 4

4.8 Animplementation 49

4.9 Constructing meaningful collisions 50

AES-based hash functions 52

5.1 Block cipher-based hash functions in general 52
5.1.1 Fastdouble-length schemes 53
512 DESandMDC-2. 54
5.1.3 UsSINgAES 54
5.1.4 Related-key attackon Aksg 55

5.2 Extending AES to support 256-bitblocks 55

5.3 Alternative constructions 56
5.3.1 Thelucksscheme 56
5.3.2 The Knudsen-Preneel scheme 56

54 Summary e e 63

General results on the Merkle-Damgurd construction 65

6.1 The motivation for using MD-strengthening 65

6.2 Joux’s multicollisions L 66

6.3 Kelsey/Schneiers®preimage attack 67
6.3.1 Expandablemessages. 67
6.3.2 Findinga®preimage 68

Hash functions based on modular arithmetic 69

7.1 Asimple hashfunction 69

7.2 The Chaum-van Heijst-Pfitzmann hash function 70

7.3 MASH-landMASH-2, 71

The SvASH hash function 73

8.1 Thedesignof@ASH, 73
8.1.1 Theconstruction 73
8.1.2 Thecompressionfunction 74

8.2 Analysis e 75
8.2.1 The forward prediction property 76
8.2.2 Inverting the compression function. 76
8.2.3 Complexity of (29 preimage attacks 76

8.3 Anattack 76
831 Theidea. 76

w

m O O

8.3.2 Breakingavariant
8.3.3 Breaking®ASH
8.4 Possible improvementsto&sSH
8.4.1 Using the secure compression function for eyesteps .
8.4.2 Using differenff functionsineachstep
8.4.3 Further dependency onthemessage
8.4.4 Using more than one fixed, bijective mapping

Future directions

9.1 Abriefdiscussiononstrategy
9.2 Merkle-Damgard or not Merkle-Damgard?
9.3 Adiscussion onefficiency,
9.4 The NIST Cryptographic Hash Workshop
9.5 Summary

Conditions on step variables in the Wang MD5 attack
Al Firstiteration
A.2 Seconditeration

An implementation of the Dobbertin MD4 attack
An implementation of the Wang MD5 attack
An implementation of the Wang MD4 attack

The individual steps of MD4

104

127

136

Chapter 1

Introduction

In this first chapter, cryptographic hash functions are \zmgfly introduced, and a
short summary of each of the following chapters is givenalfynthe conventions
used throughout the report are described.

1.1 Hash functions in short

Cryptographic hash functions (or simghash functionsmap strings of arbitrary
length to strings of a fixed length It should be easy to compute the output string,
which is called thénash valuethehash resultor simply thehash The hash value
may also be thought of as tliegerprint of some message. There afedifferent
hash values for a given hash function, and the idea is thairtiteability that some
message hashes to a given hash value' s Hence, the hash should truly be a
fingerprint of the message, and although it is clear thatraéweessages hash to
the same value, it should be computationally infeasiblert fivo such messages
in practice.

To be specific, one often considers three different kindatt#ckson hash
functions (for any attack it is assumed that the attackeromempute the hash of
any message). These can be stated informally as follows:

The collision attack. Find two messages that hash to the same value
The preimage attack. Find a message that hashes to a given value

The 2" preimage attack. Given a message, find a different message which hashes
to the same value

A more thorough introduction to hash functions is given irater 2.

1.2 About this report

The area of cryptographic hash functions is attractingtgttantion in the crypto-
graphic community at the moment. Most importantly this #&ged interest is due

to a fairly large number of interesting and disturbing &idin attacks on hash func-
tions still widely in use. Moreover, many hash functiondl sbnsidered secure are
based on hash functions that have been broken.

This document describes various results on hash functidhsse include at-
tacks, proofs of security, and suggestions to new hashifurecbased on existing
material. First, in Chapter 2, an introduction to hash fioms, including some
applications and the history of hash functions, is given.

In Chapter 3 the collision attack [12] on MD4 by Hans Dobleisidescribed.
This attack excited greater interest in cryptanalysis ahhfanctions, and mod-
ifications of the technique used by Dobbertin were appliedtiacks on SHA-0
[6, 2], MD5 [45], SHA-1 [2, 44] etc. An implementation of thattack can be
found in Appendix B. An implementation using a differentheirjue, developed
by Xiaoyun Wang et al. [43], has been implemented for conspar{see Appendix
D).

This brings us to Chapter 4, which contains the descripiineiuding the au-
thor's own moadifications, improvements and implementatiba collision attack
on MD5 developed by Xiaoyun Wang et al. [45] and modified bysthail Klima
[25]. This attack makes use of a differential pattern digced by Xiaoyun Wang.
She also discovered good differential patterns of otheh fiaisctions like MDA4,
RIPEMD etc., and thus she has helped reduce the complexiydifg collisions
for a number of hash functions. Currently, she is workingetduce the complexity
of finding collisions for SHA-1 to a practically applicablevkel. Her latest attack
[44] has complexity 2.

Some suggestions for using AES or AES components to form @reédash
function are presented in Chapter 5. These include a suggdsised on error-
correcting codes. It turns out to be difficult to construdtcegnt and convenient
AES-based hash functions, but in the light of recent attawksledicated hash
functions, it might still be worth considering such alteives.

In Chapter 6, some general results on the Merkle-Damgandtaection are
presented. First, some motivation for using the Merkle-Dard construction is
given, and after that some generic attacks on the consiruate described.

Chapter 7 presents a number of hash functions that are baseddular arith-
metic. Hash functions of this type have some advantages te ommmon con-
structions, although they are fairly inefficient.

An attack on a new hash function proposal{A%H, is described in Chapter 8,
and some proposals (in part developed by the author) to veprents of IAsH
that hopefully render it secure, are presented.

The final chapter is a discussion on actions to be taken assegoence of
recent attacks, and possible strategies for selecting fumsitions to be used in
many years to come. This discussion includes some poims thhe Cryptograhic
Hash Workshop hosted by NIST on October 31 to November 1,.2005

The reader is assumed to possess some prior knowledge tbgrgphic tools
such as number theory, probability theory, modular aritiievetc. Prior knowledge
of specific hash function designs is not required. [8e@: / / www. st udent . dt u.

2

dk/ ~s001856/ exan for links to this report, program code and other resources.

1.3 Conventions

In this document avord is a 32-bit entity. Arithmetic operations are performed
modulo 22 unless explicitly stated otherwise. Numbering generatyts from 0,
so for instance bit number O of a word is the least significaintnbessage block
number O is the first message block etc. Numbers have a spitiserhen they are
written in hexadecimal form, and a subsciipihen written in binary form, unless
it is clear from the context which form is being used. Binandaexadecimal
numbers are always written imi s font.

Some symbols and operators and their meanings in this doatexgiven in
Table 1.1.

Notation

Meaning

S
A
V

=X
X XS

amodn

adivn
Mo|[my

0s, 1%

OX[§

The exclusive-or (XOR) operator.
The logic AND operator.

The logic (inclusive) OR operator.
The bitwise complement of.

X rotated left cyclically bys positions.

The least non-negative integersuch thata = kn+r for some
integerk.

The number of times that dividesa (i.e. the value ok above).
The concatenation afy andmy.

The bit length ofm.

The concatenation &f0-bits, ors 1-bits, respectively.

ais assigned the value bf

a must equal pmeaning that it is a requirement tleaéqualsh.
Bit no. sof X.

The set of bitstot of X, t > s.

The modular difference betweehandX’, i.e. X’ — X.

The XOR difference betweex andX’, i.e. X & X'.

Alist (sit,...) of the bit positions at whiclX andX’ differ. Each
position is preceded by (may be omitted) or-, where+sindi-
cates thaX[s] = 0 andX'[s| = 1, and—s indicates thai[g = 1
andX'[s] = 0. If sis not present in the list, thex[s = X'[g].

The signed differenc¥’[s] — X]s].

Table 1.1: The meaning of symbols and operators used ingpit.

Chapter 2

Hash functions

In this chapter some properties of hash functions are pregeém more detail than
the short description in Chapter 1. Some applications df lfiasctions are men-
tioned, and a short history of hash functions is presentéeifinal section.

2.1 Properties

As mentioned in the introduction, there exist three basicl&iof attacks on hash
functions. One could also define some properties of hashifurscdepending on
their resistance to these attacks. Hence, we might defirfeltbering semi-formal
properties of a hash functidn : {0,1}* — {0,1}"™

Preimage resistance.H is said to be preimage resistant if given a vaiue{0,1}"
it is infeasible to find a messagesuch thaH (m) = h.

2"d preimage resistance.H is said to be 29 preimage resistant if given a message
mit is infeasible to findn' # msuch thaH (M) = H(m).

Collision resistance. H is said to be collision resistant if it is infeasible to findotw
different message® andm’ such thatH (m) = H(n).

Variants of the attacks exist as well. Using the brute-farethod, the com-
plexity of a collision attack is 2 (this attack is also called tHgirthday attacl,
and the complexity of a {%) preimage attack is™ Most attacks in practice are
collision attacks, since these are usually easier to mdwant preimage attacks.
Note that a hash function which is collision resistant i® &% preimage resistant,
since a 29 preimage is also a collision. However, it is not implied imgeal that a
collision resistant hash function is preimage resistant.

A hash function often makes use of a fixedial value. Attacks that require
alteration of this fixed value are calléee-startor pseudo-attacks.

5

2.2 The typical construction

Usually a message jgaddedbefore being processed by the hash function. The
padding makes it possible to split the message limbaksof equal sizgl. Most
hash functions use the so-called Merkle-Damgard cornstrnycsee Construction 1
and Figure 2.1.

Construction 1 (The Merkle-Damgard constructian¥he padded message is
split intot blocksmy, ..., m_; of eachy bits. Lethy = v be an initialn-bit value
defined by the hash function, and et {0,1}" x {0,1}* — {0,1}" be acompres-
sion function Define

hiy1=f(h,m) for0O<i<t
The hash ofnis thenH (m) = h.

ho =V my my he_1 m_1
hy hy
H(m) = h
Figure 2.1: The Merkle-Damgard constructiom = mp||my||---||m_1 is the message

including paddingy is an initial value, andH (m) is the final hash value.

The intermediate valudsy, ..., h_1 are calledchaining valuesor chaining vari-
ables Padding is usually performed as in Rule 1.

Rule 1 (Padding rule) Let m be the message to be paddéd| = 1. Let p be
the block size of the hash function. Append-bit to m. Then appendv 0-bits,
and finally (theMD-strengtheninjyappend ai-bit representation of. u is a fixed
number depending on the hash function, and the least non-negative integer
such that the length in bits of the padded message is a neudifypl.

Note that some hash functions (such as SHA-1) require that2", while
others (e.g. MD5) use the convention that thieast significant bits of are used
in the padding.

When MD-strengthening is used in the Merkle-Damgard cansbn it is pos-
sible to prove (the proof is given in Section 6.1) that if tleenpression function is
collision resistant, then so is the entire hash functiomedfvere to remove the MD-
strengthening part of Rule 1 (and no other changes were rodte process), then
we would not be able to make this proof. For instancetlée the hash functiorf,
the compression function andhe initial value, assume that(mg||my) = H(my)

6

(i.e.m||my andmy collide underH), and thatf (mp,v) = v. Then for the two mes-
sages, the input to the compression function when proagssins identical, and
so there is no collision for the compression function.

The compression function usually contains a number of stepere in each
step a part of the message block and the compression staisest¢o manipulate
the compression state. At the end, when the whole messagk Ihis been in-
cluded at least once in the computations, the initial setdten added to the final
state to give the output of the compression function. Withbis feed forward
the compression function would be easily invertible, whiabuld make free-start
preimages easy to find. Invertible compression functioss tdcilitate true (24
preimage attacks of lower complexity than using the bruteefanethod, as de-
scribed in Section 8.2.3.

2.3 Applications of hash functions

Hash functions are used in a number of cryptographic caomtestch as digital
signatures, password protection schemes and data igtegrd keyed versions of
hash functions (which are not covered here) are used as geeas#hentication
codes. Hash functions could also be used as pseudo-randoipengenerators,
but only in such cases where the randomness of the hashdnriiis been suf-
ficiently examined and deemed appropriate for this purp86e §9.2.6]. In fact,
FIPS 186 [18] defines an approved pseudo-random numberajendrased on
SHA-1 for use in generating secret parameters for the Difitmature Algorithm,
also defined in [18].

Hash functions are also used in non-cryptographic confexktstoring data in
hash tables. The hash functions used for this purpose, leoweannot be com-
pared with cryptographic hash functions except that bqtlesyare mappings from
a large domain to a smaller range.

Some common applications of hash functions are now destiikeelittle more
detail, along with some reasoning as to why the hash funsiimuld be resistant
against the three kinds of attacks mentioned.

2.3.1 Digital signatures

A digital signature is used for a number of purposes, inclgdi

ensuring authenticity the recipient of a digitally signed message may be confi-

dent that the sender is the person he claims to be.

preventing repudiation the signer of a message cannot subsequently claim that

he did not sign the message.

These properties only hold when the digital signature isisec
For efficiency reasons, a message is usually hashed befosighed. Hashing
is usually much faster than signing and verifying, and hemge is saved if a short

7

hash is signed instead of the entire message. This alsc\aedthorter signature.
A weakness of the hash function, however, could be explditedn adversary to
forge a digital signature. For instance, if the adversaghbie to produce meaning-
ful collisions of the hash function, he may get some persaign a message and
then subsequently claim that the signer in fact signed anatlessage.

2.3.2 Commitment schemes

Two people who would like to agree on some valua a fashion so that one per-
son cannot make his choice based on the choice of the ottemenay use hash
functions for this purpose in the following way: Person Aides on a valu&/

of V, appends aonce N, which is some random value that is only used once, to
Va, and then computes the hash\af|Na. The nonce is appended because often
the number of possible values éfis so small that an adversary can compute the
hash of all possibilities 0. Appending a nonce of a reasonable length prevents
this. Person A then sends this hash to B, who decides on hivalwaVg without
being able to see what A chose. He may then compi(é;||Ng), whereNg is

B’s own nonce, and send this hash to A. Now A and B can exchaogees and
choices oV, and verify that the other person in fact did choose the vafiethat

he claimed.

Of course, one may come up with a number of other contexts ichnihis re-
quired that some party (or parties) commits to a certaingpadnformation prior

to revealing what that information is.

2.3.3 Password protection schemes

For obvious reasons, passwords should never be storedimteid. Instead, the
hash of the password may be stored. When a password needs¢oified, the

hash of the password is compared to the stored hash, andifrtaeh there is a
very good probability that the password is correct. Haslctions used for this
purpose must be preimage resistant, since it should notsmtpe to compute the
actual password from its hash.

2.3.4 Data integrity

When a message needs to be stored for a long time, and it igtempadhat any
alterations of the message can be detected, one may cormputiagh of the mes-
sage and store this value safely instead of the entire mes3dg integrity of the
message can be checked at a later time by computing the hash agd compar-
ing this value with the stored hash. This way the problem efieng data integrity
is reduced to the shorter hash instead of the entire message.

Hash functions used for this purpose should be at |€¥gpr2image resistant,
since otherwise an adversary may replace the original messith a 29 preimage,
and this forgery would not be detected using the technigsertteed. In fact, the

8

hash function should even be collision resistant to pretiemtoriginator of the
message from playing the part of the adversary in the forgestydescribed.

2.3.5 Proof-of-work systems

An attempt to fight spam is the so-called proof-of-work systéashcasH20]. In
this scheme, the sender of an e-mail must prove that he hfasrmped an amount of
work in the process of sending the e-mail. To prove this, @mger must compose
a certain header for the email, which is a string consistinthe sender’s e-mail
address, the current date and a random number such that thel3tdsh of the
entire header has all zeroes as the firbits. This requires '2evaluations of the
SHA-1 compression function on the average (hérées “currently” 19, but this
could increase as computing power increases).

The recipient can quite easily check that the header hasdmeposed in the cor-
rect manner. The theory behind this system is that spamntersubmit thousands
of e-mails will be severely troubled by having to constrin header.

2.4 A brief history of hash functions

The need for cryptographic hash functions first arose inesastof digital au-
thentication such as password protection. The term uselfsin functions in the
beginning wa®ne-way functionsndicating that these functions should be preim-
age resistant. Whitfield Diffie and Martin E. Hellman were finst [11] to define
such one-way functions. The ideas &f preimage and collision resistance were
developed in the following years, but it took a while for fahuefinitions to ap-
pear.

Diffie and Hellman also showed [11] how a secure cryptosysteatd be used
to create a hash function. Around 1980 the first concretensebethe Davies-
Meyer and the Matyas-Meyer-Oseas schemes, appeared réadalat that time
these schemes used in conjunction with DE8encryption algorithm of the time,
did not provide sufficient security.

It was not until 1988 that an applicable construction baseDBS, the MDC-2
construction, was developed [32, 5]. About the same time abthe first dedicated
hash functions, MD2 [37], was developed by Ronald Rivest. 2Wi&as superseded
by MD4 [36], which in turn was replaced (1991) by MD5 [38], thirst hash func-
tion to be in widespread use. In 1993, the National Institft&tandards and
Technology (NIST) approved [15] the SHA hash function, ahhfasiction built
upon the ideas of MD4 and later to become known as SHA-0. SHva®with-
drawn by the NSA shortly after its publication, and in 199%és superseded by
SHA-1 [16], which uses the same compression function as ®HBut a slightly
different message expansion. All the mentioned dedicadsth functions are now
considered broken. In 2001, NIST published (in the drafsieer of [17]) a new
set of hash functions including SHA-256, which is curremNis T's preferred hash

9

MD2, MDC-2

HAVAL, RIPEMD

SHA-1, MASH-1
RIPEMD-160, TGER

MD5 WHIRLPOOL SMASH
MD4 | |SHA-0 SHA-256
| | |
[ee) O 4 AN M n O O - Kg]
[ee] [e)ENe)ENe)INe)] o O o O o
()} [e)ENe)ENe) o)) o O o O o
— L e B o B o | — AN N AN

Figure 2.2: The “year of birth” of a number of hash functions

function.

The last couple of years have seen an increase in the amountpdénalytic
work on hash functions, and especially the work of Xiaoyum@vet al. [43, 44, 45]
has increased the focus on hash functions in the cryptograpimmunity. Since
the attacks of Wang are all directed towards hash functibiseoso-called MD4
family, and since these attacks seem fairly generic, thetogyaphic community is
currently facing the dilemma of whether to keep improvinggmng hash functions
of this family, or to abandon the MD4 family and start consig alternatives
constructions only. The WIRLPOOL hash function, which is similar to AES and
cannot be considered MD4-like, was developed in 2000 anddiaget been bro-
ken. A new proposal of the year 2005y 8sH, is based on completely different
principles to those of the MD4 family. However, it was brok&mortly after its
publication.

Figure 2.2 shows the years of birth of all the hash functioesitioned, and
a few others which have gained some attention. The only ohésese which
are still considered secure and applicable are RIPEMD-$$0A-256, TIGER,
and WHIRLPOOL. The first two are MD4-like. TGER is optimised for the 64-bit
architecture.

10

Chapter 3

Dobbertin’s attack on MD4

MD4 [36] is a hash function introduced in 1990 by Ronald Riveme of the
creators of the RSA cryptosystem. It was superseded thmwiolgy year by MD5.
This attack was developed by Hans Dobbertin and publish2lirf11998.

3.1 Description of MD4

MD4 uses Construction 1, and Rule 1 for padding (witk 64). The sizeu of
each message block is 512 bits, and the output of the conipmessiction and the
full hash function is 128 bits. The initial value of MD4 is
Q.3 = 67452301
Q> = 10325476p
Q.1 98badcf e
Qo = efcdab89y

The compression function consists of 48 steps, and it woski®lbows. Let
three functions be defined:
fo(X,Y,Z2) =F(X,Y,Z) = (XAY)V(=XAZ)
f1(X,Y,Z2) =G(X,Y,Z) = (XAY)V(XAZ)V(YAZ)
f2(X,Y,Z2) =H(X,Y,Z) = XaYaZz
These are also referred toi§snaj, andxor respectively.
Define three constants,
kb = 0
ki = 5a827999
k., = 6ed9ebalp
The messagmis split into 16 wordsry, ..., mys. LetW be the message word

used in step. ThenWw = my, whereu is found in the table below for increasing
(read from left to right, then down).

11

012 3 4 5 6 7 8 9 10 11 12 13 14 15
0O 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0O 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
Each step also contains a rotation val8ewhich can be derived from the table
below.
tdiv1le

S 0 1 2

< 0] 3 3 3

817 5 9

€ 2| 11 9 11

T 3|19 13 15

r = tdiv16 is theround number, i.e. there are three rounds of 16 steps each. Now
the compression function can be stated as in Algorithm 3nlthik context, the
valuesQ; are referred to as step variables.

Algorithm 3.1 The MD4 compression function
InpUt: (Q—3a Q—27 Q—17 QO) andrrb7 ey M5
for t =0to 47do

Q1 (Fr(Q Qi-1,Q—2) + Qroz+ ke + W) <3 {Here, r =tdiv16}
end for

return (Qas+ Q-3,Qae+ Q-2,Qa7+Q-1,Qus+ Qo)

When reading the attack described in the following, it mah&ieful to consult
Appendix E which is a list of the individual steps of MDA4.

3.2 The attack

This chapter describes a collision attack on all 48 steps BDi4M The messages
that collide are both 512 bits, i.e. one block excluding pagldThe two messages
mandnt are very similar. In factm{ = m; for all 0 <i < 16 excepti = 12, and
rrflz =M+ 1.

3.2.1 Reaching the goal

Working backwards from the end, it is clear that the diffeeibetween the two
inputs being ormmyy, if there is a collision after step 35, there is a collision thee
entire message digest, sintg, is not used as input in steps later than 35. Hence,
our goal is to achieve a collision after step 35. In the follayy step variable€);
are related to message and step variable®; are related to messagé.

In step 35 the step operation is

Qas — (Qs2+H (Qas, Qas, Qaa) + Miz+ ko) <,

12

and hence, sinceY,, = my2+ 1, if we require that);, = Qs — 1 and all other step
variables are equal for the two messages, then we get

Qs = (Qzp+H(QssQa4,Q33) +Myp+ k2)<<<15
= (Qs2— 1+ H(Qss5,Q34,Q33) + Myo+ 14 kp) <
= Qss.

In other words, a collision is achieved®s3, = —1, anddQ; = 0 fori € {33,34,35}.
Moving backwards one step further, in step 34 the step dpert

Qa5 (Qa1+ H(Qsz4, Qs3, Qa2) + My + ko) <L,

Since it is required thaiQzs = 0, butdQsz, = —1 andoQ33 = Q34 = 0, the value
of 8Q31 must be non-zero. The simplest solution is to reqd@g; = 1 and hope
that the difference out of thel function (which is thexor function) is—1. This
happens with a fairly good probability, which is seen frora tbllowing. What is
needed is that

Qu®Q:3® Q3 = (QudQu®Qs)+1lse
Qaa®Qa3® (Q3o+1) = (Qaa® Qa3 Q) +1.

This can be simplified to
Xe(Y+1)=XaY)+1

It is clear that this equation holds if the last (least sigaifit) bit of bothX and

Y is 0. This happens with probabilit{(%)z. However, the equation also holds if
the last two bits off are01, and the last two bits ok are00. This happens with
probability (%)4. This argument can be re-applied for values of the last bi¥saf
011, 0111, etc., which yields an accumulated probability of

§<1>Zi+ LU SPI S
2 264~ 1 264~ 3°
This seems high enough that we can keep the requiredi@nt= 1.

The same calculations will show thatd@s;p; = 6Q»9 = 0, then the probability
of success in each of the steps 32 and 33 will be a%olalnd hence we require
these differences.

FordQ-,g circumstances change as the basic function used in stegn8ixsr,
but rather thenaj function. The step operation of step 31 is

Q32— (Qag+ G(Qs1, Qs0, Qog) + Mys+ k) 2.

Hence, we must find a value d,g such that with a good probabilit$Qz, =
—1. The simplest solution is to require

G(Q317 Q30a Q29) = G(Qél? Qé507 Q/29)7

13

which is equivalent to

G(Qs1,Q30, Q29) = G(Q31+ 1, Q30, Q29)- (3.1)

If this is achieved, then with a very good probabili,s = —2° will work, since
this difference may turn inte-1 by the rotation of 13. In fact, this happens unless
a borrow bit propagates from bit 19 past bit 31, i.e. thereoid 4bit among bits
19-31 of G(Qz1, Q30, Q29) + M5+ kg (see Section 4.4.3 for more on this). The
probability of this happening is only 23,

The probability that (3.1) holds should be evaluated. [f0bitf Q3; is 0, then
adding 1 does not produce a carry, and in this case (3.1) ifdditsO of Qs and
Qo9 are equal, because then those two determine the majorigpémiently of the
third. Similarly, if the last two bits 0fQ3; are01, adding 1 causes both these bits
to flip, and again the equation holdsdky andQ»g agree on the last two bits. This
argument again repeats, and hence the overall probalgtityces to abOL% (same
computation as fobQz1). Hence, it makes sense to requi@,g = —2°.

The requirement 0@Q,7 is chosen in the exact same way to & @ith a
probability of success in step 30 of, again, abé)ut

In step 29 two of the input variables to thej function, Q.g and Q»7, differ.
However, the difference occurs on different bit positioAspositions apart, and
hence it would not be unreasonable to say that these twaodliifes are indepen-
dent — at least for the most significant terms in the calcutadif the probability of
success. Thus, we deduce that the probability of succe$s@dr29 whedQ,s = 0
is (%)2 = % which is probably the best we can hope for, so we keep thisineq
ment.

We can keep working our way back to step 20 following the sanmeiples.
The required differences and the probability of succesg#oh step are shown in
Table 3.1. HereP,g = 1 because in the following we require that the values of the
step variables after step 19 a@missiblei.e. that

G(Q20,Q19, Q18) = G(Qhg, Qhg, Qus). (3.2)

Note that we always introduce a requirementd@)_s in stepi, because&),_s is
the “oldest” step variable being used in that step.

The probability of success through all 16 steps can be coedpan;(%)lg =
2730 but in practice the probability is quite a lot better (ab8uf? according to
[12]).

To see why we cannot go back any further, first observe thainjng word
used in step 19 ign,. The computation taking place is

Q20+ (Qu6+ G(Qug, Qi8, Q17) + Mi2+ ki) <** and (3.3)

13
Qbo (Qls+ G(Quo+ 2%, Qug, Quz) + Miz+ L+ k), (3.4)

and we require thalQ,g = —22°. With a good probability this can be translated
into
Qoo 17— Q<= 212 (3.5)

14

‘Step() 0Qi_3 P Function Inputword‘

19 ?
20 o 1 G my
21 0 3 G Ms
22 2 1 G m
23 -2 1 G M3
24 0 3 G nm
25 0o 3 G ms
26 24 1 G Mo
27 -2 1 G M4
28 0o 3 G m
29 0o 3 G my
30 » 1 G My
31 -2 1 G Mys
32 0o 1 H mo
33 o 1 H mg
34 1 3 H my
3% -1 1 H

Table 3.1: Required differences on the “oldest” step vdembised in each step and the
probabilities of succes®() in steps 20-35.

We have the possibility to manipulad®s only. Hence, to satisfy (3.5) we must
requiredQys = —2'2 and see what the possibility is th@&{ Q9+ 2°,Q1s,Q17) =
G(Q19,Q18,Q17) — 1 so that the other terms in (3.3) and (3.4) even out. This is
clearly impossible, and so there must be some other, “cothpléerence (i.e.
one where more than one bit is s&@Q16, and therefore we shall try to achieve the
required differences on subsequent step variables by wiabwld call “qualified
trial and error”.

3.2.2 Inner almost-collision

We now know what differenc€dQ;7,0Q1s,0Q19,0Q20) to aim for after step 19,
wheremy is used as input word. We call this differenceianer almost-collision
My2 is also used as input word in step 12, and so we shall try to fiiidli values
of the registers before step 12 that cause the right difterexfter step 19.

Sincem = m fori < 12,6Q; = 0 fori < 13. In step 12, the operations taking

15

place are

Qiz — (Qo+F(Qi2,Q11,Q10) + M2)<® and
Qs «— (Qo+F(Qi2,Qu1,Quo) +mip+ 1)<,

Hence, forQ.3 andQ/ 5 we require that

K29 .
le.S _ Q13<<<29 -1

By continuing this way the following requirements are idéed:

13- Qs = 1 (3.6)
/14<<<25 — Q& F(Q13,Q12,Q11) — F(Q13,Q12,Q11) (3.7)
Qs '~ Qs = F(Q4,Q13.Q12) — F(Qua.Q13,Q12) (3.8)
Qi - Que™™® = F(Qi5, Qs Ua) —F(Q15.Qu4, Q) (3.9)
Qiz— Qi3 = G(Q16,Q15,Q14) — G(Qle, Q15 Q1s) (3.10)
Quu—Qua = G(Q17,Q16,Q15) — G(Qu7, Q1 Qi5) (3.11)
10— Quo® = Q5+ G(Qus Q7. Qle) — (3.12)
Q15— G(Q18,Q17, Q16)
Qo= Q™ = Qg+ G(Qhg, Qus, Qur) +1— (3.13)
Q16 — G(Q19,Q18,Q17)
Here, of course,
Qo— Q0 = —-2* and (3.14)
Qo— Qe = 2° (3.15)

as required in the previous section.
Since equations (3.6)-(3.13) have 14 unknowns, we haver@edggf freedom.
From (3.6)-(3.8) we see that good choice€Qgt, Q;; andQ1, are

Qi = -1
Qs = 0
Q2 = 0,

since then (3.6) is satisfied, aidbeing theif function, (3.7) and (3.8) can be
simplified quite a lot to

Qu = QuS<® Qu<® and (3.16)
Qus = Q15<<<21—Q/15<<<21- (3.17)

The requirements (3.11), (3.12) and (3.13) respectivaibearewritten as follows:

16

Quu = Qua—G(Q17,Qi, Qis) + G(Q17,Q16,Q15) (3.18)
Qs = Qis—G(Q1s Q17 Q) + G(Q1s, Q7. Que) + (3.19)

K23 23
Qg7 = Quo™¢

Qs = Qis— G(Qlg, Q18,Q17) + G(Q19,Q18,Qu7) + (3.20)

«19 19
Qb — Q-1

The only two requirements that we have not touched yet al®)and (3.9).
These can be rewritten into

G(Q16,Q15,Q14) —G(Q16,Q15,Q1s) = 1 (3.21)
F(Qis, Q14 0) — F(Qi5,Qua,—1) — Qg+ Q<™ = 0 (3.22)

For future reference |€t denote the left-hand side of (3.22).

Now, we can choos€);, i € {15,...,20}, computeQis, Q}4 Q5 andQjg
from (3.17)-(3.20), and then check that (3.21) and (3.22).htd they do, and if
the solution is admissible (3.2), we have found the desimadri almost-collision.

Assuming that we have done this, if we choasg arbitrarily and compute
Q11 from (3.16), the other input words used in steps 12-19, aaddhuesQq and
Q10 can be computed from the step operations:

M2 — Q- Q16— G(Qu9,Qus, A7) —ka (3.23)
M — Qus<*'—Qu—Qua (3.24)
Mis — Qi< —F(Qi5Qu4 1) (3.25)
my «— Q7%+ 1-G(Qup,Q15Qua) — ke (3.26)
ms — Q8<% — Qusa— G(Q17,Q16.Qus) — ku (3.27)
Mg — Q16%— Q15— G(Qug,Q17,Qu6) — k1 (3.28)
Qo « Qu<®-—my (3.29)
Qo «— —1-Quo—Mmp2 (3.30)

3.2.3 Rightinitial value

All that is left is to find values of the un-assigned input weib that the step
variables into step 12 are right. This can be done detertitiaily by looking at
the assignments that take place in each step. Don’t forgéetrih) my, andmg are
fixed at this point. We can choosa, mp, mz andms randomly and then compute
Q,0<i<6.

