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1 Background

There are various notions of boundaries at infinity of a metric space. In this paper
we will discuss and compare two of these.

The ideal boundary is a classical concept usually defined as a set of equivalence
classes of paths converging to infinity. The precise definition will be given shortly.
Conformal boundaries are defined via conformal distortions of the metric space,
and thus depends on the choice of distortion function. In certain classes of spaces,
e.g. Gromov hyperbolic spaces, there is a range of canonical choices of distortions,
which produce homeomorphic boundaries, c.f. [3]. These turn out also to be homeo-
morphic to the ideal boundary with a canonically defined topology, see [5]. In the
class of CAT(0)-spaces however, there is no canonical choice of conformal distortion,
and the ideal and conformal boundary will typically be different.

The purpose of this note is to prove a general result on how to determine the
conformal boundary of a warped product, and then apply this to produce CAT(0)-
spaces, where the two types of boundaries differ in interesting ways.

1.1 Length Spaces and conformal distortions

We refer to [4] and [5] for more details on the concepts we briefly introduce below.
A length space is a metric space (X, d), where the distance between two points

is given as the infimum of lengths of rectifiable curves connecting points:

d(p, q) = inf
γ∈Γ(p,q)

L(γ),

where Γ(p, q) denotes the set of rectifiable paths having p and q as endpoints. Given
a continuous function ρ : X → (0,∞), we can define the conformally distorted
length metric:

σρ(p, q) := inf
γ∈Γ(p,q)

∫
γ

ρ ds,

see e.g. [3] for more details. One then defines the conformal boundary of X with
respect to the distortion ρ as

∂ρX := Xρ \X,
where Xρ denotes the metric completion of X with respect to the length metric σρ.

In this note we focus attention on the case, where the distortion is a function of
the distance to a base point o ∈ X:

ρ(p) = g
(
d(o, p)

)
,

and g : [0,∞) → (0,∞) is a continuous function. If (X, d) has an infinitely long
geodesic (see below) and g ∈ L1([0,∞)), then we always have ∂gX 6= ∅. Here ∂gX
is used as a short notation for the boundary with respect to a conformal distortion
of the type described above, even though the boundary could depend also on the
choice of base point. See [5] for more details on conformal boundaries of this type.
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1.2 Ideal Boundaries

A K-rough geodesic γ : I → X is a path, such that for all s < t ∈ I, we have

d(γ(s), γ(t)) ≥ L
(
γ([s, t])

)
−K, (1.1)

for some K ≥ 0. Here we do do not distinguish notationally between paths and
their images. If (1.1) holds with K = 0, γ is called a geodesic. A length space is
called geodesic if any two points can be joined by a geodesic. Any proper (i.e. where
closed balls are compact) length space is geodesic, c.f. [4].

A K-rough ray γ in X is an infinitely long K-rough geodesic with one endpoint,
i.e. when parametrized by arclength it can be defined on [0,∞). A ray is then a
0-rough ray, that is, an infinitely long geodesic with one endpoint.

Two paths γ1, γ2 are said to be asymptotic if the Hausdorff distance between
their images is finite dH(γ1, γ2) < ∞. This defines an equivalence relation ∼ on
the set of paths. One easily checks that for two rough rays γ1, γ2 parametrized by
arclength, we have γ1 ∼ γ2 iff

sup
t>0

d(γ1(t), γ2(t)) <∞.

We define the ideal boundary ∂IX to be the set of equivalence classes of (geodesic)
rays. It will prove convenient to work with the slightly more general notion of a
rough ideal boundary, ∂

RI
X, defined to be the set of equivalence classes of rough rays.

