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About This Book
The primary objective of this manual is to help programmers provide software th
compatible with the family of PowerPC™ processors using AltiVec™ technology. 
book describes how the AltiVec technology relates to both the 64- and the 32-bit po
of the PowerPC architecture. 

To locate any published errata or updates for this document, refer to the web
http://www.motorola.com/PowerPC/.

AltiVec Technology Programming Environments Manual (Altivec PEM) is used as a
reference guide for programmers. The AltiVec PEM provides a description for 
instruction that includes the instruction format and figures to help in understanding ho
instruction works.

Because it is important to distinguish between the levels of the PowerPC architec
order to ensure compatibility across multiple platforms, those distinctions are s
clearly throughout this book. Most the discussions on the AltiVec technology are a
UISA level. The level of the architecture to which text refers is indicated in the o
margin, using the conventions shown in “Conventions,” on page xxii.

This document stays consistent with the PowerPC architecture in referring to three 
or programming environments, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the leve
the architecture to which user-level software should conform. The UISA define
base user-level instruction set, user-level registers, data types, memory conven
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smal
component of the PowerPC architecture, defines additional user-level function
that falls outside typical user-level software requirements. The VEA describes
memory model for an environment in which multiple processors or other device
access external memory, and defines aspects of the cache model and cache 
instructions from a user-level perspective. The resources defined by the VEA 
particularly useful for optimizing memory accesses and for managing resourc
an environment in which other processors and other devices can access exte
memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, 
may not necessarily adhere to the OEA.
MOTOROLA About This Book xvii
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• PowerPC operating environment architecture (OEA)—The OEA defines superv

level resources typically required by an operating system. The OEA defines th
PowerPC memory management model, supervisor-level registers, and the exc
model. 

Implementations that conform to the PowerPC OEA also conform to the Powe
UISA and VEA.

For ease in reference, this book and the processor user’s manuals have arran
architecture information into topics that build upon one another, beginning wi
description and complete summary of registers and instructions (for all three environm
and progressing to more specialized topics such as the cache, exception, and m
management models. As such, chapters may include information from multiple levels
architecture but when discussing OEA and VEA, this will be noted in the text. 

It is beyond the scope of this manual to describe individual AltiVec techno
implementations on PowerPC processors. It must be kept in mind that each Po
processor is unique in its implementation of the AltiVec technology.

The information in this book is subject to change without notice, as described i
disclaimers on the title page of this book. As with any technical documentation, it 
readers’ responsibility to be sure they are using the most recent version o
documentation. For more information, contact your sales representative or visit ou
site at: http://www.mot.com/SPS/PowerPC/. 

Audience
This manual is intended for system software and hardware developers and appl
programmers who want to develop products using the AltiVec technology extension 
PowerPC processors in general. It is assumed that the reader understands o
systems, microprocessor system design, and the basic principles of RISC processin

This book describes how the AltiVec technology interacts with both the 64- and the 
portions of the PowerPC architecture

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding o
features and functions of the AltiVec technology. This chapter provides an over
of how the AltiVec technology defines the register set, operand conventions, 
addressing modes, instruction set, cache model, and exception model.

• Chapter 2, “AltiVec Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming 
environments. The chapter also discusses the functionality of the AltiVec techno
registers and how they interact with the other PowerPC registers. 
xviii AltiVec Technology Programming Environments Manual MOTOROLA
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• Chapter 3, “Operand Conventions,” describes how the AltiVec technology inter
with the PowerPC conventions for storing data in memory, including informati
regarding alignment, single-precision floating-point conventions, and big- and 
endian byte ordering.

• Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an over
of the AltiVec technology addressing modes and a brief description of the AltiV
technology instructions organized by function.

• Chapter 5, “Cache, Exceptions, and Memory Management,” provides a discus
of the cache and memory model defined by the VEA and aspects of the cache 
that are defined by the OEA. It also describes the exception model defined in
UISA.

• Chapter 6, “AltiVec Instructions,” functions as a handbook for the AltiVec 
instruction set. Instructions are sorted by mnemonic. Each instruction descrip
includes the instruction formats and figures where it helps in understanding wh
instruction does.

• Appendix A, “AltiVec Instruction Set Listings,” lists all the AltiVec instructions. 
Instructions are grouped according to mnemonic, opcode, and form.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in
manual as well as general information about the AltiVec technology and Pow
architecture. 

General Information
The following documentation provides useful information about the PowerPC archite
and computer architecture in general:

• The following books are available from the Morgan-Kaufmann Publishers, 340 
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (4
392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC 
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide
at http://www.austin.ibm.com/tech/ppc-chg.html. 

— PowerPC Microprocessor Common Hardware Reference Platform: A Syste
Architecture, by Apple Computer, Inc., International Business Machines, Inc
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple 
Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by 
John L. Hennessy and David A. Patterson
MOTOROLA About This Book xix
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• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing 
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.
(800) 637-0029 (Canada), (716) 871-6555 (International).

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books 
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 944
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is available from the sources listed on the back cover
manual; the document order numbers are included in parentheses for ease in order

• User’s manuals—These books provide details about individual PowerPC 
implementations and are intended to be used in conjunction with The Programming 
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual: MPC601UM/AD 
(Motorola order #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for 
PowerPC 603 Microprocessor: 
MPC603EUM/AD (Motorola order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #) 

• Programming environments manuals—These books provide information abou
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 
model. 

— PowerPC Microprocessor Family: The Programming Environments, Rev 1: 
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-B
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

• Implementation Variances Relative to Rev. 1 of The Programming Environmen
Manual is available via the world-wide web at http://www.motorola.com/PowerP

• Addenda/errata to user’s manuals—Because some processors have follow-on
an addendum is provided that describes the additional features and changes 
functionality of the follow-on part. These addenda are intended for use with th
corresponding user’s manuals. These include the following: 

— Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerP
603e Microprocessor Supplement and User’s Manual Errata: 
MPC603EUMAD/AD (Motorola order #)

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC 
604e™ Microprocessor Supplement and User’s Manual Errata: 
MPC604UMAD/AD (Motorola order #)
xx AltiVec Technology Programming Environments Manual MOTOROLA
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• Hardware specifications—Hardware specifications provide specific data regar
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well 
other design considerations for each PowerPC implementation. These include
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications: 
MPC601EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware 
Specifications: 
MPC603EEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware 
Specifications: 
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware 
Specifications: 
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware 
Specifications: 
MPC604E9VEC/D (Motorola order #)

• Technical Summaries—Each PowerPC implementation has a technical summ
that provides an overview of its features. This document is roughly the equivale
the overview (Chapter 1) of an implementation’s user’s manual. Technical 
summaries are available for the 601, 603, 603e, 604, and 604e as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: 
MPC620/D (Motorola order #)

— PowerPC 750 RISC Microprocessor Technical Summary: 
MPC750/D (Motorola order #)

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessor: 
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of 
60x bus interface, as implemented on the 601, 603, and 604 family of PowerP
microprocessors. This document is intended to help system and chipset deve
by providing a centralized reference source to identify the bus interface presen
the 60x family of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide: 
MPCPRG/D (Motorola order #) is a concise reference that includes the regist
summary, memory control model, exception vectors, and the PowerPC instruc
set.
MOTOROLA About This Book xxi
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• PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide: 
MPCPRGREF/D (Motorola order #) 
This foldout card provides an overview of the PowerPC registers, instructions
exceptions for 32-bit implementations.

• Application notes—These short documents contain useful information about 
specific design issues useful to programmers and engineers working with Pow
processors. 

• Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new proc
become available. For a current list of PowerPC documentation, refer to the world
web at http://www.motorola.com/PowerPC/.

Conventions
Throughout the documentation when a register or bit is “set” it means the register o
set to 1, and when a register is “cleared” it means the register or bit is set to 0.

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

fr A, fr B, fr C Instruction syntax used to identify a source FPR

fr D Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase 
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the mach
state register.

vA, vB, vC Instruction syntax used to identify a source VR

vD Instruction syntax used to identify a destination VR

x In certain contexts, such as a signal encoding, this indicates a d
care. 
xxii AltiVec Technology Programming Environments Manual MOTOROLA



s 
ion 
ng 

 
ion 
ng 

l is 
ion 
ng 

bits 
as 

n 6.1,

hat the
rds for
n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

This symbol identifies text that is relevant with respect to the 
PowerPC user instruction set architecture (UISA). This symbol i
used both for information that can be found in the UISA specificat
as well as for explanatory information related to that programmi
environment.

This symbol identifies text that is relevant with respect to the 
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specificat
as well as for explanatory information related to that programmi
environment.

This symbol identifies text that is relevant with respect to the 
PowerPC operating environment architecture (OEA). This symbo
used both for information that can be found in the OEA specificat
as well as for explanatory information related to that programmi
environment.

Indicates reserved bits or bit fields in a register. Although these 
may be written to as either ones or zeros, they are always read 
zeros. 

Additional conventions used with instruction encodings are described in Sectio
“Instruction Formats.”

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note t
meanings for some acronyms (such as SDR1 and XER) are historical, and the wo
which an acronym stands may not be intuitively obvious. 

Table i. Acronyms and Abbreviated Terms 

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BPU Branch processing unit

CR Condition register 

CTR Count register 

DAR Data address register 

U

V

O

0 0 0 0 
MOTOROLA About This Book xxiii



DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

EA Effective address

ECC Error checking and correction

FPR Floating-point register

FPSCR Floating-point status and control register 

FPU Floating-point unit

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache 

LIFO Last-in-first-out

LR Link register 

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSQ Least-significant quad-word

lsq Least-significant quad-word

MERSI Modified/exclusive/reserved/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSQ Most-significant quad-word

msq Most-significant quad-word

MSR Machine state register 

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PTEG Page table entry group

RISC Reduced instruction set computing

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
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Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture termin
conventions.

RTL Register transfer language

RWITM Read with intent to modify

SIMM Signed immediate value

SPR Special-purpose register

SR Segment register

SRR0 Machine status save/restore register 0 

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

VR Vector register

Table ii. Terminology Conventions 

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception 

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access 

Swizzling Double-word swap

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
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Table iii describes instruction field notation conventions used in this manual. 

Table iii. Instruction Field Conventions 

The Architecture Specification Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS (respectively)

VEC AltiVec technology

/, //, /// 0...0 (shaded)
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Chapter 1  
Overview
10
10

The AltiVec™ technology provides a software model that accelerates the performa
various software applications and runs on reduced instruction set computing (R
microprocessors. The AltiVec technology extends the instruction set architecture (IS
the PowerPC architecture. AltiVec technology is a short vector parallel architecture
AltiVec ISA is based on separate vector/SIMD-style (single instruction stream, mu
data streams) execution units that have high data parallelism. That is, the A
technology operations can perform on multiple data elements in a single instruction
term‘vector’ in this document refers to the spatial parallel processing of short, fixed-l
one-dimensional matrices performed by an execution unit. It should not be confuse
the temporal parallel (pipelined) processing of long, variable-length vectors perform
classical vector machines. High degrees of parallelism are achievable with simple in
instruction dispatch and low-instruction bandwidth. However, the ISA is designed so 
to impede additional parallelism through superscalar dispatch to multiple execution
or multithreaded execution unit pipelines. 

All instructions are designed to be easily pipelined with pipeline latencies no greate
scalar, double-precision, floating-point multiply-add. No instruction specifies an oper
that presents a frequency limitation beyond those already imposed by existing Po
instructions. There are no operating mode switches which preclude fine grain interle
of instructions with the existing floating-point and integer instructions. Parallelism with
integer and floating-point instructions is simplified by the fact that the vector unit n
generates an exception and has few shared resources or communication paths tha
it to be tightly synchronized with the other units. By using the SIMD paralleli
performance can be accelerated on PowerPC processors to a level that can allow co
real-time processing of one or more data streams. 

In this document, the term ‘implementation’ refers to a hardware device (typica
microprocessor) that complies with the PowerPC architecture. 
MOTOROLA Chapter 1. Overview 1-1
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The AltiVec technology can be used as an extension to various RISC microproce
however, in this book it is discussed within the context of the PowerPC archite
described as follows:

• Programming model

— Instruction set. The AltiVec instruction set specifies instructions that extend
PowerPC instruction set. These instructions are organized similar to Powe
instructions (such as vector load/store, vector integer, and vector floating-p
instructions). The specific instructions, and the forms used for encoding th
are provided in Appendix A, “Instruction Set.”

