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Abstract

We discuss the metric invariants extent, rendezvous number and
mean distance of a compact metric space X. The main result of this
paper is Theorem 4 stating that the round sphere Sn

1 of constant cur-
vature 1 has maximal mean distance among Riemannian n-manifolds
with Ricci curvature Ric ≥ n− 1, and that such a manifold is diffeo-
morphic to a sphere if the mean distance is close to π

2 .
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Introduction

Throughout this paper X will denote a compact metric space with metric d.
We always assume that X contains at least 2 points. In the first section we
describe a measure theoretic setup, which allows us to introduce and treat
metric invariants such as the extent, rendezvous number and mean distance
of a compact metric space in a unified way.

In the second section we apply some of the machinery to the case where X
is a homogeneous space. Finally in the third section we specialize to compact
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Riemannian manifolds and show that the round sphere of curvature 1 has
maximal mean distance among Riemannian manifolds with Ric ≥ n − 1.
Theorem 4 is the main result of this paper.

The Associated Quadratic Form

For background on measures and integration we refer to [10]. The set of
distributions, signed measures or Radon charges (as they are called in [10])
is the R-span of all Radon measures on X. We shall use the notation M(X)
to denote the set of Radon charges. Any Radon charge can be decomposed
as µ = µ+ − µ−, where µ+ and µ− are positive Radon measures. We can
choose the decomposition such that µ+ and µ− are concentrated on disjoint
subsets:

Y + ∩ Y − = ∅, µ+(X \ Y +) = 0 and µ−(X \ Y −) = 0, (1)

c.f. [10] 6.5.7. The norm or total absolute mass of µ is ‖µ‖ = |µ|(X), where
|µ| denotes the measure µ+ + µ−. With this norm M(X) is a Banach space
isometrically isomorphic to C(X)∗, the dual of the space of continuous func-
tions with the uniform norm, cf. Proposition 6.5.9 in [10].

M(X) is equipped with the w∗-topology (the weak topology):

µn → µ iff
∫

X
f µn →

∫
X

f µ for all f ∈ C(X)

The subset of M(X) consisting of positive measures, i.e. µ = |µ|, will be
denoted M(X)+, while the subset of probability measures is defined as

P(X) := {µ ∈ M(X)+|µ(X) = 1}

The support of a distribution µ ∈ M(X) is the minimal closed subset Y ⊆ X
such that |µ|(X \ Y ) = 0.

We will denote the Dirac point measure with support p ∈ X by δp ∈
P(X).

Two important facts: P(X) is w∗-compact, c.f. 2.5.2, 2.5.7 in
[10], and the finitely supported or atomic distributions form a
w∗-dense subset; this second statement follows from the Krein-
Millman Theorem, [10] 2.5.8.
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Given two distributions µ, ν ∈ M(X), µ⊗ ν denotes the product distribu-
tion on X ×X. We have a symmetric, bilinear form on M(X) associated to
the metric d:

Definition 1. Define a symmetric bilinear form I : M(X)×M(X) → R as

I(µ, ν) :=

∫
X×X

d(·, ·) µ⊗ ν :=

∫
X×X

d(·, ·) µ+ ⊗ ν+ +

∫
X×X

d(·, ·) µ− ⊗ ν−

−
∫

X×X

d(·, ·) µ+ ⊗ ν− −
∫

X×X

d(·, ·) µ− ⊗ ν+ (2)

The corresponding quadratic form is denoted shorthand by I(µ) := I(µ, µ).

There are interesting connections between the geometry of X and alge-
braic features of the associated quadratic form, see e.g. [9]. Using instead
a kernel of the form f(d(x, y)) in the definition above, where f : R → R is
some appropriate modification function, would give a range of other interest-
ing quadratic forms. Here we shall stick to the distance kernel in itself and
mainly consider the restriction of the form to the set of probability measures
P(X).

Definition 2. For a distribution µ ∈ M(X) we define the associated poten-
tial of µ as

pµ(p) :=

∫
X

d(p, q)µ(q) =

∫
X

d(p, q)µ+(q)−
∫

X

d(p, q)µ−(q) (3)

For a probability measure µ ∈ P(X) we call pµ the mean distance function
and use the notation pµ = mdµ.