The value 0iQg that we are aiming for is computed in step 8 as

Qo — (Qs+F(Qs,Q7,Qs) + mg) <. (3.31)

To make things simple, we fi®@g at—1, so

F(Qs,Q7,Qs) = Q7,

17

and then we fixQy7:
Q7 =Qo<*°— Qs —mg

—which causes (3.31) to be satisfied.
Now, we must make sure th&l; and Qg are assigned these values. This is
done by settingng andmy correctly. The operations performed in steps 6 and 7 are

Q7 N (Q3 +F (Q67 Q57 Q4) + n16)<<<11 and
Qs — (Q4+F(Qr,Qs,Qs)+my) <.

HenceQy has the right value if

Mg < (Qo<*° — Qs — mg) <*! — Q3 — F(Qg,Qs5, Qu), (3.32)

andQg gets the correct value if

my «— —1—Q4—F(Q7,Qs,Qx5). (3.33)

To make sure thaDqg is correct, we observe that in step 9,

Q10— (Qs+ F(Qo,Qs,Q7) +mo) <.

This means that we must firg as follows:
rng — Q10<<<25 - Q6 - F (an _17 Q7) (334)
To obtain the corredD; 1, we look at step 10:

Q11+ (Q7 4+ F(Q10,Qo, Qg) -+ Myo) <.

Hence,m;p must be assigned the value

Mo < Q11*' — Q7 — F(Q10,Qo, —1). (3.39)

Finally, we make sure th&;, is correct. In step 11,

Qu2 + (—1+F(Qu1,Q10, Qo) + my1) <,

and therefore form;1 we get

M1 < Q123+ 1— F(Q11,Q10, Qo). (3.36)

We are now ready to state the actual algorithm that findsstmtis for the MD4
hash function.

18

3.3 The algorithm

Dobbertin’s collision attack can be stated as in Algorithr®. 3Here,c() is the
number of times that 16 divides whered is the 32-bit word defined in Section
3.2.2 (henceg({) =8={=0).

Note that in practice it is a good idea to introduce counteas €nsure that a
bad set of step variables chosen in the beginning does needhe program to
deadlock. For instance, one may introduce a criteria treptbhgram tries to flip
bits of Q1s, ..., Q20 at most 100000 times before selecting completely new values
of these step variables. Also, one may limit the number oésithat the program
choosesn,, ..., mg before starting all over.

The algorithm has been implemented in the C programminguiage. This
implementation (which can be found in Appendix B) was ablértd collisions in
1.97 seconds on average on a standard PC (based on a samp@® aollisions).

Algorithm 3.2 Dobbertin’'s MD4 collision attack

Ensure: mandm, wherem{ = m; for all i except 12, andr;, = m2+ 1, form a
collision of MD4
repeat
repeat
ChooseQss, . .., Q2o at random, and from (3.14), (3.15), (3.20), (3.19),
(3.17) and (3.18) comput@,g, Q1 9, Q1 4, Q1 5, Qua andQy, (in that order).
until (3.21) holds
SaveQss, ..., Qy as basic values.
while ¢({) < 8do
repeat
Change one random bit in each of the basic values, and compute
Q20: Qho, Qe Qis Qua aNdQ’ 4 again.
until (3.21) holds ana({) does not decrease
Save thes@)s, ..., Qup as hew basic values.
end while {Now (3.21) and (3.22) are satisfied, i.e. we have an inner-almost
collision}
until G(Q20, Q19, Q18) = G(Q5, Q1g, Q18) {Now the inner-almost collision is ad-
missible }
Choose my3 at random, computeQi; from (3.16), and my (i €
{0,4,8,12 14,15}), Q10 andQq from (3.23), ..., (3.30).
repeat
Choosemy, mp, mz, ms randomly, compute), ..., Qg from the step opera-
tions, and computay, m;, Mg, Myg, My1 from (3.32), ..., (3.36).
until mandm form a collision

19

3.4 Summary

Dobbertin’s attack on MD4 has been described. The attacls fandlisions of
MD4 in about two seconds on a standard PC. An implementatiorbe found in
Appendix B.

A faster technique for finding collisions of MD4 has been dieped [43] since
the attack of Dobbertin. This attack has complexftya2cording to the authors and
thus can be carried out in a fraction of a second. It makes uselifferent differ-
ential pattern than the one found by Dobbertin, and like tteck mentioned in the
following chapter, it also makes use of message modificatianmimplementation
can be found in Appendix D, but it comes with no further explaon (although
the same techniques are used in the MD5 attack explainee ifollowing chap-
ter). This implementation has complexity®2and finds MD4 collisions in around
2 ms on a standard PC, which makes it about 1000 times fasteilile Dobbertin
implementation.

20

Chapter 4

Wang’s attack on MD5

In this chapter a collision attack on MD5 [38] is presentedhe httack was de-
veloped by Wang et al. [45], and it has complexity at moSta&ccording to the
authors. A modification by Vlastimil Klima [25] improvesdltomplexity slightly.

First, the MD5 hash function is described. Then, the genédeal of the attack
is explained, and after that we shall go deeper into the Idetand also describe
issues related to an implementation of the attack.

4.1 Description of MD5

MD5 is a hash function that takes as input a message of agbiénagth and returns
a hash value of 128 bits. Each message block is 512 bits, gaddi@ Rule 1 with
u = 64 (the least significant bits of |m| are used in the MD-strengthening). The
overall construction is that of Construction 1.

The initial value is

Q.3 = 674523014
Q. = 10325476y
Q_1 = 098badcfep

Qo = efcdab89y

The compression function of MD5 takes as input the 128-bite/éQ_3, Q_»,
Q_1, Qo) and a 512-bit message block which is split into sixteen B2xords,
Mp,...,Mys.

In each stepp (0 <t < 64) of the compression function a constdgt,is used
in the step operation. This constant can be computed asvillo

k «— |abgsin(t+1)) x 2%2|.

Of course, in a software implementation one would usualjcpmpute these val-
ues and place them in an array.

21

The order in which the message words are processed can aldesbebed
mathematically. Le¥ be the message word used in stefphenW = m, where

t fort <16

(5t+1) mod 16 for 16<t < 32
(3t+5) mod 16 for 32<t < 48
7t mod 16 for 48<t < 64

We often call steps 0—-1'und 1, steps 16—3tound 2etc.
Each step also contains a rotation val8ewhich can be derived from the table
below.

tdivle

S 0 1 2 3
7 5 4 6
12 9 11 10
17 14 16 15
22 20 23 21

t mod 4

0
1
2
3

In each step a bitwise functiofy of three variables is used. The definition of
these is

F(X,Y,Z)=(XAY)V(=XAZ) fort<16
LXY.2Z) = G(X,Y,Z) = (XAZ)V(YA—Z) for16<t< 32
t D H(X,Y,Z)=XaYaZ for 32<t < 48
1(X,Y,Z) =Y & (XV-Z) for 48<t < 64

The compression function performs the operations of Atgori4.1.

Algorithm 4.1 The MD5 compression function
Input: (Q*?n Q*Za Q*lv QO) andnb? -..,Ms
for t =0to 63do
Qi1 Q4 (fi(Qr, Q-1,Q-2) + Q3+ k + W)=

end for

return (Qe1+ Q—3,Qs2+ Q_2,Qe3+ Q_1,Qs4+ Qo)

4.2 Introduction to the attack

The attack makes use of differential cryptanalysis (seg {&jng not the ordinary
XOR differential, but rather a combination of a kind of sign€OR differential
and a modular differential. What is meant by a signed XORedtftial is that
one keeps track of not only which bits differ, but also whethe bit difference is
positive Q — 1) or negative { — 0).

22

Wang somehow found a differential yielding with high proltigba collision
on two two-block messages. For each step a particular deaistic must hold,
and this gives rise to a number of conditions on the interatediegister values.

The number of bit conditions is much higher than 64, and sicellision can
be expected after about“2xecutions of the hash function using exhaustive search,
this doesn’t seem very promising. However, a large numbénetonditions can
be ensured to hold by performing modifications of the messagesse will be
described in the following.

As mentioned, collisions found by this attack consist of fslock messages.
In the following we use the terrteration for the processing of a block, e.the
first iteration means the processing of the first message block. Similéueyfirst
part of the attackmeans finding a usable first message block. When we refeeto
two messagewe mean the colliding messages.

Let M = my||my| - - - ||mys and M = ri||iy || - - - ||iys be the two blocks of the
“first” message, and le¥’ = mj||m, || ---||ms and M’ = i ||, || - - - |15 be the
two blocks of the colliding message. Then

231 foric {4,14}
dm =< 2 fori=11 (4.1)
0 for all otheri

and

—215 fori=11 (4.2)

231 foric {4,14}
oM =
0 for all otheri

The modular difference on the chaining values after praeggshe first block is

231 fori= -3
oQ _{ 2254281 forie {0,-1,-2} (4.3)

Both blocks produce intermediate collisions from step 2&ép 34, i.e. in both
iterations,Q; = Qf for 24 <i < 35.

4.3 Theidea

The general idea of the attack will now be described.
For the first part of the attack do the following:

e Choose a random message bldtk

e For each step, do the step operation, and ensure that th@icoadn the
step variable are satisfied by performing modification ofrtressage word
used. If some conditions cannot be satisfied this way, start o

e Check that all required differences hold. If so, we have tbarusable near-
collision. Otherwise, start over.

23

For the second part of the attack, do the following:
e Initialise the registers using the chaining values fromfifst iteration.
e Choose a random message blddk

e For each step, do the step operation, and ensure that thdicosdan the
step variable are satisfied by performing modification ofrtfessage word
used. If some conditions cannot be satisfied this way, start o

e Check that all required differences hold. If so, we have &barcollision.
Otherwise, start over.

After having successfully performed the steps above, we hennd a collision
between two two-block messages, nam@,M) and (M’,M’), where (4.1) and
(4.2) hold.

4.4 Detalls

In this section (hopefully) all the details, possible gifaand some tricks of the
attack shall be explained. It shall generally be assumetthigareader is either
familiar with [45] or has the paper close at hand (note th#timcontext numbering
starts from 0, whereas in [45] numbering starts from 1).

For convenience we define

Tt - ft(Qt7Qt—laQt—2) +Qt—3+ k[+\M

and
Re=TS,

and hence& 1 =Q + 1<% =Q +R.

4.4.1 Origin of the conditions

As mentioned, a very specific characteristic must hold &éah step for the full
attack to work. The characteristics can, of course, be fonrjd5], but they are
more carefully explained and slightly corrected in [21] the first iteration, and
Section 4.5 of this document gives a fairly detailed desionpof the conditions
of the second iteration. All the conditions that are congde‘correct” in this
document can be found in Appendix A.

For the characteristic to hold after each step, severalitons on the step
variables must be satisfied. We now consider the first itmmatior instance, in
step 11 the operation performed is

Q12 + Q11+ (F(Q11,Q10, Qo) + Qg + ki1 + m11)<<<22,

24

and we have the following (required) differences on the eslnvolved:

5Q, = —27— 213 93
50y, = 2004 2°
0Qu = (30,31)
0Q = (-121331)
0Q = (-0,1,6,7,—8,-31)
5Qs = 2021517 23
dmy; = 2%

SincedQ1o — 8Qq1 = —27 — 213 — 230 we require
8T11 = 8(F (Q11, Q10,Qo) + Qg+ kyy + myy) = —28 — 217223,
and since we hav& Qg + my;) = 2° — 217 — 223 we require that
5y = —20 - 28

This is achieved by applying certain conditions on bits 0 8maf Q11, Q10 and
Qo. Note thatF is theif function, meaning that whe@; is al then the bit of
Q10 at that bit position is chosen as output, and otherwise thefl§)g at that bit
position is chosen. Since we havi€®)y = (—0,1,6,7,—8,—31), if we make sure
thatQ11[0] = Q11[8] =0, then we get at leasitf; = —2° — 28, Since there are also
differences on other bits involved i1, we must make sure that these differences
disappearin the function. This is done by ensuring th@f;[12] = Q14113 =0,
Q11[1] = Q11[6] = Q11[7] = 1, Q10[30] = Qg[30], and since the differences on bit
31 of Q10 and Qg have opposite signs, we know that the differenceQan[31]
disappears.

In order for the signed XOR differences to be possible we rfurdter require
that e.9.Q11[30] = 0 andQ10[12] = 1. Note that as discovered in [21] we do not
strictly require that there is a negative signed XOR diffieee onQg[31], and a
positive one orQ1p[31 and Q11[31], it could be vice versa (see e.g. [21, Table
11]).

Now some of the conditions on the involved variables havenlmelained.
Other steps cause other conditions. Note that we optiraltiexpect that

OTyy =222 28 = 3Ry = 27— 213 2%
This is indeed the case for most valuesTof, but not all. This is a fairly important

issue, which will be covered in greater detail in Section3l.&or now, we always
assume that

T —T=08T = (TS TS = (8T)<S.

25

4.4.2 Message modification

As mentioned, most of the conditions on step variables caansered to hold
by performing message madifications. These message maoidifisavere only
described superficially in [45], and a little more in depth48]. The description
given here is more detailed, and the additional ideas aratiti®r’'s own.

Conditions in thefirst round of the compression function can be ensured by
choosingQ;. 1 randomly, but satisfying the conditions, and then applythne fol-
lowing single-message madification:

m — (Q1— Q)% —F(Q, Q-1,Q2) — Q-3 — k. (4.4)

Hence, we do not need to choase randomly, then computé;, 1, then correct
Q.1 to satisfy the conditions, and finally recompute(as suggested in [45]).

This method only works in the first round, because ancis defined we cannot
simply redefine it. Therefore, message madifications in &weisd round must be
performed in some other way.

In the second round we compu@g, 1 and check if the conditions hold, starting
with the lowest bit number. If some condition does not hol@, way be able to
correctQ1 as follows: LetW = my, i.e. W was first used in step. The step
operation of stepi is

Qu+1 = Qu+ (F(Qu, Qu-1,Qu-2) + Qu-_3+ky+ mu)<<<SJ- (4.5)

If we need to corred®;1[n], then we may change,[n— S]. However, this causes
Qu-1to change, so this is only possible if there is no conditio®gm[n— S + S)].
Assuming there is no condition on that bit, we prevent thengkaof m, from
causing changes in other bits@f, 1 by checking ifQu;1[n— S +] is a0 or al,
and then we add respectively subtrat®) M4 32from m,, causing a change on
the desired bit ofn,.

If there is a condition 0Qy.1[n— S + S, we have to try something else. Look-
ing again at the step operation (4.5) of stere may instead (provided there are no
conditions preventing this) fli@,_3[n— S] by adding or subtracting(®-$) mod 32
(if Qu-3[n—S]is a0 or al respectively), and then respectively subtract or add
2(n=8) mod 32t5 m, causing these two changes to cancel out. Now we have changed
the desired bit ofm, without changingm, + Q,_s.

Of course, in both the mentioned cases we must subsequenttyrm single-
message modification (according to (4.4)) on all the messagds that take part in
the same step operation as the step variable that we charegéathe first case we
perform modifications omy. 1, my.2, my.3 andmy.4, and in the second case we
perform modifications omn,_q, m,_2, m,_3 andmy_4. If one of these subscripts
to mis less than O or greater than 15, then the whole operationgessible.

Even in cases where none of the methods mentioned so far cesetiewe may
have a chance of correctin@ . 1[n]. In (4.5) we have a few other variables to try.
However, all the remaining variables occur inside Ehieinction, so a change only

26

has the desired effect if we are able to controlrbit § of Qy, Q,_1 andQy_», or
these bits just happen to have the right conditions on themifopurposes. If, for
instance, we are able to corre@{_1[n— S|, then this only makes a difference if
Qu[n—S] = 1 (sinceF is theif function in the first round). It may even be possible
to changeQy[n— S, but sinceQy occurs twice in (4.5), this is fairly complicated,
as it will affectQu1[n— §]. The best thing would be to avoid changes in more
than one bit of one step variable.

Now it would probably be in its place with an example.

Example. There are three conditions @yg in the first iteration (on bits 17, 29,
and 31). Assume that we just comput®gs and found tha;g[17] was correct,
but Q1529 was not. The step operation of step 17 is

Q18 = Q17+ (G(Q17, Que, Q15) + Qua+tr7+mg) <,

so we have to changes[20]. The step operation in step 6 is

Q7 =Qs+ (F(Qs,Q5,Q4) + Q3+ ks + mG)<<<l7

Just changingns[20] would affectQy[5], but there are already conditions on all
bits of Q7, so we must try something else. Let's try chang®gas well. There
is no condition orQs[20], so we flip this bit, but sinc€4[20] = Q3[20], we need
to flip Q4[20] as well. Q4 takes part in thé& function of step 6, so this only works
if Qs[20] =1 (and hence&4[20] does not affect this step at all), which holds if the
conditions onQg are satisfied. Now, since the change@nhas no effect in this
step, we can add or subtrac®2rom mg depending on whether flippin@s[20] was
equivalent to respectively subtracting or addiff Qs — this way we make sure
thatQs + mg does not change by this operation, w20 has changed as desired.
Of course, we must also perform single-message modification,, mz, my and
ms, i.e. we compute

m — (Q—-Q)”—F(Q,Q1.Q) - Qi1—k
My «— (Qa—Qs)>?*—F(Qs,Q2.Q1) — Qo—ks
My — (Qs—Qu)>" —F(Q4,Q3,Q2) —Q1—ks
ms — (Qs—Qs)™"*—F(Q5,Q4,Q3) — Q—ks

We then re-comput€:g, where bit 29 is now correct. Since this change could
propagate to bits of higher order, we have to correct loweofdts before high-
order bits.

Note that we would not be able to perform this particular mmkssage mod-
ification onQs5[17], because we would have to change[8|, Qs[8], and Q4]8],
and sinceQg[8] = 0, this would cause the outcome of step 6 to change, which is
not allowed since all bits df); are fixed. HoweveiQ1g[31] can be changed in the
same way af1g[29].

27

4.4.3 Propagating carries

The issues of this section were not addressed by Wang et3ald®4. In [21] the
processing of the first block of the message is explained taild&ith respect to
the added conditions caused by these issues.

In the Wang MD5 attack we often expect a differe@deon T; to “survive” a
rotation, meaning that

T T = 8T = (T/)<S - <S8 = (5T)<S, (4.6)

or equivalently
(5-|-t)<<<3 =3R.

However, this does not always hold. For instance, if a caansed by T; prop-

agates from the low-order bits past (&l — S), or if a carry from the high-order
bits propagates past bit 31 (we call these two valire#s, which means we can
talk about both in the same way), then the propagation is anaes“split in two”
by the rotation, and then (4.6) does not hold. Hence, sincexpect the equation
to hold, we must make sure that no carries propagate too far.
Note that Daum [10] also describes these issues, but heresava different ap-
proach in that we try to define exact conditions that must hotd4.6) to hold,
instead of determining the probability that (4.6) holds.e Thllowing analysis is
therefore the author’s own.

There are a number of ways of ensuring that (4.6) holds. dfinfstancedT; =
28 2104 229 andS§ = 17, then we can prevent the carry caused by the térm 2
from propagating past bit 9, the carry caused by the te@ from propagating
past bit 14, and the carry caused by the teffhfeom propagating past bit 31, and
(4.6) will be satisfied. This can be done by ensuring that

1. 0e (89,
2. 1 € Ti[10—14], and
3. 0 € T;[29—31.
For random words, this occurs with a total probability of
P=(1-2?%)(1-2°)(1-23~064

The conditions imposed are sufficient, but not necessar{4fé) to hold. In fact,
a test will show that if (1)does nothold, then (2) is a redundant condition, and if
(1) holds then (2musthold also. Why so?

When we talk about carries propagating or not propagatirsfy g@me bit, we
are really not being precise enough; it depends if we areihgot the arithmetic
operation as an addition or a subtraction. If we look at itragddition, then a carry
caused by a power of 2 which is negativeistpropagate past the limit. We could
also look at this as a subtraction by a positive power of 2,iarlis case the carry

28

must notpropagate past the limit. However, it is an advantage togterms into
those with exponent less than or equal to-3% and those with exponent greater
than 31— S, and then always consider an addition by these terms. Whetlowe
this, we must make sure that if the term with the greatest mpiowithin each of
the two “buckets” is positive, then a carry does not propagaist the limit, and if
the term is negative then a caitipespropagate past the limit.

In the example above, we need a carry to propagate past bih&a we con-
sider addition, and that is why either a carry must propafyata bits 8 and 9 into
bit 10, from where it will keep propagating past bit 14 (whishthe case when
(1) does not hold)pr a carry must be produced in bits 10-14, which happens
whenever (2) holds. The probability that these two condgias well as (3) hold
isP=(1—(1—22)x29%) x(1-23) ~ 0.85, which is quite a lot better than
P = 0.64 as we had before.

Conversely, assume instead tidd = —28 + 210 — 22° (notice that all signs
have changed). Now, no carry must propagate past bit 14. hita hold there
must be a) among bits 10-14r bits 8 and 9 must both b@. First note that
210 28 — 294 28 Hence, the first condition ensures that any carry out of bit
9 is “caught”. The second condition ensures that theneo carry out of bit 9.
Obviously, for the high-order bits, we now require that ¢hé&s al among bits
29-31.

In the cases where a bucket of terms consists of all negatiuest for instance
two negative terms, the rules are slightly different. Fatamce, in the running
example, if all signs were negative (id@; = —28 — 210 229) then we would need
a carry to propagate past bit 14. The ters2® — 210 could instead be expressed
as B+294+ 2114212 . soin order for a carry to propagate past bit 14 we need
either al among bits 11-14, or &in bit 10andal among bits 8-9.

To summarize, a technique for stating conditions could Ipeessed as follows:

e Place terms odT; in two buckets, one with powers of two with exponents
greater than 3% § (the limit for this bucket is 31), and one with the remain-
ing terms (the limit for this bucket is 31 S).

e For each bucket, check the sign of the term with the greatgstrent. If it
is positive, a carry must not propagate past the limit, andigf negative a
carrymustpropagate past the limit.

e Express the sum of the terms of each bucket as a sum of padsitive only.
Note that this is always possible since we reduce modtfle this is actually
equivalent to looking at the bit representationd®f. 2° is a term if and only
if Te[s| = 1.

e Check which conditions must hold dnfor a carry to propagate or not prop-
agate past the limit.

It is the author’'s hope that it is clear from the examples howedrform the last
step.

29

4.5 Detailed examination of the second iteration

In this section we perform a fairly detailed examination Ibftlze conditions that
must be fulfilled in the second iteration for the attack to kvorhe examination
will be done in much the same way (although perhaps not gsitdharoughly)

as the examination of [21], which only concerned the first pathe attack. It is

definitely with this fine work in mind that this section is vieih. Note that although
it may be instructive to follow this section thoroughly, stmot imperative for the
understanding of the attack.

We start by looking at the conditions on thevalues. In some cases the exact
conditions on theT-values become quite complicated, and then we shall define
more strict conditions, that are sufficient but not alwayseassary — however, we
aim at defining conditions that are not much less probable i “optimal” ones.

45.1 Conditions on theT-values

Step 0 Q1 Qo+ (F(Qo,Q-1,Q-2) +Q_3+My+ko) <’
We havedQp = 22° + 231, We needQ; = 225+ 231,
Hence,0Tg = 0.

Conditions on §: None.

Step1 Qp«— Qi+ (F(Q1,Qo0,Q-1) + Qo+ 1y 4 k) <12

We havedQ; = 225+ 231, We need®Q, = 2° + 225+ 231,

HencedT; = 225,

Conditions on T: 8T, = 22° must not propagate past bit 31, and hence we require
0€T[25-3(P=1-27).

Step 2 Q3 Q2+ (F(Q2,Q1,Qo) + Q-1+ i+ ko) <7

We havedQ, = 2° 4 2254+ 231, We need®Qsz = 2° + 211 4 2164 2254 231

Hence 8T, = 226 4- 231,

Conditions on T: 226 must not propagate past bit 30, afai') <7 = 4216 so we
must requirdd € T[26—30 (P=1—-2")andT[31] =0 (P=2"1).

Step 3 Q4 — Qs+ (F(Qs,Q2,Q1) + Qo+ Mg + kg) <22

We havedQz = 2° 4 2114 216 4 2251 231 \We needdQ, = —21 + 254 2254 231,
HencedTg = —211 221 _ 226

Conditions on T —211 — 221 _ 226 myst propagate past bit 31, so we must require
1€T[27-3Y (P=1-2"°),0rT[26) =1A1 € T[22— 25, or a more complicated
but less probable combination.

Step4 Qs Qu+ (F(Q4,Q3,Q2) + Q1+ iy + ka) <7
We havedQy = —21 + 25+ 2251 231 \We nee®Qs = 1+ 26 + 28 + 29 4 231,
Hence 8T, = 21 +22 - 218 4 225 226 230 4 231

30

Conditions on T 21 + 22 — 218 must propagate past bit 24252+ 226 — 230 must
propagate past bit 30, af@3!)<<” = 126, Hence, we must requic T[2— 18]

(P =1-2"17), or some other combination, but this one is very likely tawc
Also, we must requird [30] = 1 (P = 271, or some other combination which is
much less likely), and [31] = 0 (P = 271) to make sure that adding2causes a
positive change.

Step5 Qs Qs+ (F(Qs,Qs,Q3) + Qo + Mg + ks) <12

We havedQs = 1+ 26 + 28 4+ 29+ 231, We needdQg = —216 — 2204 231,
HencedTs = —2%— 28 220226 228_ 29

Conditions on §: —2*— 28 must propagate past bit 19, an@?? — 226 _ 228 _ 229
must propagate past bit 31. Hence, we require thaff[9 — 19 (P = 121},
and thatl € T[30— 31 or T[29 = T[28 = T[27] =1 (P=1—(272)(1-273) =
25/32).

Step6 Q7 Qs+ (F(Qs,Qs,Qa) + Q3+ g + ko) <7

We havedQg = —216 — 220 4 231 We need®dQ; = —25 — 2274 231,

Hence 8T = 23 — 210 221 231

Conditions on § 23 — 219 must propagate past bit 14221 must propagate past bit
30, and(231)<<17 = 4 216 This means that we requitec T[10— 14] (P=1-2"5),
1€T[21-30 (P=1-2"19), and thatT[31] =0 (P = 27!) so that adding &
causes a positive change.

Step 7 Qg — Q7+ (F(Q7,Qs, Qs) + Qa + ity + ky) <22

We havedQ; = —2% — 227 231, \We needQg = 215 — 217 — 223 1 231,

HencedT; = —21 + 254 216 225_ 227,

Conditions on T —21 + 2% must not propagate past bit 9, an§ 2 225 — 22’ must
propagate past bit 31. Hence, we require thatT[4— 9] (P = 1—275), and that
1€TR7-3(P=1-279).

Step 8 Qo — Qg+ (F(Qs,Q7,Qp) + Qs+ Mg + kg) <’

We havedQg = 215 — 217 — 2234 231 We needQqg = 1+ 26 4 281,

In this step, things are a little more complicated. Since waxetthe term 2from
dQs which is not removed byfg, but we don't need 2in 5Qo, we use(—23! 4
1)<<7 Z 264 27 to create 2 in 3Qo. Also, we use(28 + 29)<<7 to cancel out
215217 Hence 8T = 1428 + 294+ 2164225 231,

Conditions on § 1+ 28 + 29 4 216 must not propagate past bit 24°2nust not
propagate past bit 30, an@3!)<<” = —2%. Hence, we requir® ¢ T[16— 24
(P=1-2"9,0eT[25-30 (P=1-2"%), andT[3] =1 (P=2"Y).

Step9 Q10— Qo+ (F(Qo,Qs,Q7) + Qg+ Mg + ko) <12
We havedQg = 1+ 26 + 231, We nee®Qq = 212+ 231,
Hence 8Ty = 20 — 220 226,

31

Conditions on § 2° must not propagate past bit 19, an8?° — 226 must propagate
past bit 31. Hence, we requifec T[0—19 (P=1-2"2%) and1 € T[27- 3]
(P=1-27°).

Step 10 Q11 Q10+ (F(Q10,Qo, Qg) + Q7 4 Mo+ kao) <’

We havedQ;o = 212+ 231, We needQ;1 = 23,

HencedTyp = —227.

Conditions on To: —2%” must propagate past bit 31, so we reqire T[27— 31]
(P=1-27°).

Step 11 Q12 < Q11+ (F(Q11,Q10,Qg) + Qg+ 1 + kag) <22

We havedQi1 = 2°1. We needQqp = —27 — 213 231,

HencedTyq = —217— 223,

Conditions on T1: —27 — 222 must propagate past bit 31, so we requireT[24—
3 (P=1-2"9).

Step 12 Qi3 Q12+ (F(Q12,Q11, Q10) + Qo+ M2+ k12) <7

We havedQir = —27 — 2134+ 231 We need®Qq3 = 224+ 231,

HencedTyp = 1+ 26+ 217,

Conditions on T»: 1+ 2% + 217 must not propagate past bit 24. Hence we require
0€T[A7-24 (P=1-278).

Step 13 Q4+ Qi3+ (F(Q13,Q12,Qu1) + Qo+ Mz + ki) <12

We havedQi3 = 224+ 231, We needQq4 = 231,

HencedTy3 = —212.

Conditions on Tz: —2%? must propagate past bit 19, so we reqdire T[12— 19
(P=1-279).

Step 14 Q15 Q14+ (F(Qu4, Q13,Q12) 4+ Q1+ Mg+ ki) <

We havedQi4 = 231, We needQ;5 = 23 + 2154 231,

Hence 8Ty4 = 218+ 230,

Conditions on Tz 28+ 230 must not propagate past bit 31. Hence we require
0€T[30-3 (P=1-272).

Step 15 Qi Q15+ (F(Qu5,Q14,Qu3) + Qo+ s+ ky5) <22

We havedQis = 22 + 215+ 231, We nee®Q; = — 229+ 231,

HencedTys = —27 — 213225,

Conditions on Ts: —27 must propagate past bit 9, ar®'® — 22°> must propagate
past bit 31. Hence, we requitec T[7—9] (P=1-273%) and1 € T[26— 3]]
(P=1-279)

32

Step 16 Q17+ Q16+ (G(Q1e, Qu5,Q14) + Quz+ My + ki) <>

We havedQqg = —22°+ 231, We need®Q,7 = 23L.

Hence 8Ty = 224,

Conditions on Ts: 224 must not propagate past bit 26. Hence, we reqire
T[24—26 (P=1-273).

Step 17 Qis <« Q17+ (G(Q17, Q6, Q15) + Qra+ Mg+ ky7) <°
We havedQq7 = 231, We nee®Q;g = 2°1.

Hence,d0T;7 = 0.

Conditions on 77: None.

Step 18 Qi+ Qus+ (G(Q1s,Q17, Que) + Qi5+ 1M1+ Kyg) <4
We haveBng =231 We neecﬁng = 217—|— 231,

HencedTig = 2.
Conditions on Tg: 2% must not propagate past bit 17, so we reqQire T[3 — 17]
P=1-271)

Step 19 Q20 < Q19+ (G(Q19, Q18,Q17) + Que + Mo+ k1) <2°

We havedQig = 217 + 231, We needQyo = 231

Hence,d0Tig = —229,

Conditions on To: —22° must propagate past bit 31, so we require T[29— 31]
(P=1-273).

Steps 20 and 21 In both these steps we had€, = 23! and we needQ_ ; = 231
so there are no conditions dp Hence, we leave out further details of these two
steps.

Step 22 Q23— Q22+ (G(Q22, Q21, Qo0) + Quo+ M5+ ko) <14

We havedQy, = 231, We needQy3 = 0.

Hence 8T, = £217. SincedQqg9 = +27 we actually gebT,, = +217.
Conditions on T: 217 must not propagate past bit 17, so we reqdifé7] =0
(P=271.

Steps 23-33 In all these steps we hae€); = 0 and we needQ;. 1 = 0, so again,
there are no requirements @nsincedT; = 0.

Step 34 Qss + Qza+ (H(Qaa, Qs3, Qa2) + Qa1+ M1 + Kaa) <16
We have6Q34 =0. We neec6Q35 =231

HencedTzs = +21°. Sincedhy; = —21° we actually gebTsy = —2%°.
Conditions on T;: —2%° must propagate past bit 15, so we req(ifés =1 (P =
o1y,

33

Steps 35-60 In all these steps we haw); = 231 and we needQ;,; = 2°1, so
there are no requirements on

Step 61 Qs2 +— Qs1+ (1 (Qe1, Qso, Qs9) + Qsg + 1M1 + k1) <10
We havedQg; = 23! and we needQg, = —22°+ 281,

HencedTsp = —21°.
Conditions on §;: —2'° must propagate past bit 21, so we require T[15— 21]
(P=1-277).