— Register set. The AltiVec programming model defines new AltiVec registers
additions to the PowerPC register set, and how existing PowerPC registers
affected by the AltiVec technology. The model also discusses memory 
conventions, including details regarding the byte ordering for quad words.

• Memory model. The AltiVec technology specifies additional cache manageme
instructions. That is, a program can execute AltiVec software instructions that 
indicate when a sequence of memory units (data stream/stream) are likely to 
accessed. 

• Exception model. To ensure efficiency, the AltiVec technology provides only a
AltiVec unavailable interrupt (VUI) exception, a DSI exception, and trace excep
(if implemented). There are no exceptions other than DSI exceptions on loads
stores. The AltiVec instructions can cause PowerPC exceptions. 

• Memory management model. The memory model for the AltiVec technology is
same as it is implemented for the PowerPC architecture. AltiVec memory acce
are always assumed to be aligned. If an operand is unaligned, additional AltiV
instructions are used to ensure that it is correctly placed in a vector register o
memory.

• Time-keeping model—The PowerPC time-keeping model is not impacted by t
AltiVec technology.

To locate any published errata or updates for this document, refer to the web
http://www.motorola.com/PowerPC.

This chapter provides an overview of the major characteristics of the AltiVec technolo
the order in which they are addressed in this book:

• Register set and programming model
• Instruction set and addressing modes
• Cache, exceptions, and memory management

1.1  Overview
The AltiVec technology’s SIMD-style extension provides an approach to acceleratin
processing of data streams. Using the AltiVec instructions can provide a significant sp
for communications, multimedia, and other performance-driven applications by using
1-2 AltiVec Technology Programming Environments Manual MOTOROLA
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level parallelism where available, matching scalar performance in serial sections of 
applications, keeping media processing within the AltiVec unit, and minimizing bandw
and latency memory access bottlenecks. 

AltiVec technology expands the PowerPC architecture through the addition of a 1
vector execution unit, which operates concurrently with the existing integer- and floa
point units. A new vector execution unit provides highly parallel operations, allowing
simultaneous execution of multiple operations in a single clock cycle.

The AltiVec technology can be thought of as a set of registers and execution units th
be added to the PowerPC architecture in a manner analogous to the addition of fl
point units. Floating-point units were added to provide support for high-precision scie
calculations and the AltiVec technology is added to the PowerPC architecture to acc
the next level of performance-driven, high-bandwidth communications and comp
applications. Figure 1-1 provides the high level structural overview for PowerPC wit
AltiVec technology.

.

Figure 1-1. High Level Structural Overview of PowerPC with AltiVec Technology

The AltiVec technology is purposefully simple such that there are no exceptions othe
DSI exceptions on loads and stores, no hardware unaligned access support, and no 
functions. The AltiVec technology is scaled down to only the necessary pieces in or
facilitate efficient cycle time, latency, and throughput on hardware implementations.

Branch Unit

Integer Unit Floating-Point Vector Unit

 Unit

GPRs FPRs VRs

INST INST INST

Memory

DATA DATAINST DATA
ADDR

DATAINST
ADDR
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The AltiVec technology defines the following:

• Fixed 128-bit wide vector length that can be subdivided into sixteen 8-bit byte
eight 16-bit half words, or four 32-bit words

• Vector register file (VRF) architecturally separate from floating-point registers 
(FPRs) and general-purpose registers (GPRs)

• Vector integer and floating-point arithmetic

• Four operands for most instructions (three source operands and one result)

• Saturation clamping, (that is, unsigned results are clamped to zero on underflo
to the maximum positive integer value (2n-1, for example, 255 for byte fields) on 
overflow. For signed results, saturation clamps results to the smallest represe
negative number (-2n-1, for example, -128 for byte fields) on underflow, and to th
largest representable positive number (2n-1-1, for example, +127 for byte fields) on
overflow) 

• No mode switching that would increase the overhead of using the instructions

• Operations selected based on utility to digital signal processing algorithms 
(including 3D).

• AltiVec instructions provide a vector compare and select mechanism to implem
conditional execution as the preferred way to control data flow in AltiVec progr

• Enhanced cache/memory interface

The AltiVec ISA supports the following:

• Voice over IP (VoIP). VoIP transmits voice as compressed digital data packets
the internet.

• Access Concentrators/DSLAMS. An access concentrator strips data traffic off
POTS lines and inserts it into the INet. Digital subscriber loop access multiple
(DSLAM) pulls data off at a switch and immediately routes it to the Internet. T
allows to concentrate ADSL digital traffic at the switch and off-load the networ

• Speech recognition. Speech processing allows voice recognition for use in 
applications like directory assistance and automatic dialing.

• Voice/Sound Processing (Audio decode and encode): G.711, G.721, G.723, 
G,729A, and AC-3. Voice processing is used to improve sound quality on lines

• Communications

— Multi-channel modems

— Software modem: V.34, 56K

— Data encryption: RSA

— Modem banks can use the AltiVec technology to replace signal processors
DSP farms.
1-4 AltiVec Technology Programming Environments Manual MOTOROLA
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• 2D and 3D graphics: QuickDraw, OpenGL, VRML, Games, Entertainment, Hig
precision CAD

• Virtual Reality

• High-fidelity audio: 3D audio, AC-3. Hi-Fi Audio uses AltiVec’s FPU.

• Image and video processing: JPEG, Filters

• Echo cancellation. The echo cancellation is used to eliminate echo build up on
landline calls.

• Array number processing

• Basestation Processing. Cellular basestation compresses digital voice data fo
transmission within the Internet.

• High bandwidth data communication

• Motion video decode and encode: MPEG-1, MPEG-2, MPEG-4, and H.234

• Real-time continuous speech I/O: HMM, Viterbi acceleration, Neural algorithm

• Video conferencing: H.261, H.263

• Machine Intelligence

1.1.1  The 64-Bit AltiVec Technology and the 32-Bit Subset
The AltiVec technology supports the following modes of PowerPC operations:

• 64-bit implementations/64-bit mode—The AltiVec technology defines interacti
with the PowerPC 64-bit registers.

• 64-bit implementations/32-bit mode—The AltiVec technology defines interacti
with the conventions for 32-bit implementations of PowerPC registers.

For further details on the 64-bit PowerPC architecture and the 32-bit subset refer to C
1, “Overview,” in the PowerPC Microprocessor Family: The Programming Environme
Manual.

This book describes both the 64-bit and 32-bit PowerPC architecture modes. Instru
are described from a 64-bit perspective and in most cases, details of the 32-bit sub
easily be determined from the 64-bit descriptions. Significant differences in the 3
subset are highlighted and described separately as they occur. 

1.1.2  The Levels of the AltiVec ISA
The AltiVec ISA follows the layering of PowerPC architecture. The PowerPC archite
has three levels defined as follows:

• PowerPC user instruction set architecture (UISA) —The UISA defines the lev
the architecture to which user-level (referred to as problem state in the archite
specification) software should conform. The UISA defines the base user-level

U

MOTOROLA Chapter 1. Overview 1-5
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instruction set, user-level registers, data types, floating-point memory convent
and exception model as seen by user programs, and the memory and progra
models. The icon shown in the margin identifies text that is relevant to the UIS

• PowerPC virtual environment architecture (VEA)—The VEA defines additiona
user-level functionality that falls outside typical user-level software requiremen
The VEA describes the memory model for an environment in which multiple 
devices can access memory, defines aspects of the cache model, defines cac
control instructions, and defines the time base facility from a user-level perspe
The icon shown in the margin identifies text that is relevant to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the UISA, 
may not necessarily adhere to the OEA. 

• PowerPC operating environment architecture (OEA)—The OEA defines superv
level (referred to as privileged state in the architecture specification) resource
typically required by an operating system. The OEA defines the PowerPC me
management model, supervisor-level registers, synchronization requirements
the exception model. The OEA also defines the time base feature from a supe
level perspective. The icon shown in the margin identifies text that is relevant t
OEA.

The AltiVec technology defines instructions at the UISA and VEA levels. The distinc
between the levels is noted in the text throughout the document 

1.1.3  Features Not Defined by the AltiVec ISA 
Because flexibility is an important design goal of the AltiVec technology, there are m
aspects of the microprocessor design, typically relating to the hardware implemen
that the AltiVec ISA does not define, for example, the number and the nature of exe
units. The AltiVec ISA is a vector/SIMD architecture, and as such makes it eas
implement pipelining instructions and parallel execution units to maximize instruc
throughput. However, the AltiVec ISA does not define the internal hardware deta
implementations. For example, one processor may use a simple implementation hav
vector execution units whereas another may provide a bigger, faster microprocessor
with several concurrently pipelined vector arithmetic logical units (ALUs) with sepa
load/store units (LSUs) and prefetch units. 

1.2  The AltiVec Architectural Model
This section provides overviews of aspects defined by the AltiVec ISA, following the s
order as the rest of this book. The topics are as follows:

• Registers and programming model
• Operand conventions
• Instruction set and addressing modes
• Cache model, exceptions, and memory management
1-6 AltiVec Technology Programming Environments Manual MOTOROLA
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1.2.1  AltiVec Registers and Programming Model
In the AltiVec technology, the ALU operates on from one to three source vectors
produces a single result/destination vector on each instruction. The ALU is a SIMD
arithmetic unit that performs the same operation on all the data elements that comprise
vector. This scheme allows efficient code scheduling in a highly parallel processor. 
and store instructions are the only instructions that transfer data between registe
memory. The vector unit and vector register file are shown in Figure 1-2. 

Figure 1-2. AltiVec Top-Level Diagram

The vector unit is a SIMD-style unit in which an instruction performs operations in pa
on the data elements that comprise each vector. Architecturally, the vector regist
(VRF) is separate from the GPRs and FPRs. The AltiVec programming model incorp
the 32 registers of the VRF, each register is 128 bits wide.

1.2.2  Operand Conventions
Operand conventions define how data is stored in vector registers and memory.

1.2.2.1  Byte Ordering
The default mapping for AltiVec ISA is PowerPC big-endian, but AltiVec ISA provides
option of operating in either big- or little-endian mode. The endian support of the Pow

Vector Register File (VRF)

128

VR0

VR1

VR2

VR30

VR31

128 128 128

Result/Destination Vector Register

Vector Unit
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architecture does not address any data element larger than a double word; the basic 
unit for vectors is a quad word. 

Big-endian byte ordering is shown in Figure 1-3.

Figure 1-3. Big-Endian Byte Ordering for a Vector Register

As shown in Figure 1-3, the elements in vector registers are numbered using big-
byte ordering. For example, the high-order (or most significant) byte element is num
0 and the low-order (or least significant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful 
confuse its meaning based on the bit numbering. That is, in Figure 1-3 the high-ord
word for word 0 (bits 0–15), would be half word 0 (bits 0–7), and the low-order half w
for word 0 would be half word 1 (bits 8–15).

In big-endian mode, an AltiVec quad word load instruction for which the effective add
(EA) is quad-word aligned places the byte addressed by EA into byte element 0 of the
vector register. The byte addressed by EA + 1 is placed in byte element 1, and so
Similarly, an AltiVec quad word store instruction for which the EA is quad word-alig
places byte element 0 of the source vector register into the byte addressed by EA
element 1 is placed into the byte addressed by EA + 1, and so forth.

1.2.2.2  Floating-Point Conventions
The AltiVec ISA basically has two modes for floating-point, that is a Java-/IEEE-/C
compliant mode or a possibly faster non-Java/non-IEEE mode. AltiVec ISA conforms 
Java Language Specification 1 (hereafter referred to as Java), that is a subset of the
environment specified by the IEEE standard (ANSI/IEEE Standard 754-1985, 
Standard for Binary Floating-Point Arithmetic). For aspects of floating-point behavior
are not defined by Java but are defined by the IEEE standard, AltiVec ISA conforms
IEEE standard. For aspects of floating-point behavior that are defined neither by Ja
by the IEEE standard but are defined by the C9X Floating-Point Proposal,WG14/
X3J11/96-010 (Draft 2/26/96) (hereafter referred to as C9X), AltiVec ISA conforms to 
when in Java-compliant mode.
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1.2.3  AltiVec Addressing Modes
As with PowerPC instructions, AltiVec instructions are encoded as single-word (32
instructions. Instruction formats are consistent among all instruction types, perm
decoding to be parallel with operand accesses. This fixed instruction length and con
format simplifies instruction pipelining. AltiVec load, store, and stream prefe
instructions use secondary opcodes in primary opcode 31 (0b011111). AltiVec ALU
instructions use primary opcode point 4 (0b000100).