Clearly, we have ∂IX ⊆ ∂
RI
X. If X is Gromov hyperbolic then we have ∂IX = ∂

RI
X,

however it is possible to have a strict inclusion:

Example 1.2. In general for an Hadamard manifold Mn, i.e. a complete, simply
connected Riemannian manifold of nonpositive curvature, it is well known that ∂IM
is homeomorphic to Sn−1, when equipped with a canonically defined topology, c.f. [4].
Even in the simplest case M = R2, we have ∂IR2 ⊂ ∂

RI
R2. Given a ray γ (a half-line

going to infinity) it is possible to construct a rough ray, which ”zig-zags” around
γ, in a way such that the two paths are not asymptotic according to the definition
above.

CAT(0)-spaces

A geodesic triangle T in a metric space X is the union on of three geodesics, γ1 ∈
Γ(a, b) , γ2 ∈ Γ(b, c) , γ3 ∈ Γ(c, a). A geodesic triangle T is said to satisfy the CAT(0)-
inequality if it is at least as slim as a comparison triangle with the same side lengths
T̃ ⊂ R2. See e.g. [4] for the precise definition. A CAT(0)-space is then a geodesic
space in which all geodesic triangles satisfy the CAT(0)-condition.
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1.3 Warped Products

We will define the warped product of two length spaces as in [1] and [2], see also [6]:
Let B and F be length spaces, and let f : B → (0,∞) be a continuous function.

Then define the following length structure on B × F :

Lf (γ) =

∫
γ

√
v2

B(t) + f 2(γB(t))vF (t)2dt, (1.3)

where γ = (γB, γF ) and vB, vF are the speeds of γB, γF respectively, which are
defined almost everywhere. We will write

df (p, q) = inf
γ∈Γ(p,q)

Lf (γ)

for the length metric induced from the length structure Lf . The warped product
B ×f F is then B × F equipped with the metric df .

We use standard terminology as for Riemannian warped products, c.f. [7]. B is
called the base and F is called the fiber. Subsets of the form B × {q}, q ∈ F , are
called leaves, while the subsets {p}×F , p ∈ B are called fibers. A curve of the form
t 7→ (α(t), q) is called horizontal, while t 7→ (p, β(t)) is called a vertical curve.

From the definition of the warped product metric, it is clear that the projection
onto the base coordinate πB : B ×f F → B is 1-Lipschitz,

dB(πB(p), πB(q)) ≤ d(p, q).

It is also evident that the leaves B×{q} , q ∈ F are all isometric to B. Furthermore,
if f : B → (0,∞) has a global minimum at p ∈ B, one easily checks that the fiber
{p} × F is isometric to F with metric scaled by f(p).

Lemma 1.4. The identity map B×f F → B×F is a homeomorphism when B×F
is equipped with the product topology. If B and F are complete, then so is B ×f F .
Thus if B and F are proper, so is B ×f F .

Proof. Given p, q ∈ B × F , we have

df (p, q) ≤ f(πB(p))dF (πF (p), πF (q)) + dB(πB(p), πB(q)), (1.5)

by first moving in the fiber through p and then in the leaf through q. This shows
that the identity is continuous from B × F to B ×f F .

Now choose a ball B ⊂ B of radius r around πB(p) s.t. f(x) ≥ 1
2
f(πB(p)) for

x ∈ B. Given ε > 0, choose 0 < δ < min{ε, f(πB(p)) ε
2
, r}. Then if df (p, q) < δ < r

we can ensure that for an almost minimizing curve γ = (γB, γF ) connecting p and
q, we have γB ⊂ B, since LB(γB) ≤ Lf (γ). Thus

Lf (γ) ≥ (min
γ
f)LF (γF ) ≥ 1

2
f(πB(p))LF (γF ) ≥ 1

2
f(πB(p))dF (πF (p), πF (q))
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and we conclude that df (p, q) ≥ 1
2
f(πB(p))dF (πF (p), πF (q)),

hence dF (πF (p), πF (q)) < ε and dB(πB(p), πB(q)) < df (p, q) < ε, which shows that
the identity B ×f F → B × F is continuous.