Steps 62 and 63 In the last two steps we havi®; = —22°+ 231 and we need
dQ 1 = —2%54+ 231, so there are no requirements BN

One way (and probably the best way) to check that the comditomT; hold,
is, givenQ; andQ;. 1, to compute

Tt - (QH—]. - Qt)>>>s+l7

and then check this value. In fact, since (in the first round)seleciQ; . ; before
we have a value af, we can computd; as described and then computebased
on the value off, i.e. by

m :-I—t_F(Qthtfl>Qt72)_Qtf3_k(-

In subsequent rounds, or whenever we don’t useTtwvalue to update a mes-
sage word, we simply discard the value after having confirthatithe conditions
on it hold.

4.5.2 Conditions on step variables

Here we examine the conditions on the step variables wharegsing the second
message block. We have the same requirements@nas Wang et al. in [45],
except for bit 31 where we often have a relative condition éntast with the
absolute conditions in [45]. These will be explained.

First note that for the characteristics to hold at the bagmrof the second
iteration, we must requir®_,[25] =0, Q_1[25 =1, Q_1[26] = 0 andQg[25 = 0.

All the conditions derived in this section can be looked u\ppendix A.2.
Note that to save space, instead of €g.{1,2,3,4,7,8,9,26} we may writei €
{1..4,7..9,26}.

Step0 Q1 Qo+ (F(Qo,Q-1,Q-2) +Q_3+My+ko) <’
We havedQ_; = 231, We need®Ty = 0.
Hencedfy = 231,

34

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q& | O

Qo | (25 £31)
Q_1 | (—25,26,4+31)
Q. | (25+31)

Since Qp, Q_1,Q_» all differ on bit 31, we require thaflQ_;[31] = 0Q_[3]]
implying that Q_1[31] = Q_»[31] (note that Wang et al. state thalQ_1[31] =
0Q-_2[31] = +1, but they only requireQ_;[31] = Q_»[31], not that they are both
0). To avoid further differences we requit®[26] = 0. Also, sincel1Q1[25 = +1,
we requireQ; [25 = 0.

Step1l Qo Qi+ (F(Q1,Qo,Q-1) + Qo+ iy + k)12

We havedQ_, = 2254 231, We nee®T; = 225,

Hencedf; = 231,

Conditions We have the following bit differences on the arguments #ofttfunc-
tion.

Q| O

Q| (25+3])

Qo | (25+31)

Q_1 | (—25,26,4+31)

Hence, we require th&;[26] = 1 and thatQo[31] = Q_1[31]. Also, sinceJQ, =
(5,25,431), we requireQy[5] = Q2[25 = 0.

Step2 Qs Q2+ (F(Q2,Q1,Qo) + Q1+ i + ko) <17

We havedQ_; = 225+ 231, We needT, = 226+ 231,

Hencedf, = 225 (using 2°+ 225 = 226),

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q | UG

Q. | (5,25,+31)
Q| (25,+31)
Qo | (25,431)

Since we require that the differences on bit 31 disappeamust requireQ; [31] =
—Qo[31]. The differences on bit 25 are just what we need, but we (@8l =
Qo[5]. Also, since

0Qs = (-5,—6,7,—11,12 —16,...,—20,21,—25,...,—29,30,431),

we requireQs[5] = Qs[6] = Q3[11] = Q3[16] = ... = Q3[20] = Q3[29] = ... =
Qs[29 =1 andQs[7] = Qs[12 = Qs[21] = Q3[30] =0.

35

Step 3 Q4 < Q3+ (F(Q3,Q2,Q1) + Qo+ Mg+ ka) <22

We havedQq = 225+ 231, We needT; = —211 — 221 226,

Hencedf; = —211_221_225_ 226 231

Conditions We have the following bit differences on the arguments #&ftfunc-
tion.

Q | DG

Qs | (-5,—6,7,—11,12,—16,...,—20,21, —25,...,—29,30, +31)
Q. | (5,25,+31)

Q. | (25,431)

Since we get-22° from this, but we needed 22°, we use instead-22%, which we
already require, so this becomeg&?’. l.e. we require insteadlfz = —211 — 221+
2252274231 Hence, we must requi@;[11] = 1 andQ;[11] =0, Qz[21] =0 and
Q1[21] =1, Q2[27] =1 andQ;[27] =0, andQ-[31] = Q1[31]. Also, to avoid further
differences we must requi@.|i] = Qq[i] fori € {5..7,12 16..20,26,28..30} (note
that we already require®1[5] = Qp[5]), andQ[5] = 0 (implying altogether that
Q2[5] = Q1[5] = Qp[5] = 0). Finally, from

0Qs = (1,2,3,—4,5,—25,26,+31)

we get (trivial) conditions o1Q).

Step 4 Qs — Qs+ (F(Q4,Q3,Q2) + Q1+ My + ks) <7

We havedQ; = 225+ 231 and &1y = 231, We needdT, = 21 +22 — 2184 225
226 o 230 + 231.

Hence5f, =21+ 22— 218 226_ 2304 231

Conditions We have the following bit differences on the arguments &fttunc-
tion.

Q& | UG

Qs | (1,2,3,—4,5,—25 26, +31)

Qs | (-5,-6,7,-11,12,—16,...,-20,21, —25,...,—29,30,+31)
Q. | (5,25,431)

To create the requiredif, we needQs[1] =1 andQ;[1] =0, Q3[2] =1 andQ»[2] =

0, Q4[18 =1 and since 2230 = 226227 228_ 229 (and we can produce the
latter but not the former), we also requige[26] = 1 (already required, henceforth
written a.r.), andQ4[i] = 1 for i € {27,28,29}. For the last term, %, to appear
we also required)s[31] = Q»[31]. To avoid further differences we requi€g[3] =
Q2[3], Q3[4] = Q2[4], andQq[i] =0 fori € {6,7,11,12,16,17,19..21,30}. Finally,
we get the trivial conditions o@s from

0Qs = (0,—6,7,8,—9,—10,—11,12, +31).

36

Step5 Qs Qs+ (F(Qs,Q4,Q3) + Qo + Mg + ks) <12

We havedQ, = 2° 4 225+ 231, We needdTs = —2* — 28 —220_226_228_ 229,
Hencedfs = —24 - 2528 _220_225_ 926 928_ 929 4 231

Conditions We have the following bit differences on the arguments #ftfiunc-
tion.

Q| O

Qs | (0,—6,7,8,—9,—10, 11,12 +£31)

Qs | (1,2,3,—4,5,—2526,+31)

Qs | (-5,—6,7,~-11,12,—16,...,-20,21, —25,...,—29,30,+31)

To create the desiredlfs; we must requireQs[4] = 1, Qs[5] =0, Q3[8] =1 and
Qa4[8] =0, Qs5[20] =0, Qs[26] =0, Qs5[28 =0, Qs[29] =0 andQ4[31] = Q3[31]. To
avoid further differences we must requi@g[i] = Qs]i] fori € {0,9, 10}, Q4[6] =0,
Q4[7] =0, Qa1 =0, Q4[12] = 0 (the latter four a.r.)Qs[i] =0 for i € {1,2,3},
andQsli] =1 fori € {16..19,21,27,30}. Finally, we get the trivial conditions from

0Qg = (16,—17,20,—21, +31).

Step6 Q7 Qs+ (F(Qs,Qs5,Q4) + Q3+ g+ ko) <7

We havedQz = 25 + 2114 216 4 2254 231 \We needdTg = 28 — 210 — 2214 281,
Hencedfg =23 — 25— 210_p11_216_p21_ 925

Conditions We have the following bit differences on the arguments #ofttfunc-
tion.

Q | DG

Qs | (16,—17,20,—21, +31)

Qs | (0,-6,7,8,—9,—10, —11,12 +£31)
Qs | (1,2,3,—4,5,—25 26,+31)

First, we requireQg[3] = 0. Since we can create2® but not—2°, we create 2—
26 — 25 Hence, we requir€g[5] = 0 andQg[6] = 1. Furthermore, we require
Qs[10] =1 andQs[11] = 1. Since we already require@,[16] =0 andQs[16] =1,
we must produce-2'6 as 26 — 217 henceQ4[17] = 0 andQs[17] = 1 (both a.r.).
Continuing, we requird)s[21] =1 and Q4[21] = 0 (both a.r.), andQs[25] = 0.
To avoid further differences we requi€g;[20] = Q4[20] (a.r.), Qs[31] = —Q4[31],
Qglil =0fori e {0,7..9,12}, andQg[i] =1 fori € {1,2,4,26}. Finally, from

0Q; = (6,7,8,—9,27,—28,+31)

we get trivial conditions.

Step 7 Qg Q7+ (F(Q7,Qs.Qs) + Qu + iy + ky) <22
We havedQ, = —21 + 254+ 225 231 We nee®T; = —21 + 25 2164 225_ 227,
Hencedf; = 216 — 227 4 231,

37

Conditions We have the following bit differences on the arguments &fttiunc-
tion.

Q | O

Q; | (6,7,8,—9,27,—28 +£31)

Qs | (16,—17,20,—21,+31)

Qs | (0,—6,7,8,—9,—10,—11,12, +31)

We first requireQz[16] = 1, Qs[27] =1 (a.r.) andQs[27] =0, andQg[31] = Qs[31].
To avoid further differences we requi@[6] = 1, Qs[7] =0, Qs[8] =0, Qg[9] =0
(all four a.r.),Qs[28 = Qs[28] (implying Qs[28 = 0), Q7[i| =0 fori € {17,20,21},
andQy[i] =1 fori € {0,10..12}. Finally, since

0Qg = (—15,16,—17,23,24,25,—26,£31),

we get some trivial conditions dQsg.

Step 8 Qg — Qg+ (F(Qs,Q7,Qp) + Qs+ Mg + kg) <’

We havedQs = 20+ 26 + 28 + 29+ 231 We needdTg = 204 284294216 1. 225 _
231,

Hence 6fg = —26 4 216 225,

Conditions We have the following bit differences on the arguments &fttiunc-
tion.

Q | O

Qs | (—15,16,—17,23,24,25 —26, +31)
Q; | (6,7,8,—9,27,—28,+£31)

Qs | (16,—17,20,—21,+31)

We cannot create-2° directly, but we can create®2- 27 + 28 — 29 = 26 py

requiring thatQg[i] =1 for i € {6,7,8,9}. Furthermore, we requir€[16] = 1

(a.r.),Qs[29 =0 (a.r.) andQ,[25 =1, andQ7[31 = —Qg[31]. To avoid further
differences we also requif@;[i] = Qg[i] for i € {15,23 24,26} (implying Q7[26] =

1), Q7[17] =0 (a.r.), Qgli] = 0 for i € {27,28} and Qg[i] =1 for i € {20,21}.

Finally, we get the trivial conditions from

0Qo = (—0,1,—6,—7,—8,9,£31).

Step 9 Qio« Qo+ (F(Qo,Qs,Q7) + Qe + Mg + ko) <12

We havedQg = —216 — 2204 231 \We needTy = 20 — 220 — 226,

Hencedfg = 20+ 216 226 | 231

Conditions We have the following bit differences on the arguments &ofttfunc-
tion.

Q | O

Qo | (—0,1,—6,—7,—8,9,+31)

Qs | (—15,16,—17,23 24,25 —26,+31)
Qs | (6,7,8,—9,27,—28 +31)

38

We requireQg[0] =0 andQ7[0] =1 (the latter a.r.)Qq[16] = 1, Qo[26] =1 and
Qs[31 = Q7[31). To avoid further differences, we requi@[1] = Q[1], Qgi] =1
for i € {6..9} (all four a.r.),Qq[i] =0 for i € {15,17,23..25}, andQq[i] = 1 for
i € {27,28}. Finally, we get one trivial condition from

0Quo = (12,£31).

Step 10 Qi1+ Q10+ (F(Q10,Qg, Qs) + Q7+ My + ko) </

We havedQ; = —2% — 227 231 \We nee®Tg = —227.

Hence df1g = 26 + 231,

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q | O

Qo | (12,+31)

Qo | (—0,1,—6,—7,—8,9,+31)

Qs | (—15/16,—17,23 24,25,—26,+31)

We cannot create®2directly, but we can create-26 — 27 — 28 4 29 by requir-
ing Qqofi] =1 fori € {6..9}, andQg[31] = Qg[31]. To avoid further differences
we require thatQq[12] = Qg[12], Qo[i] =0 for i € {0,1}, and Qqqfi] =1 for

i € {15..17,23..26}. There are no conditions dpy; yet, aslQq; = (+31).

Step 11 Qiz « Q11+ (F(Q11, Q10, Qo) + Qg+ My + kag) <22

We havedQg = 215 — 217 2231 231 anddify, = —21°. We need Ty = —217 — 223,
Hencedf; = 231

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q| O

Qu1 | (£31)

Quo | (12, +31)

Qo | (—0,1,—6,—7,—8,9,+31)

To createdfi; we simply requireQ10[31] = Qg[31]. To avoid further differences
we also requiréq1[12] = 0 andQq4[i] =1 for i € {0,1,6..9}. Furthermore, trivial
conditions are added by

0Qip = (—7,13,14,15 16,17,18, — 19, £31).

Step 12 Qi3 Q12+ (F(Q12, Qu1, Quo) + Qo + 2 + kyz) <7

We havedQg = 20 + 26 + 231, We need®T;, = 20+ 26 + 217,

Hencedfio = 217—|— 231,

Conditions We have the following bit differences on the arguments #ftfiunc-

39

tion.

Q| O

Q2| (—7,1314,1516,17,18,—19,+31)
Qu1 | (£31)

Qo | (12,431

Since we previously require@:0[17] = 1, we cannot produce-2'/ directly, but
we can produce-27 + 218 py requiringQq1[17] = 0, Q10[18 = 0 andQq[18 =
1. Furthermore we requir®:1[31] = Q10[31, and to avoid further differences
Qll[i] = Qlo[l] fori e {7, 13..16, 19} (implying Q11[15] = Q11[16] = 1, condition
onQq1[7] a.r.), andQ2[12] = 1. From

0Q13 = (—24,—-25,—26,—27,—28,—29,30,+31)

we get some additional conditions.

Step 13 Q4+ Quz+ (F(Q13,Q12, Q11) + Quo+ Mz + kyg) 12
We havedQ;o = 212+ 231, We need®Ti3 = —212.

Hencedfi3 = —213+ 231,
Conditions We have the following bit differences on the arguments &fttiunc-
tion.

Q| O

Qi3 | (—24,—25,—26,—27,—28,—29,30, +31)
Q2| (—~7,13,14,1516,17,18,—19,+31)

Qu1 | (£31)

We cannot produce-212 directly, but we can producet®+ 214+ ... 4 218 _ 219
by requiringQq3[i] =1 fori € {13..19}. We also requir®;,[31] = Q14[31], and to
avoid further differences we requi@[i] = Q11]i] for i € {24..30}, andQ13[7] =
0. There are no trivial conditions added b4 = (+31).

Step 14 Q15 Q14+ (F(Qu4,Q13,Q12) 4+ Q1+ Mg+ ki) <

We havedQ11 = 231 anddring = 231, We needTy4 = 2184 230,

Hence,0Ti4 = 218 + 230,

Conditions We have the following bit differences on the arguments #&ftfunc-
tion.

Q| O

Qua | (£31)

Qus | (24,25 —26,-27,—28,—29,30,+31)
Qur | (~7,13,14,15,16,17,18, 19, +31)

We first requireQ4[18 = 0 and Q14[30] = 1. Then, to avoid further differences
we requireQq3[31] = —Q12[31], Qu4[i] =0 for i € {24..29} andQu4[i] =1 fori €
{7,13..17,19}. Finally we have a few additional, trivial conditions fronQqs =
(3,15,4+31).

40

Step 15 Q16 < Q15+ (F(Q15,Qu4, Qu3) + Qu2+ s + kas) <22

We havedQqp = —27 — 2134 231 \We need®dTi5 = —27 — 213 - 225,

Hencedfis = —225—|— 231,

Conditions We have the following bit differences on the arguments #ftfiunc-
tion.

Q | OO

Qis | (3,15,+£31)

Q14 | (£31)

Qi3 | (—24,—25 —26,—-27,—28 —29,30,+31)

We first requireQss[25 = 0 and Q14[31] = Q13[31]. To avoid further differences
we also requireQqqfi] = Qq3]i] for i € {3,15} (the latter a.r.), an®@is[i] = 1 for
I € {24,26..30}. Finally, one trivial condition is added HyQqs = (—29,+31).

Step 16 Qi7 — Q16+ (G(Que, Qus, Q14) + Quz+ My + ki) <

We havedQi3 = 224+ 231, We needTqg = 224,

Hencedfg = 231

Conditions We have the following bit differences on the arguments #oftlfunc-
tion — which is now thes function.

Q | OQ
Qu6 | (—29,4+31)
Qis | (3,15,+31)
Q14 | (£31)

Bearing in mind thatG(Q16, Q15,Q14) is equivalent toF (Q14, Q16,Q15), we first
require thatQ:6[31] = Q15[31], and to avoid further difference®;14[29 =0 (a.r.)
and Qu4i] = 1 for i € {3,15} (implying Q13[3] = 1 since we already required
Q14[3] = Q13[3], condition onQ14[15 a.r.). We get no additional, trivial condi-
tions from0Qq7 = (£31).

Step 17 Qig <« Q17+ (G(Q17,Qu6, Q15) + Qra+ Mg+ ky7)<°

We havedQi4 = 231, We need®T;7 = 0.

Hencedf;7 = 231,

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q| O
Qu7 | (£31)
Qie | (—29,£31)
Qis | (3,15,+31)

To produce 3* we requireQ;7[31] = Q16[31], and to avoid further differences we
requireQq7[i] = Qeli] for i € {3,15}, andQ15[29 = 1 (a.r.). We get no additional,
trivial conditions fromQ;g = (£31).

41

Step 18 Q19 < Q18+ (G(Q1s, Q17, Q1) + Qu5+ M1 + k1g) <

We havedQis = 22 + 215+ 231 anddriy, = —21°. We needTg = 2°.
Hencedfi1g = 231,

Conditions We have the following bit differences on the arguments #&ftfunc-
tion.

Q| O
Qs | (£31)
Q17 | (£31)
Qie | (—29,+31)

We requireQqg[i] = Q17[i] for i € {29,31}. We get one additional condition from
[0Qqo = (17,431).

Step 19 Q20+ Qu9+ (G(Q19, Qug, Q17) + Q16+ Mo + kyg) <2°
We havedQig = —22°+ 231, We need®Tg = —2°°.

Hencedf1g = 231,
Conditions We have the following bit differences on the arguments &fttunc-
tion.

Q| OO
Quo | (17,£31)
Qg | (£31)
Q17| (£31)

We requireQ19[31] = Q18[31] andQ17[17] = 0. We get no additional conditions
from 0Qy = (£31).

Step 20 Q21— Q20+ (G(Q20, Q19, Q1) + Q174 M + ko) <

We havedQ;7 = 231, We need®T,o = 0.

Hence,6f20 = 231.

Conditions We have the following bit differences on the arguments #&ftfunc-
tion.

Q | OQ
Q2o | (£31)
Quo | (17,£31)

Qs | (£31)

We requireQo[31] = Q19[31] andQ1g[17] = 1. We get no additional conditions
from DQZ]_ = <:|:31>.

Step 21 Qg2 + Q21+ (G(Q21, Q20, Q1) + Qug+ Mg+ ko) <°
We havedQ:g = 231. We need®T,; = 0.

Hencedfy; = 231,

42

Conditions We have the following bit differences on the arguments #oftlfunc-
tion.

Q | O
Q21 | (£31)
Qa0 | (£31)
Qio | (17,£31)

We requireQz1[i] = Qqoli] for i € {17,31}. We get no additional conditions from
[0Qup = (4+31).

Step 22 Q23— Q22+ (G(Q22, Q21, Q20) + Q1o+ s+ kag) <14

We havedQig = 217+ 231, We needT,, = 217.

Hencedfy, = 231,

Conditions We have the following bit differences on the arguments #ftlfunc-
tion.

Q| O
Q22 | (£31)
Q21 | (£31)
Q0 | (£31)

We requireQ22[31] = Q»1[31]. Note thatdQp3 = 0.

Step 23 Qo4 — Q23+ (G(Q23,Q22, Qo1) + Q20+ My + kag) <%

We havedQyo = 231 anddrfy = 2°1. We needT,3 = 0.

Hencedfy3 = 0.

Conditions We have the following bit differences on the arguments #ftfunc-
tion.

Q| D
Q23 | (
Q22 | (
Q21| (
We requireQ,3[31] = 0. Note thatdQ,4 = O.

)
+
+

D
D

3
3

Step 24 Q25— Q24+ (G(Q24, Q23, Q22) + Qo1+ Mg + kog) <

We havedQy; = 231, We need®To4 = 0.

Hence,6f24 = 231.

Conditions We have the following bit differences on the arguments #ofttfunc-
tion.

Q| D
Qs | ()
Q23 | ()
Qx| (£
We requireQ24[31] = —Q23[31], implying Q24[31] = 1. Note thatdQps = 0.

43

Step 25 Q6 < Q25+ (G(Q25, Qoa, Q23) + Qoo+ Mg+ kos) <2

We havedQys = 231 andditys = 231, We need®T,5 = 0.

Hence,0fy5 = 0.

Conditions We have no bit differences on the arguments tofttienction, so we
getdfys = 0 directly.

Steps 26—33 In all these steps there are no bit differences on the argisnethe
f function, and hence no requirements on the step variables.

Steps 34-47 In all these steps thé function is thexor function, and hence a dif-
ference (on a certain bit position) on an odd number of arguisiie thef function
will always produce a difference in the output, and a diffiees on an even num-
ber of arguments will never produce a difference in the autplence, we cannot
ensure any specific behavior of tfidunction, but it can be easily verified that the
characteristics are always fulfilled during these steps.

Step 48 Qag «— Qag+ (1(Qag, Qa7, Qu6) + Qas+ Mo+ kag) <°

We havedQus = 2°1. We needTg = 0.

Hence,0fs5 = 231,

Conditions: We have the following bit differences on the arguments tofttienc-
tion — which is now thd function.

Q | O

Qug | (£31)
Qq7 | (£31)
Qe | (£31)

Let’s take a look at the truth table of thdunction:

Y Z IX.Y,Z)
00

>

PR, PP, OOOO
PP OORERO
P ORFrRrOFr OPR
COCOoORP R, EFLROOR

Since we have differences on bit 31 for all arguments, we teédding a pattern
for which flipping all bits always produces a difference oe thutput. In order
to minimize the number of conditions we require that we ordyg a condition to
Qg in this step. The only pattern seems to be when&verZ, which works since
1(0,0,0) =1butl(1,1,1) =0, andI(0,1,0) =0 butl(1,0,1) =1. Hence, we have
the conditionQyg[31] = Qa6[31].

44

Step 49 Qso — Qag+ (I(Qao, Qag, Qa7) + Qap+ My + kag) <10

We havedQug = 2°1. We needT,g = 0.

Hencedfsg = 231,

Conditions:We have the following bit differences on the arguments toftfienc-
tion.

Q| OO

Qug | (£31)
Qus | (£31)
Qq7 | (£31)

The requirements are the same as in step 48, so the condit@g[81] = Q47[31].

Step 50 Qs1 « Qso+ (I(Qs0, Qag, Qag) + Qa7+ Mg+ ksp) <12

We havedQ,7 = 231 anddifys = 231, We needTsp = 0.

Hence,d0fsg = 0.

Conditions:We have the following bit differences on the arguments toftfienc-
tion.

Q | UG

Qso | (£31)
Qa9 | (£31)
Qg | (£31)

In this step there must be no difference in the output offtfienction, so we need
to look at the truth table of thefunction again. We note that whenewér= —-Z
we have the desired behavior, so we req@gg[31] = —Qyg[31].

Steps 51-59 In all these steps we have the same situation as in steps 48and
so we require;[31] = Q;_»[31] for 51 <t < 59.

Step 60 Qg1+ Qso+ (1(Qs0, Qs9, Qss) + Qg7+ 1My + kgg) <
We havedQs; = 231 anddify = 231, We nee®Tg = 0.

Hence,d0fgg = 0.
Conditions: We have the following bit differences on the arguments toftfienc-
tion.

Q& [0

Qoo | (£31)
Qsg | (£31)
Qss | (£31)

Again, we need no difference out of thfefunction, so we requirégo[31] =
_‘Q58[31]-

Step 61 Qg2 — Q1+ (1(Qs1, Qso, Qs9) + Qs+ 1M1+ Ke1) <10
We have6Q58 =231 andoriy = —215 We needTg = —215
Hencedfg; = 231

45

Conditions: We have the following bit differences on the arguments toftfienc-
tion.

Q | O

Q1 | (+31)
Qso | (£31)
Qsg | (+31)

Since we need a difference on bit 31 out of ffeinction we again requir@s1[31] =
Qs9[31]. We have an additional condition @, from 0Qgy = (—25,£31).

Step 62 Qg3 «— Qe2+ (1(Qs2, Qs1, Qs0) + Qs+ M + Kez) <1

We havedQsg = 2°1. We needTg, = 0.

Hence,dfgo = 231,

Conditions: We have the following bit differences on the arguments toftfienc-
tion.

Q | O0Q
Qs2 | (—25,+£31)
Qo1 | (££31)
Qoo | (£31)

We requireQs2[31] = Qeo[31], and to prevent the difference on bit 25@§, from
spreading we also requi@go[25 = 0. We have an additional condition dPs3
from 0Qg3 = <—25, :|:31>.

Step 63 Qg+ Qo3+ (1(Qe3, Qs2, Qs1) + Qoo + 1My + Kgz) <22
We havedQgo = 231. We need®Tgz = 0.

Hencedfg3 = 231,
Conditions: We have the following bit differences on the arguments toftfienc-
tion.

Q | O0Q
Qes | (—25,4+31)
Qs2 | (—25,+31)
Qo1 | (££31)

We requireQs3[31] = Qs1[31], and to prevent a difference on bit 25 we further-
more requireQg1[25 = 1. We have an additional condition @4 from 0Qgs =
(—25,+31) (note that this condition can be omitted, which is explaiire8ection
4.7).

4.6 Modifications by Klima

On March 31, 2005, Vlastimil Klima published an article [#%at describes mod-
ifications to the search for a first block of an MD5 collisiosing the differential

pattern that was found by Wang et al. Following Klima'’s taiciue, it is possible to
find first block near-collisions in a few minutes. He alsoanliiced possible new

46

techniques for finding the second block, but these did nahdaster than the one
described by Wang et al. — at least according to the speetiilwag et al. claimed
to have reached. For this reason, only the modifications thnfinthe first block

are covered in this section.

4.6.1 An overview

In his technique, Klima makes clever use of the fact thahaftrst block there
are no conditions oQ; andQy, so instead of letting these two values determine
the values ofry and my, we can letmy and my; be determined by;7 and Q.
This way, we can ensure that the condition @y holds, and by selecting new
values ofQ;7 (determiningQ1g and Q19) until all these three values satisfy the
(9) conditions on them, we are left with 33 conditions (adonyg to Wang et al.,
ignoring T-conditions). We have 31 free bits Qbg to try, so on average we should
only need to choose new values 19y, ..., Q19 four times before we find a usable
near-collision. Of course, because Dfconditions, of which there are 4 with a
combined probability of success of aboyt51 in practice we need more than 4
tries, but the time it takes to choose the firstQ®alues and compute the relevant
message words is still negligible.

4.6.2 Details

The technique is quite simple and elegant, so the best wagdtrithe it might be
in the form of an algorithm, see Algorithm 4.2.

In [25], Klima suggests to computa,, ..., ms before starting), as a counter,
but this is not possible since computing those values reguiratQ; andQ, exist
already, and these we cannot compute before we kngw

Obviously, if it was possible to perform multi-message nficdtions in steps
later than 19, then we could do this to decrease the complexén further. But,
as mentioned, we cannot perform multi-message modificateter than step 18.

4.7 Possible additional improvements

Some of the conditions on step variables in the secondiaraan be changed to
improve the attack slightly.

First of all, there is really no need to requir€ss = (—25,+31). For previous
step variables we have this requirement in order to makedsipte (or at least
easier) to control the spreading of bit differences throingf function. However,
the last step variableQgs, is never used in arfi function, and we just require a
particular modular difference 0@g4, namely—22°+ 231, so that performing the
final addition with the chaining variable cancels out thiéedlence. Hence, we can
omit completely the conditio®g4[25] = 1, speeding up the process by a factor of
2.

a7

Algorithm 4.2 Klima's MD5 attack

Ensure: M andM’ with the difference defined in (4.1) form a near-collisiotisa
fying (4.3).
repeat
ChooseQ3,Qy,...,Q1g arbitrarily, but fulfilling conditions (includingT -
conditions, see [21])
Computemg, ny, ... ,my5 from theQ-values just chosen
repeat
ChooseQ;7 arbitrarily, but fulfilling conditions
Qis « Qu7+ (G(Q7, Q6. Q15) + Qua+ Mg+ ky7) <2
Q19— Qi+ (G(Qu8, Qu7, Qu6) + Q5+ My1 + kyg) <14
until all conditions orQ17, Q1g andQ;g are fulfilled
My — (Qu7— Q16)>° — G(Q16, Qu5, Q14) — Quz— kis
if Q19[31] =0 then
Q2«0
Z—2%1_1
else
Q20—
Z—2%2_1
end if {This is to ensure that the single condition on Qyg is fulfilled }
while Q,p < Z and not all conditions are fulfilledo
Mo — (Q20— Q19)>?°— G(Q19, Qu8, Q17) — Qus— kio
Q1 — Qo+ (F(Qo,Q-1,Q-2) + Q_3+ Mo+ ko)<’
Q2 — Q1+ (F(Q1,Q0,Q-1) + Qo+ My + ky) <12
Computeny, mg, My, ms according to steps 2-5
Compute all remaining step variables. If/iwhen a conditgomdt fulfilled,
let Qo0 <+ Q20+ 1 and continue
end while
until all conditions are fulfilled

231

We can even omit the condition @s3[25], or at least modify the requirements.
The f function call in step 63 (the last step) is

1 (Qe3, Q62, Qe1),

and we already requir@g;[25] = 1. WhenQg3[25 = 1 as we originally required,
then the changes on bit 25 Q3 and Qg2 cause no change to the (25th bit of the)
output ofl, since we have

1(1,1,1) =1(0,0,1) = 0.

If instead Qg3[25] = 0 then the 25th bit of the output dfstill does not change,
since
1(0,1,1) =1(1,0,1) =1.

48

However, in this case subtracting®@rom Qg3 causes a carry to propagate at least
to bit 26. Assume that it propagates to §i26 < s < 31. Then the output of the
f function does not change unless Dg1[s— 26|, because wheneveéls|i] is 0,
thenQg3[i] has no influence on the output of the function. Henc&gif25] = 0 we
require that for increasinigstarting from 26, as long &3s3[i] is 0, Qg1[i] must also
be0, and for the first for which Qg3i] is 1, Qe1[i] must still be0. This improves
the possibility that the requirement is fulfilled frofnto about3.

Note that if the carry propagates to bit 31 and stops thene @ag[31] = 1, and
since we requir€ssz[31] = Qs1[31], we also know tha®Qs1[31] = 1. This case also
leads to success (Ps1[i] =0 for i € {26,...,30}), because in bit 31 we need a
difference on the output df and this is achieved since we have

1(1,A,1) = —I(1,-A,0)

for any value ofA. Of course, the probability of this happening is very lowlyon
2-12,

We cannot allow the carry to propagate past bit 31, becaesevile have
1(0,A,0)=1(0,-A1)

for any value ofA.
The two improvements described here reduce the complekifinding the
second block of the message by a factor of abg8t 3

4.8 Animplementation

It seems that an optimal implementation of the Wang MD5 &ttaould consist
of two parts: the first part, i.e. finding the first block, wowgdtimally be done
using the technique of Klima [25], and the second part,fireling the second
block, would optimally be done using the technique of Wanglef45]. Surely
it is possible to combine these two techniques, as the twis paie completely
independent of one another, except for the chaining vabug®tsecond part. There
are some conditions on these chaining values, but thesesueeel already in the
first part, so any first block satisfying the conditions carubed to find a second
block.