AltiVec ISA supports both intraelement and interelement operations. In an intraele
operation, elements work in parallel on the corresponding elements from multiple s
operand registers and place the results in the corresponding fields in the destination o
register. An example of an intraelement operation is the Vector Add Signed Word Sa
(vaddsws) instruction shown in Figure 1-4.

Figure 1-4. Intraelement Example, vaddsws

In this example, the four signed integer (32 bits) elements in register vA are added to the
corresponding four signed integer (32 bits) elements in register vB and the four results are
placed in the corresponding elements in register vD.

In interelement operations data paths cross over. That is, different elements from
source operand are used in the resulting destination operand. An example of an intere
operation is the Vector Permute (vperm) instruction shown in Figure 1-5.

Figure 1-5. Interelement Example, vperm

In this example, vperm allows any byte in two source vector registers (vA and vB) to be
copied to any byte in the destination vector register, vD. The bytes in a third source vecto
register (vC) specify from which byte in the first two source vector registers 

++++

vA

vB

vD

vC01 14 18 10 16 15 19 1A 1C 1C 1C 13 08 1D 1B 0E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E
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corresponding target byte is to be copied. In this case the elements from the source
registers do not have corresponding elements that operate on the destination regist

Most arithmetic and logical instructions are intraelement operations. The data paths 
ALU run primarily north and south with little crossover. The crossover data paths have
restricted as much as possible to the interelement manipulation instructions (unpack
permute, etc.) with a vision toward implementing the ALU and shift/permute networ
separate execution units. The following list of instructions distinguishes betw
interelement and intraelement instructions:

• Vector intraelement instructions
— Vector integer instructions

– Vector integer arithmetic instructions
– Vector integer compare instructions
– Vector integer rotate and shift instructions

— Vector floating-point instructions
– Vector floating-point arithmetic instructions
– Vector floating-point rounding and conversion instructions
– Vector floating-point compare instruction
– Vector floating-point estimate instructions

— Vector memory access instructions 
• Vector interelement instructions

— Vector alignment support instructions
— Vector permutation and formatting instructions

– Vector pack instructions
– Vector unpack instructions
– Vector merge instructions
– Vector splat instructions
– Vector permute instructions
– Vector shift left/right instructions

1.2.4  AltiVec Instruction Set
Although these categories are not defined by the AltiVec ISA, the AltiVec instructions
be grouped as follows:

• Vector integer arithmetic instructions—These instructions are defined by the U
They include computational, logical, rotate, and shift instructions.

— Vector integer arithmetic instructions

— Vector integer compare instructions

— Vector integer logical instructions

— Vector integer rotate and shift instructions
1-10 AltiVec Technology Programming Environments Manual MOTOROLA
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• Vector floating-point arithmetic instructions—These include floating-point 
arithmetic instructions defined by the UISA.

— Vector floating-point arithmetic instructions

— Vector floating-point multiply/add instructions

— Vector floating-point rounding and conversion instructions

— Vector floating-point compare instruction

— Vector floating-point estimate instructions

• Vector load and store instructions—These include load and store instructions 
vector registers defined by the UISA.

• Vector permutation and formatting instructions—These instructions are define
the UISA.

– Vector pack instructions

– Vector unpack instructions

– Vector merge instructions

– Vector splat instructions

– Vector permute instructions

– Vector select instructions

– Vector shift instructions

• Processor control instructions—These instructions are used to read and write
the AltiVec status and control register (VSCR). These instructions are defined b
UISA.

• Memory control instructions—These instructions are used for managing of ca
(user level and supervisor level). The instructions are defined by VEA.

1.2.5  AltiVec Cache Model  

The AltiVec ISA defines several instructions for enhancements to cache manage
These instructions allow software to indicate to the cache hardware how it should pr
and prioritize writeback of data. The AltiVec ISA does not define hardware aspects of 
implementations.

1.2.6  AltiVec Exception Model
The AltiVec vector unit never generates an exception. Data stream instructions will 
cause an exception themselves. Therefore, on any event that would cause an exce
a normal load or store, such as a page fault or protection violation, the data s
instruction does not take a DSI exception; instead, it simply aborts and is ignored.
AltiVec instructions do not generate any kind of exception. Vector load and 
instructions that attempt to access a direct-store segment will cause a DSI exceptio

V
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The AltiVec unit does not report IEEE exceptions; there are no status flags and the u
no architecturally visible traps. Default results are produced for all exception conditio
specified first by the Java specification. If no default exists, the IEEE standard’s def
used. Then, if no default exists, the C9X default is used. 

1.2.7  Memory Management Model  

In a PowerPC processor the MMU’s primary functions are to translate logical (effec
addresses to physical addresses for memory accesses and I/O accesses (most I/O
are assumed to be memory-mapped) and to provide access protection on a block 
basis. Some protection is also available even if translation is disabled. Typically, it 
programmable. The AltiVec ISA does not provide any additional instructions to
PowerPC memory management model, but the AltiVec instructions have options to e
that an operand is correctly placed in a vector register or in memory. 
1-12 AltiVec Technology Programming Environments Manual MOTOROLA
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Chapter 2  
AltiVec Register Set
20
20

This chapter describes the register organization defined by the AltiVec technology. 
describes how AltiVec instructions affect some of the PowerPC registers. The AltiVec
defines register-to-register operations for all computational instructions. Source da
these instructions is accessed from the on-chip vector registers (VRs) or are provi
immediate values embedded in the opcode. Architecturally, the VRs are separate fr
general-purpose registers (GPRs) and floating-point registers (FPRs). Data is tran
between memory and vector registers with explicit AltiVec load and store instructions

Note that the handling of reserved bits in any register is implementation-depen
Software is permitted to write any value to a reserved bit in a register. Howev
subsequent reading of the reserved bit returns 0 if the value last written to the bit wa
returns an undefined value (may be 0 or 1) otherwise. This means that even if the las
written to a reserved bit was 1, reading that bit may return 0.

2.1  AltiVec Register File (VRF)
The VRF, shown in Figure 2-1, has 32 registers, each is 128 bits wide. Each vector r
can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements. 
MOTOROLA Chapter 2. AltiVec Register Set 2-1
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Figure 2-1. AltiVec Register File

The vector registers are accessed as vector instruction operands. Access to regis
explicit as part of the execution of an instruction.

2.1.1  The Vector Status and Control Register (VSCR)
The vector status and control register (VSCR) is a special 32-bit vector register (not
SPR) that is read and written in a manner similar to the FPSCR in the PowerPC sca
floating-point unit. The VSCR is shown in Figure 2-2.

Figure 2-2. Vector Status and Control Register (VSCR)

The VSCR has two defined bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and
AltiVec saturation (SAT) bit (VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Register (mfvscr) and Move to 
Vector Status and Control Register (mtvscr) are provided to move the VSCR from and t
a vector register. When moved to or from a vector register, the 32-bit VSCR is right-
fied in the 128-bit vector register. When moved to a vector register, the upper 96 bits
VRx[0–95] of the vector register are cleared, so the VSCR in a vector register looks 
shown in Figure 2-3.

Vector Register File (VRF)
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Figure 2-3. VSCR Moved to a Vector Register

VSCR bit settings are shown in Table 2-1.

Table 2-1. VSCR Field Descriptions 

Bits Name Description

0–14 — Reserved. The handling of reserved bits is the same as the normal PowerPC implementation, 
that is, system registers such as XER and FPSCR are implementation-dependent. Software is 
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value 
last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

15 NJ Non-Java. A mode control bit that determines whether AltiVec floating-point operations will be 
performed in a Java-IEEE-C9X–compliant mode or a possibly faster non-Java/non-IEEE 
mode.
0  The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as 

specified by Java, IEEE, and C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source vector 

register contains a denormalized value, the value 0 is used instead. If an instruction 
causes an underflow exception, the corresponding element in the target VR is cleared to 
0. In both cases the 0 has the same sign as the denormalized or underflowing value.

This mode is described in detail in the floating–point overview Section 3.2.1, “Floating-Point 
Modes.”

16–30 — Reserved. The handling of reserved bits is the same as the normal PowerPC implementation, 
that is, system registers such as XER and FPSCR are implementation-dependent. Software is 
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value 
last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

31 SAT Saturation. A sticky status bit indicating that some field in a saturating instruction saturated 
since the last time SAT was cleared. In other words when SAT = 1 it remains set to 1 until it is 
cleared to 0 by an mtvscr instruction. For further discussion refer to Section 4.2.1.1, 
“Saturation Detection.”
1  The AltiVec saturate instruction implicitly sets when saturation has occurred on the 

results one of the AltiVec instructions having saturate in its name:
Move To VSCR (mtvscr )
Vector Add Integer with Saturation (vaddubs , vadduhs , vadduws , vaddsbs , 
vaddshs , vaddsws )
Vector Subtract Integer with Saturation (vsububs , vsubuh s, vsubuws , vsubsbs , 
vsubshs , vsubsws )
Vector Multiply-Add Integer with Saturation (vmhaddshs , vmhraddshs )
Vector Multiply-Sum with Saturation (vmsumuhs , vmsumshs , vsumsws )
Vector Sum-Across with Saturation (vsumsws , vsum2sws , vsum4sbs , 
vsum4shs , vsum4ubs )
Vector Pack with Saturation (vpkuhus , vpkuwus , vpkshus , vpkswus , vpkshss , 
vpkswss )
Vector Convert to Fixed-Point with Saturation (vctuxs , vctsxs )

0 Indicates no saturation occurred, mtvscr  can explicitly clear this bit.

SAT0 0 0 0. . . 0 0 0 0NJ0 0 0 0 . . . 0 0 0 0

1271261121111100 96

0 0 0 0 . . . 0 0 0 0 

95

Reserved
MOTOROLA Chapter 2. AltiVec Register Set 2-3
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The mtvscr is context synchronizing. This implies that all AltiVec instructions logica
preceding an mtvscr in the program flow will execute in the architectural context (
mode) that existed prior to completion of the mtvscr, and that all instructions logically
following the mtvscr will execute in the new context (NJ mode) established by the mtvscr.

After an mfvscr instruction executes, the result in the target vector register wil
architecturally precise. That is, it will reflect all updates to the SAT bit that could have
made by vector instructions logically preceding it in the program flow, and further, it
not reflect any SAT updates that may be made to it by vector instructions log
following it in the program flow. Reading the VSCR can be much slower than ty
AltiVec instructions, and therefore care must be taken in reading it to avoid perform
problems.

2.1.2  VRSAVE Register (VRSAVE)
The VRSAVE register is a separate register used to assist in application and op
system software in saving and restoring the architectural state across process c
switched events. VRSAVE is a new user-mode accessible 32-bit special-purpose r
(SPR 256) that is added to the PowerPC architecture to assist software in providing e
save and restore operations. The VRSAVE register (VRSAVE) is entirely maintaine
managed by software, VRSAVE is shown in Figure 2-4.

Figure 2-4. Saving/Restoring the AltiVec Context Register (VRSAVE)

VRSAVE bit settings are shown in Table 2-2.

The VRSAVE register is read or written only as the direct result of a mfspr or mtspr
instruction, respectively. The recommended usage of VRSAVE is for each bit in this re
to correspond to one of the vector registers and its values indicate whethe
corresponding register is currently live (1) or dead (0). A live register contains data t
currently in use by the executing process, a dead register does not contain data. If VR
is used to indicate which vector registers (VRs) are being used by a program, the op
system could save only those VRs when an exception occurs, and could restore onl
VRs when resuming from the exception. If this approach is taken it must be ap
rigorously; if a program fails to indicate that a given VR is in use, software errors may 
that will be difficult to detect and correct because they are timing-dependent. 

Table 2-2. VRSAVE Bit Settings 

Bits Name Description

0-31 VRn 1 VRn is live, it is using VR0 of the VRF for the current running process
0 VRn is dead, it is not being used for the current running process

VR31VR2VR1VR0

275 313029282625242322212019181716151413121110987643210

VR3 VR4 VR5 VR6 VR7 VR8 VR9VR10 VR12VR11 VR13 VR14 VR15 VR18 VR19 VR20VR16 VR17 VR22VR21 VR23 VR24VR25 VR28 VR29 VR30VR26VR27
2-4 AltiVec Technology Programming Environments Manual MOTOROLA
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operating systems save and restore VRSAVE only for programs that also use other A
registers.

