Observations on the Shabal keyed permutation

Lars R. Knudsen Krystian Matusiewicz Sgren S. Thomsen

April 7, 2009

Abstract

In this note we show that the permutation P used in the Shabal hash function, which is
a candidate in the SHA-3 competition, has some non-random properties. As an example,
it is easy to find a number of fixed points in the permutation. Moreover, large key-multi-
collisions can be easily found; these are multi-collisions where only the key input contains
a difference. All observations are easily verified, and most of them are independent of the
choice of security parameters. Our observations, on the other hand, do not seem extensible
to the full hash function.

1 Introduction

Shabal [3] is a candidate for the SHA-3 hash function competition organised by NIST [4]. In this
note we describe some observations on the keyed permutation P used in Shabal. We note that
P was already claimed to be non-ideal by Aumasson [1], but our observations are (apparently)
different and easy to verify.

For a detailed description of Shabal, we refer to the Shabal specification [3]. We now briefly
describe the permutation P.

2 Description of the permutation

Shabal is a hash function based on a keyed permutation P. We shall not describe the mode of
operation of this keyed permutation, since our results only have to do with the permutation.

The permutation takes four inputs, where two of them are used as key material (hence,
they are not updated). We denote by C' and M two vectors of 16 32-bit words; these form
the key material. Two vectors A and B, of 12 and 16 words respectively, are updated by the
permutation.

The first thing that happens in the permutation is that each word of B is left-rotated by 17
positions. Hence, the following loop is carried out.

for i =0to 15 do
Bli] < Bli] <« 17
end for
Then, an inner loop updates A and B as follows.

for i=0to 2 do
for 7 =0to 15 do
Alj + 16¢ mod 12] «+ U(A[j + 16i mod 12] & V(A[j — 1 + 16¢ mod 12] <« 15)
®C[8 — j mod 16])
@B[j + 13 mod 16] & (B[j + 9 mod 16] A B[j 4+ 6 mod 16])
SM[j]




B[j] < (B[j] << 1) ® A[j + 16i mod 12]
end for
end for
Here, U maps z to 3z mod 232, and V maps z to 5z mod 232. A bar over a value means the
bitwise complement of that value, and ‘A’ means logical AND.
Finally, A is updated by C as follows.
for i =0 to 35 do
Ali mod 12] «+ A[i mod 12] + C[i + 3 mod 16]
end for

The addition is modulo 232.

3 Observations

We describe how to find fixed points and other properties in the permutation.

3.1 Conserving the state

Choose arbitrary b, and compute b = b << 17. Choose a = b@® (b <« 1). Now set A[i] — a for
all i, 0 < i < 12, and set B[i] < b for all 4, 0 < i < 16. Compute

M[i] — a®b®U(a® V(a < 15) & C[8 — i mod 16))

for all 4, 0 <4 < 16.

Now, in the inner loop one gets A[j + 16¢ mod 12] < A[j + 16i mod 12], and due to the
choice of a, one also gets B[j] < B[j]. This happens for all (7, j). Hence, the inner loop has no
effect on A and B.

Note that all words of A are equal. The same is true for B. If b = 0 or b = —1 mod 232,
then the initial loop does not change B. In any case, all words in B remain equal throughout
P. If C[i] = CJj] for all i, j, then all words in A also remain equal throughout P.

With b € {0,—1} and C[i] = 0 for all 4, we have a fixed point. Note that this technique
works for any choice of the tunable security parameters, which are the number of words in A,
and the number of rounds.

3.2 An extension

Instead of having all words in A and B equal, we can work with sets of four words as follows.

Set bi], 0 < i < 4, to arbitrary values. Compute b[i] = b[i] << 17. Set a[i] — b[i] & (b[i] << 1).
Set A[i] <« ali mod 4] for all i, 0 < i < 12, and set B[i] « b[i mod 4] for all i, 0 < ¢ < 16.
Moreover, compute

M[i] «— ali mod 4] & (b[i + 1 mod 4] A b[i + 2 mod 4]) &
U(afi mod 4] ® V(a[i — 1 mod 4] <« 15) & C[8 — i mod 16])

for all ¢, 0 < ¢ < 16. Now, again, the inner loop preserves the state, regardless of the values of
the C[i] and the b[d].



