Second preimage attack on MeshHash

Sgren S. Thomsen

crypto@znoren.dk

December 1, 2008

1 Introduction

We describe a second preimage attack on the SHA-3 candidate MeshHash. MeshHash was
designed by Bjorn Fay. For a detailed description of the MeshHash hash function, we refer to

the specification [1]. Here, we use the same notation as in the specification.
We briefly describe one of the building blocks of MeshHash.

1.1 The normal round function

Consider MeshHash-n, which is the version of MeshHash that produces a message digest of n
bits. MeshHash-n operates with a state consisting of P pipes called pipe[i], i =0,...,P — 1,
where P = |n/64]| + 1. Each pipe is a 64-bit word. A 64-bit message block data updates the
P pipes via the normal round function. This function does the following (for i =0,..., P —1):

pipe[i] < SBox(RotR3™(pipe’[i] @ (i 1 0101010101010101,) & data)) B pipe[i + 1 mod P).

pipe’[i] denotes the original values of the pipes, before the normal round function is applied to
any of them. SBox is a 64-bit s-box computed as described below. RotR* means right-rotation
by x positions. The symbol ‘I’ denotes multiplication modulo 264, and ‘B’ denotes addition
modulo 264, 64-bit constants are written in hexadecimal.

It is seen from the normal round function that each pipe is a function of the previous value
of the pipe, one other pipe, and the message block.

The s-box is defined as follows. On input x, carry out the following sequence of computations:
«— x[J9e3779b97f4a7bb9;,
x H 5e2d58d8b3bcdef7,,
RotR3"(z)
x [19e3779b97f4a7bb9y,
x H 5e2d58d8b3bcdef7,,

RotR*"(z).

8 8 8 8 8

| I I

T
For completeness, we state how the inverse s-box, SBox™!, may be computed.
RotR*(x)

x H 5e2d58d8b3bcdef7,,

x [1693622400cab1a89,,

RotR*(x)

x H 5e2d58d8b3bcdef7y,

x [1693622400cab1a89;,.

|

8 8 8 8 &8 8

| I I



Here, ‘B’ denotes subtraction modulo 264.

We have not mentioned the “final block round”, which is applied for every P normal rounds.
In this function, each pipe is updated using a message block counter. The function is efficiently
invertible, and makes no difference to the attacks described here.

2 Second preimage attack

The normal round function can be inverted in time about 264. This leads to a second preimage
attack using the meet-in-the-middle method.

2.1 Inverting the normal round function

Given the P pipes pipe[i] and a message block data, the original values pipe’[i] of the pipes,
which are mapped to pipe[i] by the message block data, may be found in time about 264 as
follows.

1. Choose an arbitrary 64-bit value of a variable pO.

2. Compute pipe/[P — 1] «— RotR¥"("~1(SBox ! (pipe[P — 1] B p0)) ¢ data & ((P — 1) I
01010101010101014).

3. Compute, for ¢ from P — 2 down to 0,

pipe’[i] « RotR*"(SBox ! (pipe[i]Bpipe[i+1 mod 5]))®datad(i[10101010101010101y,)

4. If p0 = pipe’[0], then the normal round function has been successfully inverted. Other-
wise, start over.

The probability that p0 = pipe’[0] for an arbitrary value of pO is estimated to be about 2764,
Hence, the expected complexity of inverting the normal round function is 264, This is indepen-
dent of the number P of pipes.

2.2 Meet-in-the-middle attack

Consider MeshHash-n, where n is a multiple of 64. Assume we are given a message M of at least
P blocks, and we want to find a second preimage of the hash value H(M). We compute the
intermediate hash values when processing M. We then carry out a meet-in-the-middle attack
based on the inversion algorithm described in the previous section. We invert the normal round
function starting from one of the last intermediate hash values when processing M, using 2"/2
different [n/128]-block messages. We need messages of length at least n/128 blocks in order to
have enough degrees of freedom, and therefore the total complexity is about (n,/128) x 27/2+64,

We also partially hash 27/2764 messages in the forward direction, each message being at
least n/128 + 1 blocks in length. The length must be chosen such that the final message has
the same length as M. This takes time about (/128 4 1) x 27/2+64,

The 2%/2+64 intermediate hash values thus produced may match any of the 2"/2 intermediate
hash values computed by inverting the normal round function. Since there are 2%/2+64 5 on/2 —
21164 pairs of intermediate hash values that may match in P x 64 = n + 64 bits, we expect to
find a second preimage. The total time complexity is about (n/64 + 1) x on/2+64 - With, e.g.,
n = 256, the complexity is about 21943, well below the claimed second preimage security level
of 2256 and also (for all practical message lengths) well below the required complexity of 2256—F
to find a second preimage matching a first preimage of 2 blocks. Other complexities can be



Table 1: Complexities of the second preimage attack for various output sizes n (claimed resis-
tance is 2™).

n  Second preimage complexity

256 9194.3
320 9226.6
384 22588
448 22910
512 9323.2

found in Table 1. We note that memory requirements are about 2*/2. Memoryless variants of
the meet-in-the-middle attack exist [2, 3]; it is unclear, however, what the effect in terms of
running time of the attack would be.

2.3 Preimage attacks

We have not found a method of producing preimages in MeshHash. The reason is that the
function producing the output of MeshHash does not seem to be easily invertible. However, if a
method of inverting the output function is found, then the above attack can be applied directly.

References

[1] B. Fay. MeshHash. SHA-3 Algorithm Submission. Available: http://ehash.iaik.tugraz.
at/uploads/5/5a/Specification_DIN-A4.pdf (2008/12/01).

[2] H. Morita, K. Ohta, and S. Miyaguchi. A Switching Closure Test to Analyze Cryptosystems.
In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, Proceedings, volume 576
of Lecture Notes in Computer Science, pages 183-193. Springer, 1992.

[3] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search. New Results and
Applications to DES. In G. Brassard, editor, Advances in Cryptology — CRYPTO ’89,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 408—413. Springer,
1990.