2.1.3  PowerPC Condition Register 
The PowerPC condition register (CR) is a 32-bit register that reflects the result of c
operations and provides a mechanism for testing and branching. For AltiVec ISA, the
field can optionally be used, that is if an AltiVec instruction field’s record bit (Rc) is s
a vector compare instruction. The CR6 field is updated. The bits in the PowerPC C
grouped into eight 4-bit fields, CR0–CR7, as shown in Figure 2-5.

Figure 2-5. Condition Register (CR)

For more details on the CR see Chapter 2, “PowerPC Register Set,” in PowerPC: The
Programming Environments Manual.

To control program flow based on vector data, all vector compare instructions
optionally update CR6. If the instruction field’s record bit (Rc) is set in a vector com
instruction, the CR6 field is updated according to Table 2-3.

The Rc bit should be used sparingly. As for other PowerPC instructions, in 
implementations instructions with Rc bit = 1 could have somewhat longer latency 
more disruptive to instruction pipeline flow than instructions with Rc bit = 0. There
techniques of accumulating results and testing infrequently are advised.

2.1.4  AltiVec Bit in the PowerPC Machine State Register (MSR)
An AltiVec Available bit is added to the PowerPC machine state register (MSR). In 6
implementations, the MSR is 64 bits wide as shown in Figure 2-6.

Table 2-3. CR6 Field Bit Settings for Vector Compare Instructions  

CR Bit
CR6

Field Bit
Vector Compare Vector Compare Bounds

24 0 1 Relation is true for all 
element pairs

0

25 1 0 0

26 2 1 Relation is false for all 
element pairs

0 All fields were in bounds

1 All fields are in bounds for the vcmpbfp  
instruction so the result code of all fields is 
0b00 

0 One of the fields is out of bounds for the 
vcmpbfp  instruction

27 3 0 0

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31
MOTOROLA Chapter 2. AltiVec Register Set 2-5
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Figure 2-6. Machine State Register (MSR)—64-Bit Implementation

In 32-bit PowerPC implementations, the MSR is 32 bits wide as shown in Figure 2-7.
that the 32-bit implementation of the MSR is comprised of the 32 least-significant b
the 64-bit MSR.

 

Figure 2-7. Machine State Register (MSR)—32-Bit Implementation

In 32-bit PowerPC implementations, bit 6, VEC, is added to the MSR as show
Figure 2-7. Also AltiVec data stream prefetching instructions will be suspended
resumed based on MSR[PR] and MSR[DR]. The Data Stream Touch (dst) and Data Stream
Touch for Store (dstst) instructions are supported whenever MSR[DR] = 1. If eith
instruction is executed when MSR[DR] = 0 (real addressing mode), the result
boundedly undefined. For each existing data stream, prefetching is enabled if the MS
= 1 and MSR[PR] bit has the value it had when the dst or dstst instruction that specified
the data stream was executed. Otherwise prefetching for the data stream is suspe
particular, the occurrence of an exception suspends all data stream prefetching.

Table 2-4 shows the AltiVec bit definitions for the MSR as well as how the PR and DR
are affected by the AltiVec data stream instructions. 

59 63626160585756555453525150494847464544383210

0 LERI0DRIRIP0FE1BESEFE0MEFPPREEILE0ISF0SF 0 0 0 0 . . . 0 0 0 0

Reserved

POWVEC

39

0 0 0 0

37

0 6 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 0 RI LE0000 00 VEC 0 0000 0
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For more detailed information including the other bit settings for MSR, refer to Chap
“PowerPC Register Set,” in PowerPC Microprocessor Family: The Programmin
Environments Manual.

2.1.5  Machine Status Save/Restore Registers (SRR)
The machine status save/restore (SRR) registers are part of the PowerPC OEA sup
level registers. The SRR0 and SRR1 registers are used to save machine status on ex
and to restore machine status when an rfid  (or rfi) instruction is executed. For more detaile
information, refer to Chapter 2, “PowerPC Register Set,” in PowerPC: The Programming
Environments Manual.

2.1.5.1  Machine Status Save/Restore Register 0 (SRR0)
The SRR0 is a 64-bit register in 64-bit implementations and a 32-bit register in 3
implementations. SRR0 is used to save machine status on exceptions and restore m
status when an rfid  (or rfi ) instruction is executed. For the AltiVec ISA, it holds the effect
address (EA) for the instruction that caused the AltiVec unavailable exception. The A
unavailable exception occurs when no higher priority exception exists, and an atte
made to execute an AltiVec instruction when MSR[VEC] = 0. The format of SRR0 is sh
in Figure 2-8.

Table 2-4. MSR Bit Settings Affected by AltiVec  

Bits
Name Description

64 Bit 32 Bit

38 6 VEC AltiVec Available
0 When the bit is cleared to zero, the processor executes an “AltiVec Unavailable 

Exception” when any attempt to execute a vector instruction that accesses the 
vector register file (VRF) or VSCR register.

1 The VRF and VSCR registers are accessible to vector instructions.
Note: the VRSAVE register is not protected by MSR [VEC].
The data streaming family of instructions (dst , dstt , dstst , dststt , dss , and dssall ) are 
not affected by the MSR[VEC], that is, the VRF and VSCR registers are available to the 
data streaming instructions even when the MSR[VEC] is cleared.

49 17 PR Privilege level 
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note: Care should be taken if data-stream prefetching is used in privileged state 
(MSR[PR] = 0). For each existing data stream, prefetching is enabled if (a) MSR[DR] = 1 
and (b) MSR[PR] has the value it had when the dst  or dstst  instruction that specified the 
data stream was executed. Otherwise, prefetching for the data stream is suspended.

59 27 DR Data address translation   
0 Data address translation is disabled. If data stream touch (dst ) and data stream 

touch for store (dstst ) instructions are executed whenever DR = 0, the results are 
boundedly undefined.

1 Data address translation is enabled. Data stream touch (dst ) and data stream 
touch for store (dstst ) instructions are supported whenever DR = 1. 

O
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For 32-bit implementations, the format of SRR0 is that of the low-order bits (32–6
Figure 2-8.

Figure 2-8. Machine Status Save/Restore Register 0 (SRR0)

2.1.5.2  Machine Status Save/Restore Register 1 (SRR1)
The SRR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 3
implementations. SRR1 is used to save machine status on exceptions and to 
machine status when an rfid  (or rfi ) instruction is executed. The format of SRR1 is sho
in Figure 2-9. 

Figure 2-9. Machine Status Save/Restore Register 1 (SRR1)

In 64-bit implementations, when an AltiVec unavailable exception occurs, SRR1[33
and SRR1[42–47] are cleared to zero and bits MSR[0], MSR[48–55], MSR[57–59]
MSR[62–63] are placed into the corresponding bit positions of SRR1 as it was just p
the exception. For 32-bit implementations, when an AltiVec unavailable exception oc
SRR1[1–4] and SRR[10–15] are cleared and MSR[16–23], MSR[25–27], 
MSR[30–31] are placed into the corresponding bit positions of SRR1 as they were 
the exception. 

2.2  PowerPC Register Set
The addition of the AltiVec technology adds some additional new registers as w
affecting bit settings in some of the PowerPC registers when AltiVec instruction
executed. Figure 2-10 shows a graphic representation of the entire PowerPC register
how the AltiVec register set resides within the PowerPC architecture. The Pow
registers affected by AltiVec instructions are shaded.

SRR0

0 61 62  63

00

Reserved

SRR1

0 63
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Figure 2-10. Programming Model—All Registers

1 These registers are 32-bit registers only.

SUPERVISOR MODEL - OEA

Time Base Facility 1

(For Reading)

TBL (32)

TBU (32)

TBL 2684

TBU 269

USER MODEL
VEA

Configuration Registers
Machine State Register

MSR (64/32)

SPR 528

PVR (32)

Processor Version Register 1

Memory Management Registers
Instruction BAT Registers Data BAT Registers

IBAT0U (64/32)

IBAT0L (64/32)

IBAT1U (64/32)

IBAT1L (64/32)

IBAT2U (64/32)

IBAT2L (64/32)

IBAT3U (64/32)

IBAT3L (64/32)

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536DBAT0U (64/32)

DBAT0L (64/32)

DBAT1U (64/32)

DBAT1L (64/32)

DBAT2U (64/32)

DBAT2L (64/32)

DBAT3U (64/32)

DBAT3L (64/32)

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

Segment Registers 1, 2

SR0 (32)

SR1 (32)

SR15 (32)

SDR1

SDR1 (64/32) SPR 25

Address Space Register 3

ASR (64) SPR 280

Exception Handling Registers
Data Address Register

DAR (64) SPR 19

SPRGs

SPRG0 (64/32)

SPRG1 (64/32)

SPRG2 (64/32)

SPRG3 (64/32)

SPR 272

SPR 273

SPR 274

SPR 275

DSISR 1

DSISR (32) SPR 18

Save and Restore Registers

Floating-Point Exception

SRR0 (64/32)

FPECR

SRR1 (64/32)

SPR 26

SPR 27

SPR 1022

Cause Register (Optional)

Miscellaneous Registers

TBL (32)

Time Base Facility 1

(For Writing)

TBU (32)

SPR 284

SPR 285

Decrementer 1

Processor Identification
Register (Optional)

DEC (32)

PIR

SPR 22

SPR 1023

Data Address Breakpoint
Register (Optional)

DABR (64/32) SPR 1013

External Access Register
(Optional) 1

EAR (32) SPR 282

2 These registers are on 32-bit implementations only.

3 These registers are on 64-bit implementations only.
4 In 64-bit implementations, TBR268 is read as a 64-bit value.

SPR 287

GPR0 (64/32)

GPR1 (64/32)

GPR31 (64/32)

General-Purpose
Registers

Floating-Point
Registers

FPR0 (64)

FPR1 (64)

FPR31 (64)

Condition Register 1

Floating-Point 
Status and
Control Register 1

FPSCR (32)

XER Register 1

XER (32)

Link Register

LR (64/32)

SPR 1

Count Register

CTR (64/32)

SPR 8

SPR 9

Vector Save/

SPR 256

Vector Registers

Vector Status and
Control Register

Restore Register

USER MODEL
UISA

CR (32)

VSCR (32)

VR0 (64)

VR1 (64)

VR31 (64)

VR2 (64)

VRSAVE
MOTOROLA Chapter 2. AltiVec Register Set 2-9



PowerPC Register Set  
2-10 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec
d for

n these
ting-

s the
half-
 ISA

ta for
erand

nts

cess
words,
emory
 it is
rPC

 shown
Chapter 3  
Operand Conventions 
30
30

This section describes the operand conventions as they are represented in the 
technology at the UISA level. Detailed descriptions are provided of conventions use
transferring data between vector registers and memory, and representing data i
vector registers using both big- and little-endian byte ordering. Additionally, the floa
point default conditions for exceptions are described.

3.1  Data Organization in Memory 
The AltiVec instruction set architecture (ISA) follows the same data organization a
PowerPC architecture UISA with a few extensions. In addition to supporting byte, 
word and word operands, as defined in the PowerPC architecture UISA, AltiVec
supports quad-word (128-bit) operands. 

The following sections describe the concepts of alignment and byte ordering of da
quad words, otherwise alignment is the same as described in Chapter 3, “Op
Conventions,” in the PowerPC Microprocessor Family: The Programming Environme
Manual.

3.1.1  Aligned and Misaligned Accesses
Vectors are accessed from memory with instructions such as Vector Load Indexed (lvx) and
Store Vector Indexed (stvx) instructions. The operand of a vector register to memory ac
instruction has a natural alignment boundary equal to the operand length. In other 
the natural address of an operand is an integral multiple of the operand length. A m
operand is said to be aligned if it is aligned at its natural boundary; otherwise
misaligned. AltiVec instructions are four bytes long and word-aligned like Powe
instructions.

Operands for vector register to memory access instructions have the characteristics
in Table 3-1. 

U
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The concept of alignment is also applied more generally to data in memory. For exa
an 8-byte data item is said to be half-word–aligned if its address is a multiple of two
is, the effective address (EA) points to the next effective address that is 2 bytes (a hal
past the current effective address, that would be the EA + 2 bytes, and then the nex
the EA + 4 bytes, and effective address would continue skipping every 2 bytes (2 byt
half word). This ensures that the effective address is half-word aligned as it points to
successive half word in memory.

