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Abstract

We introduce a Laplacian on a class of metric measure spaces via a
direct pointwise mean value definition. Fundamental properties of this
Laplacian, such as its symmetry as an operator on functions satisfying a
Neumann or Dirichlet condition, are established.
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1 Introduction

The purpose of this paper is to introduce a Laplacian in the setting of metric
measure spaces. While harmonic functions have been studied on doubling metric
measure spaces satisfying a Poincaré inequality by several authors, see e.g. [6],
[1] and [8], these functions are usually defined indirectly as minimizers of a
certain energy integral. In contrast to this, we will give a specific, pointwise
definition of the Laplacian.

While this Laplacian can be defined in a very general setting, we need to
restrict ourselves to metric measure spaces, which are sufficiently locally homo-
geneous in order to establish some of the usual, basic properties, like e.g. sym-
metry of the Laplacian as a linear operator on functions satisfying a Neumann
or Dirichlet condition. We will also establish a version of Green’s formulas for
sets which has, in a suitable sense, codimension 1 boundary.

In the final section we will show that on a Riemannian manifold, the Lapla-
cian introduced in this paper, is a constant multiple of the usual Laplacian
associated to the Riemannian metric.

The main results are summarized in Theorem 33 and Theorem 41.
∗Supported by the Danish Research Agency
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Prerequisites

Let (X, d, µ) be a metric measure space, with µ a Borel measure on X. We will
use the following standard notation:

B(p, r) = {q ∈ X| d(p, q) < r}

is the open ball of radius r centered at p, and for a locally integrable function

fB(p,r) := −
∫

B(p,r)

f(q)µ(q) :=
1

µ(B(p, r))

∫
B(p,r)

f(q)µ(q)

is the mean value of f over B(p, r). A function f : X → R is Lipschitz if

|f(p)− f(q)| ≤ Ld(p, q) (1)

for some L ≥ 0 and all p, q ∈ X. We will use LIP f to denote the infimum
over all real numbers L such that (1) holds. LIP(X) will denote the space of all
Lipschitz functions on X.

For f ∈ LIP(X) we define, c.f. [5], the local Lipschitz constant of f at p ∈ X
as:

Lip f(p) := lim sup
q→p,q 6=p

|f(p)− f(q)|
d(p, q)

,

which is interpreted as 0 if p is an isolated point.

Poincaré Inequalities:
We will assume that an inequality of the following type holds for any Lipschitz
function f :

sup
q∈B(p,r)

|f(p)− f(q)| ≤ CP r{−
∫

B(p,τr)

(Lip f(q))sµ(q)} 1
s , (2)

where B(p, r) is an arbitrary ball of sufficiently small radius r ≤ rP and s, CP >
0 , τ ≥ 1 are constants.

Recall that a Borel measure µ on X is said to be doubling with doubling
constant Cd ≥ 1, if

µ
(
B(p, 2r)

)
≤ Cdµ

(
B(p, r)

)
(3)

for all p ∈ X and all r ≥ 0. µ is said to be locally doubling if (3) holds for balls
of radius bounded from above r ≤ rd.

An s′-Poincaré inequality, is an inequality of the form:

−
∫

B(p,r)

|f(q)− fB(p,r)|µ(q) ≤ C ′
P r{−

∫
B(p,r)

(Lip f(q))s′µ(q)} 1
s′ , (4)

for any Lipschitz function f , constants C ′
P , s′ > 0 and an arbitrary ball B(p, r).

If (4) only holds on balls with radius bounded from above, we call (4) a local
Poincaré inequality.
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In certain cases a local Poincaré inequality will guarantee (2) with τ = 1 for
some sufficiently large s, when µ is locally doubling. This is the case if every
ball is a so-called John domain, e.g. when X is a proper length space. See [4]
chapter 9.

If a Poincaré inequality holds globally, i.e. for any radius r > 0, and µ is
doubling, we get (2) with τ = 5 and some sufficiently large s without further
assumptions on the geometry of balls, see [4] Theorem 5.1.

Thus in both cases we have:

sup
q∈B(p,r)

|f(p)− f(q)| ≤ CP r{−
∫

B(p,5r)

(Lip f(q))sµ(q)} 1
s , (5)

for r sufficiently small, since when µ is (locally) doubling,

{−
∫

B(p,r)

(Lip f(q))sµ(q)} 1
s ≤ C{−

∫
B(p,5r)

(Lip f(q))sµ(q)} 1
s ,

where C > 0 depends on the doubling constant only.

Definition of the Laplacian:
We are now ready to define the object, that we will be studying.