Thus by Fubini’s Theorem, c.f. [10], and linear algebra we have for µ, ν ∈
M(X)

I(µ, ν) =

∫
X

pµν =

∫
X

pνµ (4)

Note that mdδp(q) = d(p, q).
The following basic facts are easy to prove (this is carried out in [9]).

Lemma 1. The following maps are w∗-continuous:

Ψ : M(X) → C(X), µ 7→ pµ

E : M(X) → R, µ 7→ I(µ)
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Metric Invariants

We shall associate two numbers to a general compact metric space X. The
first is the extent:

Definition 3. The extent of X is defined as

xt(X) := sup
µ∈P(X)

I(µ) (5)

The extent is thus the maximal mean distance of X with respect to prob-
ability measures on X. The concept was introduced and studied by Grove
and Markvorsen in [6]. The equivalence of the definition used there and the
one given above follows from the w∗-density of finitely supported measures,
c.f. [9].

By w∗-continuity of the map µ 7→ I(µ) and w∗-compactness of P(X) we
immediately have:

Theorem 1. There is a probability measure µ ∈ P(X) s.t. I(µ) = xt(X)

Thus the sup in the definition can be replaced by a max. It is not difficult
to see, c.f. [6] or [9], that in general

1

2
diam X ≤ xt(X) < diam(X) (6)

The connection between extent and curvature is investigated in [6]. From
the work there it follows:

Theorem 2. Let X be an n-dimensional, n ≥ 2, Alexandrov space with
curv(X) ≥ 1. Then

xt(X) ≤ xt(Sn
1 ) =

π

2
, (7)

where Sn
1 is the n-dimensional sphere of constant curvature 1. Moreover,

equality holds if and only if X is isometric to a spherical suspension Σ1E,
where E is an (n− 1)-dimensional Alexandrov space with diam(E) ≤ π and
curv(E) ≥ 1 if n > 2.
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The next magic number is the rendezvous number, which was introduced
for a connected and compact metric space by Gross in [7] and later generalized
by Thomassen to any compact metric space in [13]. The concept also appears
in the paper [1].

The theorem below is simply an extension of the results in [13], where
formulations are via finite subsets, to the setting of probability measures.
The result could be formulated more generally, it is not necessary here that
d is a metric, in fact a continuous symmetric function on X ×X would do.

Theorem 3. Let X be a compact metric space, then

min
µ∈P(X)

max
p∈X

mdµ(p) = max
µ∈P(X)

min
p∈X

mdµ(p) (8)

Consequently there is a unique number rv(X) > 0 such that for any ν ∈
P(X), there exists points p, q ∈ X satisfying mdν(p) ≥ rv(X) and mdν(q) ≤
rv(X).

Proof. First note that by weak compactness and continuity it makes sense to
use min, max rather than inf, sup. Equation (8) follows from Theorem 2.3 in
[13] by w∗-density of finitely supported measures in P(X) and w∗-continuity
of the mappings involved.

The existence and uniqueness of the number rv(X) follows from (8) since
we would have

rv(X) ≥ max
µ∈P(X)

min
p∈X

mdµ(p)) and rv(X) ≤ min
µ∈P(X)

max
p∈X

mdµ(p)

Definition 4. The rendezvous number of a compact metric space is the
unique number rv(X) with properties listed in Theorem 3.

Note that if X is connected, then for every µ ∈ P(X) there will be a
p ∈ X such that mdµ(p) = rv(X). A distribution µ ∈ P(X) such that

max
p∈X

mdµ(p) = min
µ∈P(X)

max
p∈X

mdµ(p)

will be called a min max-distribution; similarly we will talk about max min-
distributions. Such distributions exist by weak compactness and continuity.
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Recall that the radius and excess of X are defined as:

rad(X) := min
p∈X

max
q∈X

d(p, q) and exc(X) := min
p,q∈X

max
r∈X

(
d(p, r)+d(r, q)−d(p, q)

)
The following is a list of a few basic properties of the rendezvous number:

Proposition 1.