It is important to understand that AltiVec memory operands are assumed to be aligne
AltiVec memory accesses are performed as if the appropriate number of low-order 
the specified effective address were zero. This assumption is different from Pow
integer and floating-point memory access instructions where alignment is not a
assumed. So for AltiVec ISA, the low-order bit of the effective address is ignored for
word AltiVec memory access instructions, and the low-order four bits of the effe
address are ignored for quad-word AltiVec memory access instructions. The effect is 
or store the memory operand of the specified length that contains the byte addresse
effective address.

If a memory operand is misaligned, additional instructions must be used to correctly
the operand in a vector register or in memory. AltiVec technology provides instructio
shift and merge the contents of two vector registers. These instructions facilitate co
misaligned quad-word operands between memory and the vector registers.

3.1.2  AltiVec Byte Ordering 
For PowerPC and AltiVec processors, the smallest addressable memory unit is the 
bits), and scalars are composed of one or more sequential bytes. The AltiVec ISA su
both big- and little-endian byte ordering. The default byte ordering is big-endian. How
the code sequence used to switch from big- to little-endian mode may differ a
processors.

The PowerPC architecture uses the machine state register (MSR) for specifying
ordering—little-endian mode (LE). The MSR[LE] specifies the endian mode in which
processor is currently operating. A value of 0 specifies big-endian mode and a valu

Table 3-1. Memory Operand Alignment 

Operand Length
32-bit Aligned 

Address (28-31) 
64-bit Aligned

Address (60-63) 

Byte 8 bits (1 byte) xxxx xxxx

Half word 2 bytes xxx0 xxx0

Word 4 bytes xx00 xx00

Quad word 16 bytes 0000 0000

Note : An x in an address bit position indicates that the bit can be 0 or 1 independent of 
the state of other bits in the address.
3-2 AltiVec Technology Programming Environments Manual MOTOROLA
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specifies little-endian mode. For further details on PowerPC byte ordering, refer to C
3, “Operand Conventions,” in the PowerPC Microprocessor Family: The Programmin
Environments Manual

AltiVec ISA follows the endian support of PowerPC for elements up to double wo
AltiVec ISA also supports quad words and additional support is provided for thi
AltiVec ISA when a 64-bit scalar is moved from a register to memory, it occupies 
consecutive bytes in memory and a decision must be made regarding byte ordering i
eight addresses. 

The default byte ordering for AltiVec ISA is big-endian. 

3.1.2.1  Big-Endian Byte Ordering
For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or sta
address while the least-significant byte (LSB) is stored at the highest (or ending) ad
This is called big-endian because the big end of the scalar comes first in memory.

3.1.2.2  Little-Endian Byte Ordering
For little-endian scalars, the LSB is stored at the lowest (or starting) address while the
is stored at the highest (or ending) address. This is called little-endian because the li
of the scalar comes first in memory.

3.1.3  Quad Word Byte Ordering Example
The idea of big- and little-endian byte ordering is best illustrated in an example of a
word such as 0x2021_2223_2425_2627_2829_2A2B_2C2D_2E2F located in me
This quad word is used throughout this section to demonstrate how the bytes that co
a quad word are mapped into memory.

The quad word (0x2021_2223_2425_2627_2829_2A2B_2C2D_2E2F) is shown in
endian mapping in Figure 3-1. A hexadecimal representation is used for showing a
values and the values in the contents of each byte. The address is shown below eac
contents. The big-endian model addresses the quad word at address 0x00, which is t
(0x20), proceeding to the address 0x0F, which contains the LSB (0x2F).

Figure 3-1. Big-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address  00  01  02  03  04  05  06  07 08  09 0A 0B 0C 0D 0E 0F

↑
MSB

↑
LSB
MOTOROLA Chapter 3. Operand Conventions 3-3
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Figure 3-2 shows the same quad word using little-endian mapping. In the little-e
model, the quad word’s 0x00 address specifies the LSB (0x2F) and proceeds to a
0x0F which contains its MSB (0x20).

Figure 3-3 shows the sequence of bytes laid out with addresses increasing from left t
Programmers familiar with little-endian byte ordering may be more accustomed to vie
quad words laid out with addresses increasing from right to left, as shown in Figure 

This allows the little-endian programmer to view each scalar in its natural byte ord
MSB to LSB. This section uses both conventions based of ease of understanding 
specific example.

3.1.4  Aligned Scalars in Little-Endian Mode
The effective address (EA) calculation for the load and store instructions is describ
Chapter 4, “Addressing Modes and Instruction Set Summary.” For PowerPC proces
little-endian mode, the effective address is modified before being used to access m
In PowerPC, the three low-order address bits of the effective address are exclusive
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 
as shown in Table 3-2. This address modification is called munging.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

Address  00  01  02  03  04  05  06  07 08  09  0A  0B  0C  0D  0E 0F

↑
LSB

↑
MSB

Figure 3-2. Little-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address  0F  0E  0D  0C  0B 0A  09  08 07  06  05  04  03  02  01 00

↑
MSB

↑
LSB

Figure 3-3. Little-Endian Mapping of Quad Word—Alternate View
3-4 AltiVec Technology Programming Environments Manual MOTOROLA
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The munged physical address is passed to the cache or to main memory, and the s
width of the data is transferred (in big-endian order—that is, MSB at the lowest ad
LSB at the highest address) between a GPR or FPR and the addressed memory lo
(as modified). 

Munging makes it appear to the processor that individual aligned scalars are stored a
endian, when in fact they are stored in big-endian order but at different byte add
within double words. Only the address is modified, not the byte order. For further d
on how to align scalars in little-endian mode see Chapter 3, “Operand Convention
PowerPC: The Programming Environments Manual. 

The PowerPC address munging is performed on double-word units. In the PowerPC
architecture, little-endian mode would have the double words of a quad word appea
swapped. When the quad word in memory shown at the top of Figure 3-4, loads from
address 0x00, the bottom of Figure 3-4 shows how it appears to the processor as it m
the address. 

Note that double words are swapped. The byte element addressed by the quad wor
address, 0x0F, contains 0x28, while its MSB at address 0x0 contains 0x27. This is 
the PowerPC munging being applied to offsets within double words; AltiVec ISA req
a munge within quad words.

To accommodate the quad-word operands, the PowerPC architecture can not sim
extended by munging an extra address bit. It would break existing code and/or plat
Processors that implement AltiVec technology could not be mixed with non-Alt
processors. Instead, AltiVec processors implement a double-word swap when movin
words between vector registers and memory.

Table 3-2 Effective Address Modifications 

Data Width (Bytes) EA Modification

1  XOR with 0b111

2  XOR with 0b110

4 XOR with 0b100

8 No change

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

Address  00  01  02  03  04  05  06  07 08  09  0A  0B  0C  0D  0E 0F

Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Memory ImageContents

Address
MOTOROLA Chapter 3. Operand Conventions 3-5
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Figure 3-5 shows how this swapping could be implemented. This diagram represe
load path double-word swapping; the store path looks the same, except that the mem
internal boxes are reversed.

Figure 3-5. AltiVec Little Endian Double-Word Swap

In the diagram, the numbers at the bottom of the byte boxes represent the offset add
that byte; the numbers at the top are the values of the bytes at that offset.The little-
ordering is discontinuous because the PowerPC munging is performed only on d
word units. The purpose of the double word swap within the AltiVec unit is to perform
additional swap that is not part of the PowerPC architecture.

When MSR[LE] = 1, double words are swapped and the bytes now appear in their ex
ordering. When MSR[LE] = 0, no swapping is done. 

To summarize, in little-endian mode, the load vector element indexed instructions (lvebx,
lvehx, lvewx) and the store vector element indexed instructions (stvebx, stvehx, stvewx)
have the same 3-bit address munge applied to the memory address as is specifie
PowerPC architecture for integer and floating-point loads and stores. For the quad
load vector indexed instructions (lvx, lvxl) and the store vector indexed instructions (stvx,
stvxl) the two double words of the quad-word scalar data are munged and swapped 
are moved between the vector register and memory.

3.1.5  Vector Register and Memory Access Alignment
When loading an aligned byte, half word, or word memory operand into a vector reg
the element that receives the data is the element that would have received the data
entire aligned quad word containing the memory operand addressed by the ef
address been loaded. Similarly, when an element in a vector register is stored i
aligned memory operand, the element selected to be stored is the element that wou
been stored into the memory operand addressed by the effective address had th
vector register been stored to the aligned quad word containing the memory op
addressed by the effective address. The position of the element in the target or sourc
register depends on the endian mode, as described above. (Byte memory opera
always aligned.) 

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

0 1MSR[LE] 0 1MSR[LE]

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Memory Image

Internal Image
Contents
Address

Contents
Address

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20
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For aligned byte, half word, and word memory operands, if the corresponding ele
number is known when the program is written, the appropriate vector splat and 
permute instructions can be used to copy or replicate the data contained in the m
operand after loading the operand into a vector register. A vector splat instructions wi
the contents of an element in a vector register and replicates that into each elemen
destination vector register. A vector permute instruction is the concatenation of the co
of two vectors. An example of this is given in detail in Section 3.1.6, “Quad-Word 
Alignment.” Another example is to replicate the element across an entire vector re
before storing it into an arbitrary aligned memory operand of the same length
replication ensures that the correct data is stored regardless of the offset of the m
operand in its aligned quad word in memory.

Since vector loads and stores are size-aligned, application binary interfaces (ABIs) 
specify, and programmers should take care to align data on quad-word boundar
maximum performance. 

3.1.6  Quad-Word Data Alignment
The AltiVec ISA does not provide for alignment exceptions for loading and storing 
When performing vector loads and stores, the effect is as if the low-order four bits 
address are 0x0, regardless of the actual effective address generated. Since vect
often be misaligned due to the nature of the algorithm, AltiVec ISA provides suppo
post-alignment of quad-word loads and pre-alignment for quad-word stores. Note t
the following diagrams, the effect of the swapping described above is assumed a
memory diagrams will be with respect to the logical mapping of the data.

Figure 3-6 and Figure 3-7 show misaligned vectors in memory for both big- and 
endian ordering. The big-endian and little-endian examples assumes that the desired
begins at address 0x03.  

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Quad Word HI Quad Word LO

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

↑
MSB

↑
LSB

Figure 3-6. Misaligned Vector in Big-Endian Mode
MOTOROLA Chapter 3. Operand Conventions 3-7
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Figure 3-6 and Figure 3-7 show how such misaligned data causes data to be split
aligned quad words; only aligned quad words are loaded and/or stored by AltiVec load
instructions. To align this vector, a program must load both (aligned) quad words
contain a portion of the misaligned vector data and then execute a Vector Permute (
instruction to align the result.

3.1.6.1  Accessing a Misaligned Quad Word in Big-Endian Mode
Figure 3-1 shows the big-endian alignment model, using the example in  Figure 3-8vHI
and vLO (HI = high order quad word, LO = low order quad word) represent vector regi
that contain the misaligned quad words containing the MSBs and LSBs, respectively,
misaligned quad word; vD is the target vector register. 

Figure 3-8. Big-Endian Quad Word Alignment

Alignment is performed by left-rotating the combined 32-byte quantity (vHI:vLO) by an
amount determined by the address of the first byte of the desired data. This left-rota
done by means of a vperm instruction whose control vector is generated by a Load Ve
for Shift Left (lvsl) instruction after loading the most-significant quad word (MSQ) a
least-significant quad word (LSQ) that contain the desired vector. The lvsl instruction uses
the same address specification as the load vector indexed that loads the vHI component,
which for big-endian ordering is the address of the desired vector.

Byte 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quad Word HI Quad Word LO

Contents 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

Address 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

↑
MSB

↑
LSB

Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode

10
vHI

00

0F00

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vLO

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vD

0F 1F
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The following instruction sequence extracts the quad word in big-endian mode:

lvx vHI,rA,rB ;# load the MSQ 
lvsl vP,rA,rB ;# set the permute vector
addi rB,rB,16 ;# address of LSQ
lvx vLO,rA,rB ;# load LSQ component
vperm vD,vHI,vLO,vP ;# align the data

Note that when streaming data is used, the overhead of generating the alignment p
vector can be spread out and the latency of the loads may be covered by loop unrol

The process of storing a misaligned vector is essentially the reverse of that for lo
except that the code has a read-modify-write sequence. The logical algorithm is th
vector source must be right-shifted and split into two parts, each of which is merged
Vector Select (vsel) instruction) with the current contents of its MSQ and its LSQ a
stored back using a Store Vector Indexed (svx) instruction.