Definition 6. Let (X, d, µ) be a proper metric measure space, with µ a Radon
measure on X s.t. µ(B(p, r)) > 0 for every ball B(p, r) of radius r > 0. For a
function f : X → R and p ∈ X define

∆µf(p) := lim sup
r→0,r>0

{
2
r2
−
∫

B(p,r)

(
f(q)− f(p)

)
µ(q)

}
∈ R∗ (7)

and

∆µf(p) := lim inf
r→0,r>0

{
2
r2
−
∫

B(p,r)

(
f(q)− f(p)

)
µ(q)

}
∈ R∗, (8)

where R∗ := R ∪ {−∞, +∞} denotes the extended real line.
If ∆µf(p) = ∆µf(p) ∈ R∗, we denote this common limit by ∆µf(p), and

define it to be the µ-Laplacian of f at p.

Thus if the Laplacian of f exists, and is finite, at p ∈ X, we can write

fB(p,r) = f(p) +
1
2

∆µf(p)r2 + εp(r)r2, (9)

where εp(r) is some function such that εp(r) → 0 for r → 0.
The requirement that µ has support everywhere, µ(B(p, r)) > 0 for r > 0,

is just a convenience to avoid discussing mean values over sets of measure zero.
The definition of the Laplacian involves both the metric and the measure,

and unless there is some kind of compatibility between these objects, one cannot
expect the Laplacian to have nice properties similar to those of e.g. the Laplacian
on a Riemannian manifold. In general, if the Laplacian with respect to µ behaves
nicely, this might not be the case for the Laplacian with respect to fµ, even
when f is a Lipschitz function.
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The compatibility condition between the measure and the metric, that we
shall be using here, is the following:

Definition 10. A locally doubling measure µ is said to be compatible if there
are constants rP , rh > 0 and Ch ≥ 0, s.t.

1. Inequality (5) is satisfied for sufficiently small radii r ≤ rP .

2. There is a set E ⊂ X of measure zero, µ(E) = 0, s.t. for p ∈ H := X \ E
we have:

lim
r→0

1
r
−
∫

B(p,r)

|µ((B(p, r))
µ(B(q, r))

− 1|µ(q) = 0, (11)

3. And finally
1
r
−
∫

B(p,r)

|µ((B(p, r))
µ(B(q, r))

− 1|µ(q) ≤ Ch (12)

for d(p, E) ≥ 2r and r ≤ rh. Here we set d(p, E) := ∞ if E = ∅.

Example 13.

• On a Riemannian manifold with boundary having Ricci curvature bounded
from below the standard volume measure (i.e. n-dimensional Hausdorff
measure) is compatible with exceptional set E = ∂M . This follows since
on a Riemannian manifold (without boundary) of dimension n, we have
µ
(
B(p, r)

)
= cnrn +O(rn+2) for r → 0, with a specific bound on the error

in terms of curvature. See (some of the ) details below. Also M is locally
doubling and satisfies a local Poincaré inequality, c.f. [4] chapter 10.

• On a 1-dimensional simplicial complex, i.e. a weighted graph with edges,
the 1-dimensional Hausdorff measure H1 is compatible, if the degree of
the vertices (0-simplex) is bounded from above; (5) is easily verified, also
H1 is doubling. The exceptional set is seen to consist of the vertices (0-
simplices) of degree different from 2.

• Clearly any homogeneous measure, µ(B(p, r)) = µ(B(q, r)) ,∀p, q ∈ X, is
compatible with exceptional set E = ∅, if µ is doubling and satisfies (5).

2 The Laplacian as a symmetric operator

In this section we will study the situation, where the Laplacian acts as a sym-
metric operator on a class of functions.

Notation 14. To shorten proofs, we will sometimes use the notation:

[f, g]+ :=
2
r2

∫
X

{−
∫

B(p.r)

f(p)
(
g(q)− g(p)

)
µ(q)}µ(p),
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and [f, g]− for the same term, with the order of integration ”reversed”

[f, g]− :=
2
r2
|
∫

X

{−
∫

B(q.r)

f(p)
(
g(q)− g(p)

)
µ(p)}µ(q),

Lemma 15. Let µ be compatible, let f, g be Lipschitzs functions and assume
that the support of f Lip g, supp(f Lip g), is compact. If either

1. Lip g(p) ≤ Cd(p, E), for some C ≥ 0. Or

2. f(p) = 0 for p ∈ E,

then ∫
X

1
r2

{
−
∫

B(p,r)

f(p)
(
g(q)− g(p)

)
µ(q)

}
µ(p) =

1
2

[f, g]+

is convergent as r → 0 iff∫
X

1
r2

{
−
∫

B(q,r)

f(p)
(
g(q)− g(p)

)
µ(p)

}
µ(q) =

1
2

[f, g]−

is convergent, in which case the limits equal.

