Second preimage attack on MeshHash

Søren S. Thomsen
crypto@znoren.dk

December 1, 2008

1 Introduction

We describe a second preimage attack on the SHA-3 candidate MeshHash. MeshHash was designed by Björn Fay. For a detailed description of the MeshHash hash function, we refer to the specification [1]. Here, we use the same notation as in the specification.

We briefly describe one of the building blocks of MeshHash.

1.1 The normal round function

Consider MeshHash- n, which is the version of MeshHash that produces a message digest of n bits. MeshHash- n operates with a state consisting of P pipes called pipe[i], i $=0, \ldots, P-1$, where $P=\lfloor n / 64\rfloor+1$. Each pipe is a 64 -bit word. A 64 -bit message block data updates the P pipes via the normal round function. This function does the following (for $\mathrm{i}=0, \ldots, P-1$):

$$
\operatorname{pipe}[\mathrm{i}] \leftarrow \operatorname{SBox}\left(\operatorname{RotR}^{37 i}\left(\operatorname{pipe}^{\prime}[\mathrm{i}] \oplus\left(i \boxtimes 0101010101010101_{h}\right) \oplus \text { data }\right)\right) \boxplus \operatorname{pipe}^{\prime}[\mathrm{i}+1 \bmod P]
$$

pipe'[i] denotes the original values of the pipes, before the normal round function is applied to any of them. SBox is a 64 -bit s-box computed as described below. Rot^{x} means right-rotation by x positions. The symbol ' \square ' denotes multiplication modulo 2^{64}, and ' \boxplus ' denotes addition modulo 2^{64}. 64 -bit constants are written in hexadecimal.

It is seen from the normal round function that each pipe is a function of the previous value of the pipe, one other pipe, and the message block.

The s-box is defined as follows. On input x, carry out the following sequence of computations:

$$
\begin{aligned}
& x \leftarrow x \text { 9e3779b97f4a7bb } 9_{h} \\
& x \leftarrow x \boxplus \text { 5e2d58d8b3bcdef7 }{ }_{h} \\
& x \leftarrow \operatorname{Rot}^{37}(x) \\
& x \leftarrow x \boxtimes 9 \mathrm{e} 3779 \mathrm{~b} 97 \mathrm{ffa} 4 \mathrm{bb} 9_{h} \\
& x \leftarrow x \boxplus \text { 5e2d58d8b3bcdef7 }{ }_{h} \\
& x \leftarrow \operatorname{Rot}^{37}(x) \text {. }
\end{aligned}
$$

For completeness, we state how the inverse s-box, SBox^{-1}, may be computed.

$$
\begin{aligned}
x & \leftarrow \operatorname{RotR}^{27}(x) \\
x & \leftarrow x \boxminus 5 \mathrm{e} 2 \mathrm{~d} 58 \mathrm{~d} 8 \mathrm{~b} 3 \mathrm{bcdef} 7_{h} \\
x & \leftarrow x \boxminus 693622400 \mathrm{cab} 1 \mathrm{a} 89_{h} \\
x & \leftarrow \operatorname{RotR}^{27}(x) \\
x & \leftarrow x \boxminus 5 \mathrm{e} 2 \mathrm{~d} 58 \mathrm{~d} 8 \mathrm{~b} 3 \mathrm{bcdef} 7_{h} \\
x & \leftarrow x \boxminus 693622400 \mathrm{cab} 1 \mathrm{a} 89_{h} .
\end{aligned}
$$

Here, ‘ \boxminus ' denotes subtraction modulo 2^{64}.
We have not mentioned the "final block round", which is applied for every P normal rounds. In this function, each pipe is updated using a message block counter. The function is efficiently invertible, and makes no difference to the attacks described here.

2 Second preimage attack

The normal round function can be inverted in time about 2^{64}. This leads to a second preimage attack using the meet-in-the-middle method.

2.1 Inverting the normal round function

Given the P pipes pipe[i] and a message block data, the original values pipe'[i] of the pipes, which are mapped to pipe[i] by the message block data, may be found in time about 2^{64} as follows.