The attack has been implemented in the C programming laegugge Ap-
pendix C.

The program was run on a notebook computer with a 1.5 GHz trenkil
processor on the Linux platform. In these settings it foudd dollisions in a little
over 44 hours, yielding an average of abou% 26inutes per collision. The first
part took on average about 18.4 minutes, and the secondguériatlittle more
than 8 minutes on average.

Note that without the improvements described in Sectionth& average time of
finding a collision would be about 13 minutes longer.

Some of these collisions can be found at
http://ww. student. dtu.dk/~s001856/ md5col | i sions/.

49

4.9 Constructing meaningful collisions

The collisions found following the method described in ttigpter are not likely
to be of any use directly. Because of the message modifisatiemhave very little
room to maneuver towards constructing meaningful coljdimessages. However,
we can exploit some document programming language cotstmcreate collid-
ing messages that, when opened using a standard viewert gbtth@f document,
look authentic. The method described here is due to Magnus)&0].

For instance, in the Postscript language, an if-then-edsstouct can be ex-
ploited. This construct has the syntax (where tlgpewriter font means the
actual characters, and symbols suctXagefer to some string)

(X1) (X2) eq {M1} {My} ifelse

— meaning that if the stringg; andX, are equal, thei is displayed, and other-
wiseM; is displayed.

Hence, leM; andM> be two versions of a document to be signed. One version,
My, is the one whose MD5 hash will be signed by some p&tyhe other version,
Mo, is the version that some forge¥, wants the rest of the world to think th&t
signed. Hencd is going to makévi; andM, collide by changing these documents
internally, but in a way such that these changes are noteisita Postscript viewer
such as Ghostviewr does this by first creating a one-block messBg®ntaining
text that is not shown by Ghostview, for instance a commeiigwed by a newline
and the charactef’. He then computes the MD5 has$h of this block without
padding, and subsequently finds a collisiom, m) of MD5 with initial valueh;.

He then creates the two Postscript documents

Bllmy) (my) eq {Mi} {My} ifelse

and
Bllmp) (my) eq {Mi} {My} ifelse

The first one will displayM; in Ghostview, and the second one will displiis.
The two documents collide in MD5 since they only differ in firet occurrence of
my andm,, and these form a collision when precededdy

Note that there is absolutely no restriction bh and M,, except that they
should both contain a complete Postscript specificationdafcament. They don't
even have to have the same size. Furthermore, virtually altigion (my,m,) can
be used to construct this forgery. The only condition is thgither my nor my
contains a bracket charactdf, or) .

Also note that this kind of exploitation of a collision canidmeed for other hash
functions as well, unless the collision requires a large Ibemof message blocks.
Hence, it actually removes the necessity that a collisioomieaningful in itself
whenever a forger is able to persuade someone to sign a dattiméehe has only
seen on a computer screen.

50

Two examples of Postscript documents that collide under iviibbhave com-
pletely different appearances in any Postscript viewen loa found atht t p:
I www. st udent . dt u. dk/ ~s001856/ md5col | i si ons/ meani ngf ul . htni .

51

Chapter 5

AES-based hash functions

In 2001 the RINDAEL encryption algorithm was selected by NIST as the new
Advanced Encryption Standard, AES. Being standardisedleimentations exist
in virtually any programming language on many different tamations of plat-
forms and architectures, and therefore it would be conwerifea cryptographic
hash function based on AES existed. The hash functienrRMrooL, although
inspired by AES, does not provide the added convenience-a$irey AES com-
ponents. For a description of AES see [19, 42].

AES supports three different key sizes, 128 bits, 192 bitd, 266 bits. By
AES, we denote the version of AES using keydbits.

In this chapter some suggestions to a new hash function baggd on AES
components are given.

5.1 Block cipher-based hash functions in general

There are many advantages of basing a hash function on d@mgxitock cipher.
One advantage is, that if the block cipher is generally betieto be secure, then
this level of security may be transferred to the hash funchased on that block
cipher. However, some attacks that are not a real threat ftacl bipher may have
much greater consequences for a hash function. This is $tarrige true in cases
where a block cipher suffers from some weakness based onmaperties of the
key, and the hash function uses message blocks as keys fm¢hgotion function.
Since an adversary in a collision attack has complete coatter the message,
he might be able to exploit such weaknesses. Hence, theextarded security
requirements for a block cipher that is to be used as the asajgn function of
a hash function. In the following, unless the contrary isliexkty mentioned, it
shall be assumed that AES has no weaknesses that can beeskjoounting
attacks on hash functions based on AES. Hence, we need aglpalsaut building
a secure construction using AES.

Three general constructions of block cipher-based hasttiuns are usually
mentioned in the literature, e.g. in [30, §9.4.Ej (s the encryption function of the

52

block cipher using keX):
The Davies-Meyer construction

hit1=Em(h)@h (5.1)
The Matyas-Meyer-Oseas construction

hit1=En (M) o m (5.2)

The Miyaguchi-Preneel construction
his1=En(m)&h&m (5.3)

Other schemes could be considered, of course. If four pbgsg of inputs
(my, hi, m & h;, and some constant) are considered as key, plaintext andd fee
forward value, then #= 64 schemes can be constructed. Of these it has been
shown [35] that assuming no weakness of the underlying bégatker can be ex-
ploited, only four are secure (among these are (5.2) and)(54 further eight
(among these are (5.1)) have the only weakness that fixetspzan be found (see
more on this in Section 6.3). Do note that if the underlyingchlcipher uses keys
that are not the same size as the plaintext blocks, therr sibhee transformation of
inputs must be applied, or, of the three schemes mentiomidthe Davies-Meyer
scheme can be used.

All these constructions are so-callsihgle-length meaning that they produce
a hash result of the same size as the underlying block ciphbe rate of the
constructions above is 1, signifying that one encryptiompresses an-bit block
to produce am-bit (intermediate) hash. In general, the rate of a blockeifased
hash function ip = % wherep is the number of bits of message that are processed
by each application of the compression function, and the block size of the
underlying block cipher.

Most new hash functions proposed today have a hash resuiteofas least
256 bits in order to prevent birthday attacks from beingatife in years to come.
Since AES is a 128-bit block cipher, a single-length cortsiom should not be
used to form an AES-based hash function. Instead, a doebtgH scheme may
be considered.

5.1.1 Fast double-length schemes

It is tempting to consider fast double-length schemes sctha Parallel-DM
scheme, proposed in [22]:

hi1 = Egep(iom)ohiom
W1 = Em(Ponm)ohon?

— whereE is some block cipher of block length and the message is split into
2u-bit blocks (mt, n?), eachrniJ is W bits of length. The hash rate of this scheme is

53

1, since one encryption is needed to progebis of the message. However, rate 1
schemes such as Parallel-DM and the general form

hil+1 = Ea(B)®Cy

h21 = En(B2)a&Cy

(5.4)

(whereAj, Bj andC; are linear combinations df', h?, mt andm?) were broken
in [27]. This is not to say that all rate 1 schemes are inseciitéhe time of this
attack, however, most block ciphers used 64-bit blocks~aé4-bit keys.

5.1.2 DES and MDC-2

A double-length scheme was used in the 128-bit hash fundMibC-2 using DES.

DES uses 56-hbit keys and processes blocks of 64 bits. In eaelion of MDC-2,

64 bits of message are processed by two instances of DE Singreacombined

128-bit output, which is then used to form thex 56 bits of key for the next itera-
tion:

Ll = Egu(hy) (M) &My
IZallrfs = Egup(m)om,
Where\lin =]ri"+1 , 0j are simple functions that remove 8 bitshﬁfand fix two

other bits, and

ht = 1Yr? and
he = 17|k

Hence, MDC-2 has rate/2: 64 bits of message are processed by two applications
of DES to produce a 128-bit output.

Other block ciphers than DES could be used, following the MP &cheme.
However, a rate 12 scheme may not be fast enough. On the other hand, any
scheme should keep the work of [27] in mind, and hence schefithe form (5.4)
are prohibited.

5.1.3 Using AES

AES can be used in a fashion that compresses data by lettiB§-hi2message
block be used as the key for AES.
Consider the following scheme:

Ii]:HHrilJrl = Em (h|l) @ hil (5.5)
1240r2; = Em(h))eh?, '
whereE is the AESsg encryption function|m| = 256 and
ht = [1r? and
v 2 59
| [

54

for 1 <i <t. If mconsists of blocks of 256 bits then we defit(m) = I rd||12||r?.

hd andh3 are fixed initial values, but they must be different. Otheeyiil = |2
andrl =r2, and hencér! = h? for all i < t. In fact, if it happens for somk that
ht = h2 thenh! = h? for all i, k < i < t, S0 we may fix some bits @ as was done
in MDC-2. For instance, we might replace (5.6) with

ht = (Yr2)A-1p and
e = (Vi

for 1 <i <t. We defineH (m) as before.

This scheme has rate 1, since a 256-bit message is processed hpplica-
tions of AESsg, each producing 128 bits of output. The scheme is appareatly
broken by [27], because it does not fall under the catego($.d).

5.1.4 Related-key attack on AESs6

A related-keyattack [13] exists on 9 rounds of AkR$. However, this attack re-
quires Z7 plaintexts and takes tim&?*. The attack exploits the fact that the AES
key schedule is far from optimal, and so it may be a good idezotwsider new
proposals for the key schedule.

It is an open question whether this related-key attack paséseat to hash
functions based on AESs.

5.2 Extending AES to support 256-bit blocks

In the original Rijndael design, 256-bit message blocksewampported, but this
feature was omitted in the AES standard. It is easy to see hB\8 Aould be
extended to accept larger message blocks. A 256-bit messagjecan be repre-
sented internally as a*48 matrix. Then the functionSubBytes, ShiftRows and
MixColumns are extended in a natural manner to operate on this largeixmahe
key expansion is extended to produce twice as much key raktgirice 15 keys of
256 bits are now needed.

Extending AES to support 256-bit blocks obviously requieefew changes
to be made to the basic functions of AES. However, when cerisig software
implementations, most of these changes involve only chattgeounters and array
sizes. Hardware implementations are a completely diffeneatter, as in most
cases new hardware would probably have to be built to accatatadarger block
sizes. Note that the hash function suggested in Sectiondge4rbt require new
implementations of AES itself in software nor in hardware.

When a 256-bit implementation of AES exists, the hash fanctiould be
defined using e.g. the Miyaguchi-Preneel scheme (5.3).

55

5.3 Alternative constructions

Other constructions than (5.1)-(5.3) should be considenedthis section, two
alternatives are mentioned.

5.3.1 The Lucks scheme

In [29], Stefan Lucks proposed two new constructions to ouprthe security of
the Merkle-Damgard construction: thgde-pipeconstruction and thdouble-pipe
construction. These are both extensions of the MD-consbruc

The wide-pipe construction requires the existence of twomession func-
tions, f : {0,1}° x {0,1}* — {0,1}% and ' : {0,1}° — {0,1}", wheres > n, f is
used in the usual way, anfd is a final compression yielding the hash. Witk n
this makes finding collisions for the compression functiarder, but this construc-
tion is not suitable for block cipher-based hash functi@isce usually the block
size of the cipher is not large enough to substitute

The double-pipe construction uses only one compressiartium f : {0, 1}" x
{0,1}"* — {0,1}", wherep > nis the size of a message block. The hash function
has the outline

iy = f(hih2m)

Wy = f(hEhHm),

(5.7)

(where(h}, h(z)) is an initial pair of values) and the final hash value is defined
H = f(h", h{ [0~ ™) (5.8)

for some initial valueh*.

When based on a block ciphBr this scheme has ra%, and it requires thad
support key sizes that are different from the block sizestHeumore, the lesser of
these sizes), must still be large enough that attacks requiring tirfi@ are infea-
sible, i.e.n should preferably be at least 256. As mentioned in the pusvéection,
AES can be extended to support block and key sizes of viytaaly multiple of 32
bits, although other combinations than the standard onesri@t been thoroughly
examined.

5.3.2 The Knudsen-Preneel scheme

In [28], Knudsen and Preneel determine some necessary ¢issthty not suffi-
cient) conditions on multiple constructions to achieve digalar level of security,
and they propose such constructions based on error-dogeaxides.

Following the reasoning and the assumptions of [28], it issfide to create
a hash function based on standand=(128) AE S g for which finding collisions
has the complexity (at most)'2® by using 3 parallel chains (i.®.= 3), and this
yields a hash function of rate/3. Several other combinations with the same (upper
bound on the) security level are possible.

56

Basing the construction on error-correcting codes

Knudsen and Preneel propose to base the construction af lazenbinations of
the chaining values and the message blocks that take patiniteration on error-
correcting codes. This way it is possible to ensure that vilversets of chaining
values and message blocks differ, then inputs to at lgastcryption functions
differ, whered is the minimum distance of the code.

A simple differential attack exists on the Knudsen-Premeegistruction when
codes of minimum distance greater than 3 are used, sincese ttases the con-
jectured complexities of attacks are too optimistic. Hogre¥or d = 3 we can
hope that the complexity of a collision attack is exactly tlejectured 2, which
is good enough when the hash function is based on AES.

In the following, two hash functions following the princgd of [28] shall be
described.

A hash function of 5 parallel chains

Using the(5, 3,3) shortened Hamming code ov8F (22) one obtains a hash func-
tion using five parallel chains. Hence, using standard kS single 128-hbit
message block is processed in each iteration, and so théurasion has rate /15.
The conjectured complexity of a collision attack i$2 Since the result has size
5x 128 bits, it may be further compressed to 256 bits by usingudput transfor-
mation T: {0,1}640 — {0,1}2%. This compression function can be slow because
of the small amount of data that it needs to compress. Se@B8&c8.2 for some
proposals.

It is clear that the amount of internal memory needed for atrantion such
as this is larger than when a small number of parallel chamsised. In this case,
we need to store from one iteration to the next the 5 chainailges of 128 bits
and the message block also of 128 bits, i.e. a total of 768it®4 32-bit words.
In environments with limited resources this could be a pFobl

The field GF(2?) is defined by the polynomigh(x) = x> + x4+ 1 (symbols in
bold are elements of the field). L&t=0,1=1, a = xandp = x+ 1. Then the
(5,3,3) code may be defined by the generator matrix

10011
G=|0101a
00118

Let us investigate what multiplication lmy means in terms of the coefficients. Let
ax+ b be some element @F(2%) defined as above. Ther{ax+b) = x(ax+b) =
ax® + bx= a(x+ 1) + bx= (a+ b)x+a. Hence, the most significant coefficient of
the result isa+ b, and the least significant coefficientasIn other words, we may
define this multiplication as a multiplication of a vector &ynatrix as follows:

(ax+b)a= a b][i (1)],

57

and hence we define
Mo — 11
“7 11 0|
The element® and 1 have the trivial corresponding matricb andM;. Since
o+ 1= inthis field, we define th@-matrix as

Mo — 11 i 1 0] |01
=110 01| |1 1|
We may now write the generator matrix using element&bBf2) as

1 0000O01O0 1 0

01 000O0O0O1O0T1

A Mi Mo Mo M; My 0010001011
G=| Mo My Mo My Mo | =1 o 0 v 1 5001 1 0
Mo Mo M M1 Mg 0000101001
10 0000 1O01 1 1

We then define a six-element vectrof chaining values and message blocks, in
this case for instancé = [ht,h? h3 h* h® m], whereh! is the jth chaining value.

In order to determine the combinations of chaining valuesraassage blocks used
in each chain, we computé x G yielding

b
m
htehdoh?
h? o htom
htehohlom
| Wehrohom]

VxG)T =

We pair up the elements of this vector to obtain the input touhderlying en-
cryption function, which means that with the AES encryption function using
the keyk andmy, ..., m_1 the message, we may define the complete hash function
(excluding the output transformation) as

hi1+1 - Ehil(hiz)

W1 < Eh?(hi“)

Wy < Ep(m) for0<i<t
iy « Ehﬁ@h?@h?(hiz ohfem)

hy Ericomontom (oo om)

58

where(hg, h3, h3, hd, hg) is some initial valueh, # hg for j # j’ —in fact preferably
all the h) should be linearly independent. For instance, one couldsie, =
0j—110128—j_

Note that in this scheme the message has no influence on theh#sing
value in the first two iterations, and it has no influence ongbeond chaining
value in the first iteration. Hence, a one-block message basfluence on the
first two chaining values, and so the first 256 bits are idahfior all one-block
messages. Of course, the output transformation shoultiteorelation between
one-block messages.

Using a large code

In order to improve the rate of the hash function one may westhbose a larger
code over a larger field. For instance, @F(2%) there exists 417,15,3) code,
which can be used to form a hash function of rat¢113using 17 parallel chains.
Hence, this solution requires 2176 bits of memory to stoeectimining values, or
68 32-bit words. This does not seem very practical, and & swuldn’t be useful
in some environments, but when resources are not too linoitedmay consider
using this fairly quick hash function.

A generator matrix for thél7,15,3) code is

1 1
1la
102
1ad
1a4
1a°
1ab
la’
1a8
1a°
1(X10
1G11
1(X12
1G13
1(X14

ﬂ)
eNeoNeoNeoNolNolNoelolololNololNolNol
eNeoNeoNeoNeoNoNoNoNoNoNolNoNol el
eNeoNeoNoNoNoNoNoNoNoNoNol NelNel
eNeoNeoNeoNolNolNolololNoNol lolele
eNeoNeoNeoNolNolNolNolNolNol jlololNelNe
eNeoNeoNoNoNoNoNoNeol JNeoloNolNolNe
ecNeoNeoNeoNeolNoNoNaol JleolololNolNelNe
ecNeoNeoNeoNoNoNol NellolNolNolNolNelNe
eNeoNoNoNoNoN NelloNoNolNoNolNolNe
cNeoNoNoNol NeolloNeoNoNolNoNolNolNe
cNeoNeoNeoN NeolNolNolNolNolNolNoNolNeNe
cNeoNeol NeolNoNolNoNolNoNolNoNolNeNe
O OPFRPOOOOO0ODO0ODOOO0OO0OO0oOOo
OPFRP OO0 O0C00DO0DO0O0O0O0O0O0OOo
alcNeoNeoNoNoNoNoNoNoNolNoNolNoNe

where the field5F (2%) is defined by the polynomigh(x) = x* + x+ 1, anda = x

is a primitive element. Similarly to the previous example may exchange each
element ofGF (2*) with a 4x 4 matrix overGF (2) corresponding to multiplication
by that element. For instance, multiplying= x with the elemen&d + bx2 + cx+d
yieldsax* +bx® + o + dx= a(x+ 1) + b + o + dx= b + o + (a+d)x+ &,

59

so we replacer by the matrix

[N N e]
= OO
O O

Ma:

o
O O

0 0

Obviously, the elementandl have the trivial corresponding matrices, aigh =
[M_;Mq for 1 < j < 14. This way, we obtain the 44 matrices below, where a
subscriptj means the matrix iMg;.

0011 0110 1100
1000 0011 0110
0100 1000 0011

l0o010], [0100], [1000],
10117 [0101] [10 1 0]
1100 1011 0101
0110 1100 1011

loo011], [0110], [110 0]
01117 [1110] [1 11 1]
1010 0111 1110
0101 1010 0111

101 1], [0101], 101 0],
1101 1001 0001
1111 1101 1001
1110 1111 1101

011 1), [1110], [1111],
0010 0100
0001 0010
1001 0001

1 101], [1001],

As above, we define a vectdf containing the chaining values and the message
blocks, but this time we need twice the number of elemente@asambined num-
ber of chaining values and message blocks, and hence wéhgdé in a left and a
right part. The vector hence becomes

V — [hil,L7 hil.R’ 7hi17,|_’ hil7.R’ mil.L’ mi1.R7 . milS.L’ mi13,R]
wherex"" means the 64 leftmost bits &f, andx' means the 64 rightmost bits
of xi‘. The combination of chaining values and message blocksdosehas input
to each encryption function is then computedvas G, whereG is G with the
field elements replaced by their corresponding 4t matrices ovelGF(2). This
computation shall not be performed here as the resultingprdecomes quite
large. The resulting hash function, however, has the autinTable 5.1.

60

‘ C.v. Input
hil-i-l {hi17 h|2}
Wy {hh)

., {m.h°
iy {h.h
o (O
P, {hihh?
h'., {hi3hl4
he., {niS nie

hi9+1 {h'",ml}
o {mf.m?}
hi, {mf,mp)
h?2 {mP.m'}
2 {mf Y}
hfy {momit}
hiop {m2m}
hts, {htehrPerPen’en’ehlenBfanBaohl’omententeme
mio@n;f;,gg?@h;%??@h?@hﬁo@ h2eh“eh®ememom e
ny
{ht & (PN & b o h o (TP @ ke (0T
(KRR @ W2 @ i e 4 e (BT o (hEFR2Y
)

17
hi-i-l

(WO © it o mo e o (PR © (IR
nf’ © (PR Im) @ @ e o (PR © ny' o (mS|m
(Mm@ m oo (MM @ Moo (mm)
MM e @ (WD) @ (BRI © he o (heFIn)
h RIS @ (IR @ (WU @ O @ (P>
NS0 @ (RIS @ b e (N Imh) & (> m)

(
(

(h;

(>RIm) & (PR Im) @ vt @ (R ImPh) e mb e (PR @
(

(

(

O DDDDDD

mpliny) @ (g © (A © (i) @ P @
e lmyT) & (mEEImy) @ (Mm@ (Pt mptt) @m0 ¢
m 2R R)}

Table 5.1: An outline of the hash function defined by (ti€ 15,3) code. The first col-
umn is the chaining value being computed, and the secondneois a pair (in braces)
representing the input to the encryption function, wheefitst element is the key and the
second element is the message block.

L)@
R)69

61

The input to the last chaining value is fairly complex; it s@ts of 62 XORs.
This obviously adds to the complexity of the entire hash fiam¢ and further-
more it is not very practical. Another problem is that we naetbast 13 message
blocks of 128 bits in order to perform a single iteration. Soould be achieved by
padding, but it would be better to use some message expafusiotion that (for
each iteration) makes each block dependent on all the othekd The output
transformationT : {0,1}?176 — {0,1}2%0 should (again) make all 256 output bits
dependent on all chaining values, since it takes 5 iterafionthe message to affect
the first chaining value. In factg® never affects for j € {6,7,10,11,12,13 14}
and anyi, no matter how large the message is. To avoid this undesifabture
one could change the order of the element¥ ofor instance, the first 13 chain-
ing values could be computed BS ; « Emj(hi‘+2), 0< j <13, the next two as
hiy — Ep(hf®) andh’?; — Epz(h{’), and last two chaining values would then also
have different specifications, according to the new ve¢tolt would then take at
most 9 iterations for any message block to affect all chginalues.

Possible output transformations

As mentioned, the output transformatidnshould be secure rather than efficient,
since it only has to compress a fixed, limited number of bits R56 bits. Even
schemes based on fairly slow mathematical operations magobsidered. It
should be computationally infeasible to find collisions 48 preimages foil

as well.

Hashing the chaining values. Knudsen and Preneel propose some possible out-
put transformations. One such proposal is to compressg ti@ining values using
the hash function itself in order to make each bit dependemvery other bit, and
then truncate the result. However, as mentioned in the que\section, a message
block (in this case a chaining value) does not necessafiygtadll “new” chaining
values. There are many ways of making sure that the final baguends on all
chaining values. For instance, further iterations of thmpssion function could
be applied, but this has to be done carefully to make surethleabits are mixed
properly. Also, it might be a good idea to do the final trunmatby dropping all
chaining values except the last two, %2 andh’~1, because these two chaining
values have the largest degree of dependency on message atatother chaining
values.

A CBC-like application. Applying a CBC-like structure would also have the
effect that all output bits depend on all chaining value. bitsr instance, lelty! be
the final chaining values of the “original” hash functions<(y < v. DefineH_; =0
and compute

Hj — Eijl(htj) forO<j<v

62

Repeat this once, i.e. let_; = 0 and compute
Hj —Eq ,(Hj) foro<j<v

Define Hy_||Hy_1 as the output. This solution would require an additional 2
applications of the AES encryption function. The reasoncfaosing two CBC-
like applications is that two output blocks are needed, aryg one of the blocks
H; depend on all chaining valudeﬁ. To achieve symmetry, the CBC processing is
repeated. This method would probably be faster than the @mtiomed above, and

it is also simpler as one does not have to take into accourthadhiaining values
are affected by which message blocks etc.

A method using modular arithmetic. As a final proposal for the output transfor-
mation, consider a compression function based on modutanaatic, for instance
the Chaum-van Heijst-Pfitzmann hash function discusse@atich 7.2. The fact
that this hash function is quite slow is less significant is ttontext, since only a
fixed and very limited amount of data needs to be hashed. idddity, it is proved
that if one is able to find a collision for the Chaum-van Heljétzmann hash func-
tion, then one is also able to compute a non-trivial disclegarithm. However,
since we are really looking for a (complete) hash functiotirely based on AES,
this solution might not be feasible.

5.4 Summary

There are many ways of building a hash function based on AE{S]jding so in a
secure and efficient manner is not easy. A general problenook lzipher based
hash functions stems from the fact that for each call of trietlging block cipher,
the key scheduling of the block cipher has to be applied (@Exirecases where
the key is fixed, but none of these schemes are secure aagaodid5]). In some
block ciphers the key scheduling algorithm is rather slowisTs not particularly
the case for AES.

One of the quickest proposals of those given in this chaptrdt of Section
5.1.3, and this one can even be used with AES as a “black boenexer this
accepts 256-bit keys, which is standard. This version isrosted quite as much as
the 128-bit version, however. Do note that key schedulirlg bas to be performed
once for every two applications of AES, as the two applicetion each step use
the same key.

The proposal of Section 5.2 does not work with standard AESlémenta-
tions, as it requires the use of 256-bit blocks. It is quiteye@m extend AES to
accept this size of blocks, but implementations, espegclardware implemen-
tations, still require some inconvenient changes to be malde speed would
probably be about the same as in the proposal of Section.5.1.3

The two proposals making use of error-correcting codes haite different
properties. The first one uses 5 parallel chains, and hemnggres 5x 128 bits

63

of internal memory to pass on the chaining values from stegtép. It is not
faster than using an MDC-2-like construction with AR®S The second proposal
is almost as fast as the two mentioned above, but it requisemiicant amount of
internal memory, namely 1% 128 bits. Both proposals come with the additional
challenge of identifying a secure and convenient outputsfamation. On the
other hand, they both have the advantage that they are abetAES as a black
box.

Considering the large number of existing implementatidnSES in both soft-
ware and hardware, and the recent attacks on MD4-like hasttifins, it may be
worth considering any proposal based on AES that is ableddAlSS as a black
box.

64

Chapter 6

General results on the
Merkle-Damgard construction

In this chapter some general results on all hash functiocing tise Merkle-Damgard
construction with MD-strengthening are presented.

6.1 The motivation for using MD-strengthening

As mentioned in Chapter 2, the Merkle-Damgard constractiith MD-strength-
ening makes it possible to prove Theorem 6.1. Different ufvalent construc-
tions were suggested by Ralph C. Merkle [31] and Ivan Daohg@} indepen-
dently.

Theorem 6.1. Let H be a hash function based on the Merkle-Damgconstruc-
tion, where the message is padded with a number of bits reptieg the length of
the unpadded message (i.e. MD-strengthening is used),earfdde the compres-
sion function of H. Then, a collision for H implies a collirifor f.

Proof. Assume that we have foundandx’, x # X, such thaH (x) = H(x). Letm
andm respectively be the padded versionxaindx'. Note that the two messages
are padded in the exact same way if and onljif= [X|. Definehg as the initial
value of the hash function, and let.1 = f(m,h;), wherem, 0<i <t, are the
message blocks oh. Define similarlyh,; = f(m{,h{), 0<i <t

Sinceh; = hj,, either there is a collision fof or (m_1,h_1) = (mM,_;,h, ;). In
the latter case, either there is a collision foor (m_»,h_») = (M, _,,h, ,). This
argument repeats. [k = |X| then either there is a collision fdr, or my = n{ for all

i, 0<i<t. Inthe latter cas& = X, which is impossible. Ifx| # |X| then at least
one of the padding blocks differ for the two messages, andévan 1 # n’(/_l_j
for somej, where 0< j < min(t,t’). Thus, there is a collision fof. Note that in
both cases the collision can occur later than the last iterat which the message
blocks differ, but then there is still a collision fdrsince the chaining values must
differ. O

65

Theorem 6.1 has the implication that if one is able to cowesteucollision
resistant compression functian then a collision resistant hash function can be
easily built fromf. However, as we have seen, itis not a simple task to construct
collision resistant compression function.

In the following sections, some general attacks on the Mefkdmgard con-
struction are described.

6.2 Joux’s multicollisions

In [23], Antoine Joux develops a new method for finding muoliisions, i.e. sets
of message$My,...,M;}, j > 1, that all have the same hash value.

The method of Joux assumes that the attacker has access ltsiarcdnder
C:{0,1}" — {0,1}" x {0,1}" of the hash functiomd. C takes as input an initial
chaining valuev of sizen bits and outputs two message blodWs and M that
collide under one iteration of the compression functioregithe initial chaining
valuev. C can be assumed to run in tifie where e.gT = 2"2 if C uses the brute
force method.

To find j messages that all have the same hash uddperform the operations
of Algorithm 6.1, wheref : {0,1}" x {0,1}" — {0,1}" is the compression function
of H. Since all messages have the same length, and are built fessage blocks

Algorithm 6.1 Multicollision finder

Ensure: The j = 2" different messageM3|Mg]| ~-|]M§‘1, B € {0,1}, all have
the same hash undet.
Letv be the initial value oH
fori=0toA—1do
(Mb,M}) — C(v)
v f(M),v)
end for

that collide under the compression function given the prapgal value, all the 2
different concatenations (in the right order) of theollisions have the same hash
value undeH. This algorithm operates in tin¥l' on average. IH was a random
oracle, it would take time™®~1/] to find j messages with the same hash. Even
with T = 22 which is always possibl&T < 2"i-/i as long as\ > 1.

This result is interesting for more than the obvious reasbosexample, it has
been suggested (for instance by Preneel [34]) that theigeofia hash function
may be improved by concatenating the hash results of twerdifit hash functions,
alternatively two different applications (using for inst& different initial values)
of the same hash function. This is called a cascaded cotistiut.et a hash func-
tion H be defined asl(m) = Hy(m)||H2(m), whereH; is ann;-bit hash function,
andHs> is anny-bit hash function. Assume without loss of generality tha np.
Find (in time~ ny2"/2) at least /2 messages that all have the same hash under

66

H;. Then, with a probability of about/2, two of these messages also collide un-
derHs,, and hence we have found a collisiontbfn time ny,2M/2 4 2n2/2, including
the time it takes to find the pair that also collides unHer For a truly random
mapping into(n; + ny)-bit values, it takes time(2+™)/2 to find a collision.

Note that ifny = ny, and one has access to a collision findeHefrunning in
time T such thain,T < 2%/2, then this method has complexit§222, which is not
much better than the case where the multicollisions aredduyrbrute force.

Multicollisions can also be used to improve the speed of figd2") preim-
ages of cascaded constructions. The method will not beilesldnere.

6.3 Kelsey/Schneier’s ™ preimage attack

MD-strengthening was introduced in order to make the hasttiion more secure.
However, as this section intends to prove, it does not adchmegistance against
2"d preimage attacks. The results of this section are due toelelad Schneier
[24], and are in part inspired by the work of Joux describetth@previous section.

Most compression functions hafiged pointghat can easily be found. A fixed
point in this context is a paiim, hy) such thah; 1 = f(m,) = h;, wheref is the
compression function of the hash function. Hash functiarghsas MD4, MD5,
SHA-1 etc. are constructed in a way similar to the Davies-#egheme using an
invertible block-cipher-like functiork, i.e. f(m,h) = En (hi) @ hi. Fixed points
can be found for the compression function of all such hasktions as follows.
Given message blocky compute (easilyhy = E;}(w), wherew is the neutral
element with respect te, usually 0. Therhi 1 = Ey, (hi) & hy = h;, and hence
(my, hy) is a fixed point. Note that, can be chosen arbitrarily, but it does not give
any control ovelh;. However, this means that a huge number of fixed points exist
for most compression functions, and these can be easily w@thp

This fact can be exploited, which we shall see. However,ethgranother
(slightly slower) technique for finding"® preimages of hash functions based on the
Merkle-Damgard construction that does not require thetertce of fixed points in
the compression function. For a description of this techaitipe reader is referred
to [24].