Proof.

|1
2

[f, g]− −
1
2

[f, g]+| =

1
r2
|
∫

X

∫
X

µ(B(p, r))
µ(B(q, r))

δr(p, q)
µ(B(p, r))

f(p)
(
g(q)− g(p)

)
µ(p)µ(q)

−
∫

X

∫
X

δr(p, q)
µ(B(p, r))

f(p)
(
g(q)− g(p)

)
µ(q)µ(p)|

=
1
r2
|
∫

X

∫
X

(
µ(B(p, r))
µ(B(q, r))

− 1)
δr(p, q)

µ(B(p, r))
f(p)

(
g(q)− g(p)

)
µ(q)µ(p)|

≤
∫

X

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}{1

r
sup

q∈B(p,r)

|g(q)− g(p)|
}
µ(p)

≤
∫

X

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}
CP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

(16)

Fubini is used to interchange the order of integration in the first term of the
second line, while the Poincaré inequality is applied in the final step; we have
also used the notation:

δr(p, q) :=

{
1 if d(p, q) < r

0 otherwise
,

for r > 0.
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Since µ is locally doubling, we always have µ((B(p, r)) ≤ Cdµ(B(q, r)) when
d(p, q) ≤ r (and r is sufficiently small).Thus

1
r
−
∫

B(p,r)

|µ((B(p, r))
µ(B(q, r))

− 1|µ(q) ≤ Cd + 1
r

. (17)

If now d(p, E) ≤ 5r, then clearly by the triangle inequality d(q, E) ≤ 10r on
B(p, 5r), thus in case 1 holds:

{−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s ≤ {−
∫

B(p,5r)

Cd(q, E)sµ(q)} 1
s ≤ 10Cr.

Hence in this case the integrand

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}
CP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s (18)

is dominated by C1|f(p)| with support on a 5r-neighborhood of supp(f Lip g),
which is compact since X is proper.

In case d(p, E) > 5r we use

{−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s ≤ LIP g

while (for r sufficiently small) by (12)

1
r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q) ≤ Ch.

Thus the integrand (18) is dominated by C2|f(p)|, with support on a 5r-neighbor-
hood of supp(f Lip g).

Hence, in any case, for sufficiently small r, under the condition 1 the inte-
grand is bounded by the compactly supported L1-function C3|f(p)| for some
C3 > 0. Then since the integrand is converging pointwise to 0 a.e., we can
use dominated convergence to conclude that the integral vanishes in the limit
r → 0.

If instead 2 holds, we use |f(p)| ≤ LIP fd(p, E) and (17) in a similar fashion
to get, that the integrand is bounded by a constant in a 2r-neighborhood of E ,
and by C3|f(p| outside this neighborhood, to get the same conclusion.

Notice that since [1, f ]+ = −[1, f ]−, we have∫
X

∆µf µ =
1
2

lim
r→0

([1, f ]+ − [1, f ]−) = lim
r→0

[1, f ]+ (19)

when we have the dominated convergence condition, c.f. Definition 28. Thus
using Lemma 15: ∫

X

∆µf µ = 0.
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Lemma 20. Suppose that f is Lipschitz, |∆µf(p)| < ∞ and |∆µf(p)| < ∞,
then

lim inf
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q) = lim inf

r→0

1
r2
−
∫

B(p,r)

(
f(q)− fB(p,r)

)2
µ(q)

and

lim sup
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q)

= lim sup
r→0

1
r2
−
∫

B(p,r)

(
f(q)− fB(p,r)

)2
µ(q) ≤ Lip f(p)2,

Proof. We have

(f(p)− f(q))2 =
(
f(p)− fB(p,r) − (f(q)− fB(p,r))

)2

=
(
f(p)− fB(p,r)

)2 − 2
(
f(p)− fB(p,r)

)(
f(q)− fB(p,r)

)
+

(
f(q)− fB(p,r))2

thus

1
r2
−
∫

B(p,r)

(
f(p)− f(q)

)2
µ(q) =

1
r2

(
f(p)− fB(p,r)

)2 +
1
r2
−
∫

B(p,r)

(
f(q)− fB(p,r))2µ(q).