1. rv(X) ≤ xt(X)

2. 1
2
diam(X) ≤ rv(X) ≤ rad(X)

3. exc(X) = 0 =⇒ rv(X) = 1
2
diam(X)

Proof. 1. is clear since xt(X) = supµ

∫
X

mdµ(·)µ ≥ minp∈X mdµ(p).
The first inequality of the second statement follows by considering the

distribution µ = 1
2
(δp+δq), where p, q realize diam(X). The second inequality

follows by considering the distribution δp, where p realizes rad(X), hence
maxq∈X mdδp(q) = rad(X).

Finally assume that p, q realize exc(X) = 0. Then p, q are antipodal and
d(p, q) = diam(X). This means that the potential of 1

2
(δp + δq) is constant

and equal to 1
2
diam(X).

Mean Distance We will often assume that we have a preferred associated
measure µ0 ∈ P(X) on X, which is a normalized volume measure in the sense
that µ0(B(p, r)) > 0 for all p ∈ X and r > 0, where

B(p, r) := {q ∈ X|d(p, q) < r}
is the open ball of radius r and center p.

For a Riemannian manifold we take µ0 = 1
vol(M)

vol(·), where vol denotes
Riemannian volume. In general we could take µ to be normalized Hausdorff
measure, whenever the Hausdorff measure of the appropriate dimension is
finite and positive. E.g. for a finite space, µ0 would then be normalized
counting measure.

Definition 5. Let X be a compact metric space with an associated normal-
ized volume measure µ0 ∈ P(X), then the mean distance of X is defined to
be

md(X) := I(µ0) =

∫
X×X

d(·, ·)µ0 ⊗ µ0 (9)

Whenever we consider mean distance with respect to the standard mea-
sure µ0, we drop the subscript notation, so md := mdµ0 is the mean distance
function of the standard measure.
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Homogeneous Spaces

The isometry group of X, Isom(X), acts on M(X) by pull back µ 7→ µ ◦ σ
and the process of taking potentials commutes with the corresponding pull
back action on C(X):

pµ ◦ σ = pµ◦σ (10)

As usual we will call X homogeneous if the isometry group acts transi-
tively on X. Then we can identify X with the quotient Isom(X)/ Isom(X)p,
where Isom(X)p := {σ ∈ Isom(X)|σ(p) = p} is the isotropy group of some
p ∈ X.

Let Con(X) denote the set of probability measures with constant potential
Con(X) := Ψ−1(R) ∩ P(X). We can think of a distribution µ with constant
potential as a critical point of the ”energy” functional I(µ) under mass pre-
serving variations, since I(µ, ν) = 0 for any ν s.t. ν(X) = 0. A probability
measure which is preserved by the action of Isom(X) on a homogeneous space
is clearly such a critical measure with constant potential, hence:

Proposition 2. On a homogeneous space X with a normalized volume mea-
sure µ0 which is preserved by the action of Isom(X) we have:

rv(X) = md(X)

Thus for a homogeneous Riemannian manifold X we have rv(X) = md(X).
In general however both rv(X) < md(X) and the opposite inequality occurs.

The following is an adaptation of Theorem 13 in [1]:

Proposition 3. On a homogeneous space X any min max or max min dis-
tribution µ ∈ P(X) has constant potential, mdµ = rv(X).

Proof. We prove the max min case, the other is similar. For each max min-
distribution µ, define Cµ := {p ∈ X| mdµ(p) = rv(X)}. Then Cµ is closed.
For a finite number of max min-distributions we have

⋂n
i=1 Cµi

6= ∅. For if not
the distribution ν = 1

n

∑n
i=1 µi ∈ P(X) would have a larger minimum than

rv(X), which is impossible. Hence by compactness of X the intersection⋂
Cµ := C of all such Cµ is nonempty. Now by homogeneity of X every

min max-potential mdµ must be constant. If not, pick a point p ∈ C, a point
q s.t. mdµ(q) > rv(X) and an isometry with σ(q) = p. Then the max min-
distribution µ◦σ would not have minimal potential at p, a contradiction.
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We trivially have in general md(X) ≤ xt(X). What happens if we actually
have equality? We shall need the following lemma, see Theorem 2 in [1]
(c.f. also Theorem 13 p. 82 in [9]).