6.3.1 Expandable messages

An expandable messagga set of messages of different lengths that have the same
intermediate hash value, excluding padding and MD-stresrghg, under some
hash functiorH. A (kj,ky)-expandable messagk (> ki) is a set ofk; — k; + 1
messages of lengths (number of blocks)k; + 1,...,k, that all have the same
intermediate hash.

Expandable messages can be found relatively quickly aswsll Find 2/2
fixed points(m,h;) and the same number of paist, h) whereh! = f(m,hg),
hg is the initial value of the hash function (both take tim&2p With a good

67

probability there is a match between theand theh, assume that| = h;j,. This
means that the message&, mj, |mj,, m; |Imj,|[m;,, ... all have the same hash
value (excluding the padding block), and hence in time al@t®+! we have
found a(1, k)-expandable message with<lk < K, whereK is the largest number
of blocks that a message can contaidin

Note that an expandable message is entirely defined by jushigsage blocks,
so we may denote the expandable message abo@e/jgynjz).

6.3.2 Finding a 29 preimage

Expandable messages can be used to fiigimages for very long messages as
follows. Let the target message be= || ---[[m excluding padding (herem|
may be less than e.gry|). Compute the first chaining value$;, 0 < i <t. Find

a (1,t)-expandable messadgo, 1y), and leti be the common intermediate hash
value of these messages. Keep compufifig, 1) for random message blocks
until some message blodk is found such thaff (B,1) = h, for some/, where

0 < ¢ <t (i.e. this chaining value was reached by processiglf- - - |[m,_1). Then,

a 2" preimage oM is the message

M" = Lol pe I~ [[e [1BI[me[| Mg o[- - - I m,
——
¢ — 2 blocks

which will be padded in the exact same wayMssince it has the same size.

This procedure is expected to take tim@&2+1 4 2n-log:t since finding the
expandable message takes tifflé2+1, and finding a match on the chaining values
takes an expected time é? Hencet must be rather large for this attack to be of
any use. Nevertheless, the result is fairly strong as findfifigreimages using the
brute force method requires timé&,2and this technique can be used for any hash
function based on the Merkle-Damgard construction (ag kas fixed points can
be easily found for the compression function, but, as maetipeven if they can’t
there is a technique that is only slightly slower than the josedescribed).

68

Chapter 7

Hash functions based on modular
arithmetic

Most hash functions are based on logical bitwise operattuth as AND, OR

and XOR, because these operations are fast in both hardwarsoéware. How-

ever, they must be mixed with other kinds of operations ireotd introduce non-

linearity, and most often modular additions and rotatiamsused for this purpose.
Hash functions that are truly based on modular arithmetiexist. These have not
become very popular, since they are quite inefficient coegbén hash functions
based on logical operations, but they do have some advanikgeasy scalability,

and in some cases provable security.

7.1 A simple hash function

A simple example of a hash function entirely based on modad#énmetic is the
following. Let pandq be large, secret primes, and Mt pg. Define some integer
a> 1. Letx be the message to be hashed. To compute theHhashperform

H(x) = a modN.

If one is able to findx andX' such thatH (x) = H(X'), then@(N) dividesx — X
Hence, two colliding messages are very far apart with redpenodular addition.
Furthermore, if we have found say 10 (independent) cofisiog, X), then since
@(N) dividesx — X for all i, there is a good probability that the greatest common
divisor of all these differences is equal @N) — or at least it should be a small
multiple of @N). Knowing @(N) it is simple to findp andg. To do this, solve

p?—p(N—@(N)+1)+N=0

for p. The two solutions are andq, and hence\ is factorised. This demonstrates
that finding a small number of collisions is at least as hardet®ringN.

An alternative demonstration is possiblexifs limited in size, for instance by
requiringx < 4N. In this case, any collision will be a small multiple @fN) apart,

69

and hence only a single collision is needed in practice tod{i), and from that
the factorisation oN. Of course, with such a limitation og H can be used only as
a compression function. The compression rate, howeveqtisery high, as only
two bits of message can be processed in each applicatidn of

To resist preimage attacks it should be made sureathiatalways greater than
N. This can be done for instance by appendiriglst to x on the left.

This scheme has probably never been used in practice, ahdigusly has
some disadvantages. Most of these are also present in théumasion MASH-1,
which is described in Section 7.3.

7.2 The Chaum-van Heijst-Pfitzmann hash function

One could fear that the main reason why this hash functiontisised in practice
is its tongue twisting name. It sure does have one clear éayarto other hash
functions, which we shall come back to after having defined it

Definition 7.1 (The Chaum-van Heijst-Pfitzmann hash functiob®t p andq be
large (and hence odd) primes such tipat 1 = 2q. Let Z, be the field where
addition and multiplication is performed modupo(and defineZq similarly), and
leta andp be primitive elements df.,. a andf3 are public, but it is believed that it
is computationally infeasible to compute |8 Letm= (my, mp) be the message
to be hashed such that € Zq, i € {1,2}. The hash ofmnis the defined as

h(m) < a™p™ mod p.

Hence,h maps elements di. into Zp, so it might be used as the compression
function of some hash function in order to accommodate ngessaf arbitrary
length.

Note that we deliberately select the parameters of the hamtidn large enough
that the discrete logarithm mentioned should be infeastbtmmpute.
The interesting point of this (admittedly inefficient) hdsinction is Theorem 7.2.

Theorem 7.2. If a collision of the Chaum-van Heijst-Pfitzmann hash fuorctis
found, then the discrete logarithlog, 3 can be computed in negligible time.

Proof. The proof is from [41].
Assume that a collisiogm,), h(m) = h(nm') andm# m' has been found. Then

a™pB™ = a™B™ (mod p)

meaning that
™™ — 3™ (mod p)

First note that ify = 1, thenm, = m,, which is impossible. Hence, gad, —
mp,q) = 1, since bothm, andm, are at mosty— 1. Thereforem, — my, has an
inverse,y, modulog. I.e.

(M—mp)y=1 (modq)= (m,—mp)y=kg+1

70

for some integek. Sincep has ordeip— 1, andp— 1 = 2q it must be the case that
9= -1 (mod p). Hence,

BMe-mY = gkl — (_ 1)K (mod p),

and therefore, ik is even (meaning thgny, — mp)y is odd) then log = (m —
m,)y. If kis odd then, since&i = —1 (mod p) (just as we showed fop), the
discrete logarithm can be computed as,IBg= (m —))y+q. O

Computing the discrete logarithm is generally believed e¢aaldifficult task,
and since finding collisions has just been proven to be at Esmbard, this is a
strong result. 2 preimages are always at least as difficult to find as collsion
However, it is not possible to prove a similar result for prages, although it does
seem difficult to find these except in rare cases sudifmas < {1,a,3}.

This hash function can be used as a compression functiog tisnMerkle-
Damgard construction. Ig— 1| = n, then each message blocknis- 1 bits. The
(n+1)-bit output of the compression function is then concatehatih the next
message block, and the combineadlits are subsequently split into twebit en-
tities that play the roles afy, andm, in Definition 7.1.

7.3 MASH-1 and MASH-2

Another hash function based on modular arithmetic is MASkKsde e.g. [30,
89.4.3]). The setup of MASH-1 is far from elegant, and like @haum-van Heijst-
Pfitzmann hash function it suffers from inefficiency.

Definition 7.3 (MASH-1). Let p andq be two large primes that are kept secret,
and defineN = pqg. Letn, the bit length of the hash value, be the greatest multiple
of 16 not greater thafN|. Definehp =0 anda="f0...0p.

If necessary, pad the message wWithits until it has a length that is a multiple of
3. Append an extrd}-bit block containing a representation of the length of the
original message. The padded message consistslotksxg, ..., % 1.

Expand each message block by preceding each four-bit nitobitel 111}, except
the last message block for which the four-bit nibble ingkiteinsteadl010p. The
expanded message blocks are denatgd. ., m_1.

Define

hii1 — (((h@m)Vva)?>modN) mod 2')phy for0<i<t
The hash result ik;.

This hash function has the obvious drawback of inefficienttyalso has a
number of other disadvantages. For one, the primesdq must be chosen by
someone, but at the same time they should be secret. Thesagsdo do this (see
e.g. [4]), but it is not a very practical feature of a hash fiorc

71

Another problem is the message expansion. Not only doesvit tize speed of
the hash function, but it is also inconvenient. Howevenghgould be easy ways
of finding collisions had it not been introduced.

Finally, the security of the hash function is not based orsibe of the modulus,
but on the size of the factors, meaning thap Bindq are about the same size then
a collision can be found in timg/p ~ 24 and a (29) preimage in timep ~ 2/2.

A collision is found as follows. First factorige, which can be done in time much
less than,/p, then in time,/p find a collision, say(x,x'), modulo p. Use the
trivial collision (x,x) modulog, and, using the Chinese remainder theorem, obtain
a collision modulopg= N. This method also in part demonstrates the motivation
for constructing this hash function: M cannot be factorised, it does not seem
straight-forward to find collisions and1®) preimages. Do note that this is in no
way a proof that if one is able to find for instance a collisitren one can factor

N.

A substitute for MASH-1, called MASH-2, has been proposee@rdithe ex-
ponent of the compression function 21 instead of 2 as in MASH-1.

72

Chapter 8

The SMASH hash function

SMASH is a hash function proposal by Lars R. Knudsen [26], first gmésd at
FSE 2005. The proposal is broken [33] in the sense that imoliscan be found in
negligible time. We first describe the hash function, thendbllision attack, and
finally we try to improve the security ofMASH by making some changes.

8.1 The design of MIASH

The motivation for the development of theu&sH proposal is the fact that, as
previous chapters have shown, quite quickly the hash fomstf the MD4 family
are becoming vulnerable.M3\sH introduces a design that is different in both the
overall construction and in the compression function.

The idea behind the proposal is to use a bijective mappingdarcompression
function, which in this construction makes the compresgiorction invertible.
Due to feed-forward applications of the bijective mappinghe beginning and in
the end, the complete hash function is not invertible. Hawreit is easy to show
that (2%) preimages can be found in tim&2.

Two different versions of BAsSH were proposed; a 256-bit version called
SMASH-256 and a 512-bit version calleds8sH-512. It shall be made clear when
the description of the design refers to a particular ver§sae also [26] for further
details).

8.1.1 The construction

The construction can be expressed as follows. rhet mp||my||- - - ||m_1 be the
message to be hashed, padded as in Rule 1u/\ztm’§1 Letv be the all-zero vector
of same length asy. Then compute

ho «— f(vyov (8.1)
hiya «— f(hom)ehaobm forO<i<t (8.2)
hy1 «— f(hy)@oh (8.3)

73

The output of the hash functionlig, 1. The bijective mappind : {0,1}" — {0,1}"
(also called thesore function and the operatio®@m; will be explained in the fol-
lowing section. Note that in the first general presentatibtihis construction it is
specified that in a concrete hash function it is not allowed @h= 0 or6 = 1.

8.1.2 The compression function

The components of the compression function are now desktribe

The core function

The description of the core function is based amaSH-256. It consists of a num-
ber of rounds of two typedil andL. These shall be described in the following
subsection.

The outline off is

f(a) = HpoHzoHzoLoHjoHy0H3z0Lo

HzoHjoHzoLoHzoHyoHy () (8.4)

Leta = (a7, as,8s,a4,83,a2,81,8), I.€. eacly; is 32 bits.

H-rounds. As unveiled, there are three kindsldfrounds,H;, H» andHs. The
Hj-round consists of the following 8 steps:

(a77a67a57a4) — S] (a77a67a57a4)

Q4 qpat+aq<ii for0<i<4
(83, 82,a1,80) + Sj(ag,a,a1,)

g — a+ a4 for0<i<4
(a77a67a57a4) — S] (a77a67a57a4)

Q4 — Apat+a<ei for0<i<4
(83,82,a1,80) + Sj(ag,a,a1,a0)

8 a«—a+a 42l for0<i<4

N o o b~ DR

Here,S; is a 4-bit (bijective) S-box lookup in bitslice mode, meanthat theith
bit (0 <i < 32) of the four inputs are viewed as a single 4-bit entityhviite bit
from the first input being the most significant bit. The outptiSis a quadruple,
assembled in the reverse way of the disassembling of the. ifijpe three S-boxes
look as follows.

X
S(%) 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 13 12 7 15 1 3 10 8 11 5 0 2 4 14 P
j 2|1 11 6 0 14 13 5 10 12 2 9 7 3 8 15 4
3|14 2 9 12 8 1 14 7 15 5 0 11 6 10 3 13

74

The rotations are also different in eadhround:

|
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
19 18 17 7 1 7 26 20 0 16 20 5 28 2 20
22 29 12 4 18 2 13 29 26 20 16 29 18 4 10
4 21 19 5 24 20 12 16 14 30 3 4 23 15 13 |12

Fi,j

o b o,

WN -

L-rounds. There is only one type df-round, and it is very simple. The opera-
tions performed are

ag < azd ShiftLeftg(ay)
ay <« ay® ShiftLeftg(ag)
ap «— a1 ® ShiftRight(as)
ag < apd ShiftRight(as)

— where ShiftLef§ and ShiftRighg shift the argument by 8 bit positions to the left
and to the right, respectively.

Multiplication by ©

The multiplication by® is performed inGF(2"), wheren is either 256 or 512,
depending on the variant oM sH. Hence, before we can perform the multipli-
cation we must convert the factors to element&6f2"). This conversion can be
done in a natural manner by viewing the bits as coefficient polynomial, the
most significant bit being the coefficient to the term of thghleist degree. The
field is defined via an irreducible polynomial of degnmee For SWASH-256 this
polynomial is
p(e) — 9256@ 916@93@9@ 1

Hence,bm; is computed by shiftingn, one bit position to the left (yieldingn),
and if the most significant bit afy is 1, the polynomialg(8) = 8% ® 63 ® 0 1is
added (since the®?°® is shifted t082°¢, which equalsy(8) in this field), meaning
that we computen; @ 1000by. l.e. 8m; = iy if the most significant bit ofry is 0,
anddm, = My ¢ 1000by, if the most significant bit ofry is 1.

For SVAsSH-512 the field polynomial is

ps12(0) = °20 080 0° 00?3 1.

A similar technique to the one above can be used for mulépbo by6 in SMASH-
512.

8.2 Analysis

In this section a few properties oM3sH are mentioned. They were all presented
in [26] as well.

75

8.2.1 The forward prediction property

The construction of 8AsH originates dorward predictionproperty: Ifmy & mf =
hi®h =d, thenh 1 ®h , =d®0d =d(1$86). Repeated applications of this
property, i.,em,@m,,=d(1®0)" forO<u<t—i,vyieldsh 1N, ;=
d(1@6)4*. This weakness, observed already in [26], was exploitetérattack
of [33]. Note thatd(1® 6) # 0 wheneverd # 0, even for other hash functions
based on the same construction, since it is requireddtkat.

The final application off (8.3) helps protect against attacks based on the for-
ward prediction property. Iy ®h = d then the final application of causes
hha@h,="f(h)of(h)e d, which seems unpredictable fifis close to a truly
random function.

8.2.2 Inverting the compression function

Sincef is a bijective mapping, it can be inverted. This means thaetftire com-
pression function can be inverted. Lt be fixed. Then choosgarbitrarily, and
computeb = f~1(h,; @ a). Sincea=h &6m andb = h & m, we findm and
h; by solving these two simultaneous equations. They always a&aolution since
0#1.

8.2.3 Complexity of (29) preimage attacks

Preimage and™ preimage attacks ofMBASH have much lower complexity than
the usual 2. First 2V2 intermediate hash valués are precomputed and stored.
Then the same number of paii& b), for which f(a) © b equals some fixed value
h¢. 1, is randomly chosen. Fromandb, h; can be found (as above). With proba-
bility about 1/2 there will be a match on thg. This meet-in-the-middle attack has
complexity about 221, Knudsen argues that if this level of security is not high
enough, then a larger hash function should be used anywag $r any hash

function there is a collision attack based on the birthdawagax of complexity
2"/2,

8.3 An attack

The collision attack [33] that brokens\sH will now be described.

8.3.1 The idea

As mentioned, the attack makes use of the forward predigioperty. The team
behind [33] first assumes thatr18 has order 3 ilGF(2"), i.e. (1©6)% = 1. This

is not the case for the two proposals ofi&H, but it is permitted in the general
construction, since it is only required tHatz 0 and® # 1. By choosing carefully
the differences between the two messages, this varianmef8 can be broken

76

with four-block messages, since the difference on the ahgiwaluehy becomes
a(1® (19 0)%) = 0. The attack is then extended to breaksSH.

8.3.2 Breaking a variant

In this section the attack on a variant of1&sH, for which 1& 6 has order 3, is
described.

In order to make use of the forward prediction property, éhaust be a well-
defined difference between the two messageandnm’. Assume without loss of
generality that the first difference occurs in the first bldak inmg. Let

d=my®m,
Then the difference on the chaining valugis
a=hoh;=f(hyom) @ f(hydmy@d) ®6d. (8.5)
If we requirem; & m, = a, then the difference on the chaining valyebecomes
hooh,=adBa=a(ls0).

Extending this to the third message block, we make surenthatim, = a(1 0),
and hence we get

hs@hy =a(1®8)»0(a(l®8)) =a(ld)2

Now, for the fourth message block we must deviate from thishook since we
wanth, = h,. We achieve this ify @ h, = ad a(1® 6)3. This, in turn, is achieved

if the two inputs to thef function are the same as in the first message block, i.e.
if mg=ho®mya®hz andnt; =hy®my@ d@ h;. To see why, first note that this
causes the same output differencefoas in (8.5), nameln® 6d. The difference
onmygis

meemp=dahsehy=doa(le)

Hence, we have

haoh, = a®6dohsdhs®6(mgdmg)
= apbdoa(les)’ee(doa(led)?)
= ap8de (1e6)(a(1®e)?) e ed
= ada(l®e)®

and since the order ofd 6 is 3, we have, = h);, and hence a collision.

77

8.3.3 Breaking S1ASH

For SVASH-256 the order of 1 8 is (according to [33](22%6— 1) /5, and hence

using the technique above would require extremely long agess— in fact they

would be much longer than the maximum message length of #tefhaction. In-

stead, a slightly different technique is used. Note thagifaghievéy & hf =ap(8),

then we have a collision after th message block, sineg(6) =0 (mod p(8)).
For SWASH-256 we have

PB) =500 05 L (8.6)
which can be expressed instead in terms @fflas
pd) = (196)*°s (15 6)°a (160)°® (196)26 (196)°. (8.7)

In the attack above, if we were to add another message blogirirg thatmy, &
m, =a®a(1® 6)3, then we would get

hsohy=aca(l®0)®obacaled)®) =ala6)da(lob).

This shows that we are able to produce any desired polynamilad 6 (e.g. specif-
ically a multiple of (8.7)) as difference in: For each blockn that is processed
we can make sure that the differencetpn equals the difference dm multiplied
by (1@ 6) (by placing conditions on the differenoa @ m{ as just shown fomy),
and optionally we can make sure theaf{= h; & h, = a(1® 6)°) is added to this
difference by ensuring (as fonz in Section 8.3.2) that the input tbis exactly the
same as in the very first step, i.e. when processifng

More specifically, to achievie & hf = ap(6) we need at least= 257 message
blocks, and for this value df we needmy & my, = d # 0 (which at the end will
become the ternfl @ 6)2%6 of (8.7)). Then, for 1< i < 240 (= 256— 16) we
requirem & m = a(1@ 6)'~%, and in order to produce the terfti 8)6 of (8.7)
we require

Mp40 = Mo ® ho @ hpao

and
Mhag= Mo ® d @ ho © Mg

Similarly to the attack on the order-3 variant afiSsH this can be shown to pro-
duce exactlynpa1 @ I, = ad a(1a)249,

Now, for the next 12 message blocks, i.e. for 240 < 253, we requirem ¢
m =a(1®6)~12g a(1®6)'~L. In order to produce the terfl @ 6) of (8.7)
we require

Mps3 = My B ho hosz

and
n’{z53i nb@d@ho@ h/253.

78

Repeating the arguments we get the following final requirgme

Mpsg = Mo ho® hpsg
Mgy = Mo®ho®d® his,
Mss® Mg = a®a(l®0)dales)*aa(lee)®
Mpsg = Mo® ho® hose
Mg = Mo®ho®de hosg

This cause$is7® hhs; = ap(0) =0 (mod p(8)), and hencéys = hig,. 1.e. using
257 message blockss(64KB of data) we have found a collision ofv&sH-256.
Note that for the first message, 4 message blocks are detatinjnthe attack, and
the rest can be chosen freely. For the second message, anblaok, my, can be
chosen freely.

This attack obviously extends tovdsH-512 as well, since in this case the field
polynomial can be written

Ps12(0) = (180)°2@ (1208 @ (120)°a (180)* e (130)%a (1e8) e (10 6)°.

This attack requires at least 513 blocks, i.e. approxim&bbKB of data.

8.4 Possible improvements to 8ASH

In the published version of the design document [26], Knodseygests a number
of possible improvements toM3\sH that might prevent attacks based on the for-
ward prediction property from being possible. We now lookhase, and also try
to identify other possible improvements. When it makes affgrénce, the dis-
cussion refers to BASH-256, but all proposals should be quite easily extendible
to SMASH-512.

First we have to consider which properties ofi&H were exploited in the
attack. First of all, the forward prediction property prdwe be a weakness. This
was in part due to the mathematical property of multiplmatby 6. Secondly,
and related to the forward prediction property, an attackeable to choose his
differences on the message blocks (and in fact the entitg tofghe core function)
completely independently, since a message block is only insene application of
the compression function. This might not be a weaknesseif,itsut it should be
noted since it gives an adversary greater freedom in mayatiacks.

Before we begin, a useful concept is defined.

Definition 8.1. Let f : V — V be a bijective mapping. Mifference fixed-poinfor
f is a pair(x,d), d # 0, such thaff (x@& d) = f(x) @ d.

As it turns out, we would like to be able to construct bijeaichat have no
difference fixed-points, or for which finding difference fikpoints is infeasible.

79

8.4.1 Using the secure compression function for everysteps

One proposal from [26] for improving the security of the h&siction is to apply
the secure compression functiéras in (8.3) for evenyj steps, withj equal to e.g.
8or16.

This change would definitely thwart the specific attack oft®ec8.3 on
SMASH-256 whenevelj is at most 256, since for any sughthe application of
f with feed-forward would break the required difference oa fbllowing h;, and
subsequent differences (let alone chaining values) waddingly be impossible
to predict.

One may argue that this solution is not very elegant. Howavetoes not
introduce much complexity, and the speed of the hash fumdctioot reduced sig-
nificantly for values ofj like 16 or above. This is a simple fix, but it is unclear
exactly how much the security of the hash function is impdové&or instance,
there might be other collision attacks that need less jhaessage blocks.

8.4.2 Using differentf functions in each step

The idea to use different functions in each step was actually first suggested in
[33]. This might complicate the attack of Section 8.3. Wellslumk at a few
different variants.

Alternating between two f functions

Assume that two versions of the core functidg,and f; exist, and replace (8.2)
with
hit1— fimod 2 &m)@hiebm for0<i<t.

This solution does not ridiasH of the forward prediction property, but the attack
above would fail in the processing afps3, since in this step we would usk,
whereas we useth when processingy, and hence we cannot predict the output
of the core function as is needed in the attack.

However, this is only true if it is difficult to find valuesandx such thatfo(x) &
fo(X) = f1(x) @ f1(X). If one finds just a single such pair, the attack will work with
mo = hg @ x andmy, = hg & X' and, of coursed = x@ X (thus leaving us with less
freedom of choice). Whether such pairs exist and can be fobribusly depends
on the choices ofy and f;.

In any case an attacker might find a multiplepgb) expressed in terms ofd. 0
where no odd exponents exist, and then the same technigbewseould be used
to find a collision.

Adding some dependency on the step number

Another possibility is to let the argument fodepend on a third value, e.g. some
function of the step number. The most simple way to do thisldvbe to replace

80

(8.2) with
hip1— f(hemag()ohobm forO<i<t,

whereg is some simple function.

However, this solution does not provide any resistancenagthie attack described
in the previous section. Independently of the choicg ofie can produce a colli-
sion in the same way, except that some of the message blotkgdfgeent values
because(i) must be added. This is becawge) does not have any influence on the
difference between the two messages. Thus, ugingn other ways, for instance
added tan before multiplication by, does not improve the security either.

Letting f accept a second argument

As a final proposal of this type, one could change thiunction by making it
dependent on a second argument, for instancehis argument could affect the
S-boxes used, or the rotation values, or both. For instahitere were 8 different
H-rounds, and we still only wanted to use 3 differéhtounds in each call to the

f function, there would bg3) = 56 possible combinations, and hence we might
use as a second argumentftthe valuei mod 56, and define some simple relation
between this value and the combination of S-boxes and ootaBctors to use.
There are even more combinations if we accept any tripld-obunds (see (8.4))
to be used “in betweenl-rounds (as long as they don't repeat). To be specific,
there are 33& 335x 334 x 333~ 233 such combinations in®ASH-256, so one
might simply supply the last 32 bits 0fis an extra argument toin this case.

Of course, any of these proposals adds to the complexity ehtsh function.
Furthermore, it should be noted that there may not be 8 gggalbd S-boxes
and/or rotation vectors, which might also be a concern. IFjirthis solution does
not rid the hash function of the forward prediction propgeatfyhough it does make

it resistant against the direct use of the attack previodsicribed.

8.4.3 Further dependency on the message

In an attempt to get rid of the forward prediction propertyl &m addition reduce
the freedom that an adversary has in choosing message litoék$is needs, a
new variant is proposed. The idea is to replace (8.2) with

hiyi— f(hheomagm-_1))ohobm for0<i<t, (8.8)

whereg should be a bijective mapping and_; could be the all-zero vector.

By making the compression function depend on two differeessage blocks,
an adversary has much less freedom in the choice of messadesbl
In the attack of Section 8.3, the difference between the twssages is chosen
such that in many steps there is no difference on the inptigtadre function. The
reason for placing(m;_1) inside the core function in this new proposal is to ensure
that message block differences must be more complicatetiéanput to the core

81

function to be identical for the two messages. In this resgeavhen not equal to
the identity function) also seems to increase the complefitinding collisions.
The forward prediction property is essentially eliminatadd even more so i
does not contain difference fixed-points, or if such arediffito find.

In addition, the bijective mappingshould not contain any mathematical prop-
erties that could be exploited} could be a rotation, or it could be a function that
adds three differently rotated versions of the input (cT, fthe functions (4.4) and
(4.5)]). For 256-bit values, bijective versions exist. Whex they contain (easily
found) difference fixed-points is another matter.

It may also be a good idea to choassuch that it does not contain fixed-points.
This could be achieved by adding some constant to one of the-Z86 functions
mentioned. For the sake of symmetry it might also be a goaaltidappend a zero-
block to the end of the message, such that the padding Iohpckis used twice,
just as all other message blocks are. l.e. the final appiicati (8.8) becomes

i1 f(hk@g(m_1)) ©hy.

Let us analyse this proposal independently of the choigg tiftan be inverted
as follows. Giverh;, 1 choosea at random and compute= f~1(h; ®a). Then
solve the system of equations

) . (8.9)

This system has an infinite number of solutions. In fact, care @even choosh;
andm; independently, and then base one’s choica oh these values. Thdn
andm_; are fixed (n_1 is easily computed fromy(m;_1)). However, one cannot
choose both; andm,_; and compute then, that links these choices tg, 1. Of
course, one can start off by fixing_; such thag(m_;) = ¢, and then solve the
resulting system of equations

(a bec)=(h m)<é i)

This means that as forN&sH, (2" preimages can be found in timé&/2 by a
meet-in-the-middle attack as the one described in Secti?13,8except that one
message block is fixed in the computation of each podl-eflues. It also means
that collisions for the compression function can be easilynfl. However, it seems
difficult to find useful collisions, since givelm andm_1, there is no easy way to
solve (8.9) form.

Some people would reject this proposal with sole refereadhd invertibility
of the compression function. The straight-forward inlmlity can be removed by
using as compression function

o D
e

(a b)=(h m 9(”11))(

hiiy— f(homagm 1) ehom_1&g(m).

82

Now an adversary is faced with the task of findimg, m_1) such thatm & g(m,) @
m_1®g(m_1) = f~*(a®h, 1) @ afor agivenh 1 and a chosea. He can choose
one ofm; or m_4, for instancam;, and then look for am;_; such that

m_1@g(m_1) = f Yadhi) aomogm).

The difficulty of this task depends ay and it seems thaj might have to be as
strong asf in order to prevent the compression function from being ritibie.
This would render the hash function two to three times sldvan S1ASH.

In the following section we consider proposals that use ttsong, bijective
mappings, but without the dependency on more than one nmebiack.

8.4.4 Using more than one fixed, bijective mapping

The last proposal made in [26] to improve the security BfASH is to use more
than one fixed, bijective mapping in the compression fumnctithis solution will
be given more attention than the previous ones.

Of course, there are many possibilities for using more thanfixed, bijective
mapping. We shall look at two proposals. The first one reglaceltiplication by
0 with some bijective mapping:

Proposal 8.1. Let mp|| - - - |[m_1 be the padded message, andMéie the all-zero
word. Compute

hy «— f(v)ov
hiyi «— f(hem)egm)eh forO<i<t
b1 — f(hy)@hy

whereg is some bijective mapping, for instance a variantfofThe hash value is
defined asy 1. See also Figure 8.1(a).

The evaluation off andg can be done in parallel. The second proposal does
not share this property, but may have other advantageshwigcshall look at.

Proposal 8.2. Let mp|| - - - |[m_1 be the padded message, andvdie the all-zero
word. Compute

hy «— f(v)ov
hiia <« o(f(hem)eh)em for0<i<t
i1 — f(hy)oh

whereg is some bijective mapping, for instance a variantf ofThe hash value is
defined ady 1. See also Figure 8.1(b).

83

h hi C‘

hit1

(a) Proposal 8.1 (b) Proposal 8.2

Figure 8.1: The compression function of the two proposalénfiproving SVASH.

Both proposals reduce the speed of the hash function coohpa®ASH, at
least wheneveg takes about as much time &s One may consider aga faster
variant of f such agy; (compare with (8.4)):

91(0() =HyoHzoHjoLoHzoHj0 H2(0(<<<128)

It is not recommended to chooge= f, since this might give an attacker additional
options.

Choosingg = g; would add about 50% to the running time of the algorithm.
The rotation of the input is added because there is a sliffetelince in significance
of high-order and low-order bytes in (either version 6f)and this rotation might
make attacks based on the internal structurefsasfdg less likely to succeed. Also
note that the order in which the differeHtrounds are used differ frorh.

Note thatg; is just one possibility of hovg could be chosen. In the following
we shall try to identify some requirements on thiunction.

Finding collisions

One way to go about findings collisions of variants ofiA%H with two bijective
functions is to ensure that there is no difference in thetibpone of the functions
for the two messages that are to form a collision. This resltice problem to that
of finding a collision for the remaining part.

Analysis of Proposal 8.1. If the input to f is constant, thely &h =m &l =
d # 0, and hencg must have a difference fixed-poifry, d) in order to achieve a

84

collision. Similarly, if the input tog is kept constant, them; = m{ andh; & h =
d # 0, and hencd must have a difference fixed-poift; ® m;, d). This means that
if it is infeasible to find difference fixed-points for bothandg, then this technique
cannot be applied.

Analysis of Proposal 8.2. If the input to f is kept constant, thelh & hl = m &
m = d # 0 and henceg must have the difference fixed-poift(h; & m;) @ h;,d).
Similarly, if the input tog is kept constant, them, = n{ andh; & h{ = d # 0, and
hencef must have the difference fixed-poittt & m;,d). Hence, we can draw the
same conclusion as for Proposal 8.1.

The short analyses above show that the two proposals seeatyequinerable to
this sort of attack, and if andg can be found such that difference fixed-points
are infeasible to find, then both proposals are secure tdihisof attack. Also
note that the analyses prove that the forward predictiopgatg no longer holds,
or at least it would require that the attacker find some pitypafr f or g that can
be exploited.