Clearly, under the hypothesis above, limr→0
1
r2

(
f(p)− fB(p,r)

)2 = 0, so we get

lim inf
r→0

1
r2
−
∫

B(p,r)

(
f(p)− f(q)

)2 = lim inf
r→0

1
r2
−
∫

B(p,r)

(
f(q)− fB(p,r))2µ(q),

and similarly for lim sup. By definition of Lip f(p), for any ε > 0:

(f(q)− f(p))2 ≤ (Lip f(p) + ε)2r2,

when d(q, p) ≤ r and r is sufficiently small. So clearly

lim sup
r→0

1
r2
−
∫

B(p,r)

(f(q)− f(p))2µ(q) ≤ (Lip f(p))2. (21)

The estimate (21) can be a quite rough. For a smooth function f on a
Riemannian n-manifold Mn, one can show that:

lim
r→0

1
r2
−
∫

B(p,r)

(f(q)− f(p))2µ(q) =
n

n + 2
−
∫

Sn−1

(
dfp(v)

)2
dv

=
1

n + 2
‖ grad f(p)‖2, (22)

where Sn−1 is the unit sphere in TpM . Compare to Proposition 52 below.
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Lemma 23. Assume that µ is compatible, and f is a compactly supported Lip-
schitz function with ∆µf ∈ L2(X, µ) satifying either condition 1 or 2 of Lemma
15 and furthermore

SC 1
r2 −

∫
B(p,r)

(
f(p)− f(q)

)2
µ(q) is convergent as r → 0 for almost all p ∈ X.

DC r−2|f(p) − fB(p,r)| ≤ ρ(p) for some ρ ∈ L2(X, µ) and r ≤ rc sufficiently
small.

Then ∫
X

{
lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q)

}
µ(p) =

〈
−∆µf, f

〉
(24)

Proof. First of all, since limr→0
1
r2 −

∫
B(p,r)

(
f(q) − f(p)

)2
µ(q) ≤ C Lip f(p)2 ≤

C LIP f on the support of f , we get by dominated convergence:∫
X

lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)−f(p)

)2
µ(q)µ(p) = lim

r→0

∫
X

1
r2
−
∫

B(p,r)

(
f(q)−f(p)

)2
µ(q)µ(p).

Then since (f(p) − f(q))2 = f(p)(f(p) − f(q)) + f(q)(f(p) − f(q)), we can
continue the equation as:

= lim
r→0

∫
X

1
r2
−
∫

B(p,r)

f(p)
(
f(p)− f(q)

)
µ(q)µ(p)

+ lim
r→0

∫
X

1
r2
−
∫

B(p,r)

f(q)
(
f(q)− f(p)

)
µ(q)µ(p). (25)

We then use Lemma 15 to interchange the order of integration in the second
term, which is convergent since the first term is:

− lim
r→0

1
2

[f, f ]− = − lim
r→0

1
2

[f, f ]+ = −1
2
〈
f, ∆µf

〉
,

where the limit is moved back inside the first integrals using dominated conver-
gence, condition DC.

Lemma 26. If µ is a doubling measure, then there is a constant C > 0 de-
pending only on the doubling constant for µ, such that for a Lipschitz function
f with |∆µf(p)| < ∞ and |∆µf(p)| < ∞ almost everywhere, we have

lim sup
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q) ≥ 1

C

(
Lip f(p)

)2
, (27)

for almost all p ∈ X.
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Proof. By Proposition 4.3.3 in [5], we have for a Lipschitz function f :

lim sup
r→0

1
r
−
∫

B(p,r)

|f(q)− fB(p, r)|µ(q) ≥ 1
C

Lip f(p),

for almost all p ∈ X and a constant C depending only on the doubling constant
for µ. But then by Lemma 20

lim sup
r→0

1
r2
−
∫

B(p,r)

(
f(q)−f(p)

)2
µ(q) = lim sup

r→0

1
r2
−
∫

B(p,r)

(
f(q)−fB(p,r)

)2
µ(q) ≥

lim sup
r→0

(
1
r
−
∫

B(p,r)

|f(q)− fB(p,r)|µ(q)
)2

≥ 1
C2

(
Lip f(p)

)2

In view of the previous lemmas we combine properties to define a class of
admissible functions on which the Laplacian acts nicely.

Definition 28. Define A to be the Lipschitz functions f ∈ LIP(X), such that

CS supp(f) is compact.

L2 ∆µf is well defined a.e., and gives a function in L2(X, µ).

DC Dominated Convergence: There is an rc(f) > 0 and a ρ(f) ∈ L2(X, µ),
depending on f , such that r−2|f(p)− fB(p,r)| ≤ ρ(p) for r ≤ rc.

SC 1
r2 −

∫
B(p,r)

(
f(p)− f(q)

)2
µ(q) is convergent as r → 0 for almost all p ∈ X.

Now define the following two subclasses of A:

• Let AN be the functions in A satisfying also the condition that f has crit-
ical points on the exceptional set E in the sense of Lemma 15: Lip f(p) ≤
Cfd(p, E), for some Cf ≥ 0 depending on f .