The Load Vector for Shift Right (lvsr) instruction is used to produce the permute cont
vector to be used for the right-shifting. An observation is that a single register can b
for the shifted contents if a right-rotate is done. The rotate is affected by specifyin
source register for both components of the Vector Permute (vperm); that is, a shift of a
double register with the same contents in both parts results in a rotate. In addition, th
permute control vector can be used on a sequence of ones and zeros to generate a
use by the vsel instruction to do the merging.

The complete code sequence for the store case is as follows:

lvx vHI,rA,rB ;# load current MSQ for update
lvsr vP,rA,rB ;# load the alignment vector
addi rB,rB,16 ;# address of LSQ
lvx vLO,rA,rB ;# load the current LSQ’s data
vspltib v1s,-1 ;# generate the select mask bits
vspltib v0s,0
vperm vMask,v0s,v1s,vP ;# right rotate the select mask
vperm vSrc,vSrc,vSrc,vP ;# right rotate the data
vsel vLO,vSrc,vLO,vMask ;# insert LSQ component
vsel vHI,vHI,vSrc,vMask ;# insert MSQ component
stvx vLO,rA,rB ;# store LSQ
addi rB,rB,-16 ;# address of MSQ
stvx vHI,rA,rB ;# store MSQ

When fetching a linear stream of misaligned quad words, the control vector need o
computed once. Thus the time required for aligned fetches on the ends of the str
proportioned out. None of the data fetched internally to the stream is wasted and on
fetched once. The average time expended for a misaligned lvx instruction in a long
sequence approaches one lvx and one vperm instruction.
MOTOROLA Chapter 3. Operand Conventions 3-9
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3.1.6.2  Accessing a Misaligned Quad Word in Little-Endian Mode
The instruction sequences used to access misaligned quad-word operands in little
mode are similar to those used in big-endian mode. The following instruction sequen
be used to load the misaligned quad word shown in Figure 3-7 into a vector register in
endian mode. The load alignment case is shown in Figure 3-9. The vector register vHI and
vLO receive the MSQ and LSQ respectively; vD is the target vector register. The lvsr
instruction uses the same address specification as the lvx instruction that loads vLO; in
little-endian byte ordering this is the address of the desired misaligned quad word.

lvx vLO,rA,rB # load the LSQ
lvsr vP,rA,rB # set the permute vector
addi rB,rB,16 # address of MSQ
lvx vHI,rA,rB # load MSQ component
vperm vD,vHI,vLO,vP # align the data

Similarly, the following sequence of instructions stores the contents of register vD into a
misaligned quad word in memory in little-endian mode.

lvx v LO,rA,rB # load current LSQ for update

lvsl vP,rA,rB # load the alignment vector
addi rB,rB,16 # address of MSQ
lvx vHI,rA,rB # load the current MSQ’s data
vspltib v1s,-1 # generate the select mask bits
vspltib v0s,0
vperm vMask,v0s,v1s,vP # left rotate the select mask
vperm vSrc,vSrc,vSrc,vP # left rotate the data
vsel vHI,vHI,vSrc,vMask # insert MSQ component
vsel vLO,vSrc,vLO,vMask # insert LSQ component
stvx vHI,rA,rB # store MSQ
addi rB,rB,-16 # address of LSQ
stvx vLO,rA,rB # store LSQ

Figure 3-9. Little-Endian Alignment

0F
vHI

1F

0F 00

2122232425262728292A2C2D2E2F

vLO

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 22 21 20

vD

0010

23

202B
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3.1.6.3  Scalar Loads and Stores
No alignment is performed for scalar load or store instructions in the AltiVec ISA.
vector load or store address is not properly size aligned, the suitable number o
significant bits are ignored, and a size aligned transfer occurs instead. Data alignme
be performed explicitly after being brought into the registers. No assistance is provid
aligning individual scalar elements that are not aligned on their natural boundary
placement of scalar data in a vector element depends upon its address. That 
placement of the addressed scalar is the same as if a load vector indexed instruc
been performed, except that only the addressed scalar is accessed (for cache-i
space); the values in the other vector elements are boundedly undefined. Also, dat
specified scalar is the same as if a store vector indexed instruction had been perf
except that only the scalar addressed is affected. No instructions are provided to a
aligning individual scalar elements that are not aligned on their natural size boundar

When a program knows the location of a scalar, it can perform the correct vector spla
vector permutes to move data to where it is required. For example, if a scalar is to b
as a source for a vector multiply (that is, each element multiplied by the same valu
scalar must be splatted into a vector register. Likewise, a scalar stored to an ar
memory location must be splatted into a vector register, and that register must be sp
as the source of the store. This guarantees that the data appears in all possible pos
that scalar size for the store.

3.1.6.4  Misaligned Scalar Loads and Stores
Although no direct support of misaligned scalars is provided, the load-aligning seq
for big-endian vectors described in Section 3.1.6.1, “Accessing a Misaligned Quad W
Big-Endian Mode” can be used to position the scalar to the left vector element, whic
then be used as the source for a splat. That is, the address of a scalar is also the a
the left-most element of the quad word at that address. Similarly, the read-modify
sequences, with the mask adjusted for the scalar size, can be used to store mis
scalars. The same is true for little-endian mode, the load-aligning sequence for little-e
vectors described Section 3.1.6.2, “Accessing a Misaligned Quad Word in Little-E
Mode” can be used to position the scalar to the right vector element, which can then b
as the source for a splat. That is, the address of a scalar is also the address of the rig
element of the quad word at that address.

Note that while these sequences work in cache-inhibited space, the physical acces
not guaranteed to be atomic.

3.1.7  Mixed-Endian Systems
In many systems, the memory model is not as simple as the examples in this cha
particular, big-endian systems with subordinate little-endian buses (such as PCI) co
a mixed-endian environment. 

The basic mechanism to handle this is to use the Vector Permute (vperm) instruction to
swap bytes within data elements. The value of the permute control vector depends
MOTOROLA Chapter 3. Operand Conventions 3-11
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size of the elements (8, 16, 32). That is, the permute control vector performs a p
equivalent of the PowerPC Load Word Byte-Reverse Indexed (lwbrx) instruction, within
the vector registers.

The ultimate problem is when there are misaligned, mixed-endian vectors. This c
handled by applying a vector permute of the data as required for the misaligned
followed by the swapping vector permute on that result. Note that for streaming cas
effect of this double permute can be accomplished by computing the swapping perm
the alignment permute vector, and then applying the resulting permute control vec
incoming data.

3.2  AltiVec Floating-Point Instructions—UISA
There are two kinds of floating-point instructions defined for the PowerPC and Al
ISA—computational and noncomputational. Computational instructions consist of 
operations defined by the IEEE-754 standard for 32-bit arithmetic (those that pe
addition, subtraction, multiplication, and division) and the multiply-add defined by
architecture. Noncomputational floating-point instructions consist of the floating-p
load and store instructions. Only the computational instructions are considered flo
point operations throughout this chapter. 

The single-precision format, value representations, and computational model defi
Chapter 3, “Operand Conventions,” in PowerPC Microprocessor Family: The
Programming Environments Manual apply to AltiVec floating-point except as follows:

• In general, no status bits are set to reflect the results of floating-point operation
only exception is that VSCR[SAT] may be set by the Vector Convert to Fixed-P
Word instructions.

• With the exception of the two Vector Convert to Fixed-Point Word (vctuxs, vctsxs) 
instructions and three of the four Vector Round to Floating-Point Integer (vrfiz , 
vrfip , vrfim ) instructions, all AltiVec floating-point instructions that round use th
round-to-nearest rounding mode.

• Floating-point exceptions cannot cause the system error handler to be invoke

If a function is required that is specified by the IEEE standard, is not supported by A
ISA, and cannot be emulated satisfactorily using the functions that are supported by A
ISA, the functions provided by the floating-point processor should be used; see Cha
“Addressing Modes and Instruction Set Summary,” in PowerPC: The Programming
Environments Manual

3.2.1  Floating-Point Modes
AltiVec ISA supports two floating-point modes of operation—a Java mode and a non
mode of operation that is useful in circumstances where real-time performance is
important than strict Java and IEEE-standard compliance.
3-12 AltiVec Technology Programming Environments Manual MOTOROLA
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When VSCR[NJ] is 0 (default), operations are performed in Java mode. When VSC
is 1, operations are carried out in the non-Java mode. 

3.2.1.1  Java Mode
Java compliance requires compliance with only a subset of the Java/IEEE/C9X sta
The Java subset helps simplify floating-point implementations, as follows:

• Reducing the number of operations that must be supported
• Eliminating exception status flags and traps
• Producing results corresponding to all disabled exceptions thus eliminating ena

control flags
• Requiring only round-to-nearest rounding mode eliminates directed rounding 

modes and the associated rounding control flags.

Java compliance requires the following aspects of the IEEE standard:

• Supporting denorms as inputs and results (gradual underflow) for arithmetic 
operations

• Providing NaN results for invalid operations
• NaNs compare unordered with respect to everything, so that the result of any

comparison of any NaN to any data type is always false

In some implementations, floating-point operations in Java mode may have som
longer latency on normal operands and possibly much longer latency on denorm
operands than operations in non-Java mode. This means that in Java mode overall r
response may be somewhat worse and deadline scheduling may be subject to muc
variance than non-Java mode.

3.2.1.2  Non-Java Mode
In the non-Java/non-IEEE/non-C9X mode (VSCR[NJ] = 1), gradual underflow is no
performed. Instead, any instruction that would have produced a denormalized result 
mode substitutes a correctly signed zero (±0.0) as the final result. Also, denormalize
operands are flushed to the correctly signed zero (±0.0) before being used b
instruction.

The intent of this mode is to give programmers a way to assure optimum, data-insen
real-time response across implementations. Another way to improved response time
be to implement denormalized operations through software emulation. 

It is architecturally permitted, but strongly discouraged, for an implementatio
implement only non-Java mode. In such an implementation, the VSCR[NJ] doe
respond to attempts to clear it and is always read back as a 1.

No other architecturally-visible, implementation-specific deviations from this specifica
are permitted in either mode.
MOTOROLA Chapter 3. Operand Conventions 3-13
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3.2.2  Floating-Point Infinities
Valid operations on infinities are processed according to the IEEE standard.

3.2.3  Floating-Point Rounding
All AltiVec floating-point arithmetic instructions use the IEEE default rounding mo
round-to-nearest. The IEEE directed rounding modes are not provided.

3.2.4  Floating-Point Exceptions
The following floating-point exceptions may occur during execution of AltiVec floati
point instructions.

• NaN operand exception

• Invalid operation exception

• Zero divide exception

• Log of zero exception

• Overflow exception

• Underflow exception

If an exception occurs, a result is placed into the corresponding target element as de
in the following subsections. This result is the default result specified by Java, the
standard, or C9X, as applicable. Recall that denormalized source values are treat
they were zero when VSCR[NJ] =1. The consequences regarding exceptions are as f

• Exceptions that can be caused by a zero source value can be caused by a 
denormalized source value when VSCR[NJ] = 1.

• Exceptions that can be caused by a nonzero source value cannot be caused 
denormalized source value when VSCR[NJ] = 1.

3.2.4.1  NaN Operand Exception
If the exponent of a floating-point number is 255 and the fraction is non-zero, then the
is a NaN. If the most significant bit of the fraction field of a NaN is zero, then the val
a signaling NaN (SNaN), otherwise it is a quiet NaN (QNaN). In all cases the sign of a
is irrelevant.

A NaN operand exception occurs when a source value for any of the following instru
is a NaN.

• An AltiVec instruction that would normally produce floating-point results

• Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs) 
or Vector Convert to Signed Fixed-Point Word Saturate (vctsxs) instructions

• Any of the four vector floating-point compare instructions
3-14 AltiVec Technology Programming Environments Manual MOTOROLA
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The following actions are taken:

1. If the AltiVec instruction would normally produce floating-point results, the 
corresponding result is a source NaN selected as follows. In all cases, if the se
source NaN is an SNaN it is converted to the corresponding QNaN (by setting
high-order bit of the fraction field to 1 before being placed into the target elem

if the element in register vA is a NaN
then the result is that NaN

else if the element in register vB is a NaN
then the result is that NaN
else if the element in register vC is a NaN

then the result is that NaN

2. If the instruction is either of the two vector convert to fixed-point word instructi
(vctuxs, vctsxs), the corresponding result is 0x0000_0000. VSCR[SAT] is not 
affected.

