
Second preimage attack on MeshHash

Søren S. Thomsen
crypto@znoren.dk

December 1, 2008

1 Introduction

We describe a second preimage attack on the SHA-3 candidate MeshHash. MeshHash was
designed by Björn Fay. For a detailed description of the MeshHash hash function, we refer to
the specification [1]. Here, we use the same notation as in the specification.

We briefly describe one of the building blocks of MeshHash.

1.1 The normal round function

Consider MeshHash-n, which is the version of MeshHash that produces a message digest of n
bits. MeshHash-n operates with a state consisting of P pipes called pipe[i], i = 0, . . . , P − 1,
where P = bn/64c + 1. Each pipe is a 64-bit word. A 64-bit message block data updates the
P pipes via the normal round function. This function does the following (for i = 0, . . . , P − 1):

pipe[i]← SBox(RotR37i(pipe′[i]⊕ (i ¡ 0101010101010101h)⊕ data)) ¢ pipe′[i + 1 mod P ].

pipe′[i] denotes the original values of the pipes, before the normal round function is applied to
any of them. SBox is a 64-bit s-box computed as described below. RotRx means right-rotation
by x positions. The symbol ‘¡’ denotes multiplication modulo 264, and ‘¢’ denotes addition
modulo 264. 64-bit constants are written in hexadecimal.

It is seen from the normal round function that each pipe is a function of the previous value
of the pipe, one other pipe, and the message block.

The s-box is defined as follows. On input x, carry out the following sequence of computations:

x ← x ¡ 9e3779b97f4a7bb9h

x ← x ¢ 5e2d58d8b3bcdef7h

x ← RotR37(x)
x ← x ¡ 9e3779b97f4a7bb9h

x ← x ¢ 5e2d58d8b3bcdef7h

x ← RotR37(x).

For completeness, we state how the inverse s-box, SBox−1, may be computed.

x ← RotR27(x)
x ← x ¯ 5e2d58d8b3bcdef7h

x ← x ¡ 693622400cab1a89h

x ← RotR27(x)
x ← x ¯ 5e2d58d8b3bcdef7h

x ← x ¡ 693622400cab1a89h.

1



Here, ‘¯’ denotes subtraction modulo 264.
We have not mentioned the “final block round”, which is applied for every P normal rounds.

In this function, each pipe is updated using a message block counter. The function is efficiently
invertible, and makes no difference to the attacks described here.

2 Second preimage attack

The normal round function can be inverted in time about 264. This leads to a second preimage
attack using the meet-in-the-middle method.

2.1 Inverting the normal round function

Given the P pipes pipe[i] and a message block data, the original values pipe′[i] of the pipes,
which are mapped to pipe[i] by the message block data, may be found in time about 264 as
follows.

1. Choose an arbitrary 64-bit value of a variable p0.

2. Compute pipe′[P − 1] ← RotR27(P−1)(SBox−1(pipe[P − 1] ¯ p0)) ⊕ data ⊕ ((P − 1) ¡
0101010101010101h).

3. Compute, for i from P − 2 down to 0,

pipe′[i]← RotR27i(SBox−1(pipe[i]¯pipe[i+1 mod 5]))⊕data⊕(i¡0101010101010101h)

4. If p0 = pipe′[0], then the normal round function has been successfully inverted. Other-
wise, start over.

The probability that p0 = pipe′[0] for an arbitrary value of p0 is estimated to be about 2−64.
Hence, the expected complexity of inverting the normal round function is 264. This is indepen-
dent of the number P of pipes.

2.2 Meet-in-the-middle attack

Consider MeshHash-n, where n is a multiple of 64. Assume we are given a message M of at least
P blocks, and we want to find a second preimage of the hash value H(M). We compute the
intermediate hash values when processing M . We then carry out a meet-in-the-middle attack
based on the inversion algorithm described in the previous section. We invert the normal round
function starting from one of the last intermediate hash values when processing M , using 2n/2

different dn/128e-block messages. We need messages of length at least n/128 blocks in order to
have enough degrees of freedom, and therefore the total complexity is about (n/128)× 2n/2+64.

We also partially hash 2n/2+64 messages in the forward direction, each message being at
least n/128 + 1 blocks in length. The length must be chosen such that the final message has
the same length as M . This takes time about (n/128 + 1)× 2n/2+64.

The 2n/2+64 intermediate hash values thus produced may match any of the 2n/2 intermediate
hash values computed by inverting the normal round function. Since there are 2n/2+64× 2n/2 =
2n+64 pairs of intermediate hash values that may match in P × 64 = n + 64 bits, we expect to
find a second preimage. The total time complexity is about (n/64 + 1) × 2n/2+64. With, e.g.,
n = 256, the complexity is about 2194.3, well below the claimed second preimage security level
of 2256, and also (for all practical message lengths) well below the required complexity of 2256−k

to find a second preimage matching a first preimage of 2k blocks. Other complexities can be

2



Table 1: Complexities of the second preimage attack for various output sizes n (claimed resis-
tance is 2n).

n Second preimage complexity
256 2194.3

320 2226.6

384 2258.8

448 2291.0

512 2323.2

found in Table 1. We note that memory requirements are about 2n/2. Memoryless variants of
the meet-in-the-middle attack exist [2, 3]; it is unclear, however, what the effect in terms of
running time of the attack would be.

2.3 Preimage attacks

We have not found a method of producing preimages in MeshHash. The reason is that the
function producing the output of MeshHash does not seem to be easily invertible. However, if a
method of inverting the output function is found, then the above attack can be applied directly.

References

[1] B. Fay. MeshHash. SHA-3 Algorithm Submission. Available: http://ehash.iaik.tugraz.
at/uploads/5/5a/Specification_DIN-A4.pdf (2008/12/01).

[2] H. Morita, K. Ohta, and S. Miyaguchi. A Switching Closure Test to Analyze Cryptosystems.
In J. Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, Proceedings, volume 576
of Lecture Notes in Computer Science, pages 183–193. Springer, 1992.

[3] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search. New Results and
Applications to DES. In G. Brassard, editor, Advances in Cryptology – CRYPTO ’89,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 408–413. Springer,
1990.

3