• Let AD be the functions in A satisfying the condition f(p) = 0 for p ∈ E .

A simple calculation reveals that condition SC above is equivalent to ∆µ(f2)
being well defined a.e., given that ∆µf is well defined almost everywhere.

As defined A need not be a vector space, however in interesting cases A
should contain a large, possibly dense, vector space as a subset. It is not hard
to see, that if f, g and f + g are all in A, then ∆µ(fg) is well defined almost
everywhere, and defines a function in L1(X, µ). The functions in A should be
thought of as a ”very nice” class of functions, and in general one would be
interested in a suitably defined completion of these functions.

The condition defining AN , having critical points on the exceptional set,
should be thought of as a rough generalization of a Neumann condition, while
AD is simply the functions in A satisfying also a Dirichlet type condition.
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Proposition 29. If µ is a compatible measure, then ∆µ is a symmetric operator
on AN as well as on AD:〈

∆µf, g
〉

=
〈
f, ∆µg

〉
, f, g ∈ A∗, (30)

where A∗ is either AN or AD.

Proof. Given f, g ∈ A we have〈
g, ∆µf

〉
−

〈
f, ∆µg

〉
=∫

X

g(p) lim
r→0

2
r2
−
∫

B(p,r)

(f(q)− f(p)µ(q)µ(p)

−
∫

X

f(p) lim
r→0

2
r2
−
∫

B(p,r)

(g(q)− g(p)µ(q)µ(p) =

lim
r→0

∫
X

2
r2
−
∫

B(p,r)

(
g(p)f(q)− g(p)f(p)

)
µ(q)µ(p)

− lim
r→0

∫
X

2
r2
−
∫

B(p,r)

(
f(p)g(q)− f(p)g(p)

)
µ(q)µ(p) =, (31)

where we have used dominated convergence to move the limits. Using Lemma 15
to interchange the order of integration in the first term, and then interchanging
p and q, we can continue (31) as:

= lim
r→0

∫
X

2
r2
−
∫

B(p,r)

(
f(p)g(p)− f(q)g(q)

)
µ(q)µ(p). (32)

The product fg is Lipschitz (since supp(fg) is compact) with local Lipschitz
constant Lip fg ≤ |f |Lip g + |g|Lip f , and thus with critical points on E . Using
Notation 14, we can write the term (32) as:

−1
2

lim
r→0

([1, fg]+ − [1, fg]−),

hence the term vanishes by Lemma 15.

We can now combine these results into the following theorem:

Theorem 33. Let (X, d, µ) be a proper, metric measure space, with µ a com-
patible measure. Then −∆µ is a nonnegative, symmetric operator on any vector
space contained in either AN or AD. Furthermore there is a constant C ≥ 1
depending only on the doubling constant for µ s.t. for f ∈ AN ∪ AD

1
C
|Lip f‖22 ≤

〈
−∆µf, f

〉
≤ ‖Lip f‖22 (34)

If it is the case, as it will be in many interesting examples, that the set
of admissible functions A is dense in L2(X, µ), then we can consider the self-
adjoint Friedrichs extension of the Laplacian acting on functions with a Dirichlet
condition, and thus as usual the spectral theory of ∆µ as an unbounded operator
on L2(X, µ). We will not go further into this in the present paper though.
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It is an interesting question, when (34) can be replaced by〈
−∆µf, f

〉
= C ′‖Lip f‖22. (35)

This is the case e.g. on a Riemannian manifold, compare to Proposition 52
below. It remains to be investigated, when this property is preserved under
measured Gromov-Hausdorff convergence.

3 Green’s Formulas

It is possible in a quite general setting also to establish some weak versions
of the classical Green’s formulas, when the exceptional set is in some sense of
codimension 1. We will use assumptions that make the proofs fairly easy. These
could most likely be weakened considerably.

Definition 36. We will say that the exceptional set E has essential codimension
1, if there is a measure ν with support on E , a constant C > 0 and for each
p ∈ E a curve γp : [0, 1] → X paramatrized by arclength with γp(0) = p, s.t. for
every compactly supported continuous function f ≥ 0:∫

B(E,r)

f(p)µ(p) ≤ C

∫
E

∫ r

0

f(γp(t))dt ν(p), (37)

where B(E , r) is a r-neighborhood of E and r ≤ r0(f) is sufficiently small.