Since the projection πB is 1-Lipschitz, we get a Cauchy sequence {πB(pn)} ⊂ B,
when {pn} is Cauchy in B ×f F . An easy variation of the argument given above
shows that also {πF (pn)} ⊂ F is Cauchy, and thus the df -Cauchy sequence {pn} is
convergent in the product topology, hence also in B ×f F .

Finally, if B and F are both proper, hence complete, then B ×f F is complete.
B×f X is also locally compact since the product topology is, hence B×f F is proper
by the Hopf-Rinow Theorem, c.f. [4].

2 Boundaries of warped products

We will from now on consider warping functions, which are functions of the distance
to a point. We assume that a base point oB ∈ B is choosen, and for p ∈ B introduce
the notation |p| := dB(oB, p). For f : [0,∞) → (0,∞) a continuous function, we
consider warping functions of the form

f ◦ | · | : B → (0,∞)

and also use the shorthand notation B ×f F for warped products with this type of
composite warping functions. The meaning should be clear from context.

Lemma 2.1. Let f : [0,∞) → [1,∞) be a strictly increasing continuous function
with f(0) = 1, satisfying:

1

f
∈ L1([0,∞)) and sup

t>0
f(t)

∫ ∞

t

1

f(s)
ds <∞ (2.2)

Then the rough ideal boundary of X = B ×f F can be identified as a set with:

∂
RI
X = (∂

RI
B × F ) ∪ ∂

RI
F (2.3)

Proof. First of all since all leaves B × {q} are isometric to B, and likewise because
the fiber {o1}×F is isometric to F it is clear that ∂

RI
B×F ∪ ∂

RI
F ⊆ ∂

RI
X. So we need

to show that any rough ray γ = (γB, γF ) in X is asymptotic to a either a horizontal
or a vertical rough ray.

Assume that γ = (γB, γF ) is a rough ray parametrized by arclength, so vF ≤ 1
f(|γB |)

a.e.. Then there is a K ≥ 0 s.t. for all t ≥ 0 we have:

t−K ≤ d
(
(oB, γF (0)), γ(t)

)
≤ d

(
(oB, γF (0), (oB, γF (t)

)
+ d

(
oB, γF (t)), γ(t)

)
≤ LF (γF |[0,t]) + |γB(t)|

≤
∫ t

0

1

f(|γB(s)|)
ds+ |γB(t)| (2.4)
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by first moving in the fiber {oB} × F , then in the base and applying the triangle
inequality.

Assume now that |γB(t)| is bounded, hence γF and thus F must be unbounded.
It immediately follows from (2.4) that γF must be a rough ray, so that γ is asymp-
totic to the vertical ray t 7→ (oB, γF (t)). We will show a little more, namely that
limt→∞ γB(t) = oB.

We have: ∫ t

0

1

f(|γB(s)|)
ds ≥ LF (γF |[0,t]) ≥ t−K0

for some K0 > 0. If γB(t) 6→ oB for t→∞ then there is some ε > 0 s.t. there exists
arbitrarily large t with |γB(t)| > ε. But then I := {t ≥ 0 | |γB(t)| > ε

2
} has infinite

measure, since the speed of γB is bounded by 1. So

t−
∫ t

0

1

f(|γB(s)|)
ds =

∫ t

0

(1− 1

f(|γB(s)|)
)ds ≥ µ(I ∩ [0, t])(1− 1

f( ε
2
)
) →∞ (2.5)

Hence we conclude that limt→∞ γB(t) = oB.

Now assume that |γB(t)| is unbounded, so the set J := {t > 0 | |γB(t)| > 2c1} has
infinite measure for any c1 > 0 and as in (2.5) we conclude that 1

f(c1)
t−LF (γF |[0,t]) →

∞. Since by (2.4) |γB(t)| ≥ t−K−LF (γF |[0,t]), we get |γB(t)|−c2t→∞ for any c2 ∈
[0, 1). However by a change of parameters this implies that LF (γF ) ≤

∫∞
0

1
f(|γB(t)|)dt

is finite, and thus that |γB(t)| > t −K2 for some K2 > 0, i.e. γB is a rough ray in
B.