1. Choose an arbitrary 64 -bit value of a variable p 0 .
2. Compute pipe $[P-1] \leftarrow \operatorname{Rot}^{27(P-1)}\left(\operatorname{SBox}^{-1}(\right.$ pipe $\left.[P-1] \boxminus \mathrm{p} 0)\right) \oplus \operatorname{data} \oplus((P-1)$ $\left.0101010101010101_{h}\right)$.
3. Compute, for i from $P-2$ down to 0 ,

$$
\operatorname{pipe}^{\prime}[\mathbf{i}] \leftarrow \operatorname{RotR}^{27 i}\left(S \text { Sox }^{-1}(\operatorname{pipe}[\mathbf{i}] \boxminus \operatorname{pipe}[\mathbf{i}+1 \bmod 5])\right) \oplus \operatorname{data} \oplus\left(i \square 0101010101010101_{h}\right)
$$

4. If $\mathrm{p} 0=\operatorname{pipe}^{\prime}[0]$, then the normal round function has been successfully inverted. Otherwise, start over.

The probability that $\mathrm{p} 0=\operatorname{pipe}^{\prime}[0]$ for an arbitrary value of p 0 is estimated to be about 2^{-64}. Hence, the expected complexity of inverting the normal round function is 2^{64}. This is independent of the number P of pipes.

2.2 Meet-in-the-middle attack

Consider MeshHash- n, where n is a multiple of 64 . Assume we are given a message M of at least P blocks, and we want to find a second preimage of the hash value $H(M)$. We compute the intermediate hash values when processing M. We then carry out a meet-in-the-middle attack based on the inversion algorithm described in the previous section. We invert the normal round function starting from one of the last intermediate hash values when processing M, using $2^{n / 2}$ different $\lceil n / 128\rceil$-block messages. We need messages of length at least $n / 128$ blocks in order to have enough degrees of freedom, and therefore the total complexity is about $(n / 128) \times 2^{n / 2+64}$.

We also partially hash $2^{n / 2+64}$ messages in the forward direction, each message being at least $n / 128+1$ blocks in length. The length must be chosen such that the final message has the same length as M. This takes time about $(n / 128+1) \times 2^{n / 2+64}$.

The $2^{n / 2+64}$ intermediate hash values thus produced may match any of the $2^{n / 2}$ intermediate hash values computed by inverting the normal round function. Since there are $2^{n / 2+64} \times 2^{n / 2}=$ 2^{n+64} pairs of intermediate hash values that may match in $P \times 64=n+64$ bits, we expect to find a second preimage. The total time complexity is about $(n / 64+1) \times 2^{n / 2+64}$. With, e.g., $n=256$, the complexity is about $2^{194.3}$, well below the claimed second preimage security level of 2^{256}, and also (for all practical message lengths) well below the required complexity of 2^{256-k} to find a second preimage matching a first preimage of 2^{k} blocks. Other complexities can be

Table 1: Complexities of the second preimage attack for various output sizes n (claimed resistance is 2^{n}).

n	Second preimage complexity
256	$2^{194.3}$
320	$2^{226.6}$
384	$2^{258.8}$
448	$2^{291.0}$
512	$2^{323.2}$

found in Table 1. We note that memory requirements are about $2^{n / 2}$. Memoryless variants of the meet-in-the-middle attack exist $[2,3]$; it is unclear, however, what the effect in terms of running time of the attack would be.

2.3 Preimage attacks

We have not found a method of producing preimages in MeshHash. The reason is that the function producing the output of MeshHash does not seem to be easily invertible. However, if a method of inverting the output function is found, then the above attack can be applied directly.

References

[1] B. Fay. MeshHash. SHA-3 Algorithm Submission. Available: http://ehash.iaik.tugraz. at/uploads/5/5a/Specification_DIN-A4.pdf (2008/12/01).
[2] H. Morita, K. Ohta, and S. Miyaguchi. A Switching Closure Test to Analyze Cryptosystems. In J. Feigenbaum, editor, Advances in Cryptology - CRYPTO '91, Proceedings, volume 576 of Lecture Notes in Computer Science, pages 183-193. Springer, 1992.
[3] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search. New Results and Applications to DES. In G. Brassard, editor, Advances in Cryptology - CRYPTO '89, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 408-413. Springer, 1990.