Lemma 38. Let f be continuous, g Lipschitz and suppose that f Lip g has
compact support. Furthermore, assume that E has essential codimension 1 and
that µ is a compatible measure. Then

lim sup
r→0

1
r2

∣∣ ∫
X

{
−
∫

B(q,r)

f(p)
(
g(q)− g(p)

)
µ(p)

}
µ(q)

−
∫

X

{
−
∫

B(p,r)

f(p)
(
g(q)− g(p)

)
µ(q)

}
µ(p)

∣∣
≤ C ′

∫
E
|f(p)|Lip g(p) ν(p),

for some constant C ′ ≥ 0.
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Proof. We continue as in (16) until we arrive at the the last line. Then

1
2r2

|[f, g]− − [f, g]+|

≤
∫

X

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}
CP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

=
∫

B(E,2r)

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}
CP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

+
∫

X\B(E,2r)

|f(p)|
{1

r
−
∫

B(p,r)

|µ(B(p, r))
µ(B(q, r))

− 1|µ(q)
}
CP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

≤ C

∫
E

∫ 2r

0

|f(γq(t))|C1

r
CP

{
−
∫

B(γp(t),5r)

Lip g(q)sµ(q)
} 1

s dt ν(p)

+
∫

X\B(E,2r)

|f(p)|ChCP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p),

assuming that r is sufficiently small so that (12) is satisfied. Since µ is doubling
we have {

−
∫

B(γp(t),5r)

Lip g(q)sµ(q)
} 1

s ≤ C2

{
−
∫

B(p,7r)

Lip g(q)sµ(q)
} 1

s ,

for some C2 depending only on the doubling constant. So we can continue the
calculation as:

≤ CC1C2CP

∫
E

{
−
∫

B(p,7r)

Lip g(q)sµ(q)
} 1

s
1
r

∫ 2r

0

|f(γp(t))|dt ν(p)

+
∫

X\B(E,2r)

|f(p)|ChCP

{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

≤ C3

∫
E

{
−
∫

B(p,7r)

Lip g(q)sµ(q)
} 1

s
1
r

∫ 2r

0

|f(γp(t))|dt ν(p)

+ C4

∫
X

|f(p)|
{
−
∫

B(p,5r)

Lip g(q)sµ(q)
} 1

s µ(p)

By Lebesgue’s differentiation theorem (and dominated convergence) the limit
of the first term is:

C3

∫
E

{
−
∫

B(p,7r)

Lip g(q)sµ(q)
} 1

s
1
r

∫ 2r

0

|f(γp(t))|dt ν(p) →

2C3

∫
E
|f(p)|Lip g(p)ν(p), (39)

while the integrand of the second term is dominated by

|f(p)|LIP g,

12



with support on a 5r-neighborhood of supp(f Lip g), which is compact. Hence,
since the integrand is converging pointwise to 0, we get by dominated conver-
gence, that the limit of the second term is 0.

As in (19) we have∫
X

∆µf µ =
1
2

lim
r→0

([1, f ]+ − [1, f ]−),

under the dominated convergence condition in Definition 28. Thus under the
hypotheses of the Lemma above:

|
∫

X

∆µf µ| ≤ C

2

∫
E

Lip f ν. (40)

This also follows from Green’s formulas:

Theorem 41 (Green’s Formulas). Suppose that µ is a compatible measure, and
that E has essential codimension 1. Then there are constants C1, C2 ≥ 0 s.t. for
f, g Lipschitz functions satisfying conditions CS, L2 and DC of Definition 28.

|
〈
∆µf, g

〉
−

〈
f, ∆µg

〉
| ≤ C1

∫
E
(|f |Lip g + |g|Lip f) ν (42)∣∣ C2‖Lip f‖22 +

〈
f, ∆µf

〉∣∣ ≤ 1
2
C1

∫
E
|f |Lip f ν (43)

where we for (43) also require condition SC of Definition 28. Furthermore if
∆µ(fg) is defined a.e., we have:

|
〈
f, ∆µg

〉
| ≤

〈
Lip g, Lip f

〉
+

1
2
C1

∫
E
|f |Lip g ν, (44)

Proof. We use notation as above, 14. Calculating as in Proposition 29 we get:

|
〈
∆µf, g

〉
−

〈
f, ∆µg

〉
|

= lim
r→0

∣∣[g, f ]+ − [f, g]+
∣∣ = lim

r→0

∣∣[g, f ]+ − [g, f ]− − ([f, g]+ − [g, f ]−)
∣∣

≤ lim sup
r→0

∣∣[g, f ]+ − [g, f ]−
∣∣ + lim sup

r→0

∣∣[f, g]+ − [g, f ]−
∣∣

= lim sup
r→0

∣∣[g, f ]+ − [g, f ]−
∣∣ + lim sup

r→0

2
r2

∣∣ ∫
X

−
∫

B(p.r)