Since the length LF (γF ) ≤
∫∞

0
1

f(|γB(t)|)dt is finite, γF (t) is convergent to some

point p ∈ F . Thus γ is asymptotic to the horizontal rough ray t 7→ (γB(t), p), since
by moving vertically:

sup
t>0

d
(
γ(t), (γB(t), p)

)
≤ sup

t>0
f(|γB(t)|)

∫ ∞

t

1

f(|γB(s)|)
ds <∞, (2.6)

where we use the condition on f , (2.2), and the fact that t−K3 ≤ |γB(t)| ≤ t+K3,
for some K3 > 0 and all t ≥ 0.

Let’s return to the conformal boundary ∂gX, defined with respect to a distortion
function g : [0,∞) → (0,∞) and a choice of base point o ∈ X. There is a map

JX : ∂
RI
X → ∂gX,

by choosing sequences going to infinity along each rough ray, e.g. xn = γ(n) , n ∈ N.
We will call g k-quasidecreasing if

g(t) ≤ kg(s)

for all 0 ≤ s ≤ t and some k > 0. We will need the following result whose proof will
only be sketched.
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Lemma 2.7. If X is a proper unbounded length space and g ∈ L1([0,∞)) is quaside-
creasing, then JX : ∂

RI
X → ∂gX is well defined and surjective.

Proof. That JX is well defined, i.e. that it does not depend on the choice of rep-
resentative of an equivalence class of rough rays, neither on the choice of sequence
{γ(tn)} for N 3 tn → ∞, follows from the fact that we must have γ(t) → 0 for
t→ 0. So for any two sequences x = {xn} , y = {yn} choosen along equivalent rays,
we have σg(xn, xm) → 0 , σg(yn, ym) → 0 and σ(xn, ym) → 0 for n,m→∞, where σg

is the conformally distorted metric. Thus x and y will define equivalent σg-Cauchy
sequences converging to some point in ∂gX.

That JX is surjective, in fact already as a map from ∂IX ⊆ ∂
RI
X, is seen using

the argument in the proof of Theorem 2.2 (b) of [5]: In short, given a σg-Cauchy
sequence {xn} ⊂ X converging to a point in ∂gX, we must have d(o, xn) → ∞. In
the proof of Theorem 2.2 (b) a geodesic ray γ with γ(0) = o is constructed such
that δ(g(k), yn) ≤ 1, where y = {yn} is a subsequence of {xn}. Clearly JX(γ) is
then equivalent to y, since g(t) → 0 for t → ∞. Furthermore a subsequence of a
σg-Cauchy sequence is equivalent to the original sequence.

Now we fix also a base point oF ∈ F and thus a base point oX := (oB, oF ) ∈ X =
B ×f F . We use the notation |p|B := dB(oB, p) , |q|F := dF (oF , q) , |r|X := dX(oX , r)
for points p ∈ B, q ∈ F, r ∈ X. σB, σF and σX will denote the conformally distorted
metrics of B,F and X with respect to the choosen base points and a fixed distortion
function g.

Theorem 2.8. Let B and F be pointed, proper length spaces, with B unbounded.
Let furthermore f : [0,∞) → [1,∞) be a warping function satisfying the require-
ments of Lemma 2.1 and g : [0,∞) → (0,∞) be a distortion function satisfying the
requirements of Lemma 2.7 and furthermore:

g(a+ b) ≥ k1g(a)g(b) and f(t)g(t) ≥ k2, (2.9)

for some positive constants k1, k2 and all a, b, t ≥ 0. Then the conformal boundary of
X = B×f F is homeomorphic to the gluing of ∂gB×F onto ∂gF along ∂gB× ∂gF ,
using the projection map. If ∂gF = ∅, the gluing is simply ∂gB × F .