Lemma 2. If I(µ) = xt(X) for µ ∈ P(X), then for all p in the support of µ
we have:

mdµ(p) = sup
q∈X

(
mdµ(q)

)
= xt(X) (11)

Proposition 4. md(X) = xt(X) implies that the mean distance function of
µ0 is constant, hence rv(X) = md(X) = xt(X). Furthermore this implies
{µ ∈ P(X)|I(µ) = xt(X)} = Con(X) if X is homogeneous.

Proof. By the requirement that µ0 is a normalized volume measure the sup-
port of µ0 is the whole of X. But then by Lemma 2 above, the mean dis-
tance function is constant, hence xt(X) = md(X) = rv(X). Then clearly
any probability measure with constant potential (which has to be rv(X))
realizes xt(X). On the other hand any distribution realizing xt(X) would be
a min max-distribution by Lemma 2 and thus have constant potential if X
is homogeneous by Proposition 3.

Proposition 5. For the round sphere Sn
1 we have:

rv(Sn
1 ) = md(Sn

1 ) = xt(Sn
1 ) =

π

2
, (12)

and a distribution µ ∈ P(Sn
1 ) realizes xt(Sn

1 ) iff µ ∈ Con(Sn
1 ).

Proof. We will first show that md(Sn
1 ) = π

2
, then the proposition above ap-

plies. More generally we will show that an antipodally invariant measure
µ ∈ P(Sn

1 ) has constant potential π
2

and thus realizes xt(Sn
1 ). Here we say

that µ is antipodally invariant if µ ◦ σA = µ, where σA is the antipodal
isometry.

Hence assume that µ ◦ σA = µ. For any mean distance function mdν we
have mdν(p)+mdν(σA(p)) = π as is easily seen (e.g. by integrating wrt. δp +
δσA(p), which has constant potential π). But since mdµ(p) = mdµ(σA(p)) by
antipodal invariance of µ, the claim follows.

We claim that in fact any measure with constant potential must be antipo-
dally invariant. Hence for the extremal boundary of the convex set Con(Sn

1 ),
we have

∂C(Con(Sn
1 )) ∼=

homeo
RP n, (13)
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since the extremal boundary of antipodally invariant probability measures
consists of the measures 1

2
(δp + δσA(p)), p ∈ Sn

1 . This will be discussed further
in a forthcoming paper. . .

The situation md(X) = xt(X) seems to be quite special, indeed it is
tempting to conjecture:

Conjecture: A compact Riemannian manifold X of dimension
n with md(X) = xt(X) is isometric to a sphere of constant
curvature Sn

κ.

To support the conjecture we note that it can easily be shown that X must
be of negative type and thus at least simply connected, c.f. [8] or [9].

Curvature and Mean Distance of Riemannian

Manifolds

To connect mean distance with curvature we trivially have, since md(X) ≤
xt(X) and md(Sn

1 ) = xt(Sn
1 ) = π

2
, a corollary to Theorem 2:

Corollary 1. Let X be an n-dimensional, n ≥ 2, Alexandrov space with
curv(X) ≥ 1, equipped with a normalized volume measure µ0 ∈ P(X). Then

md(X) ≤ md(Sn
1 ) =

π

2
(14)

This could also be shown directly by a Toponogov comparison argument,
which would give a comparison on integrands. In the Riemannian category it
seems to be possible to weaken the curvature condition while still maintaining
the maximality of md(Sn

1 ).
Mean distance measures the way X ”spreads out” and this is controlled

by Ricci curvature. Note however that the maximality of xt(Sn
1 ) does not

hold, when we weaken the curvature condition to Ric ≥ n−1. This is shown
by the examples of manifolds with large Ricci curvature and large diameter
by Anderson and Otsu, c.f. [12] 9.1.8 and 9.1.9.

First we list some equivalent ways of measuring the effectiveness of the
way X spreads out, when X is an n-dimensional Riemannian manifold with
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Ric(X) ≥ n− 1. The first three are due to Colding, c.f. [3] [4] , and the last
to Petersen [11].