(
g(q)f(q)− g(p)f(p)

)
µ(q)µ(p)

∣∣
= lim sup

r→0

∣∣[g, f ]+ − [g, f ]−
∣∣ +

1
2

lim sup
r→0

∣∣[1, fg]+ − [1, fg]−
∣∣

≤ C

∫
E
|g|Lip f ν +

1
2
C

∫
E
(|g|Lip f + |f |Lip g) ν,

which proves (42). Now for (43). Following the proof of Lemma 23, we get (25)
rewritten as:∫

X

{
lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q)

}
µ(p) +

1
2
〈
∆µf, f

〉
= −1

2
lim
r→0

[f, g]−

13



and thus∫
X

{
lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q)

}
µ(p) +

1
2

(
〈
∆µf, f

〉
+ lim

r→0
[f, f ]+

=
∫

X

{
lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)2
µ(q)

}
µ(p) +

〈
∆µf, f

〉
=

1
2

lim
r→0

([f, f ]+ − [f, f ]−)

and then the result follows by Lemma 38 and Lemma 26.
Finally, we deal with (44). By Hölder’s inequality:

lim sup
r→0

1
r2
−
∫

B(p,r)

(f(q)− f(p))(g(q)− g(p))µ(q) ≤

lim sup
r→0

{ 1
r2
−
∫

B(p,r)

(f(q)− f(p))2µ(q)} 1
2 lim sup

r→0
{ 1
r2
−
∫

B(p,r)

(g(q)− g(p))2µ(q)} 1
2

≤ Lip f Lip g, (45)

c.f. Lemma 23. Also

(f(q)−f(p))(g(q)−g(p)) =
(
f(q)g(q)−f(p)g(p)

)
−f(p)

(
g(q)−g(p)

)
−g(p)

(
f(q)−f(p)

)
thus 1

r2 −
∫

B(p,r)
(f(q) − f(p))(g(q) − g(p))µ(q) is convergent as r → 0 iff ∆µ(fg)

is well defined at p. Then since

(f(q)− f(p))(g(q)− g(p)) = f(q)(g(q)− g(p))− f(p)(g(q)− g(p))

we get by dominated convergence:∫
X

lim
r→0

1
r2
−
∫

B(p,r)

(f(q)− f(p))(g(q)− g(p))µ(q)µ(p) =

− lim
r→0

1
2

[f, g]− −
1
2
〈
f, ∆µg

〉
= lim

r→0

1
2

([f, g]+ − [f, g]−)−
〈
f, ∆µg

〉
,

thus (44) follows by Lemma 38 and (45).

4 Comparison with Riemannian manifolds

We will end the analysis of the ”mean value” Laplacian in this paper, by showing,
that it is in fact proportional to the usual Laplacian in the setting of Riemannian
manifolds. Refer to [7] or [2] for background on Riemannian geometry.

Let (M, g) be a n-dimensional Riemannian manifold and let f : M → R be
a smooth function. The Riemannian Laplacian at p ∈ M of f is usually defined
by

∆Rf(p) := trace(Hf
p ),

14



where Hf
p is the Hessian of f at p, and the trace is taken with respect to the

Riemannian metric. Another way of getting the same is:

∆Rf(p) =
n

ωn−1

∫
Sn−1

Hf
p (v, v)dv, (46)

where ωn−1 is the volume of the unit n− 1-sphere in TpM .
On an n-dimensional Riemannian manifold the Riemannian volume measure

conincides with n-dimensional Hausdorff measure, which we will denote by Hn,
while n−1-dimensional Hausdorff measure on codimension 1 sets, will be written
Hn−1.

Let S(p, r) = ∂B(p, r) = {q ∈ M | d(p, q) = r} denote the sphere of radius r
centered at p.

Normal and polar coordinates: We get normal coordinates (x1, x2, . . . , xn)
around p ∈ M , by identifying (TpM, gp) with Rn via a linear isometry and using
the exponential map, expp : U → M , on a neighbourhood U of 0p ∈ TpM . In
normal coordinates we have for the matrix of the (pulled back) metric:

gij = δij + O(r2), (47)

where r =
√

gp(x, x) = d(p, expp(x)). As usual we can introduce polar coor-
dinates on TpM by writing w ∈ TpM as w = rv, with v ∈ Sn−1 ⊂ TpM . In
the usual frame on TpM associated to polar coordinates ∂r, ∂θ1 , . . . , ∂θn−1 , with
gp(∂θα

, ∂θβ
) = δαβr2, the pulled back metric is:

g = dr2 + gαβdθαdθβ , α, β ∈ {1, . . . , n− 1},

where dr, dθα, α = 1, 2, . . . , n − 1 is the dual frame. From (47) we get, by the
transformation between polar and cartesian coordinates:

gαβ = δαβr2 + O(r4)