3.3 Key-collisions

It is clear that collisions in P are easy to find: choose a key (M, C) and an output (A*, B*),
and compute the corresponding input (A, B) by inverting P. Doing this for two different keys
will produce a collision. However, one can also easily find collisions where only the key input is
varied; the “plaintext” input (A, B) is fixed. Moreover, many keys producing the same output
can be easily found, leading to what may be termed key-multi-collisions. We now describe how
to do this.

The last loop in P can be described as A «— A+ D - C, where D is a 12 x 16 matrix, and A
and C are seen as column vectors. The following four vectors form a basis for the nullspace of
D.

(1,0,0,0,-2,0,0,0,1,0,0,0,1,0,0,0)"

(0,1,0,0,0,-2,0,0,0,1,0,0,0,1,0,0)T

(0,0,1,0,0,0,-2,0,0,0,1,0,0,0,1,0)T
(0,0,0,2,0,0,0,23 —1,0,0,0,2% —1,0,0,0,23 — 1)*

(found using Magma [2]). Hence, there are many ways to choose a difference in C' such that the
mapping has no effect. This means that key-collisions can be found as follows.

Select A and B as described above (any choice of the values b[i] can be used). Choose two
values of the vector C, with a difference that is a non-zero linear combination of the four basis
vectors above. Choose the message words M [i] accordingly, as described above. Now there is a
key-collision in P.

In fact, we can find multi-collisions of size 2!?® by keeping A and B fixed, and varying C in
2128 ways (the four basis vectors can each be varied in 232 ways, all combinations being distinct).

Values of C whose differences are in the nullspace of D form an equivalence class. There

2012128 _ 9384 gyich equivalence classes. Moreover, the four free words of B can be chosen
— 2512

are
in 24%32 = 2128 (ifferent ways. Hence, we can construct a whopping total of 2384+128
multi-collisions of size 2'28.

4 Examples

We now give a few examples of the observations described above.

4.1 Fixed points

Choose B[i] = —1 mod 232 and A[i] = —1 mod 232 for all valid i. Choose C[i] = 0 and M[i] = 12
for all 4, 0 < i < 16. Now, Puy.c(A,B) = (A,B) = (ff...ff,ff...ff) (in hexadecimal). With
Bli] = 0 and M[i] = —13 mod 232, we also have a fixed point.

4.2 Key-collisions

We can find key-collisions with the same choice of A and B as in the previous example. We
may, for instance, choose B[i] = —1 and A[i] = —1. We choose, e.g., C[i] = 0 for all i except
i € {0,4,8,12}, and we choose C[0] = C[8] = C[12] =1, and C[4] = —2. We choose M[i] = 12
for all i except i € {0,4,8,12}, and we choose M[0] = M[8] = M[12] = 15, and M[4] = —18.
Now, we again have Py c(A,B) = (A, B) = (ff...ff,ff.. . ff). A third input that leads to the
same output is C[0] = C[8] = C[12] = —1, C[4] = 2, M[0] = M[8] = M[12] = —15, M[4] = 18
(all other input words are unchanged).



5

Conclusion

We described some simple observations on the Shabal keyed permutation 7. These include
simple methods of finding (many) fixed points in the permutations, and methods of constructing
many large multi-collisions where only the key input contains a difference. We do not claim
that these observations directly lead to attacks on Shabal.

References

1]

2]

Jean-Philippe Aumasson. On the pseudorandomness of Shabal’s keyed permutation. Avail-
able: http://131002.net/data/papers/Aum09. pdf (2009/04/03).

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235-265, 1997.

Emmanuel Bresson, Anne Canteaut, Benoit Chevallier-Mames, Christophe Clavier, Thomas
Fuhr, Aline Gouget, Thomas Icart, Jean-Frangois Misarsky, Maria Naya-Plasencia, Pascal
Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet, and Marion Videau. Shabal,
a Submission to NIST’s Cryptographic Hash Algorithm Competition. Available: http:
//ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf (2009/04/01).

National Institute of Standards and Technology. Announcing Request for Candidate Algo-
rithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Reg-
ister, 27(212):62212-62220, November 2007. Available: http://csrc.nist.gov/groups/
ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17).


http://131002.net/data/papers/Aum09.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

	Introduction
	Description of the permutation
	Observations
	Conserving the state
	An extension
	Key-collisions

	Examples
	Fixed points
	Key-collisions

	Conclusion