It is easy to create a function that does not have any diféerdixed-points.
Let p be a bijective mapping, and defigx) = p(x) @ x. Thenq has no dif-
ference fixed-points, sinogx® d) = p(x®d) & x®d, andp(x® d) # p(x) for
d £ 0 because is bijective. However, these functions are not necessaijgc-
tive. Whether they can be safely used in placé ahdg in the two proposals is an
open question.

In Proposal 8.1 it seems that the only alternative kinds difstans of the

compression function have a difference on all three “terme’ Af £ 0, Ag# 0
andAh; #£ 0. For Proposal 8.2 we may hafg = Am;, # 0, which can be achieved
in three ways. One of them is mentioned abd¥k, & Amy), another haéh; = 0,
and a third has € Ah; £ Amy. For all possibilities it is necessary to go into the
details of theg and/or f functions in order to find a solution.
Of course, we have not discussed the possibility of findintiseans of the final
application off. This also requires finding a difference fixed pointfofout even
if this is possible it may not be a problem, since an attackerlittle control over
the inputhy.

Inverting the compression function

In the original $1AsH, the compression function can be inverted because the sys-

tem of equations
6 1 m\ [a
11 hi /] \b

can be solved no matter the choiceacndb, sincef £ 1. Let us investigate if
Proposals 8.1 and 8.2 are invertible.

85

Inverting Proposal 8.1. Using the same method as in Section 8.2.2, one obtains
the system of equations

hhogm) = a
heom = b

If gis non-linear (which is recommended), this is not a systefimeér equations,
and hence to solve it one must apparently fimdsuch thatg(m)®m = a®b.
There does not seem to be any other way, unless one is ablpltitsome weak-
ness ofg. This indicates that we may want to cho@ssuch that it is as strong as
f, and henceg; might not be a good choice.

Inverting Proposal 8.2. To invert Proposal 8.2 one must choase compute
a=g *(h1®m), and then findy; such thatf (hy & m) @ h; = a. If the g used

in Proposal 8.1 is as strong &sinverting Proposal 8.2 looks about as difficult as
inverting Proposal 8.1.

If f andgwere both truly random bijective mappings, then inverting tompres-
sion function would take time™2for both proposals. Hence, the"f® preimage
attack of Section 8.2.3 would have about the same complasita brute-force
attack.

Summary

We have not found any significant differences with regardsecurity between
Proposal 8.1 and Proposal 8.2. They both have some advarttagehe original
proposal of 1AsH does not have, including the absence of the forward predicti
property and the difficulty in inverting the compressiondtion. Hence, it seems
that an attack would require some analysis of the bijectiappings, possibly in-
cluding a search for difference fixed-points.

The disadvantage of the proposals is that they are both naiers about half the
speed of $ASH itself. In this respect, as mentioned, Proposal 8.1 hasdihema
tage that the applications df andg can be parallelised, which would make the
hash function as fast asv@sH.

86

Chapter 9

Future directions

At this point it should be quite clear that discussions alibetfuture direction

of hash functions are needed. Do we trust hash functionglb@sénsecure hash
functions? Should we gain security by reducing efficiency®utd we abandon
the Merkle-Damgard construction, or modify it? These aerely a few of the

topics that should be discussed.

9.1 A brief discussion on strategy

When a car breaks down the owner has the choice of havingatresl) or buying
a new car. The choice depends on the severity of the defethe afr. If it is too
expensive or risky to have it repaired, the owner might cedosuy a new one in-
stead. On the other hand, if the repairs are simple, and tlmnde expected to be
as good as new afterwards, there is probably no need to esiplae might use the
same approach when deciding on a new hash function. Fonoest&HA-256 can
be seen as a repaired version of SHA-1, whereasRMOOL is a “new car”. The
important difference between hash functions and cars tsthleae is no warranty
on a new hash function, and therefore it might be even mokg ttschoose a new
hash function than to continue with a repaired version ofakdém hash function.
At the moment there is a general belief in the cryptograpbimmunity that we
still do not know enough about hash functions to make propeistbns. However,
let us try to identify some properties of the two strategiestioned.

First we look at some advantages of usingrieair strategy:

e We know (some of) the weaknesses of the underlying hashi@umcind
hence we can try to eliminate these

e Extensive analysis has often been performed on the brokem foaction,
and hence we may feel confident that some kinds of attackaapplicable

e Existing software implementations can often simply behgligmodified to
yield the repaired version. Even hardware implementatioay be much
easier and cheaper to update.

87

Among the disadvantages are the following:

e The repaired version may suffer from the same fundamentakmesses as
the broken hash function

e An intended fix might introduce new weaknesses
e Repeated repairs might yield less efficient hash functions.

Of course, the advantages and disadvantages of usirmglecestrategy are
to some extent the complements of the above, but we mighted@mnother advan-
tage of theeplacestrategy is that we get the opportunity to rethink the ertine-
struction, and hence we might come up with an alternativeedverkle-Damgard
construction that does not contain the weaknesses dedanilichapter 6.

It seems that the risks of the two strategies are comparéfgdanight not know
much more about the security of a repaired version than we labout the security
of a new hash function — most often we would use well-known poments for a
new hash function anyway. In a sense this brings the dismussithe topic of the
following section.

The strategy of constructing a new hash function based oristing block ci-
pher such as AES does not fall directly into either of the tategories mentioned.
It can be thought of as a combination, and it surely does hawe sadvantages of
both the mentioned strategies. However, as should be dear €hapter 5, it
is not a simple matter to produce a “more-than-single-lehgtock cipher based
hash function, and such solutions often become inconvenien

9.2 Merkle-Damgard or not Merkle-Damgard?

Two attacks on the general Merkle-Damgard constructiorewescribed in Chap-
ter 6. The multicollision attack of Joux proved that it is matich harder to find a
large number of messages with the same hash, than it is tofinduich messages
when the Merkle-Damgard construction is used. Hence,i#f ihfeasible to find
collisions of a hash function based on the Merkle-Damgarktuction, then the
results of Joux are of no practical relevance.

The 29 preimage attack of Kelsey and Schneier proves that it ieetsfind a
2"d preimage in a hash function based on the Merkle-Damgarstaation than by
exhaustive search, but the attack only works for very longsages. What's more,
the attack still requires the ability to find collisions. Bagain, if it is infeasible
to find collisions of a hash function based on the Merkle-Dardgconstruction
then the attack has no practical relevance, and even whesias can be found,
in practice a 29 preimage cannot be found for most messages with this method.

The strength of these results lie in the fact that they arectéd towards a
general construction, and not towards a specific hash fumcfrhe attacks have
significantly reduced the amount of faith in the Merkle-Da@mthconstruction. Itis
feared that the techniques could be further improved. Saoplp argue that (%)

88

preimage resistance is much more important than colligsistance, and hence it
is a serious weakness thdreimages in some cases can be found in time not
much longer than collisions. Others would say that in theriwe just have to
make sure that it is truly infeasible to find collisions of eshdunction, then no
existing attacks on the Merkle-Damgard construction &g use.

Some “quick fixes” of the construction have been proposed.ifance, as
suggested by Rivest [39], we might let a (small) fixed numieinput bits to
the compression function be determined by some functioheofteration number
(in particular Rivest suggests a so-called Abelian sqlr@esequence), such that
the size of the input to the compression function does natghabut the simple
repeated use of a fixed point is no longer possible.

Another similar proposal by Biham [1] uses the number of ragsdits processed
thus far as an extra input variable to the compression foncti

The latest attack on the Merkle-Damgard construction [84éss than a year
old, and hence we should probably expect improvements $aattack in the near
future. The attacks may also have motivated many cryptbgnapto direct their
attention towards finding other weaknesses in the congiruddence, completely
ignoring existing attacks is probably not a good idea.

9.3 A discussion on efficiency

The first properties required for a cryptographic hash foncfas mentioned in
[11]) were one-wayness and efficiency. Surely a hash fumctiast be efficiently
computable, but what is “efficient™?

A hash function is used in many different environments, sofm&hich have
very limited memory and/or processing capabilities. Ithe goal of most hash
functions that it be usable in all such environments. Exgstiash functions seem
to meet this goal, and hence we may compare the efficiencyyofhew proposal
with the efficiency of for instance SHA-256. However, actogdto Moore’s law
we should expect a hash function with twice the running tim&ldA-256 to be
as usable in 18 months as SHA-256 is todaysing twice the amount of work
we can double the hash size with the same “per-bit” secuitye could aim for
greater per-bit security. Note that adding just a singlédthe hash size doubles
the complexity of brute force (%) preimage attacks, and adding two bits to the
hash size doubles the complexity of a birthday (collisiatgck. However, a 256-
bit hash function will most probably be resistant to all krtdgrce attacks for many
years to come (using again Moore’s law we should expect hdat attack to be
infeasible for at least 80 years), and therefore, assunhiagwe are allowed to
construct a hash function that has only half the speed of 2B@&\-it is probably
better to aim for a greater per-bit security. As suggestdd]iit might be a good
idea to focus more on ensuring a large degree of dependeneaaninput bit

1This does not take into account hardware implementatiorishmbften do not benefit from
technological advances for many years.

89

than has traditionally been the case when constructing fussitions. The AES
competition showed that in the area of block ciphers suchisas present, and
there is no reason why this should not extend to the area bffoastions.

The industry requests efficient hash functions. It also estpuhash functions
with a long lifespan, hash functions that are easily implete@ in both software
and hardware, and it does not want to rely on agility, sucleinétance scalability.
It may be difficult, if not impossible, to satisfy all theseeks at once. Hence, it
makes sense to focus more on security and durability tharficreacy. This can
be seen as more of a long-term investment: while a less efficash function may
be somewhat problematic at the moment, if it is durable ehdiugill “earn back
its price” many times in the long run.

9.4 The NIST Cryptographic Hash Workshop

On October 31 and November 1, 2005, NIST hosted the Cryptbgraddash Work-
shop with the aim of assessing the status of SHA-256 and otl&®F-approved
hash functions, and of discussing both short and long tetrorecto the recent
attacks on hash functions of the MD4 family.

Although there were many different opinions, it was, of sayrsuggested that
the industry and others using hash functions stop using MmbESHA-1 for any
new product. Although most people seemed to believe that -2BB\will be bro-
ken, at least theoretically, within the next 10 years, andesthere does not seem
to be any alternative equally efficient but more secure hashbtion, most people
suggested switching to SHA-256. This sparked a great deadrafern from some
representatives of the industry, since building compjetelw hardware is a much
more costly affair than, for instance, extending SHA-1 t0 t@&unds.

In general, the urgency of the matter seems to be by far tretegieproblem:
it is crucial that MD5 and SHA-1 are phased out as quickly assiibe, but since
these changes are difficult and expensive to make, it is irapothat the substitute
can be expected to have a long lifespan, at least 10 yearsrafetgbly more
than that. In the light of these issues, it seems odd that NI®Ee to approve a
hash function such as SHA-256, which is based on SHA-1, ®ifdvaer rounds.
Hence, each round of SHA-256 must produce twice as many bfiash output
as each round of SHA-1. Sure, the SHA-256 round contains aegramount
of processing than the SHA-1 round (and we have not mentithednessage
expansion), but it does not look like the ultimate replaceine

No new attacks on hash functions were presented at the wagkskaioyun
Wang presented hef2attack [44] on SHA-1, but gave no additional details, and
she had no paper in the workshop program. Some new hashdnrmtbposals
were presented; among these a fairly quick proposal [7] fockvfinding collisions
is as difficult as factoring a large composite integer. Hé&f@rly quick” means
about 26 times slower than SHA-1.

There were suggestions to initiate a hash function competgimilar to the

90

AES competition, but at the same time most people agreedhtbatommunity is
not ready for such a competition at the moment. The AES catgreprocess
was very educational, but when the competition started sthte of research of
block ciphers was much further ahead than the state of idseahash functions
is today. Hence, it was suggested that first a number of additihash function
workshops be organised.

It was discussed whether or not it would be a good idea to apgrash func-
tions solely for specific purposes, but most people thougjstwould not be the
way to go, as hash functions are and always will be used forge mumber of
different purposes, most of which could never have beengestl Hash functions
were referred to by an attendee of the workshop as the “workehof cryptog-
raphy”. NIST suggested that a list of all currently known liggiions of hash
functions be made, so as to better identify the securitgrigitfor new hash func-
tions. The process of producing such a list could be veryuoste indeed, but the
list itself may not be very useful for the reason just mergahn

NIST itself did not reveal much about its intentions, exdbat it seemed like
NIST is also very much in a state of uncertainty. Another hastkshop organised
by NIST is supposed to take place at the end of the Crypto 26@&ence, and
hopefully by then NIST and the community is in a better positio make proper
decisions.

9.5 Summary

To sum up, it seems that we can currently make the followiatgstents about the
status of hash functions and requirements for the future.

e MD5 and SHA-1 should no longer be used, at least in envirotsnehere
collisions are athreat. Even elsewhere, the use of thesdinastions should
be phased out.

e Instead of MD5 and SHA-1, itis advised that a switch to SHA-Bmade,
but it is stressed that this may not be a long-lasting satutio

e Further research on hash functions is desperately neddsdmnportant that
researchers understand the weaknesses of broken hasiorisnatry well,
and that they identify better design criteria.

e New hash function proposals are needed. Preferably thesddstiiffer sig-
nificantly from the hash functions of the MD4 family, and thefficiency
should be comparable with that of SHA-256. The publicatiboutd be
preceded with a significant amount of analysis.

e The community should probably try to come to some sort of agent re-
garding whether or not to worry about the attacks on the Mebkmgard

91

construction. This more or less reduces to a decision onhehétis suffi-
cient that a hash function is collision resistant, or wheiirghould always be
much harder to find (¢) preimages and multicollisions than to find ordinary
collisions.

e Alternatives and/or fixes to the Merkle-Damgard constamcshould be de-
veloped.

As we already knew, and as this list shows, a lot of work is eded the area
of cryptographic hash functions before we can expect toimeganfidence in our
claims regarding the security of hash functions. It showddvery interesting to
follow the progress in the next few years.

92

Appendix A

Conditions on step variables in
the Wang MD5 attack

In this appendix the conditions on step variables in the W5 attack are
listed. The symbol means there is no condition on the bit. The symbaoheans
the bit must have the same value as the bit directly abovetitdrtable. All bits
with the same letter symbol must have the same value. Soetmare are further
conditions on the relations between letter symbols; indlueses they are stated in
the table caption.

A.1 Firstiteration

The conditions in the first iteration are taken from [21], epxicthat we ignore what
is referred to a€ase 2

93

Conditions o}
t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4231 O
1
2 |
3 ___ o_______ o____0______
4 |(C__ _ _ _ _ _ OAAALAAAAAAALAAAAO_ ___ __
5 |[C___1_0_0100000000000000001__1_1
6 BAAAOA1A0111111110111100010AA041
7 |[AOOOOO11111111101111100000100000
8 |[000000011__100010_0_010101000000
9 |[E1111011__ _100000_1a1111001111012
10 (A1 _ 0__111111_01___001____00O0
11 (A0 _ 00011aA00___0112 _10
12 |AO AA___ _10000002___10_______
3 |A1____02____1111111____00___1___
14 |A_O ~00____101211212____11___1___
15 [H_1 o1r_____ T 0o___
6 H_1__

Table A.1: Conditions in the first iteration, steps 1-16 AH B thenC = 1, otherwise
C=0. Another condition i€ = —A

94

Conditions onQ

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4231 O

15 H_1__ _01 1 0

16 H_1

17 |H

18 |H

19 |H

20 [H
H
H
0
1

21
22
23
24
25-45
46 ||
47 |J
48 ||
49 |J
50 |K
51 |J
52 |K
53 |J
54 |K
J
K
J
K
J
I
J
I
J

55
56
57
58
59
60
61
62
63
64
3\
2L o
1 \L____o01___
0O [L____00 0

Table A.2: Conditions in the first iteration, steps 15—-64J aonditions on the chaining
values that serve as initial values for the second iterdtibrs—Qp). It is a condition that
| =—K.

95

A.2 Second iteration

The conditions in the second iteration are derived in Seeti6.2.

Conditions o}
t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4231 O
-3 |
-2 |A__ o___
-1 |A_ o_____
0 |A_ co__ ___________ o___ __
i1 B___010___1_________ o___ __ o___ __
2 BAAAL110___OAAAAA___Al__ _aAAO__00_
3 |[B011111__ _011111___01__10114Aa4A11_
4 ([B011101__ _000100___00AA00001000a
5 |[A10010____101111___0111001010000
6 [A__0010__ _10__10___01100010101120
7 |B__1011aAA_00__01a__1111000_____ 1
8 |[B__001000_11__101___ __ 1111 ___ _ A0
9 B__111000__ _ __ 010__aAa__0111__ __01
o B____1111____0111__0__1111____00
11 8__ A1011AaA0_ 1111 11
12 BAAAAAAA____10000O0OO0T1I____2_______
3 |jA0122112121_ 1111111 o___1___
14 |A10000O0O0O____10111121_____ 1 1
15 |[c1111102_ _ _ _ _ _ _ _ o___________ 0o___
e ¢c_1__ _

Table A.3: Conditions in the second iteration, chainingueal and steps 1-16. Itis a
condition thaB = —A.

96

Conditions o}

t 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4231 O

15 [C1111101 0 0
16 |[c_1

17 |C
18 |cC
9 |c____________0_____
20 |C
C
C
0
1

21
22
23
24
25-45
46 |D
47 |E
48 |D
49 |E
50 |F
51 |E
52 |F
53 |E
54 |F
55 |E
F
E
F
E
D
E
D
E

56
57
58
59
60
61
62
63
64

Table A.4: Conditions in the second iteration, steps 1546i. a condition that = —D.
The actual requirement dDes3[25] is somewhat complicated, see Section 4.7.

97

Appendix B

An implementation of the
Dobbertin MD4 attack

The code below is a C program that finds collisions of MD4.

#include <stdio .h>
#include <time .h>

typedef unsigned long word;
typedef unsigned char byte;

word m[16], Q[37], Qp[37];
word Q15, Q16, Q17, Q18, Q19, Q20;
word a, b, ¢, d, A, B, C, D;

#define F(x,y,z) (((x)&(y)) | (("(x))&(z)))

#define G(x,y,z) (((x)&(y)) | ((x)&(z)) | ((¥)&(z)))
#define H(x,y,z) ((x)"(y) (z))

#define rot(x, s) (((xx<(s)) ((x)>>(32—(s))))

#define randombit () (I<<(rand()&0x1f))

#define randomword () rand ()

#define IVA 0x67452301

#define IVB Oxefcdab89

#define IVC 0x98badcfe

#define IVD 0x10325476

#define K1 0x5a827999

#define K2 Ox6ed9ebal

#define N 1 // Number of collisions to find

double currenttime_micros () {

98

}

[+ returns current time in microseconds/

struct timeval curtime;

gettimeofday (&curtime , 0);

return ((double) curtime.tv.secx 1000000 +
((double) curtime.tv.usec);

#define collision () \

Q[21] = rot(Q[17]+G(Q[20],Q[19],Q[18])+m[1]+K1, 3)\
Q[22] = rot(Q[18]+G(Q[21],Q[20],Q[19])+m[5]+K1, 5)\
Qp[22] = rot(Q[18]+G(Q[21],Qp[20],Qp[19])+m[5]+K1, 5)

if (Qp[22]-Q[22]) continue;\

Q[23] = rot(Q[19]+G(Q[22],Q[21],Q[20])+m[9]+K1, 9)\
Qp[23] = rot(Qp[19]+G(Qp[22],Q[21],Qp[20])+m[9]+K1, 9)
if (Qp[23]-Q[23] != 0x4000) continue;\

Q[24] = rot(Q[20]+G(Q[23].,Q[22],Q[21])+m[13]+K1, 13)\
Qp[24] = rot(Qp[20]+G(Qp[23],Qp[22],Q[21])+m[13]+K1, 3);\
if (Qp[24]-Q[24] != OxffffffcO) continue;\

Q[25] = rot(Q[21]+G(Q[24],Q[23],Q[22])+m[2]+K1, 3)\
Qp[25] = rot(Q[21]+G(Qp[24],Qp[23],Qp[22])+m[2]+K1, 3)

if (Qp[25]-Q[25]) continue;\

Q[26] = rot(Q[22]+G(Q[25],Q[24],Q[23])+m[6]+K1, 5)\
Qp[26] = rot(Qp[22]+G(Qp[25],Qp[24],Qp[23])+m[6]+K1,)\
if (Qp[26]-Q[26]) continue;\

Q[27] = rot(Q[23]+G(Q[26],Q[25],Q[24])+m[10]+K1, 9)\
Qp[27] = rot(Qp[23]+G(Qp[26],Qp[25],Qp[24])+m[10]+K1,9);\
Q[28] = rot(Q[24]+G(Q[27],Q[26],Q[25])+m[14]+K1, 13),
Qp[28] = rot(Qp[24]+G(Qp[27],Qp[26],Qp[25])+m[14]+K1,13);\

Q[29] = rot(Q[25]+G(Q[28],Q[27],Q[26])+m[3]+K1, 3)\
Qp[29] = rot(Qp[25]+G(Qp[28],Qp[27],Qp[26])+m[3]+K1, B\
Q[30] = rot(Q[26]+G(Q[29],Q[28],Q[27])+m[7]+K1, 5)\
Qp[30] = rot(Qp[26]+G(Qp[29],0Qp[28],Qp[27])+m[7]+K1, B\
Q[31] = rot(Q[27]+G(Q[30],Q[29],Q[28])+m[11]+K1, 9)\
Qp[31] = rot(Qp[27]+G(Qp[30],Qp[29],0p[28])+m[11]+K1,9);\
Q[32] = rot(Q[28]+G(Q[31],Q[30],Q[29])+m[15]+K1, 13)\
Qp[32] = rot(Qp[28]+G(Qp[31],Qp[30],Qp[29])+m[15]+K1,13);\

Q[33] = rot(Q[29]+H(Q[32],Q[31],Q[30])+m[0]+K2, 3)}
Qp[33] = rot(Qp[29]+H(Qp[32],Qp[31],Qp[30])+m[0]+K2, B\
Q[34] = rot(Q[30]+H(Q[33],Q[32],Q[31])+m[8]+K2, 9)}

Qp[34] = rot(Qp[30]+H(Qp[33],Qp[32],Qp[31])+m[8]+K2, B\
Q[35] = rot(Q[31]+H(Q[34],Q[33],Q[32])+m[4]+K2, 11)\

99

Qp[35] = rot(Qp[31]+H(QP[34],Qp[33],Qp[32])+m[4]+K2, 1.);\
Q[36] = rot(Q[32]+H(Q[35],Q[34],Q[33])+m[12]+K2, 15)\
Qp[36] = rot(Qp[32]+H(QP[35],Qp[34],Qp[33])+m[12]+1+K, 15);\
if (Qp[36]==Q[36]) break;

int main() {

int i, ctr, trials, step;
word t, k, Z, Z1, Z2;
double tm;

int seed = time(0)&0 xffff;
srand(seed);

printf("Seed: %dn”, seed);
trials = 0;

tm = currenttime_micros ();

for (i = 0; i < N; i++) {

while (1) {
step = ctr = 0;

while (1) {
if ((++ctr>700 && step<2) || (ctr > 100000)) {
step = ctr = 0;

¥
if (!step) {

Q15 = randomword ();

Q16 = randomword ();

Q17 = randomword ();

Q18 = randomword ();

Q19 = randomword ();

Q20 = randomword ();
}
Q[15] = Q15 ~ randombit ();
Q[16] = Q16 = randombit ();
Q[17] = Q17 ~ randombit ();
Q[18] = Q18 " randombit ();
Q[19] = Q19 ~ randombit ();
Q[20] = Q20 ~ randombit ();
Qp[20] = Q[20]-(1<<25);
Qp[19] = Q[19]+(1<<5);
Qp[16] = Q[16]-G(Qp[19].,Q[18],Q[17]) +

100

G(Q[19],Q[18],Q[17])+ rot (Qp[20],19) rot(Q[20],19)-1;
Qp[15] = Q[15]-G(Q[18],Q[17],Qp[16]) +
G(Q[18],Q[17],Q[16])+ rot(Qp[19],23)rot(Q[19],23);
Q[14] = rot(Q[15],21)—rot(Qp[l15],21);
Qp[14] = Q[14] — G(Q[17],Qp[16],Qp[15]) +
G(Q[17],Q[16],Q[15]);

if (G(Q[16],Q[15],Q[14])-G(Qp[16].,Qp[15],Qp[14])-1)

continue;
if (!step) {
step = 1;
Q15 = Q[15]; Q16 = Q[16]; Q17 = Q[17];
Q18 = Q[18]; Q19 = Q[19]; Q20 = Q[20];
}

Z = F(Qp[15],Qp[14],0)-F(Q[15],Q[14]—1)—
rot(Qp[16],13)+rot(Q[16],13);

72 = Z<<(28—(step<<2));
Z1 = Z2<<4;
if (1z21) {
if (1z2) {
if (++step == 8){
if (G(Q[20],Q[19],Q[18])==G(Qp[20],Qp[19],Q[18]))
break;
step = ctr = 0;
} }
Q15 = Q[15]; Q16 = Q[16]; Q17 = Q[17];
Q18 = Q[18]; Q19 = Q[19]; Q20 = Q[20];
}
}
ctr = 0;
m[13] = randomword ();
Q[11] = rot(Qp[l14],25)rot(Q[14],25);
m[12] = rot(Q[20],19)-Q[16]-G(Q[19],Q[18],Q[17])—K1;
m[14] = rot(Q[15],21)-Q[11]-Q[14];
m[15] = rot(Q[16],13)-F(Q[15],Q[14],-1);
m[0] = rot(Q[17],29)+1-G(Q[16],Q[15],Q[14])-K1;
m[4] = rot(Q[18],27)-Q[14]-G(Q[17],Q[16],Q[15])—-K1;
m[8] = rot(Q[19],23)-Q[15]-G(Q[18],Q[17],Q[16])—KI1;

101

Q[10] rot(Q[14],25)-m[13];

Q[9] —1-Q[10]-m[12];

do {
k = 0;
if (++ctr > 500000) break;
trials ++;
k = 1;
m[1] = randomword();
m[2] = randomword();
m[3] = randomword();
m[5] = randomword();
Q[1] = rot(IVA+F(IVB,IVC,IVD)+m[0], 3);
Q[2] = rot(IVD+F(Q[1],IVB,IVC)+m[1], 7);
Q[3] = rot(IVC+F(Q[2],Q[1],IVB)+m[2], 11);
Q[4] = rot(IVB+F(Q[3],Q[2],Q[1])+m[3], 19);
Q[5] = rot(Q[1]+F(Q[4].Q[3].Q[2])+m[4], 3);
Q[6] = rot(Q[2]+F(Q[5],Q[4].Q[3])+m[5], 7);

t = rot(Q[9],29)-Q[5]—-m[8];

m[6] = rot(t,21)-Q[3]-F(Q[6].Q[5].Q[4]);
m[7] = -1-Q[4]-F(t,Q[6],Q[5]);
m[9] = rot(Q[10],25)-Q[6]-F(Q[9],—1,t);
m[10] = rot(Q[11],21)-t-F(Q[10],Q[9],—1);
m[11] = rot(Q[12],13)+1-F(Q[11],Q[10],Q[9]);
collision ();

} while (1);

if (k) break;

}
}

tm = currenttime_micros()—tm;
printf("d collision(s) found in %.2f secs\,n”, N, tm/1e6);
printf("%.2f secs on averagen”, tm/1e6/N);

printf ("\nThe last collision found was:in”);
for (i = 0; i < 16; i++) {
printf("m%2d] = 0x%08Ix;\n", i, m[i]);
¥
printf ("\n(m[12] can be exchanged with [m12]+{y\n");
return O;

102

103

Appendix C

An implementation of the Wang
MD5 attack

The code below is a C program that finds collisions of MD5.