Proof. For each leaf the embedding B ↪→ B ×{q} ⊆ X is isometric, and |(p, q)|X ≥
|p|B, hence g(|(p, q)|X) ≤ k0g(|p|B). Thus clearly any σB-Cauchy sequence {pn} ⊂ B
is also a σX-Cauchy sequence in the leaf B × {q}. Hence we have a map

ψB : ∂gB × F → ∂gX

Likewise the embedding of the standard fiber F ↪→ {oB}×F ⊂ X is isometric, with
|(oB, q)|X = |q|F , so we also have a map

ψF : ∂gF → ∂gX
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Now define a map ψ : ∂gB × F → ∂gX by

ψ((x, y)) =

{
ψB((x, y)) (x, y) ∈ ∂gB × F

ψF (y) (x, y) ∈ ∂gB × ∂gF

Another way of getting the gluing of ∂gB×F and ∂gF is by considering the quotient
∂gF×F / ∼, where ∂gB×{y} is collapsed to a point for y ∈ ∂gF . Since ψ is constant
on equivalence classes we may consider it as a map ψ : ∂gB × F / ∼→ ∂gX.

Equip ∂gB ×F with the product topology induced by the conformally distorted
metrics σB, σF and give ∂gB × F / ∼ the quotient topology. We will show that ψ is
a homeomorphism.

By Lemma 2.7 the conformal distortion map JX : ∂
RI
X → ∂gX is surjective and

using the description in Lemma 2.1, we see that ψ is surjective: For x ∈ ∂gX choose
a rough ray γ s.t. JX(γ) = x. Then γ is either asymptotic to a horizontal ray (γB, q)
and x is in the image ψB(∂gB×F ) or γ is asymptotic to a vertical ray (oB, γF ) and
x is in the image ψF (∂gF ).

Let γ = (α, β) : [t0, t1] → X be a path in X. By first moving in the fiber
{oB} × F and then horizontally in a leaf, we have a triangle with side lengths
|β(s)|F , |α(s)|B, |(α(s), β(s))|X , so by the triangle inequatlity:

|(α(s), β(s))|X ≤ |α(s)|B + |β(s)|F

so using that g is quasi-decreasing and condition (2.9) we have

g(|(α(s), β(s))|X) ≥ k0g(|α(s)|B + |β(s)|F ) ≥ k0k1 g(|β(s)|F ) g(|α(s)|B) (2.10)

Then∫
γ

g(|γ(s)|X)
√
v2

α + f 2(|α(s)|B)v2
β ds

≥
∫

γ

k0k1g(|β(s)|F ) g(|α(s)|B) f(|α(s)|B) vβ ds (2.11)

By assumption there is a positive constant k2 such that g(t)f(t) ≥ k2 for all t > 0.
Hence

LσX
(γ) ≥ k0k1k2LσF

(β), (2.12)

so we conclude that

σX

(
(p1, q1), (p2, q2)

)
≥ K0σF (q1, q2), (2.13)

K0 = k0k1k2. A similar crude analysis shows that

LσX
(γ) ≥ k0k1 min

t0≤t≤t1
(g(|β(t)|F ))LσB

(α) (2.14)
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and we conclude from (2.12)

ε := σX

(
(p1, q1), (p2, q2)

)
≥ K1 min{g(t) | t ∈ [|q1|F −

ε

K0

, |q2|F +
ε

K0

]}σB(p1, p2), (2.15)

assuming that |q1|F ≤ |q2|F . By continuity (2.13) extends to ∂gX, i.e. to Cauchy
sequences of the form (x, y), for x ∈ B , y ∈ F . The estimate (2.15) extends to
Cauchy sequences of the form (x, q) , x ∈ ∂gB , q ∈ F , i.e. to the image ψ(∂g × F ).

We then easily deduce that ψ is injective on ∂gB×F / ∼. Because if ψ
(
(x1, y1)

)
=

ψ
(
(x2, y2)

)
we must have y1 = y2 := y ∈ F by (2.13), and for y ∈ F we see from

(2.14) that ψ
(
(x1, y)

)
= ψ

(
(x2, y)

)
iff x1 = x2.