3. If the instruction is Vector Compare Bounds Floating-Point (vcmpbfp[.]), the 
corresponding result is 0xC000_0000.

4. If the instruction is one of the other three vector floating-point compare instruc
(vcmpeqfp[.], vcmpfgefp[.], vcmpbfp[.]), the corresponding result is 
0x0000_0000.

3.2.4.2  Invalid Operation Exception
An invalid operation exception occurs when a source value is invalid for the spe
operation. The invalid operations are as follows:

• Magnitude subtraction of infinities
• Multiplication of infinity by zero
• Vector Reciprocal Square Root Estimate Float (vrsqrtefp ) of a negative, nonzero 

number or -X
• Log base 2 estimate (vlogefp) of a negative, nonzero number or -X

The corresponding result is the QNaN 0x7FC0_0000. This is the single-precision f
analogy of the double precision format generated QNaN described in Chapter 3, “Op
Conventions,” in PowerPC: The Programming Environments Manual.

3.2.4.3  Zero Divide Exception
A zero divide exception occurs when a Vector Reciprocal Estimate Floating-Point (vrefp)
or Vector Reciprocal Square Root Estimate Floating-Point (vrsqrtefp ) instruction is
executed with a source value of zero.
MOTOROLA Chapter 3. Operand Conventions 3-15
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The corresponding result is infinity, where the sign is the sign of the source valu
follows:

• 1/+0.0 → +∞
• 1/-0.0 → -∞

•

•

3.2.4.4  Log of Zero Exception
A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-
instruction (vlogefp) is executed with a source value of zero. The corresponding res
infinity. The exception cases are as follows:

• vlogefp    log2(±0.0) → -∞
• vlogefp    log2(-x) → QNaN, where x≠0

3.2.4.5  Overflow Exception
An overflow exception happens when either of the following conditions occur:

• For an AltiVec instruction that would normally produce floating-point results, th
magnitude of what would have been the result if the exponent range were unbo
exceeds that of the largest finite single-precision number.

• For either of the two Vector Convert To Fixed-Point Word instructions (vctuxs, 
vctsxs), either a source value is an infinity or the product of a source value and
unsigned immediate value (UIMM) is a number too large to be represented in
target integer format.

The following actions are taken:

1. If the AltiVec instruction would normally produce floating-point results, the 
corresponding result is infinity, where the sign is the sign of the intermediate r

2. If the instruction is Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs), 
the corresponding result is 0xFFFF_FFFF if the source value is a positive numb
+X, and is 0x0000_0000 if the source value is a negative number or -X. VSCR[S
is set.

3. If the instruction is Vector Convert to Signed Fixed-Point Word Saturate (vcfsx), the 
corresponding result is 0x7FFF_FFFF if the source value is a positive number o
and is 0x8000_0000 if the source value is a negative number or -X. VSCR[SA
set.

3.2.4.6  Underflow Exception
Underflow exceptions occur only for AltiVec instructions that would normally prod
floating-point results. It is detected before rounding. It occurs when a nonzero interm

1 +0.0( )⁄ +∞→

1 0.0–( )⁄ -∞→
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result, computed as though both the precision and the exponent range were unbou
less in magnitude than the smallest normalized single-precision number (2-126).

The following actions are taken:

1. If VSCR[NJ] = 0, the corresponding result is the value produced by denormali
and rounding the intermediate result.

2. If VSCR[NJ] = 1, the corresponding result is a zero, where the sign is the sign o
intermediate result.

3.2.5  Floating-Point NaNs
The AltiVec floating-point data format is compliant with the Java/IEEE/C9X sing
precision format. A quantity in this format can represent a signed normalized num
signed denormalized number, a signed zero, a signed infinity, a quiet not a number (Q
or a signaling NaN (SNaN). 

3.2.5.1  NaN Precedence
Whenever only one source operand of an instruction that returns a floating-point res
NaN, then that NaN is selected as the input NaN to the instruction. When more tha
source operand is a NaN, the precedence order for selecting the NaN is first from vA then
from vB and then from vC. If the selected NaN is an SNaN, it is processed as describ
Section 3.2.5.2, “SNaN Arithmetic.” If the selected NaN is a QNaN, it is proce
according to Section 3.2.5.3, “QNaN Arithmetic.”

3.2.5.2  SNaN Arithmetic
Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the 
as specified by the IEEE standard when no trap occurs. The delivered QNaN is an
copy of the original SNaN except that it is quieted; that is, the most-significant bit (ms
the fraction is set to one (1).

3.2.5.3  QNaN Arithmetic
Whenever the input NaN to an instruction is a QNaN, it is propagated as the 
according to the IEEE standard. All information in the QNaN is preserved throug
arithmetic operations.

3.2.5.4  NaN Conversion to Integer
All NaNs convert to zero on conversions to integer instructions such as vctuxs and vctsxs.

3.2.5.5  NaN Production
Whenever the result of an AltiVec operation originates a NaN (for example, an in
operation), the NaN produced is a QNaN with the sign bit = 0, exponent field = 255
of the fraction field = 1, and all other bits = 0.
MOTOROLA Chapter 3. Operand Conventions 3-17
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Chapter 4  
Addressing Modes and Instruction Set 
Summary
40
40

This chapter describes instructions and addressing modes defined by the AltiVec Inst
Set Architecture (ISA) and according to the three levels of the PowerPC architecture
instruction set architecture (UISA), virtual environment architecture (VEA), and oper
environment architecture (OEA). AltiVec instructions are primarily UISA, and if otherw
they are noted in the chapter. These instructions are divided into the following categ

• Vector integer arithmetic instructions—These include arithmetic, logical, comp
rotate and shift instructions, described in Section 4.2.1, “Vector Integer 
Instructions.”

• Vector floating-point arithmetic instructions—These include floating-point 
arithmetic instructions, as well as a discussion on floating-point modes, describ
Section 4.2.2, “Vector Floating-Point Instructions.”

• Vector load and store instructions—These include load and store instructions 
vector registers, described in Section 4.2.3, “Load and Store Instructions.”

• Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select and shift instructions, described in Section 4.2.5
“Vector Permutation and Formatting Instructions.”

• Processor control instructions—These instructions are used to read and write
the AltiVec Status and Control Register, described in Section 4.2.6, “Processo
Control Instructions—UISA.”

• Memory control instructions—These instructions are used for managing of ca
(user level and supervisor level), described in Section 4.3.1, “Memory Control
Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that pro
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-
instructions operate on single-precision operands. The AltiVec ISA uses instruction
are four bytes long and word-aligned. It provides for byte, half-word, and word ope
fetches and stores between memory and the vector registers (VRs).

V

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-1
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Arithmetic and logical instructions do not read or modify memory. To use the content
memory location in a computation and then modify the same or another memory loc
the memory contents must be loaded into a register, modified, and then written to the
location using load and store instructions.

4.1  Conventions
This section describes conventions used for the AltiVec instruction set. Descriptio
memory addressing, synchronization, and the AltiVec exception summary follow.

4.1.1  Execution Model
When used with the PowerPC instructions, AltiVec instructions can be viewed b
programmer as simply new PowerPC instructions that are freely intermixed with ex
ones to provide additional features in the instruction set. PowerPC processors ap
execute instructions in program order. Some AltiVec implementations may not allow
of-order execution and completion. Non-data dependent vector instructions may iss
execute while longer latency previously issued instructions are still in the execution 
Register renaming is useful for AltiVec instructions to avoid stalling dispatch on 
dependencies and allow maximum register name reuse in heavily unrolled loops
execution of a sequence of instructions will not be interrupted by exceptions as the un
not report IEEE exceptions but rather produces the default results as specified 
Java/IEEE/C9X standards. The execution of a sequence of instructions may on
interrupted by a vector load or store instruction, otherwise AltiVec instructions do
generate any exceptions.

4.1.2  Computation Modes
The AltiVec ISA supports the following PowerPC architecture types of implementatio

•  64-bit implementations, in that all general-purpose and floating-point registers
some special-purpose registers (SPRs) are 64 bits long and effective address
64 bits long. All 64-bit implementations have two modes of operation: the defa
64-bit mode and 32-bit mode. The mode controls how an effective address is 
interpreted, how condition bits are set, and how the count register (CTR) is test
branch conditional instructions. 

The machine state register bit 0, MSR[SF], is used to choose between 64- and
modes. When MSR[SF] = 0, the processor runs in 32-bit mode, and when 
MSR[SF] = 1 the processor runs in the default 64-bit mode.

•  32-bit implementations, in that all registers except FPRs are 32 bits long and
effective addresses are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 
implementations unless otherwise stated.
4-2 AltiVec Technology Programming Environments Manual MOTOROLA
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4.1.3  Classes of Instructions
AltiVec instructions follows the illegal instruction class defined by the Powe
architecture in the section “Classes of Instructions” in Chapter 4, “Addressing Mode
Instruction Set Summary,” of the PowerPC Microprocessor Family: The Programmin
Environments Manual. For AltiVec ISA, all unspecified encodings within the major opco
(04) that are not defined are illegal PowerPC instructions. The only exclusion in de
an unspecified encoding is an unused bit in an immediate field or specifier field (///).

4.1.4  Memory Addressing
A program references memory using the effective (logical) address computed b
processor when it executes a load, store, or cache instruction, and when it fetches t
sequential instruction.

4.1.4.1  Memory Operands
Bytes in memory are numbered consecutively starting with zero. Each number 
address of the corresponding byte.

Memory operands may be bytes, half words, words, or quad words for AltiVec instruc
The address of a memory operand is the address of its first byte (that is, of its l
numbered byte). Operand length is implicit for each instruction. The AltiVec ISA sup
both big-endian and little-endian byte ordering. The default byte and bit ordering is
endian; see Section 3.1.2, “AltiVec Byte Ordering,” for more information.

The natural alignment boundary of an operand of a single-register memory a
instruction is equal to the operand length. In other words, the natural address of an o
is an integral multiple of the operand length. A memory operand is said to be aligne
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion
memory operands, see Section 3.1, “Data Organization in Memory.”

4.1.4.2  Effective Address Calculation
An effective address (EA) is the 64- or 32-bit sum computed by the processor wh
executing a memory access or when fetching the next sequential instruction. For a m
access instruction, if the sum of the EA and the operand length exceeds the maximu
the memory operand is considered to wrap around from the maximum EA through 
as described in the Chapter 4, “Addressing Modes and Instruction Set Summa
PowerPC Microprocessor Family: The Programming Environments Manual.

A zero in the rA field indicates the absence of the corresponding address componen
the absent component, a value of zero is used for the address. This is shown
instruction description as (rA|0).

In all implementations (including 32-bit mode in 64-bit implementations), the proce
can modify the three low-order bits of the calculated effective address before acc
memory if the PowerPC system is operating in little-endian mode. The double word
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-3
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quad word may be swapped as well. See Section 3.1.2, “AltiVec Byte Ordering,” for 
information about little-endian mode.

AltiVec load and store operations use register indirect with index mode and boundary
to generate effective addresses. For further details see Section 4.2.3.2, “Load an
Address Generation.”

4.2  AltiVec UISA Instructions
AltiVec instructions can provide additional supporting instructions to the Powe
architecture. This section discusses the instructions defined in the AltiVec user instr
set architecture (UISA).

4.2.1  Vector Integer Instructions
The following are categories for vector integer instructions:

• Vector integer arithmetic instructions
• Vector integer compare instructions
• Vector integer logical instructions
• Vector integer rotate and shift instructions

Integer instructions use the content of the vector registers (VRs) as source operan
place results into VRs as well. Setting the Rc bit of a vector compare instruction caus
PowerPC condition register (CR) to be updated.

The AltiVec integer instructions treat source operands as signed integers unle
instruction is explicitly identified as performing an unsigned operation. For exam
Vector Add Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned Byte
(vmuloub) instructions interpret both operands as unsigned integers.