Hence the the volume density in polar coordinates is

λ(r, v) =
√
|{gαβ}| =

√
r2(n−1) + O(r2n) = rn−1

√
1 + O(r2) = rn−1+O(rn+1),

and therefore

Hn−1(S(p, r)) =
∫

Sn−1
λ(r, v)dv = ωn−1r

n−1 + O(rn+1)

Lemma 48. On the Riemannian manifold Mn pick µ to be Riemannian volume
measure, then for a smooth function f :

∆Rf(p) = lim
r→0

2n

r2
−
∫

S(p,r)

(
f(q)− f(p)

)
Hn−1(q) (49)
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Proof. Given the smooth function f , we can expand it in polar coordinates
around p as

f(r, v) = f(p) + rdfp(v) +
1
2
r2Hf

p (v, v) + o(r2).

Define Sr := Hn−1(S(p, r)). Then:

lim
r→0

2n

r2
−
∫

S(p,r)

(
f(q)− f(p)

)
Hn−1(q) =

lim
r→0

2n

r2

( 1
Sr

∫
Sn−1

f(r, v)λ(r, v)dv − f(p)
)

=

lim
r→0

( 2n

rSr

∫
Sn−1

dfp(v)λ(r, v)dv +
n

Sr

∫
Sn−1

Hf
p (v, v)λ(r, v)dv

)
+ 0

= lim
r→0

( 2n

rSr

∫
Sn−1

dfp(v)(rn−1+O(rn+1))dv+
n

Sr

∫
Sn−1

Hf
p (v, v)(rn−1+O(rn+1))dv

= lim
r→0

(2nrn−1

rSr

∫
Sn−1

dfp(v)dv+
O(rn+1)

rSr
+

nrn−1

Sr

∫
Sn−1

Hf
p (v, v)dv+

O(rn+1)
Sr

)
=

n

ωn−1

∫
Sn−1

Hf
p (v, v)dv = ∆Rf(p)

since
∫

Sn−1 dfp(v)dv = 0.

Lemma 50. For a smooth function f : Mn → R we have:

lim
r→0

1
r2
−
∫

S(p,r)

(
f(q)− f(p)

)
Hn−1(q) =

n + 2
n

lim
r→0

1
r2
−
∫

B(p,r)

(
f(q)− f(p)

)
Hn(q)

(51)

Proof. Given p ∈ M define Sr := Hn−1
(
S(p, r)

)
and Br := Hn

(
B(p, r)

)
. Then

Sr and Br are smooth for r > 0 close to 0 and (see above) d
dr Br = Sr =

ωn−1r
n−1 + O(n + 1), thus Br = 1

nωn−1r
n + O(rn+2).

We can then write

−
∫

B(p,r)

(f(p)− f(q)Hn(q) =
1

Br

∫ r

0

{
∫

S(p,r)

(f(p)− f(q)Hn−1(q)}dr.

From the previous lemma it follows that
∫

S(p,r)
(f(p)− f(q)Hn−1(q) = arn+1 +

o(rn+1). Thus we see, that the comparison of the limits (51) will follow if

f

g
= br2 + o(r2) =⇒ F

G
=

n

n + 2
br2 + o(r2),

when g = rn−1 + o(rn−1) andf = brn+1 + o(rn+1) and F,G are antiderivatives
of f, g respectively. However this is an easy calculation; details are left to the
reader.
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From these two lemmas it then follows:

Proposition 52. Let f : Mn → R be a smooth function, then

∆µf(p) =
1

n + 2
∆Rf(p),

when we pick µ to be Riemannian volume measure.

Concluding Remarks

Proposition 52 suggests that for a sufficiently nice metric space, the natural
Laplacian associated to the metric should be:

(d + 2)∆µ, (53)

where µ is taken to be (local) Hausdorff measure and d is the (local) Hausdorff
dimension. We claim, that in fact this is the pointwise form of the Laplacian
introduced in [3] on Gromov-Hausdorff limits of Riemannain manifolds with
Ricci-curvature bounded from below.

We think that the utility of the simple direct definition of the Laplacian given
here, has been demonstrated. Using the definition the calculus of the Lapla-
cian is reduced to simple algebraic manipulations, always keeping convergence
questions in mind, of course.

Finally, having a Laplacian on a metric measure space opens up for defining
various curvature concepts, via some of the many connections between these
entities in Riemannian geometry, c.f. [7]. The usefulness of such an approach
remains to be investigated further.

Acknowledgments: The author would like to thank Stephen Buckley for
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