Using (2.13) and (2.15) we see that ψ−1 is continuous on the horizontal sequences
ψ(∂g × F ). Continuity of ψ−1, in the quotient topology, at a vertical sequence
ψF (∂gF ) follows directly from (2.13).

A similar analysis shows that ψ is continuous. However this also follows from
the fact that the involved spaces are compact and Hausdorff.

3 Exotic boundaries of CAT(0)-spaces

In this section we apply the previous results to give examples of boundaries of
CAT(0)-spaces. That the ideal and conformal boundaries typically differ in this
category is illustrated by the simplest example: ∂

RI
Rn is homeomorphic to Sn−1, but

∂gRn is always a single point for n ≥ 2, and any quasidecreasing distortion function
g ∈ L1([0,∞)).

The following theorem is the main result in [1]:

Theorem 3.1 (Alexander & Bishop). If B and F are complete CAT(0) spaces
and f : B → (0,∞) is convex, then B ×f F is CAT(0).

If we furthermore require that the function f : [0,∞) → [1,∞) in the con-
struction of Theorem 2.8 is convex, then since distance functions are convex in
CAT(0)-spaces, it follows easily that the composition f ◦ | · ||B is convex, and thus
by the Theorem of Alexander and Bishop that B ×f F is CAT(0), when B and F
are CAT(0)-spaces.

3.1 Examples

We will give a few examples of Riemannian CAT(0) spaces, i.e. Hadamard manifolds,
with interesting boundary, calculated using Theorem 2.8. When B is a Hadamard
manifold, we get a smooth convex warping function satisfying the requirements of
Lemma 2.1 by choosing f(t) = cosh(t). If a Hadamard manifold Xn has curvature
bounded away from zero, κ ≤ κ0 < 0, and is thus Gromov hyperbolic, then the
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conformal boundary ∂gX is homeomorphic to the ideal boundary Sn−1, when we
choose the distortion such that g(t) ≥ K exp(−λt) for some sufficiently small λ.
See [5] for details. Clearly when choosing such a distortion function, we can fulfill
the requirements of Theorem 2.8. Another possibility is to choose a so-called Floyd
function with only polynomial decay, see [5].

With these choices of f and g we have:

• If B = R and F = Rn+1, then X is CAT(0) and ∂gX is homeomorphic to
Sn tp Sn, a 1-point union of two n-spheres. This follows since ∂gRn+1 is a
single point {p} and Rn+1 is Sn, while ∂gR consists of two points.

• If B = R2 and F = Hn, hyperbolic n-space, then X is CAT(0) and ∂gX = Bn,
the closed unit ball.

Now one sees, that iterating this procedure with some of the ingredients described
above, it is possible to construct disturbingly complicated conformal boundaries,
even when ∂IX is Sn.

Let’s also give some non-Riemannian examples of CAT(0)-spaces. Here we can
take e.g. f = cosh(t) or f(t) = exp(t). Again g is some appropriate distortion
function and X = B ×f F .

• Let B = R and let F be a tree T . Then X is CAT(0), with ∂gX the doubling
of T along ∂gT . In this example the ideal and conformal boundaries are the
same.

• Let B = R2 and let F be a tree T . Then X is CAT(0) and ∂gX is simpy the
closure of the tree T = T ∪ ∂gT .

• Let B be a tree with finitely many branchings, so that ∂gB is finite. Then
∂gX is finitely many copies of F glued along ∂gF . According to whether F is
CAT(0), then so is X.

Final Question: It is possible to construct even more general boundaries by mak-
ing identifications on the ones constructed above, using shortcuts in the space ”in-
side”. Given a compact n-manifold, M , is it then always possible to construct a
Riemannian metric on Rn+2 such that the conformal boundary as described in this
note is homeomorphic to M? If not, what is the smallest possible coodimension
relative to the space lying inside?
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