#include <stdio .h>
#include <time .h>

typedef unsigned long word;

static word Q[65];

static word T, T2, stop;

static word iva, ivb, ivc, ivd;

static word mylVA, mylVB, mylVC, mylVD;

static int ok, i, startover, changed, ctr;

#define TRY2 0x10000
#define TRY1L Oxffff

#define IVA 0x67452301
#define IVB Oxefcdab89
#define IVC 0x98badcfe
#define IVD 0x10325476

#define t0 Oxd76aa478
#define t1 0xe8c7b756
#define t2 0x242070db
#define t3 Oxclbdceee
#define t4 Oxf57cOfaf
#define t5 0x4787c62a
#define t6 0xa8304613

104

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

t7 0xfd469501
t8 0x698098d8
t9 Ox8b44f7af

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t50

Oxffff5bb1l
0x895cd7hbe
0x6b901122
0xfd987193
O0xa679438e
0x49b40821
0xf61e2562
0xc040b340
Ox265e5a51
Oxe9b6c7aa
0xd62f105d
0x02441453
OxdB8ale681
Oxe7d3fbc8
Ox21lelcdeb
0xc33707d6
0xf4d50d87
O0x455al4ed
O0xa9e3e905
Oxfcefa3f8
0x676f02d9
0x8d2a4c8a
Oxfffa3942
0x8771f681
0x6d9d6122
0xfde5380c
Oxadbeea44
Ox4bdecfa9
0xf6bb4b60
Oxbebfbc70
0x289b7ech
Oxeaal27fa
0xd4ef3085
0x04881d05
0xd9d4d039
Oxe6db99e5
Ox1fa27cf8
Oxcd4ach665
0xf4292244
0x432aff97
Oxab9423a7

105

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

t51 0xfc93a039
t52 0x655b59c3
t53 0x8f0ccc92
t54 Oxffeff47d
t55 0x85845dd1l
t56 Ox6fa87e4f
t57 Oxfe2ce6e0
t58 0xa3014314
t59 0x4e0811al
t60 0xf7537e82
t61 Oxbd3af235
t62 0x2ad7d2bb
t63 0xeb86d391

word m[16], ml1l[16];

#if defined (WIN32) || defined (_LINTEL_COMPILER)

#define
#define
#else
#define
#define
#endif

#define
#define
#define
#define

#define
#define
#define

rot _lrotl

rotr _lrotr

rot(x, s) (((x)}<<(s))" ((x)>>(32—(s))))
rotr(x, s) (((x)<<(32—(s))) ((x)>>(s)))
F(u, v, w) ((w) = ((u) & ((v) = (w))))
G(u, v, w) ((v) = ((w) & ((u) = (v))))
H(u, v, w) ((u) = (v) = (w))

F(u, v, w) ((v) = ((u) ["(w)))
msb_equal (x, y) ((("x)"(y))&0x80000000)

bitsequal (x, n, y) ((("(x)"(y)r>n)&l)
randomword () (random ()) // mrand48 ()

double currenttime_micros () {
/* returns current time in microseconds/

struct

timeval curtime;

gettimeofday (&curtime , 0);

return

((double) curtime.tv.sec)k 1000000 +

((double) curtime .tv.usec);

}

/1 FIRST BLOCK:

inline void searchl(){

106

[l int i;
do {
ok = 0;

Q[3] = mrand48 ();
Q[3] &= Oxfff7f7bf;

] = randomword(); // bit 32 =0
] & Oxff7fffbf;

Q[4] |= 0x00080800 ;
] "= (Q[3]°Q[4])&0x77f780;

] = randomword ();
] &= 0xfd40003f;
Q[5] |= 0x08400025;
] "= (Q[4]1°Q[5])&0x80000000;
if (!(rotr(Q[5]—-Q[4], 7)>>31)) continue; // T4

Q[6] = mrand48 ();

Q[6] &= Oxf77fbc5b;

Q[6] |= 0x827fbc4l; // 32 =1

Q[6] "= (Q[5]°Q[6])&0x7500001a;

if (rotr(Q[6]—Q[5],12)&0x80000) continue; // T.5

Q[7] = 0x03fef820;

T = rotr (Q[7]-Q[6], 17); /I T.6

if (T&0x4000 || !((T>>10)&0xf)) continue;
m[6] = T — F(Q[6].,Q[5].Q[4])— Q[3] — t6;

Q[8] = randomword ();

Q[8] &= 0x01f15540;

Q[8] |= 0x01910540;

T = rotr (Q[8]-Q[7], 22); /I T.7

/I — these TFconditions are always satisfied

m[7] = T - F(Q[7].Q[6],Q[5])— Q[4] — t7;

do {
do {
Q[9] = randomword ();
Q[9] &= Oxfbf07f3d;
Q[9] |= O0x7b102f3d;
Q[9] "= (Q[8]"Q[9])&0x1000;
Q[9] "= (CQ[7]°Q[9])&0x80000000;

T = rotr (Q[9]-Q[8].,7); // T.8

107

if (!(T>>31) || !(T&0x1000000)) continue;
m[8] = T — F(Q[8],Q[7],Q[6])— Q[5] — t8;

Q[10] = randomword ();

Q[10] &= 0Oxff7fde7c;

Q[10] |= 0x401f9040;

Q[10] "= ("Q[9]°Q[10])&0x80000000;
T = rotr (Q[10]-Q[9], 12); /I T.9
if (!'("T>>27)) continue;

m[9] = T — F(Q[9].Q[8].Q[7])— Q[6] — t9;

Q[11] = randomword ();

Q[11l] &= Oxbfflcefc;

Q[11] |= 0x000180c2;

Q[11] "= (Q[10]°Q[11])&0x80004000;

T = rotr (Q[11]-Q[10], 17); // T_.10
} while (!("T&0x6000) || !(T>>27));
m[10] = T — F(Q[10],Q[9],Q[8])— Q[7] — t10;

Q[12] = randomword ();

Q[12] &= Oxbff81f7f;

Q[12] |= 0x00081100;

Q[12] "= (Q[11]"Q[12])&0x83000000;

T = rotr (Q[12]-Q[11], 22); // T.11
} while (!(T&0x300) || !(T>>24));

m[11] = T - F(Q[11],Q[10].Q[9])—- Q[8] — t11;

/l No strict conditions on T12

Q[13] = randomword ();

Q[13] &= Oxfdfffe7f;

Q[13] |= 0x410fe008;

Q[13] "= (Q[12]°Q[13])&0x80000000;

m[12] = rotr (Q[13]-Q[12], 7) —
F(Q[12],Q[11],Q[10]) — Q[9] — t12;

do {
I/l No strict conditions on T13
Q[14] = randomword ();
Q[14] &= Oxdcfbffff;
Q[14] |= 0x000bel88;
Q[14] "= (Q[13]°Q[14])&0x80000000;
m[13] = rotr(Q[14]-Q[13], 12) —

F(Q[13].,Q[12],Q[11]) — Q[10] — t13;

108

Q[15] = mrand48();

Q[15] &= Oxfdfffff7; // Removed 31 =0

Q[15] |= 0x21008000;

T = rotr (Q[15]-Q[14], 17); /Il T_14

if (!(T>>30)) continue;

m[14] = T — F(Q[14],Q[13],Q[12])- Q[11] — t14;

Q[16] = randomword ();
Q[16] |= 0x20000000;
Q[16] "= (Q[15]°Q[16])&0x80000000;

T = rotr(Q[16]—-Q[15], 22); // T_15
m[15] = T — F(Q[15].Q[14],Q[13])~ Q[12] — t15;
if ((T&0x380) && ("T>>26)) break;

} while (1);

ctr = 0;
do {
ctr++;
if (ctr > TRY1) break;
Q[17] = randomword ();
Q[17] &= Oxfffdffff;
Q[17] "= (Q[16]°Q[17])&0x80008008;
Q[18] = Q[17] +
rot(G(Q[17],Q[16],Q[15])+Q[14]+m[6]+t17 , 9);
Q[19] = Q[18] +
rot(G(Q[18],Q[17],Q[16])+Q[15]+m[11]+t18, 14);
¥

while (!'((Q[18]>>17)&1) ||
(Q[17]°Q[18])&0 xa0000000 ||
(Q[19]&0x20000) ||
(Q[18]°Q[19])&0x80000000);
if (ctr > TRY1) continue;

T = rotr (Q[17]-Q[16], 5); // T.16
if (T&0x1000000) continue;
m[1] = T - G(Q[16],Q[15],Q[14])- Q[13] — t16;

ok = 0;

stop = "Q[19]&0x80000000;

for (Q[20] = Q[19]&0x80000000; Q[20] != stop; Q[20]++)
T = rotr (Q[20]-Q[19], 20); // T_19

109

if (1(T>>29)) continue;

m[0] =T — G(Q[19],Q[18],Q[17])-Q[16]-1t19;

Q[1]
Q[2]

Q1] +

rot (IVD + F(Q[1], IVB,
m[2] = rotr (Q[3]-Q[2],

IVC — t2;

m[3] = rotr (Q[4]-Q[3],
IVB — t3;

m[4] = rotr (Q[5]-Q[4],
Q1] — t4;

m[5] = rotr (Q[6]-Q[5],
Q[2] — t5;

/!l check rest

Q[21] = Q[20] +

IVB + rot(0Oxd76aad477 + m[O],

7);

IVC) + t1 + m[1],

12);

17) — F(Q[2].Q[1],IVB) —

22) — F(Q[3],Q[2].Q[1]) —

7) — F(Q[4].Q[3].Q[2]) —

12) — F(Q[5].Q[4].Q[3]) —

rot(Q[17] + G(Q[20], Q[19], Q[18]) + t20 + m[5], 5);
if (Ibitsequal(Q[21],17,Q[20])]|

Imsb_equal (Q[21], Q[20])) continue;

Q[22] = Q[21] +

rot(Q[18] + G(Q[21], Q[20], Q[19]) + t21 + m[10], 9);
if (!msb_equal(Q[22], Q[21])) continue;

Il T.22

T = Q[19] + G(Q[22], Q[21], Q[20]) + t22 +

if (T&0x20000) continue;

Q[23] = Q[22] + rot(T,

14);

if (Q[23]>>31) continue;

Q[24] = Q[23] +

rot (Q[20] + G(Q[23], Q[22], Q[21])
if (1(Q[24]>>31)) continue;

Q[25] = Q[24] +

rot(Q[21] + G(Q[24], Q[23], Q[22])

Q[26] = Q[25] +

rot(Q[22] + G(Q[25], Q[24], Q[23])

Q[27] = Q[26] +

rot(Q[23] + G(Q[26], Q[25], Q[24])

110

+

+

+

t23

t24

t25

t26

m[15];

+ m[4], 20);
+ m[9], 5);
+ m[14], 9);
+ m[3], 14);

Q28] = Q[27] +
rot(Q[24] + G(Q[27], Q[26], Q[25])

Q[29] = Q[28] +

rot(Q[25] + G(Q[28], Q[27], Q[26])
Q[30] = Q[29] +

rot(Q[26] + G(Q[29], Q[28], Q[27])
Q[31] = Q[30] +

rot(Q[27] + G(Q[30], Q[29], Q[28])
Q[32] = Q[31] +

rot(Q[28] + G(Q[31], Q[30], Q[29])

Q[33] = Q[32] +

rot(Q[29] + H(Q[32], Q[31], Q[30])
Q[34] = Q[33] +

rot (Q[30] + H(Q[33], Q[32], Q[31])

Il T_34

T = Q[31] + H(Q[34], Q[33], Q[32]) +
if (T&0Ox8000) continue;

Q[35] = Q[34] + rot(T, 16);
Q[36] = Q[35] +
rot(Q[32] + H(Q[35], Q[34], Q[33])

Q[37] = Q[36] +

rot(Q[33] + H(Q[36], Q[35], Q[34])
Q[38] = Q[37] +

rot(Q[34] + H(Q[37], Q[36], Q[35])
Q[39] = Q[38] +

rot(Q[35] + H(Q[38], Q[37], Q[36])
Q[40] = Q[39] +

rot(Q[36] + H(Q[39], Q[38], Q[37])

Q[41] = Q[40] +

rot(Q[37] + H(Q[40], Q[39], Q[38])
Q[42] = Q[41] +

rot(Q[38] + H(Q[41], Q[40], Q[39])
Q[43] = Q[42] +

rot(Q[39] + H(Q[42], Q[41], Q[40])
Q[44] = Q[43] +

rot (Q[40] + H(Q[43], Q[42], Q[41])

QI45] = Q[44] +

111

+ t27 + m[8],

+ t28 + m[13],

+ 129 + m[2],

+ t30 + m[7],

+ t31 + m[12],

+ t32 + m[5],

+ t33 + m[8],

t34 + m[11];

+ t35 + m[14],

+ t36 + m[1],
+ t37 + m[4],
+ t38 + m[7],

+ t39 + m[10],

+ t40 + m[13],
+ t41 + m[0],
+ t42 + m[3],

+ t43 + m[6],

20);

5);
9);
14);

20);

11);

23);

11);
16);

23);

4);
11);
16);

23);

rot (Q[41] + H(Q[44]
Q[46] = Q[45] +

rot (Q[42] + H(Q[45]
Q[47] = Q[46] +

rot (Q[43] + H(Q[46]
Q48] = Q[47] +

rot(Q[44] + H(Q[47],

, Q[43],
, Q[44],
, Q[45],

Q[46],

Q[42]) +
Q[43]) +
Q[44]) +
Q[45]) +

if ((Q[48]°Q[46])&0x80000000) continue;

Q[49] = Q[48] +
rot (Q[45] + 1(Q[48],

Q[50] = Q[49] +
rot(Q[46] + 1(Q[49],

Q[51] = Q[50] +
rot(Q[47] + 1(Q[50],

Q[52] = Q[51] +
rot(Q[48] + 1(Q[51],

Q[53] = Q[52] +
rot (Q[49] + 1(Q[52],

Q[54] = Q[53] +
rot (Q[50] + 1(Q[53],

QI55] = Q[54] +
rot (Q[51] + 1(Q[54],

Q[56] = Q[55] +
rot(Q[52] + 1(Q[55],

Q[57] = Q[56] +
rot (Q[53] + 1(Q[56],

112

Q[47],
if ((Q[49]°Q[47])&0x80000000) continue;

Q[48],
if ((TQ[50]°Q[46])&0x80000000) continue;

Q[49],
if ((Q[51]°Q[49])&0x80000000) continue;

Q[50],
if ((Q[52]°Q[50])&0x80000000) continue;

Q[51],
if ((Q[53]°Q[51])&0x80000000) continue;

Q[52],
if ((Q[54]°Q[52])&0x80000000) continue;

Q[53],
if ((Q[55]°Q[53])&0x80000000) continue;

Q[54],
if ((Q[56]°Q[54])&0x80000000) continue;

Q[55],
if ((Q[57]°Q[55])&0x80000000) continue;

Q[46]) +

Q[47]) +

Q[48]) +

Q[49]) +

Q[50]) +

Q[51]) +

Q[52]) +

Q[53]) +

Q[54]) +

t44

t45

t46

t47

t48

t49

t50

t51

t52

t53

t54

t55

t56

m[9],

m[12],

m[15],

m[2],

m[14],

m[12],

m[10],

11);
16);

23);

, 6);

, 10);

15);

, 21);

6);

, 10);

15);

, 21);

, 6);

Q[58] = Q[57] +
rot(Q[54] + 1(Q[57], Q[56], Q[55]) + t57 + m[15], 10);
if ((Q[58]°Q[56])&0x80000000) continue;

Q[59] = Q[58] +
rot (Q[55] + 1(Q[58], Q[57], Q[56]) + t58 + m[6], 15);
if ((Q[59]°Q[57])&0x80000000) continue;

Q[60] = Q[59] +
rot(Q[56] + 1(Q[59], Q[58], Q[57]) + t59 + m[13], 21);
if ((Q[60]&0x2000000) || (("Q[60]°Q[58])&0x80000000))
continue;

Q[61] = Q[60] +
rot(Q[57] + 1(Q[60], Q[59], Q[58]) + t60 + m[4], 6);
if ((1(Q[61]&0x2000000)) || ((Q[61]1°Q[59])&0x80000000))
continue;

iva = IVA + Q[61];

T = Q[58] + 1(Q[61], Q[60], Q[59]) + t61 + m[11];
if (!("T&0Ox3f8000)) continue;

Q[62] = Q[61] + rot(T, 10);
if ((Q[62]&0x2000000) || ((Q[62]°Q[60])&0x80000000))
continue;

ivd = IVD + Q[62];
if (ivd&0x2000000) continue;

Q[63] = Q[62] +
rot(Q[59] + 1(Q[62], Q[61], Q[60]) + t62 + mM[2], 15);
if ((Q[63]&0x2000000) || ((Q[63]°Q[61])&0x80000000))
continue;

ivc = IVC + Q[63];
if ((!(ivc&0x2000000)) || (ivc&0Ox4000000) ||
((ive "ivd)&0x80000000))
continue;
printf(”.”); fflush(stdout);
Q[64] = Q[63] +

113

rot (Q[60] + 1(Q[63], Q[62], Q[61]) + t63 + M[9], 21);
ivb = IVB + Q[64];
if ((ivb&0x06000020) || ((ivb"ivc)&0x80000000)) continue;

mylVA = iva; mylvVB = ivb; mylVC = ivc; mylVD = ivd;
ok = 1;
break;

}

} while (lok);

/1 SECOND BLOCK:

inline void modify_0.13 () {
do {
Q[1] = randomword ();
Q[1] &= Oxf5fff7df;
/1 Q[1] |= 0x04200040;
Q[1] |= 0x04200000;
Q[1] "= ("Q[1] mylvB)&0x80000000;

Q[2] = randomword ();

Q[2] &= Oxfddfffd9 ;

/1 Q[2] |= 0x0c000840;

Q[2] |= 0x0c000800;

/1 Q[2] "= (Q[1]1"Q[2])&0xf01f1080;
Q[2] "= (Q[1]1°Q[2])&0xf01f10cO0;

T = rotr (Q[2]-Q[1], 12),
if ('("T>>25)) continue;
m[1l] = T — mylvD — F(Q[1],mylVB,mylVC) — t1;

Q[3] = randomword ();

Q[3] &= Oxbfdfef7f;

Q[3] |= 0x3elf0966 ;

Q[3] "= (Q[2]°Q[3])&0x80000018;

T = rotr (Q[3]-Q[2], 17);
if ((T>>31) || !(("T>>26)&0x1f)) continue;
m[2] = T — mylvC — F(Q[2],Q[1],mylVB) — t2;

114

Q[4] = randomword ();
Q[4] &= Oxbbc4deb611;
Q[4] |= 0x3a040010;
Q[4] "= (Q[3]°Q[4])&0x80000601 ;

T = rotr (Q[4]-Q[3], 22);
if (!(T>>27)) continue;
m[3] =T — mylvVB — F(Q[3],Q[2],Q[1]) — t3;

Q[5] = randomword ();
Q[5] &= Oxchefeeb50;
Q[5] |= 0x482f0e50;
Q[5] "= ("Q[4]°Q[5])&0x80000000;

T = rotr(Q[5]-Q[4], 7);
if ((T>>31) || !(T&0x40000000)) continue;

m[4] = T — Q[1] — F(Q[4],Q[3].Q[2]) — t4;

Q[6] = randomword ();
Q[6] &= Oxebeeech56;
Q[6] |= 0x04220c56;
Q[6] "= (Q[5]°Q[6])&0x80000000;

T = rotr (Q[6]-Q[5], 12);
if (!(T>>30)) continue;
m[5] = T — Q[2] — F(Q[5],Q[4].Q[3]) — t5;

Q[7] = randomword ();

Q[7] & Oxf7cdfe3f;

Q[7] |= 0x16011e01;

Q[7] "= (CQ[6]°Q[7])&0x80000000;
Q[7] "= (Q[6]1°Q[7])&0x1808000;

T = rotr (Q[7]-Q[6], 17);
if ((T>>31) || !(T&0x7c00)) continue;
m[6] = T — Q[3] — F(Q[6],Q[5].Q[4]) — t6;

Q[8] = randomword ();

Q[8] &= Oxe4d7efffe;

Q[8] |= 0x043283e0;// Added Q8[5] = 1 =«
Q[8] "= (Q[7]°Q[8])&0x80000002;

T = rotr (Q[8]-Q[7], 22);

115

if (1("T&Ox3f0) || !'("T>>27)) continue;
m[7] =T - Q[4] — F(Q[7].,Q[6].Q[5]) — t7;

Q[9] = randomword ();
Q[9] &= Oxfc7d7ddd; // Added Q9[5] = 0 =«
Q[9] |= 0x1c0101lc1;

|
Q[9] "= (Q[8]°Q[9])&0x80001000;
Il « so that Q[9]-Q[8] produces a carry into bit 6

T = rotr(Q[9]-Q[8], 7);
if (1(T>>31) || !("T&0x7e000000)) continue;

m[8] =T — Q[5] — F(Q[8],Q[7].Q[6]) — t8;

Q[10] = randomword ();

Q[10] &= Oxfffbeffc;

Q[10] |= 0x078383c0;

// Added Q[10],3 != Q[9],3

[/l so correction in step 19 works:
Q[10] "= ("Q[9]"Q[10])&0x8;

Q[10] "= (Q[9]°Q[10])&0x80000000;

T = rotr (Q[10]-Q[9],12);

if (!(T>>27)) continue;

m[9] = T — Q[6] — F(Q[9],Q[8].Q[7]) — t9;

Q[11] = randomword ();

Q[11] &= Oxfffdefff;

Q[11] |= 0x000583c3;

Q[11] "= (Q[10]°Q[11])&0x80086000;

T = rotr (Q[11]-Q[10],17);
if (!(T>>27)) continue;
m[10] = T - Q[7] — F(Q[10],Q[9].Q[8]) — t10;

Q[12] = randomword ();

Q[12] &= Oxfff81fff;

Q[12] |= 0x00081080;

Q[12] "= (Q[12]°Q[11])&0 xff000000 ;

Q[13] = randomword ();

Q[13] &= OXbfffff7f;

Q[13] |= 0x3f0fe008;

Q[13] "= ("Q[12]°Q[13])&0x80000000;

Q[14] = randomword ();

116

Q[14] & OxcOfbffff:
Q[14] |= 0x400be088;
Q[14] "= (Q[13]°Q[14])&0x80000000 ;

T = rotr (Q[14]-Q[13], 12);
if ('((T>>12)&0xff)) continue;
m[13] = T - Q[10] — F(Q[13],Q[12],Q[11]) — t13;

m[0] = rotr (Q[1]—-mylVB, 7) — mylVA —
F(mylVB, mylVC,mylVD) — tO;

m[11] = rotr(Q[12]-Q[11], 22) — Q[8] —
F(Q[11],Q[10].,Q[9]) — t11;

m[12] = rotr (Q[13]-Q[12], 7) — Q[9] —
F(Q[12],Q[11].Q[10]) — t12;

m[13] = rotr (Q[14]-Q[13], 12) — Q[10] —
F(Q[13].Q[12].,Q[11]) — t13;

break;
} while (1);
}

inline void checkrest(){
ctr = 0;
start.over = 1;
do {
ctr++;

Q[15] = randomword ();
Q[15] &= Ox7dff7ff7 ;
Q[15] |= 0x7d000000 ;

T = rotr (Q[15]-Q[14], 17);
if (!'("T>>30)) continue;

m[14] = T — Q[11] — F(Q[14],Q[13],Q[12]) — t14;
Q[16] = randomword ();

Q[16] &= Ox7fffffff;

Q[16] |= 0x20000000;

/1l Q[16] "= (Q[15]°Q[16])&0x80000000;

T = rotr (Q[16]-Q[15], 22);
if (!(T&0x380) || !(T>>26)) continue;

117

m[15] = T - Q[12] — F(Q[15],Q[14],Q[13]) — t15;

changed = 0;
Q[17] = Q[16] +
rot (G(Q[16], Q[15], Q[14]) + Q[13] + m[1] + t16, b5);
if (!'bitsequal (Q[17],3,Q[16])){
m[1l] += ((Q[2]>>10)&1) ? —0x40000000 : 0x40000000;
Q[2] "= 0x400;
Q[17] = Q[16] +
rot (G(Q[16], Q[15], Q[14]) + Q[13] + m[1] + t16, b5);
changed = 1;
}
if (!bitsequal (Q[17],15,Q[16])){
m[1l] += ((Q[2]>>22)&1) ? —0x400 : 0x400;
Q[2] "= 0x400000;
Q[17] = Q[16] +
rot(G(Q[16], Q[15], Q[14]) + Q[13] + m[1] + t16, 5);
changed = 1;
}
if (Q[17]&0x20000) {
m[1l] += ((Q[2]>>24)&1) ? —0x1000 : 0x1000;
Q[2] "= 0x1000000;
Q[17] = Q[16] +
rot(G(Q[16], Q[15], Q[14]) + Q[13] + m[1] + t16, 5);
changed = 1;
}
if (changed){
T = rotr (Q[2]-Q[1], 12);
if (!("T>>25)) return ;
T = rotr (Q[3]-Q[2], 17);
if ((T>>31) || (("T>>26)&0x1f)) return ;
m[2] = T — mylvC — F(Q[2],Q[1],mylVB) — t2;
m[3] = rotr (Q[4]-Q[3], 22) — mylvB —
F(Q[3].,Q[2],Q[1]) — t3;
m[4] = rotr(Q[5]-Q[4], 7) — Q[1] —
F(Q[4].,Q[3].Q[2]) — t4;
m[5] = rotr(Q[6]-Q[5], 12) — Q[2] —
} F(Q[5].,Q[4].Q[3]) — t5;

if (Q[17]>>31) continue;
if ((Q[17]—Q[16])>>29 == 0x7) continue;
Q[18] = Q[17] +

118

rot(G(Q[17], Q[16], Q[15]) + Q[14] + t17 + m[6], 9);

/l Seems impossible to correct:
if (1(Q[18]&0x20000)) continue;

if (!bitsequal (Q[18],29,Q[17])){
m[6] += ((Q[7]>>5)&1l) ? —0x100000 : 0x100000;
Q[7] "= 0x20;
Q18] = Q[17] +
rot (G(Q[17], Q[16], Q[15]) + Q[14] + t17 + m[6],

T = rotr (Q[7]-Q[6], 17);
if ((T>>31) || !'(T&0x7c00)) return ;

T = rotr (Q[8]-Q[7], 22);
if ('("T&x3f0) || !'("T>>27)) return;
m[7] = T — Q[4] — F(Q[7].Q[6],Q[5]) — t7;

m[8] = rotr(Q[9]-Q[8], 7) — Q[3] —
F(Q[8].Q[7].Q[6]) — t8;
m[9] = rotr(Q[10]-Q[9], 12) — Q[6] —
F(Q[9].Q[8].Q[7]) — t9;
m[10] = rotr (Q[11]-Q[10], 17) — Q[7] —
} F(Q[10].Q[9].Q[8]) — t10;

if (Q[18]>>31) {
Q[3] "= 0x400000;

T = rotr (Q[3]-Q[2], 17);
if ((T>>31) || '(("T>>26)&0x1f)) return;
m[2] = T — mylvC — F(Q[2],Q[1],mylVB) — t2;

T = rotr (Q[4]-Q[3], 22);
if (M(T>>27)) return ;
m[3] = T — mylvVB — F(Q[3].Q[2],Q[1]) — t3;

m[4] = rotr (Q[5]-Q[4], 7) — Q[1] —
F(Q[4],Q[3].Q[2]) — t4;

m[5] = rotr(Q[6]-Q[5], 12) — Q[2] —
F(Q[5],Q[4].Q[3]) — t5;

m[6] = rotr(Q[7]-Q[6], 17) — Q[3] —
F(Q[6].,Q[5].Q[4]) — t6;

Q18] = Q[17] +
rot (G(Q[17], Q[16], Q[15]) + Q[14] + t17 + m[6],

119

9);

9);

}

Q[19] = Q[18] +
rot(Q[15] + G(Q[18], Q[17], Q[16]) + t18 + m[l1l1l], 14);
if (Q[19]&0x20000) {
Q[11] "= 0x8;
T = rotr (Q[11]-Q[10],17);
if (1(T>>27)) return;
m[10] = T — Q[7] — F(Q[10],Q[9].Q[8]) — t10;
m[11l] = rotr(Q[12]-Q[11], 22) — Q[8] —
F(Q[11],Q[10],Q[9]) — t11;
m[12] = rotr(Q[13]-Q[12], 7) — Q[9] —
F(Q[12],Q[11],Q[10]) — t12;
m[13] = rotr(Q[14]-Q[13], 12) — Q[10] —
F(Q[13].,Q[12],Q[11]) — t13;
m[14] = rotr (Q[15]-Q[14], 17) — Q[11] —
F(Q[14],Q[13].,Q[12]) — t14;
Q[19] = Q[18] + rot(Q[15] + G(Q[18], Q[17], Q[16]) +
t18 + m[11], 14);
}

if (Q[19]>>31) continue;

/Il check rest

T = Q[16] + G(Q[19], Q[18], Q[17]) + t19 + m[O];
if (!(T>>29)) continue;

Q[20] = Q[19] + rot(T, 20);

if (Q[20]>>31) continue;

Q[21] = Q[20] +
rot(Q[17] + G(Q[20], Q[19], Q[18]) + t20 + m[5], 5);
if (!bitsequal (Q[21],17,Q[20]) || Q[21]>>31) continue;

Q[22] = Q[21] +
rot(Q[18] + G(Q[21], Q[20], Q[19]) + t21 + m[10], 9);
if (Q[22]>>31) continue;

T = Q[19] + G(Q[22], Q[21], Q[20]) + t22 + m[15];
if (T&0x20000) continue; // p = 1/2

Q[23] = Q[22] + rot(T, 14);
if (Q[23]>>31) continue;

Q[24] = Q[23] +
rot(Q[20] + G(Q[23], Q[22], Q[21]) + t23 + m[4], 20);

120

if (1(Q[24]>>31)) continue;

Q[25] = Q[24]
rot(Q[21] +
Q[26] = Q[25]
rot(Q[22] +
Q[27] = Q[26]
rot(Q[23] +
Q[28] = Q[27]
rot(Q[24] +

Q[29] = Q[28]
rot(Q[25] +
Q[30] = Q[29]
rot(Q[26] +
Q[31] = Q[30]
rot(Q[27] +
Q[32] = Q[31]
rot(Q[28] +

Q[33] = Q[32]
rot(Q[29] +
Q[34] = Q[33]
rot(Q[30] +

+

G(Q[24],
+
G(Q[25],
+
G(Q[26],
. Q[26],

+
G(Q[27]

+

G(Q[28],
+
G(Q[29],
+
G(Q[30],
+

G(Q[31],

+
H(Q[32],
+

H(Q[33],

/1 Step 34 Fcheck

T = Q[31] + H(Q[34], Q[33], Q[32]) +
if ('(T&0x8000)) continue;

Q[35] = Q[34]
Q[36] = Q[35]
rot (Q[32] +

Q[37] = Q[36]
rot(Q[33] +
Q[38] = Q[37]
rot(Q[34] +
Q[39] = Q[38]
rot(Q[35] +
Q[40] = Q[39]
rot(Q[36] +

Q[41] = Q[40]
rot(Q[37] +

+ rot (T,
+

H(Q[35],

+

H(Q[36],

+

H(Q[37],

+

H(Q[38],

+

H(Q[39],

+

H(Q[40],

Q[23],
Q[24],
Q[25],

Q[27],
Q[28],
Q[29],
Q[30],

Q[31],
Q[32],

16);

Q[34],

Q[35],
Q[36],
Q[37],
Q[38],

Q[39],

121

Q[22])
Q[23])
Q[24])
Q[25])

Q[26])
Q[27])
Q[28])
Q[29])

Q[30])
Q[31])

Il p = 1/2

Q[33])

Q[34])
Q[35])
Q[36])
Q[37])

Q[38])

+

+

+

+

+

+

+

t24

t25

t26

t27

t28

t29

t30

t31

t32

t33

t35

t36

t37

t38

t39

t40

m[9],
m[14],
m[3],

m[8],

m[13],
m[2],
m[7],

m[12],

m[10],

m[13],

5);
9);
14);

20);

5);

14);

20);

. 4);

, 11);

23);

. 4);
, 11);

, 16);

23);

4),

Q[42] = Q[41] +
rot(Q[38] + H(Q[41]

Q[43] = Q[42] +

rot (Q[39] + H(Q[42],

Q[44] = Q[43] +
rot (Q[40] + H(Q[43]

Q[45] = Q[44] +

rot(Q[41] + H(Q[44],

Q[46] = Q[45] +
rot(Q[42] + H(Q[45]

Q[47] = Q[46] +
rot(Q[43] + H(Q[46]

Q[48] = Q[47] +
rot(Q[44] + H(Q[47],

, Q[40],
Q[41],
., Q[42],

Q[43],
» Q[44],
» Q[45],

Q[46],

+

Q[39])

+

Q[40])
Q[41]) +

Q[42]) +
Q[43]) +
Q[44]) +
Q[45]) +

if ((Q[48]°Q[46])&0x80000000) continue;

Q[49] = Q[48] +

rot (Q[45] + 1(Q[48],
if ((Q[49]°Q[47])&0x80000000) continue;

QI50] = Q[49] +

rot (Q[46] + 1(Q[49],
if ((CQ[50]°Q[46])&0x80000000) continue;

Q[51] = Q[50] +

rot(Q[47] + 1(Q[50],
if ((Q[51]°Q[49])&0x80000000) continue;

Q[52] = Q[51] +

rot(Q[48] + 1(Q[51],
if ((Q[52]°Q[50])&0x80000000) continue;

Q[53] = Q[52] +

rot (Q[49] + 1(Q[52],
if ((Q[53]°Q[51])&0x80000000) continue;

Q[54] = Q[53] +

rot (Q[50] + 1(Q[53],
if ((Q[54]°Q[52])&0x80000000) continue;

Q[55] = Q[54] +

rot(Q[51] + 1(Q[54],
if ((Q[55]°Q[53])&0x80000000) continue;

Q[47],

Q[48],

Q[49],

Q[50],

Q[51],

Q[52],

Q[53],

122

Q[46]) +

Q[47]) +

Q[48]) +

Q[49]) +

Q[50]) +

Q[51]) +

Q[52]) +

t41

t42

t43

t44

t45

t46

t47

t48

t49

t50

t51

t52

t53

t54

m[0],

m[7],

m[14],

m[5],

m[12],

m[3],

m[10],

, 11);
, 16);

, 23);

, 4);
, 11);
, 16);

, 23);

10);

15);

21);

6);

10);

15);

Q[56] = Q[55] +

rot(Q[52] + I(Q[55], Q[54], Q[53]) + t55 + m[1], 21);
if ((Q[56]°Q[54])&0x80000000) continue;
Q[57] = Q[56] +

rot(Q[53] + 1(Q[56], Q[55], Q[54]) + t56 + m[8], 6);

if ((Q[57] Q[55])&0x80000000) continue;

Q[58] = Q[57] +
rot (Q[54] + 1(Q[57], Q[56], Q[55]) + t57 + m[15], 10);
if ((Q[58] Q[56])&0x80000000) continue;

Q[59] = Q[58] +
rot (Q[55] + 1(Q[58], Q[57], Q[56]) + t58
if ((Q[59]°Q[57])&0x80000000) continue;

+

m[6], 15);

Q[60] = Q[59] +
rot(Q[56] + I1(Q[59], Q[58], Q[57]) + t59 + m[13], 21);
if ((Q[60]&0x2000000) || (TQ[60]°Q[58])&0x80000000)
continue;

Q[61] = Q[60] +
rot(Q[57] + 1(Q[60], Q[59], Q[58]) + t60 + m[4], 6);
if ((!1(Q[61]&0x2000000)) || ((Q[61]1"Q[59])&0x80000000))
continue;

T = Q[58] + 1(Q[61], Q[60], Q[59]) + t61 + mMm[11];
if ('(T&Ox3f8000)) continue;

Q[62] = Q[61] + rot(T, 10);
if (1(Q[62]&0x2000000) || ((Q[62]°Q[60])&0x80000000))
continue;

printf(”:”); fflush(stdout);
Q[63] = Q[62] +

rot(Q[59] + 1(Q[62], Q[61], Q[60]) + t62 + mM[2], 15);
if ((Q[63]°Q[61])&0x80000000) continue;

if (1(Q[63]&0x2000000)) {
T = Q[63]>>26;
T2 = Q[61]>>26;
if (!T) continue;

123

}

while (!1(T&1)) {
if (T2&1) break;
T>>=1; T2>>=1;
¥

if (1(T&1) || T2&1) continue;
}
printf("\n");
start.over = 0;

break;
} while (ctr < TRY2);

inline void search2(){

}

do {
modify_0_.13 ();
checkrest ();

} while (startover);

int main(int argc, charx argv[]) {

int j;

double t, tfirst, tsecond;
FILE =fp1l;

srandom (time (0));

srand48 (time (0));

t = currenttime_micros ();
search1 (); // Find first block

tfirst = currenttime_micros()—t;

for (j = 0; j < 16; j++) mil[j] = m[j];

search2 (); // Find second block
t = currenttime_micros()—t;
tsecond = ttfirst;

printf("Collision found in %.2f minute§n”, t/1e6/60);

printf ("Time of first block : %.2f minute§n”,
tfirst/1e6/60);

printf ("Time of second block : %.2f minutesq”,
tsecond/1e6/60);

printf ("NOTE: Since not all conditions are checkegn”);

printf ("this might in fact NOT be a true collision\.n");

124

printf("Please verify..\n\n");
printf(”First block:\n");
for (j = 0; j < 16; j++)

printf("m%d] = 0x%08Ix;\n”", j, mi[j]);
printf(”\nThe colliding message has m[4]+2731, m[11]+2"1%});
printf("m[14]+2°31\n\n");
printf(”Second block\n”");
for (j = 0; j < 16; j++)

printf ("m%d] = 0x%08Ix;\n", j, m[j]);
printf(”\nThe colliding message has m[4]+2"31, m[112715\n");
printf("m[14]+2°31\n\n");
printf("The two messages have been saved as msgl\mnXj;
printf(”and msg2.txt. To verify on a UNIXlike system \n”);
printf("use 'md5sum msgl. txt msg2.txt\n\n");

fpl = fopen("msgl. txt”, "w");

for (j = 0; J < 16; j++) {
fprintf (fpl, "%c”,(char)(ml[j]&0xff));
fprintf (fpl, "%c”,(char)((mil[j]>>8)&0xff));
fprintf (fpl, "%c”,(char)((ml[j]>>16)&0xff));
fprintf (fpl, "%c”,(char)(ml[j]> >24));

}

for (j = 0; j < 16; j++) {
fprintf (fpl, "%c”,(char)(m[j]&0xff));
fprintf (fpl, "%c”,(char)((m[j]>>8)&0xff));
fprintf (fpl, "%c”,(char)((m[j]>>16)&0xff));
fprintf (fpl, "%c”,(char)(m[j] > >24));

}

fclose (fpl);

ml[4] += 0x80000000;
m1[11] += 0x8000;
ml[14] += 0x80000000;
m[4] += 0x80000000;
m[11l] —= 0x8000;
m[14] += 0x80000000;

fpl = fopen("msg2.txt”, "w”);

for (j = 0; J < 16; j++) {
fprintf(fpl, "%c”,(char)(ml[j]&0xff));
fprintf (fpl, "%c”,(char)((ml[j]>>8)&0xff));
fprintf (fpl, "%c”,(char)((ml[j]>>16)&0xff));
fprintf (fpl, "%c”,(char)(ml[j]> >24));

}

125

for (j = 0; j < 16; j++) {
fprintf (fpl, "%c”,(char)(m[j]&0xff));
fprintf (fpl, ™%c”,(char)((m[j]>>8)&0xff))
fprintf (fpl, "%c” ,(char)((m[j]>>16)&0xff));
fprintf (fpl, "%c”,(char)(m[j]>>24));

}
fclose (fpl);

return O;

126

Appendix D

An implementation of the Wang
MD4 attack

The code below is a C program that finds collisions of MD4 ushegtechnique
of [43].