1. vol(X) is close to vol(Sn
1 )

2. rad(X) is close to π

3. X is Gromov-Hausdorff close to Sn
1

4. λn+1(X) close to λn+1(Sn
1 ) = n, where λn+1 is the (n + 1)’th eigenvalue

of the laplacian.

By a theorem of Cheeger and Colding, [2], these statements imply that X is
diffeomorphic to Sn. The goal is to add

md(X) close to π
2

to the list above.

Theorem 4. Let X be an n-dimensional, n ≥ 2 , Riemannian manifold with
Ric(X) ≥ n− 1. Then

1. md(p) ≤ π
2

for any p ∈ X, and if md(p) = π
2

for some p ∈ X then
X = Sn

1

2. Hence md(X) ≤ π
2

and md(X) = π
2

iff X = Sn
1 .

3. Furthermore there is an ε(n) > 0 s.t. md(X) ≥ π
2
− ε implies that X is

diffeomorphic to Sn.

Proof. Notation will be as in [12], we use polar coordinates around a point p ∈
X and λ(r, θ) denotes the Riemannian volume density. By Myers Theorem,
[12] Theorem 9.1.2, diam(X) ≤ π. We can extend the volume density to a
ball of radius π by taking it to be 0 outside the segment domain segp ⊂ TpX.
Hence

md(p) =
1

V

∫
segp

rλ(r, θ)dr ∧ dθ =

∫ π

0

r vol(Sr)dr, (15)

where Sr = ∂B(p, r) is the sphere of radius r around p and V = vol(X).
Continuing by partial integration we obtain:

md(p) =
1

V

(
πV −

∫ π

0

vol(B(p, r))dr
)

= π −
∫ π

0

vol(B(p, r))

V
dr (16)
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But by relative volume comparison, [12] Lemma 9.1.6, we have:

vol(B(r))

vol(Sn
1 )

≤ vol(B(p, r))

vol(X)
, r ∈ [0, π], (17)

where B(r) denotes a ball of radius r in Sn
1 . Thus the comparison for md(p)

follows since the mean distance function on Sn
1 is constant π

2
. If we have

equality md(p) = π
2
, we must also have equality in the comparison (17) for

all r ∈ [0, π]. Thus diam(X) = π and X is isometric to Sn
1 , c.f. [12] 9.1.4.

The second statement 2. clearly follows from 1.

For the third statement, consider the function D(p) := maxq d(p, q). Then
rad(X) = min D(p) and diam(X) = max D(p). Suppose that D(p) < π − ε,
for some ε > 0. Then the right hand side of (17) will achieve its maximum
value 1 before π − ε. We thus get an estimate md(p) < π

2
− δ(ε, n), with

δ(ε, n) =

∫ π

π−ε

(1− vol(B(r))

vol(Sn
1 )

)dr

So suppose that rad(X) < π − ε and that p ∈ X realizes rad(X). Then
since D is clearly 1-Lipschitz, we have that D(q) < π − ε

2
on B(p, ε

2
). We

then have an estimate md(q) < π
2
− δ( ε

2
, n) on B(p, ε

2
) and thus

md(q) <
π

2
− δ(

ε

2
, n)1B(p, ε

2
) on X

But this then implies that md(X) < π
2
− fp(

ε
2
, n), where

fp(ε, n) =
vol(B(p, ε))

vol(X)
δ(ε, n) ≥ vol(B(ε))

vol(Sn
1 )

δ(ε, n) > 0

Thus mean distance close to π
2

implies that rad(X) is close to π and hence
that X is diffeomorphic to Sn by the work of Colding and Cheeger, [2].

The proof shows that mean distance close to π
2

implies that radius is close
to π. But to add mean distance close to π

2
to the list of equivalent conditions

above, we need also one of the other directions. This direction can be seen
in many ways. The most useful is perhaps to note that from Colding’s work
on volume convergence when there is a lower bound on Ricci-curvature, [5],
it follows:
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Theorem 5. Let {Xn} be a sequence of Riemannian manifolds of dimension
m s.t. Xn → X, with respect to Gromov-Hausdorff distance, where X is
an m-dimensional Riemannian manifold. If there is a uniform lower bound
Ric(Xn) ≥ k ∈ R, then md(Xn) → md(X).
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