#include <stdlib.h>
#include <stdio .h>
#include <time.h>

typedef unsigned long word;

word a[l13], b[13], c[13], d[13];
word aa[l13], bb[13], cc[13], dd[13];
word T;

#define IVA 0x67452301

#define IVB Oxefcdab89

#define IVC 0x98badcfe

#define IVD 0x10325476

word m[16];
int ok = 0;

#define F(u, v, w) ((w) = ((u) & ((v) = (w))))
#define G(u, v, w) (((u) & (v)) = ((w) & ((u) " (v))))
#define H(u, v, w) ((u) = (v) = (w))

#define rot(x, s) (((xx<(s)) ((x)>>(32—(s))))
#define rotr(x, s) (((xX)x<(32—(s)))"((x)>>(s)))
#define K1 (0x5a827999)

#define K2 (0Ox6ed9ebal)

#define N 10000

127

double currenttime_micros () {
[+ returns current time in microseconds/
struct timeval curtime;
gettimeofday (&curtime , 0);
return ((double) curtime.tv.sec)k 1000000 +
((double) curtime.tv.usec);
}

inline void search () {
ok = 0;
do {
// Added b1[14,21,22,24,27] =0
b[1] = random ();
b[1] &= 0xf94fdb7f;
b[1] |= 0x00000040 ;

a[2] = random ();

a[2] & Oxfdffffff;

a[2] |= 0x480;

al[2] "= (a[2] b[1])&0x2000;

/I Added extra conditions: d2,[17,18,23] =0
d[2] = random ();

d[2] &= Oxffffdfff;

d[2] |= 0x02000000;

d[2] "= (d[2]"a[2])&0x003c0000;

// Added c2[17] = O

c[2] = random ();

c[2] &= Oxffd2dfff;

c[2] |= 0x00100000;

c[2] "= (d[2] ¢c[2])&0x00005000;

/1 Added extra conditions: b2[17,18,23] =0
b[2] = random ();

b[2] &= Oxff80bfff;

b[2] |= 0x00003000;

b[2] "= (b[2]"¢[2])&0x00010000;

m[7] = rotr(b[2], 19) — b[1l] — F(c[2],d[2],a[2]);

a[3] = random ();

a[3] &= Oxffe2ffff;

a[3] |= 0x00207000;

a[3] "= (a[3]"b[2])&0x02400000;

128

m[8] = rotr(a[3], 3) — a[2] — F(b[2],c[2],d[2]);

d[3] = random ();

d[3] &= Oxffb6ffff;

d[3] |= 0x02307000;

d[3] "= (d[3]"a[3])&0x20000000;

m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);

c[3] = random ();

c[3] &= 0xfd87ffff;

c[3] |= 0x20010000;

c[3] "= (c[3]°d[3])&0x80000000;

m[10] rotr(c[3], 11)— c[2] — F(d[3],a[3],b[2]);

b[3] = random ();

b[3] &= 0Ox5fb7ffff;

b[3] |= 0x02300000;

m[11] = rotr(b[3], 19)— b[2] — F(c[3],d[3],a[3]);

a[4] = random ();

af[4] & Ox7dbfffff;

a[4] |= 0x20000000;

= (a[4]"b[3])&0x14000000;

m[12] = rotr(a[4], 3)— a[3] — F(b[3],c[3],d[3]);

do {
d[4] = random ();
d[4] & Oxddbfffff;
d[4] |= 0x94000000;
m[13] = rotr(d[4], 7) — d[3] — F(a[4],b[3],c[3]);

c[4] = random ();

c[4] & Oxcbffffff;

c[4] |= 0x02400000;

c[4] "= (c[4]°d[4])&0x40000;

m[14] rotr(c[4], 11)— c[3] — F(d[4],a[4],b[3]);

// Added extra condition: b4[32] = c4[32]

/[l (missing in paper!)

b[4] = random ();

b[4] &= Oxdffbffff;

b[4] |= 0x16000000;

b[4] "= (b[4] c[4])&0x80000000;

m[15] = rotr(b[4], 19)— b[3] — F(c[4].,d[4],a[4]);

129

a[5]

a[5] & Oxfbffffff;

random ();

a[5] |= 0x92000000;

a[5]
m[O]
afl]
df1]
df1]
df1]
c[1]
c[1]
c[1]
c[1]
m[4]
m[5]
m[6]

&= OXffffffbf;
(d[1]"a[1])&0x480;

&= Oxfffffbff;

rotr(a[5],

0x40000&(c[4]"a[5]);

3) — a[4] — G(b[4],c[4].d[4]) — KI;

rot(a[0] + F(b[0],c[0],d[0]) + m[O], 3);

random ();

random ();

|= 0xcO;

rotr(a[2],
rotr(d[2],
rotr(c[2],

(c[1]°d[1])&0x02000000 ;

3) — a[l] — F(b[1],c[1],d[1]);
7) — d[1] — F(a[2],b[1],c[1]);
11) — c[1] — F(d[2],a[2],b[1]);

} while (0x40&(a[1]"b[0]));

m[1]
m[2]
m[3]

d[5]

m[4]
df1]
d[5]
m[1]
m[2]
m[3]
m[5]
}

r
r
r

otr(d[1], 7) — d[0] — F(a[1],b[0],c[0]);
otr(c[1], 11) — c¢[0] — F(d[1],a[1],b[0]);
otr(b[1], 19) — b[0] — F(c[1],d[1],a[1]);

rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);
/!l For all possible incorrect bits, bl points at dl
if ((d[5] a[5])&0x40000) {

+= (d[1]&0x2000) ? 0x2000 :—(0x2000);

~

= 0x2000;

rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);

rotr(d[1],
rotr(c[1],
rotr(b[1],
rotr(d[2],

7) — d[0] — F(a[1],b[0],c[0]);
11) — ¢[0] — F(d[1],a[1],b[0]);
19) — b[0] — F(c[1].d[1],a[1]);
7) — d[1] — F(a[2],b[1],c[1]);

if ((d[5] b[4])&0x2000000) {
+= (d[1]&0x100000) ? 0x100000 :—(0x100000);

m[4]
df1]
d[5]
m[1]
m[2]
m[3]
m[5]

"= 0x100000;

rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);

rotr(d[1],
rotr(c[1],
rotr(b[1],
rotr(d[2],

7) — d[0] — F(a[1],b[0],c[O]);
11) — c[0] — F(d[1],a[1],b[0]);
19) — b[0] — F(c[1],d[1],a[1]);
7) — d[1] — F(a[2],b[1],c[1]);

130

if ((d[5] b[4])&0x4000000) {
m[4] += (d[1]&0x200000) ? 0x200000 :—(0x200000);
d[1] "= 0x200000;

d[5] = rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);
m[1l] = rotr(d[1], 7) — d[0] — F(a[l1],b[0],c[0]);
m[2] = rotr(c[1], 11) — c[0] — F(d[1],a[1],b[O]);
m[3] = rotr(b[1], 19) — b[0] — F(c[1],d[1],a[1l]);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1],c[1]);

}

if ((d[5] b[4])&0x10000000) {
m[4] += (d[1]&0x800000) ? 0x800000 :—(0x800000);
d[1] "= 0x800000;

d[5] = rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);
m[1] = rotr(d[1], 7) — d[0] — F(a[l1],b[0],c[0]);
m[2] = rotr(c[1], 11) — c[0] — F(d[1],a[l],b[0]);
m[3] = rotr(b[1], 19) — b[0] — F(c[1],d[1],a[l]);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1].,c[1]);

}

if ((d[5] b[4])&0x80000000) {
m[4] += (d[1]&0x4000000) ? 0x4000000 :—(0x4000000);
d[1] "= 0x4000000;

d[5] = rot(d[4] + G(a[5],b[4],c[4]) + m[4] + K1, 5);
m[1l] = rotr(d[1], 7) — d[0] — F(a[l],b[0],c[0O]);
m[2] = rotr(c[1], 11) — c[0] — F(d[1],a[1],b[0O]);
m[3] = rotr(b[1], 19) — b[0] — F(c[1],d[1],a[l]);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1],c[1]);

}

c[5] = rot(c[4] + G(d[5],a[5].,b[4]) + m[8] + K1, 9);
if ((c[5]°d[5])&0x2000000) {

m[8] += (d[2]&0x10000) ? 0x10000 :—0x10000;

d[2] "= 0x10000;

c[5] = rot(c[4] + G(d[5],a[5],b[4]) + m[8] + K1, 9);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1],c[1]);
m[6] = rotr(c[2], 11) — c[1] — F(d[2],a[2],b[1]);
m[7] = rotr(b[2], 19) — b[1l] — F(c[2],d[2],a[2]);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);

}

if ((c[5] d[5])&0x4000000) {
m[8] += (d[2]&0x20000) ? 0x20000 :—0x20000;

131

d[2] "= 0x20000;

c[5] = rot(c[4] + G(d[5],a[5],b[4]) + m[8] + K1, 9);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1],c[1]);
m[6] = rotr(c[2], 11) — c[1] — F(d[2],a[2],b[1]);
m[7] = rotr(b[2], 19) — b[1] — F(c[2],d[2],a[2]);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);

}

/I dangerous to correct this one...
if ((c[5]°d[5])&0x10000000) {
continue;

}

if ((c[5] d[5])&0x20000000) {
m[8] += (a[3]&0x800000) ?-0x100000 : 0x100000;
a[3] "= 0x800000;

c[5] = rot(c[4] + G(d[5],a[5],b[4]) + m[8] + K1, 9);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);
m[10] = rotr(c[3], 11)— c[2] — F(d[3],a[3],b[2]);
m[11l] = rotr(b[3], 19)— b[2] — F(c[3],d[3],a[3]);
m[12] = rotr(a[4], 3)— a[3] — F(b[3],c[3],d[3]);

}

if ((c[5]"d[5])&0x80000000) {
m[8] += (d[2]&0x400000) ? 0x400000 :—0x400000 :
d[2] "= 0x400000;

c[5] = rot(c[4] + G(d[5],a[5],b[4]) + m[8] + K1, 9);
m[5] = rotr(d[2], 7) — d[1] — F(a[2],b[1],c[1]);
m[6] = rotr(c[2], 11) — c[1] — F(d[2],a[2],b[1]);
m[7] = rotr(b[2], 19) — b[1] — F(c[2],d[2],a[2]);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);

}

b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);
/' No conditions on b3,16, c3,16 and d3,16.
/I 1.e. flip the bit that b3,16 points at.
if ((b[5] c[5])&0x10000000) {
if (b[3]&0x8000) {

m[12] += (c[3]&0x8000) ? 0x8000 :—0x8000;

c[3] "= 0x8000;

b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);

m[10] = rotr(c[3], 11)— c[2] — F(d[3],a[3].,b[2]);
m[11] = rotr(b[3], 19) - b[2] — F(c[3],d[3],a[3]);
m[13] = rotr(d[4], 7) — d[3] — F(a[4],b[3].,c[3]);

132

}

m[14] = rotr(c[4], 11) — c[3] — F(d[4],a[4],b[3]);

else {

}
}

m[12] += (d[3]&0x8000) ? 0x8000 :—0x8000;
d[3] "= 0x8000;

b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);
m[10] rotr(c[3], 11)— c[2] — F(d[3],a[3],b[2]);

MM];meBle—Mﬂ—FWBLMﬂﬁBW
m[13] = rotr(d[4], 7) — d[3] — F(a[4],b[3],c[3]);

/!l This trick only works since ¢3,17 != d3,17

i f

('(b[5]&0x20000000)) {

m[12] += (b[3]&0x10000) ? 0x10000 :—0x10000;
b[3] "= 0x10000;
b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);

m[11] = rotr(b[3], 19) — b[2] — F(c[3],d[3],a[3]);
m[13] = rotr(d[4], 7) — d[3] — F(a[4],b[3],c[3]);
m[14] = rotr(c[4], 11) — c[3] — F(d[4],a[4],b[3]);
m[15] = rotr(b[4], 19) — b[3] — F(c[4],d[4],a[4])
}

// No conditions on b3,19, ¢3,19 and d3,19.
/I 1.e. flip the bit that b3,19 points at.
if (b[5]&0x80000000) {

if (b[3]&0x40000) {

m[12] += (c[3]&0x40000) ? 0x40000 :—0x40000;
c[3] "= 0x40000;
b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);

m[10] = rotr(c[3], 11) — c[2] — F(d[3],a[3].,b[2]);
m[11] = rotr(b[3], 19)— b[2] — F(c[3],d[3],a[3]);
m[13] = rotr(d[4], 7)— d[3] — F(a[4],b[3].,c[3]);
m[14] = rotr(c[4], 11)— c[3] — F(d[4],a[4],b[3]);
}
else {

m[12] += (d[3]&0x40000) ? 0x40000 :—0x40000;
d[3] "= 0x40000;

b[5] = rot(b[4] + G(c[5],d[5],a[5]) + m[12] + K1, 13);
m[9] = rotr(d[3], 7) — d[2] — F(a[3],b[2],c[2]);
m[10] rotr(c[3], 11)— c[2] — F(d[3],a[3],b[2]);

MM];meBL1%—Mﬂ—F@BLMNﬁBW
m[13] = rotr(d[4], 7)— d[3] — F(a[4],b[3],c[3]);

133

}
}

a[6] = rot(a[5] + G(b[5],c[5],d[5]) + m[1] + K1,
if ('(a[6]&0x10000000)) continue;

if (a[6]&0x20000000) continue;

if ('(a[6]&0x80000000)) continue;

d[6] = rot(d[5] + G(a[6],b[5],c[5]) + m[5] + K1,
if ((d[6] b[5])&0x10000000) continue;

c[6] = rot(c[5] + G(d[6],a[6],b[5]) + m[9] + K1,
if ((c[6]°d[6])&0x10000000) continue;

if (!((c[6]°d[6])&0x20000000)) continue;

if ('((c[6]°d[6])&0x80000000)) continue;

b[6] = rot(b[5] + G(c[6],d[6],a[6]) + m[13] + K1,
a[7] = rot(a[6] + G(b[6],c[6],d[6]) + m[2] + K1,
d[7] = rot(d[6] + G(a[7],b[6],c[6]) + m[6] + K1,
c[7] = rot(c[6] + G(d[7],a[7],b[6]) + m[10] + K1,
b[7] = rot(b[6] + G(c[7].,d[7],a[7]) + m[14] + K1,
a[8] = rot(a[7] + G(b[7],c[7],d[7]) + m[3] + K1,
d[8] = rot(d[7] + G(a[8],b[7],c[7]) + m[7] + K1,
c[8] = rot(c[7] + G(d[8],a[8],b[7]) + m[11] + K1,
b[8] = rot(b[7] + G(c[8],d[8],a[8]) + m[15] + K1,
af[9] = rot(a[8] + H(b[8],c[8],d[8]) + m[0] + K2,
d[9] = rot(d[8] + H(a[9],b[8],c[8]) + m[8] + K2,
c[9] = rot(c[8] + H(d[9],a[9],b[8]) + m[4] + K2,

T = b[8] + H(c[9],d[9],a[9]) + m[12] + K2;
if ('(T&x10000)) continue;
b[9] = rot(T, 15);

a[10] = rot(a[9] + H(b[9],c[9].,d[9]) + m[2] + K2,

if ((a[10]"b[9])&0x80000000) continue;

ok = 1;
} while (lok);
}

int main() {
int i, error = 0;
double tm;

134

5);

9);

13);
3);
5);

9);

13);
3);
5);

9);

13);

3);

9);
11);

3);

int seed = time(0)&0 xffff;

srandom (seed);
printf("Seed: %dn”, seed);
tm = currenttime_micros ();

for (i = 0; i < N; i++) {
a[0] = IVA; b[0] = IVB; c[0] = IVC; d[0] = IVD;
search ();
}
tm = currenttime_micros()—tm;
printf(™d collision(s) found in %.2f secs\,n”, N, tm/1e6);
printf("%.2f ms on averag&n”, tm/1e3/N);
a[0] = IVA; b[0] = IVB; c[0] = IVC; d[0] = IVD;

printf(”\nThe last collision found was:n”);
for (i = 0; i < 16; i++) {
printf("m%2d] = 0x%08Ix\n”, i, m[i]);

}

printf ("\nReplacingn m[1] with m[1]+0x80000000=0x%08Ix\,n",
m[1]+0x80000000);

printf(” m[2] with m[2]+0x70000000=0x%08Ix , andn”,
m[2]+0x70000000);

printf(” m[12] with m[12]-0x10000=0x%08Ixn”, m[12]—-0x10000);

printf(”does not change the MD4 hash of this message\n”);

return O;

135

Appendix E

The individual steps of MD4

For convenience, the 48 individual steps of MD4 are writtehlmelow. The nota-
tion is the same as in Chapter 3.

Step no. Step operation \

0 Q1 — (F(Q0,Q-1,Q-2) + Q_3+mg) <3

1 Q2+ (F(Q1,Q0,Q-1) + Q2+ my) <7

2 Qs — (F(Q2,Q1,Qo) + Q-1+ mp)<<tt

3 Qs + (F(Qs,Q2,Q1) + Qo+ mg)<*?

4 Qs — (F(Q4,Q3,Q2) + Q1+ my) <3

5 Qs — (F(Qs5,Q4,Q3) + Q2+ mg) <’

6 Q7 — (F(Qg,Qs,Q4) + Q3+ mg) <Lt

7 Qs — (F(Q7,Q6,Qs) + Qs+ my) <19

8 Qo — (F(Qs,Q7,Qs) + Qs+ Mg) <3

9 Q10 < (F(Qg,Qs,Q7) + Qg+ M) <’

10 Q11 < (F(Q10,Qo,Qs) + Q7+ M) <

11 Q12 (F(Q11,Q10,Qo) + Qg+ Myq) <19

12 Qi3 (F(Q12,Q11,Q10) + Qo+ Myp) <3

13 Qu4 « (F(Q13,Q12,Q11) + Quo+ My3) <’

14 Q15— (F(Qu14,Q13,Q12) + Q11+ Myg)<<H

15 Q16 (F(Q15,Q14,Q13) + Qu2+ Mys) <19

16 Q17 < (G(Qu6, Q15, Q14) + Quz+ kg + mg) <3
17 Qis « (G(Q17,Q16,Q15) + Qua+ kg + my) <3
18 Q19 < (G(Qu8,Q17, Q16) + Q15+ kg + mg) <9
19 Q20 « (G(Q19,Qu8, Q17) + Qg+ kg + myp) <13
20 Q21+ (G(Q20,Q19, Q18) + Q7+ kg + my) <3
21 Q22 (G(Q21,Q20, Q19) + Qug+ kg + mg) <3
22 Q23 (G(Q22, Q21, Q20) + Qug+ kg + Mg) <2
23 Q24 — (G(Q23,Qa22,Q21) + Q20+ kg + Myg) <13
24 Q25— (G(Q24,Q23, Q22) + Qo1+ kg + Mp) <3
25 Q26 < (G(Qz5,Q4, Q23) + Qo2+ ki + Mg) <
26 Q27 (G(Q26,Qo5, Q24) + Qo3+ kg + My g) <°

136

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Q28 « (G(Q27,Q26, Q25) + Qo+ Ky + M) <13
Q29 « (G(Q28, Q27, Q26) + Qa5+ Ky + mg) <3
Q30 < (G(Q29, Q28, Q27) + Qo6+ kg + my) <
Qa1 < (G(Q30, Qg, Q28) + Q27+ Ky + myp)<°
Qa2 < (G(Qs1, Qa0, Q29) + Qog+ kg + My5) <13
Qaz < (H(Qs2, Q31,Qs0) + Qa9+ ko + mp) <3
Qa4+ (H(Qs33,Q32,Q31) + Qao+ ko + mg) <2
Qss < (H(Qs4,Q33,Q32) + Qa1+ ko + my) <<t
Q36+ (H(Q35,Q34,Q33) + Qs+ ko + myp) <12
Qa7 < (H(Qss, Q35,Q34) + Qaz+ ko + Mp) <3
Qss < (H(Qa7, Q36, Qas) -+ Qaa+ kz + My o) <2
Qso < (H(Qa8,Q37,Qs6) + Qa5+ ko + mg) <1
Qa0+ (H(Q39,Q38,Q37) + Q36+ ko + My 4) <12
Qa1+ (H(Qao, Q39, Qag) + Qa7+ ko + My) <3
Qa2 (H(Qa1, Qa0, Qs9) + Qg+ ko + mg) <2
Qa3 (H(Qa2, Qa1, Qo) + Qg+ ko + mg) <<t
Qaa «— (H(Qaz, Qa2, Qa1) + Qao+ ko + My 3) <15
Qas «— (H(Qaa, Qas, Qu2) + Qa1+ ko + mg) <3
Qa6 < (H(Qas, Qaa, Quz) + Qaz+ ko + myq) <2
Qa7 (H(Qae, Qas, Qua) + Qaz+ ko + my) <11
Qag < (H(Qa7,Qae, Qus) + Qua+ ko + mys) <2

137

Bibliography

[1] E. Biham. Recent Advances in Hash Functions: The Way to
Go. Presentation at the Hash Functions Workshop, Krakowe Ju
2005. Available athttp://wwv. cs.technion.ac.il/~biham Reports/

Sl i des/ hash- func- kr akow- 2005. ps. gz.

[2] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, andJ®by. Colli-
sions of SHA-0 and Reduced SHA-1. In Cramer [8], pages 36-57.

[3] E. Biham and A. Shamir. Differential Cryptanalysis of BHike Cryptosys-
tems. In A. Menezes and S. A. Vanstone, edit@BYPTQ volume 537 of
Lecture Notes in Computer Scienpages 2—-21. Springer, 1990.

[4] D. Boneh and M. K. Franklin. Efficient Generation of ST@SA Keys
(Extended Abstract). InB. S. K. Jr., edit@RYPTQvolume 1294 of_ecture
Notes in Computer Scienggages 425—-439. Springer, 1997.

[5] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, X&. H. W.
Meyer, J. Oseas, S. Pilpel, and M. Schilling. Data authatitio using modi-
fication detection codes based on a public one-way encryfitioction. U.S.
Patent # 4,908,861, March 1990.

[6] F. Chabaud and A. Joux. Differential Collisions in SHA1® H. Krawczyk,
editor, CRYPTQvolume 1462 ol ecture Notes in Computer Sciengages
56-71. Springer, 1998.

[7] S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an Efiot and Prov-
able Collision Resistant Hash Function. Cryptology ePAirthive, Report
2005/193, 2005http://eprint.iacr.org/.

[8] R. Cramer, editorAdvances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Application€ofptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceeditndisme 3494
of Lecture Notes in Computer ScienS&pringer, 2005.

[9] I. Damgard. A Design Principle for Hash Functions. InB3assard, editor,
CRYPTQvolume 435 ot ecture Notes in Computer Scienpages 416-427.
Springer, 1989.

138

[10]

M. Daum. Cryptanalysis of Hash Functions of the MD4-FamiBhD thesis,
Ruhr-Universitat Bochum, June 2005.

[11] W. Diffie and M. E. Hellman. New Directions in Cryptogfap |IEEE Trans-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

actions on Information TheoyyT-22(6):644—654, November 1976.

H. Dobbertin. Cryptanalysis of MD4lournal of Cryptology11(4):253-271,
1998.

N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. StayWagner, and
D. Whiting. Improved Cryptanalysis of Rijndael. In B. Sciereeditor,Fast
Software Encryptionvolume 1978 ofLecture Notes in Computer Science
pages 213-230. Springer, 2000.

FIPS 46, Data Encryption Standard. Federal Infornrmaffoocessing Stan-
dards Publication 46, U.S. Department of Commerce/Nati@umeau of
Standards, National Technical Information Service, Sprahd, Virginia,
January 1977. Revised as FIPS 46-1 (1988) and FIPS 46-2)(1993

FIPS 180, Secure Hash Standard. Federal Informationd3sing Standards
Publication 180, U.S. Department of Commerce/NIST, Natiorechnical
Information Service, Springfield, Virginia, May 1993.

FIPS 180-1, Secure Hash Standard. Federal Inform&iamcessing Stan-
dards Publication 180-1, U.S. Department of Commerce/NISdtional
Technical Information Service, Springfield, Virginia, A@995. Supersedes
FIPS 180.

FIPS 180-2, Secure Hash Standard. Federal Inform&imcessing Stan-
dards Publication 180-2, U.S. Department of Commerce/NISdtional
Technical Information Service, Springfield, Virginia, Augf 2002. Super-
sedes FIPS 180 and FIPS 180-1.

FIPS 186, Digital Signature Standard. Federal InfdiomaProcessing Stan-
dards Publication 186, U.S. Department of Commerce/NI&fiddal Tech-
nical Information Service, Springfield, Virginia, May 199Revised as FIPS
186-1 (1998) and FIPS 186-2 (2000).

FIPS 197, Advanced Encryption Standard (AES). Fedafarmation Pro-
cessing Standards Publication 197, U.S. Department of GaaetNIST, Na-
tional Technical Information Service, Springfield, VirginNovember 2001.

The Hashcashwebsite ht t p: / / waw. hashcash. org/ .

P. Hawkes, M. Paddon, and G. G. Rose. Musings on the Wardl. e
MD5 Collision. Cryptology ePrint Archive, Report 2004/262004. ht t p:
[leprint.iacr.org/.

139

[22] W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security dietated Hash
Functions Based on Block Ciphers. In Stinson [40], pages-390.

[23] A. Joux. Multicollisions in Iterated Hash Functionspplication to Cascaded
Constructions. In M. K. Franklin, editoERYPTQvolume 3152 ol ecture
Notes in Computer Scienggages 306—316. Springer, 2004.

[24] J. Kelsey and B. Schneier. Second Preimages-bit Hash Functions for
Much Less than2Work. In Cramer [8], pages 474—-490.

[25] V. Klima. Finding MD5 Collisions on a Notebook PC Usingulli-message
Modifications. Cryptology ePrint Archive, Report 2005/1@D05. htt p:
[leprint.iacr.org/.

[26] L. R. Knudsen. SMASH — A Cryptographic Hash FunctionHInGilbert and
H. Handschuh, editordrast Software Encryptignvolume 3557 ofLecture
Notes in Computer Scienggages 228-242. Springer, 2005.

[27] L. R. Knudsen, X. Lai, and B. Preneel. Attacks on FastileBlock Length
Hash FunctionsJournal of Cryptology11(1):59-72, 1998.

[28] L. R. Knudsen and B. Preneel. Construction of Securerasd Hash Func-
tions Using Nonbinary Error-Correcting CodéEEE Transactions on Infor-
mation Theory48(9):2524-2539, September 2002.

[29] S. Lucks. Design Principles for Iterated Hash Funaio@ryptology ePrint
Archive, Report 2004/253, 2004t tp: //eprint.iacr.org/.

[30] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstblamdbook of Applied
Cryptography CRC Press, 1997.

[31] R. C. Merkle. A Fast Software One-Way Hash Functidournal of Cryptol-
ogy, 3(1):43-58, 1990.

[32] C. H. Meyer and M. Schilling. Secure program load with naila-
tion Detection Code. IrProceedings of the 6th Worldwide Congress on
Computer and Communications Security and Protection (SEICQOM’88),
pages 111-130, 1988.

[33] N. Pramstaller, C. Rechberger, and V. Rijmen. SmasBMASH. Cryptol-
ogy ePrint Archive, Report 2005/081, 2008.t p: / / eprint.iacr.org/.

[34] B. Preneel. Analysis and Design of Cryptographic Hash Function3hD
thesis, Katholieke Universiteit Leuven, January 1993.

[35] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Famz®Based on Block
Ciphers: A Synthetic Approach. In Stinson [40], pages 368-3

140

[36] RFC 1186, The MD4 Message Digest Algorithm. Internetjiest for Com-
ments 1186, R. Rivest, October 1990.

[37] RFC 1319, The MD2 Message-Digest Algorithm. InternegiRest for Com-
ments 1319, B. Kaliski, April 1992.

[38] RFC 1321, The MD5 Message-Digest Algorithm. InternegRest for Com-
ments 1321, R. Rivest, April 1992.

[39] R. L. Rivest. Abelian square-free dithering for itexdt hash func-
tions. Available at http://theory.lcs.mt.edu/ ~rivest/
Ri vest - Abel i anSquar eFr eeDi t heri ngFor | t er at edHashFuncti ons.
pdf , August 2005.

[40] D. R. Stinson, editorAdvances in Cryptology - CRYPTO '93, 13th Annual
International Cryptology Conference, Santa Barbara, @eathia, USA, Au-
gust 22-26, 1993, Proceedinggolume 773 ofLecture Notes in Computer
ScienceSpringer, 1994,

[41] D. R. Stinson.Cryptography: Theory and Practic]& RC Press, first edition,
1995.

[42] D. R. Stinson.Cryptography: Theory and PracticeChapman & Hall/CRC,
second edition, 2002.

[43] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanatysif the Hash
Functions MD4 and RIPEMD. In Cramer [8], pages 1-18.

[44] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the FlBHA-1. To
appear.

[45] X. Wang and H. Yu. How to Break MD5 and Other Hash Functiorin
Cramer [8], pages 19-35.

141