4.2.1.1  Saturation Detection
Most integer instructions have both signed and unsigned versions and many hav
modulo (wrap-around) and saturating clamping modes. Saturation occurs whenev
result of a saturating instruction does not fit in the result field. Unsigned saturation c
results to zero on underflow and to the maximum positive integer value (2n-1, for example,
255 for byte fields) on overflow. Signed saturation clamps results to the sm
representable negative number (-2n-1, for example, -128 for byte fields) on underflow, a
to the largest representable positive number (2n-1-1, for example, +127 for byte fields) o
overflow. When a modulo instruction is used, the resultant number truncates overfl
underflow for the length (byte, half word, word, quad word) and type of operand (unsi
signed). The AltiVec ISA provides a way to detect saturation and sets the SAT bit 
Vector Status and Control Register (VSCR[SAT]) in a saturating instruction. 
4-4 AltiVec Technology Programming Environments Manual MOTOROLA
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Borderline cases that generate results equal to saturation values, for example unsign
→ 0 and unsigned byte 1+254 → 255, are not considered saturation conditions and do
cause VSCR[SAT] to be set.

The VSCR[SAT] can be set by the following types of integer, floating-point, and forma
instructions: 

• Move to VSCR (mtvscr)
• Vector add integer with saturation (vaddubs, vadduhs, vadduws, vaddsbs, 

vaddshs, vaddsws)
• Vector subtract integer with saturation (vsububs, vsubuhs, vsubuws, vsubsbs, 

vsubshs, vsubsws)
• Vector multiply-add integer with saturation (vmhaddshs, vmhraddshs)
• Vector multiply-sum with saturation (vmsumuhs, vmsumshs, vsumsws)
• Vector sum-across with saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs, 

vsum4ubs)
• Vector pack with saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, 

vpkswss)
• Vector convert to fixed-point with saturation (vctuxs, vctsxs) 

Note that only instructions that explicitly call for saturation can set VSCR[SAT]. Mod
integer instructions and floating-point arithmetic instructions never set VSCR[SAT]
further details see Section 2.1.1, “The Vector Status and Control Register (VSCR).”

4.2.1.2  Vector Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Vector Integer Arithmetic Instructions 

Name Mnemonic Syntax Operation

Vector Add 
Unsigned 
Integer [b,h,w] 
Modulo

vaddubm
vadduhm
vadduwm

vD,vA,vB Place the sum (vA[unsigned integer elements]) + (vB[unsigned 
integer elements]) into vD[unsigned integer elements] using 
modulo arithmetic. 

For b, byte, integer length = 8 bits =1 byte, add 16 unsigned 
integers from vA to the corresponding 16 unsigned integers from 
vB

For h, half word, integer length =16 bits = 2 bytes, add 8 unsigned 
integers from vA to the corresponding 8 unsigned integers from vB

For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned

integers from vA to the corresponding 4 unsigned integers from vB

Note: unsigned or signed integers can be used with these 
instructions
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-5
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Vector Add 
Unsigned 
Integer [b,h,w] 
Saturate

vaddubs
vadduhs
vadduws

vD,vA,vB Place the sum (vA[unsigned integer elements]) + (vB[unsigned 
integer elements]) into vD[unsigned integer elements] using 
saturate clamping mode. Saturate clamping mode means if the 
resulting sum is >(2n-1) saturate to (2n-1), where n = b,h,w.

For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned 
integers from vA to the corresponding 16 unsigned integers from 
vB

For h, half word, integer length = 16 bits = 2 bytes, add 8 unsigned 
integers from vA to the corresponding 8 unsigned integers formable

For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned 
integers from vA to the corresponding 4 unsigned integers from vB

If the result saturates, VSCR[SAT] is set.

Vector Add 
Signed 
Integer[b.h.w] 
Saturate

vaddsbs
vaddshs
vddsws

vD,vA,vB Place the sum (vA[signed integer elements]) + (vB[signed integer 
elements]) into vD[signed integer elements] using saturate 
clamping mode. Saturate clamping mode means:

if the sum is >(2n-1-1) saturate to (2n-1-1) and

if < (- 2n-1) saturate to (-2n-1), where n = b,h,w.

For b, byte, integer length = 8 bits = byte, add 16 signed integers 
from vA to the corresponding 16 signed integers from vB

For h, half word, integer length = 16 bits = 2 bytes, add 8 signed 
integers from vA to the corresponding 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, add 4 signed 
integers from vA to the corresponding 4 signed integers from vB

If the result saturates, VSCR[SAT] is set.

Vector Add 
and Write 
Carry-out 
Unsigned 
Word

vaddcuw v D,vA,vB Take the carry out of summing (vA) + (vB) and place it into vD.

For w, word, integer length = 32 bits = 2 bytes, add 4 unsigned 
integers from vA to the corresponding 4 unsigned integers from vB 
and the resulting carry outs are correspondingly placed in vD.

Vector 
Subtract 
Unsigned 
Integer 
Modulo

vsububm
vsubuhm
vsubuwm

vD,vA,vB Place the unsigned integer sum (vA) - (vB) into vD using modulo 
arithmetic.

For b, byte, integer length = 8 bits =1 byte, subtract 16 unsigned 
integers in vB from the corresponding 16 unsigned integers in vA

For h, half word, integer length = 16 bits = 2 bytes, subtract 8 
unsigned integers in vB from the corresponding 8 unsigned 
integers in vA

For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned 
integers in vB from the corresponding 4 unsigned integers in vA

Note that unsigned or signed integers can be used with these 
instructions

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector 
Subtract 
Unsigned 
Integer 
Saturate

vsububs
vsubuhs
vsubuws

vD,vA,vB Place the unsigned integer sum vA - vB into vD using saturate 
clamping mode, that is, if the sum < 0, it saturates to 0 
corresponding to b,h,w.

For b, byte, integer length = 8 bits = 1 byte, subtract 16 unsigned 
integers in vB from the corresponding 16 unsigned integers in vA

For h, half word, integer length =16 bits = 2 bytes, subtract 8 
unsigned integers in vB from the corresponding 8 unsigned 
integers in vA

For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned 
integers in vB from the corresponding 4 unsigned integers in vA

If the result saturates, VSCR[SAT] is set.

Vector 
Subtract 
Signed Integer 
Saturate

vsububs
vsubuhs
vsubuws

vD,vA,vB Place the signed integer sum (vA) - (vB) into vD using saturate 
clamping mode. Saturate clamping mode means:

if the sum is >(2n-1-1) saturate to (2n-1-1) and

if < (- 2n-1) saturate to (-2n-1), where n= b,h,w.

For b, byte, integer length = 8 bits = 1 byte, subtract 16 signed 
integers in vB from the corresponding 16 signed integers in vA

For h, half word, integer length = 16 bits = 2 bytes, subtract 8 
signed integers in vB from the corresponding 8 signed integers in 
vA

For w, word, integer length = 32 bits = 4 bytes, subtract 4 signed 
integers in vB from the corresponding 4 signed integers in vA

Vector 
Subtract and 
Write Carry-
out Unsigned 
Word

vasubcuw v D,vA,vB Take the carry out of the sum (vA) - (vB) and place it into vD.

For w, word, integer length = 32 bits = 2 bytes, subtract 4 unsigned 
integers in vB from the corresponding 4 unsigned integers in vA 
and place the resulting carry outs into vD.

Vector Multiply 
Odd Unsigned 
Integer [b,h] 
Modulo

vmuloub
vmulouh

vD,vA,vB Place the unsigned integer products of (vA) * (vB) into vD using 
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 odd-numbered 
unsigned integer byte elements from vA to the corresponding 8 
odd-numbered unsigned integer byte elements from vB resulting in 
8 unsigned integer half-word products in vD.

For h, half word, integer length =16 bits = 2 bytes, multiply 4 odd-
numbered unsigned integer half word elements from vA to the 
corresponding 4 odd numbered unsigned integer half-word 
elements from vB resulting in 4 unsigned integer word products in 
vD.

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector Multiply 
Odd Signed 
Integer [b,h] 
Modulo

vmulosb
vmulosh

vD,vA,vB Place the signed integer product of (vA) * (vB) into vD using 
modulo arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 odd-
numbered signed integer byte elements from vA to 8 odd-
numbered signed integer byte elements from vB resulting in 8 
signed integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 odd-
numbered signed integer half word elements from vA to 4 odd-
numbered signed integer half word elements from vB resulting in 4 
signed integer word products in vD.

Vector Multiply 
Even 
Unsigned 
Integer [b,h] 
Modulo

vmuleub
vmuleuh

vD,vA,vB Place the unsigned integer products of (vA) * (vB) into vD using 
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 even-
numbered unsigned integer byte elements from vA to 8 even-
numbered unsigned integer byte elements from vB resulting in 8 
unsigned integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 even-
numbered unsigned integer half-word elements from vA to 4 even 
numbered unsigned integer half- word elements from vB resulting 
in 4 unsigned integer word products in vD

Vector Multiply 
Even Signed 
Integer [b,h] 
Modulo

vmulesb
vmulesh

vD,vA,vB Place the signed integer product of (vA) * (vB) into vD using 
modulo arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 even-
numbered signed integer byte elements from vA to 8 even-
numbered signed integer byte elements from vB resulting in 8 
signed integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 even-
numbered signed integer half-word elements from vA to 4 even-
numbered signed integer half-word elements from vB resulting in 4 
signed integer word products in vD.

Vector 
Multiply-High 
and Add 
Signed Half-
Word Saturate

vmhaddshs v D,vA,vB, vC The 17 most significant bits (msb’s)of the product of (vA) * (vB) 
adds to sign-extended vC and places the result into vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply the 8 
signed half words from vA with the corresponding 8 signed half 
words from vB to produce a 32-bit intermediate product and then 
take the 17 msb’s (bits 0–16) of the 8 intermediate products and 
add them to the 8 sign-extended half words in vC, place the 8 half-
word saturated results in vD. If the intermediate product is as 
follows:

> (215–1) saturate to (215–1) and if

< –215 saturate to –215.

If the results saturates, VSCR[SAT] is set.

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector 
Multiply-High 
Round and 
Add Signed 
Half-Word 
Saturate

vmhraddshs v D,vA,vB,vC Add the rounded product of (vA) * (vB) to sign-extended vC and 
place the result into vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply the 8 
signed integers from vA to the corresponding 8 signed integers 
from vB and then round the 8 immediate products by adding the 
value 0x0000_4000 to it. Then add the most significant bits (msb’s), 
bits 0–16, of the 8 rounded immediate products to the 8 sign-
extended values in vC and place the 8 signed half-word saturated 
results into vD. If the intermediate product is:

> (215–1) saturate to (215–1) and if

< –215 saturate to –215.

If the result saturates, VSCR[SAT] is set.

Vector 
Multiply-Low 
and Add 
Unsigned 
Half-Word 
Modulo

vmladduhm v D,vA,vB,vC Add the product of (vA) * (vB) to zero-extended vC and place into 
vD.

For h, half word, integer length =16 bits = 2 bytes, multiply the 8 
signed integers from vA to the corresponding 8 signed integers 
from vB to produce a 32-bit intermediate product. The 16-bit value 
in vC is zero-extended to 32 bits and added to the intermediate 
product and the lower 16 bits of the sum (bit 16–31) is placed in vD.

Note that unsigned or signed integers can be used with these 
instructions

Vector 
Multiply-Sum 
Unsigned 
Integer [b,h] 
Modulo

vmsumubm
vmsumuhm

vD,vA,vB,vC The product of (vA) * (vB) is added to zero-extended vC and placed 
into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, multiply 4 unsigned 
integer bytes from a word element in vA by the corresponding 4 
unsigned integer bytes in a word element in vB and the sum of 
these products are added to the zero-extended unsigned integer 
word element in vC and then placed the unsigned integer word 
result into vD, following this process for each 4-word element in vA 
and vB.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 
unsigned integer half words from a word element in vA by the 
corresponding 2 unsigned integer half words in a word element in 
vB and the sum of these products are added to zero-extended 
unsigned integer word element in vC and then place the unsigned 
integer word result into vD, following this process for each 4 word 
element in vA and vB.

Vector 
Multiply-Sum 
Signed Half-
Word Saturate

vmsumshs v D,vA,vB,vC Add the product of (vA) * (vB) to vC and place the result into vD 
using saturate clamping mode.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed 
integer half words from a word element in vA by the corresponding 
2 signed integer half words in a word element in vB. Add the sum of 
these products to the signed integer word element in vC and then 
place the signed integer word result into vD, (following this process 
for each 4-word element in vA and vB). If the intermediate result is 
> (231–1), saturate to (231–1) and if the result is < -231, saturate to -
231.

If the result saturates, VSCR[SAT] is set.

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector 
Multiply-Sum 
Unsigned 
Half-Word 
Saturate

vmsumuhs v D,vA,vB,vC Add the product of (vA) * (vB) to zero-extended vC and place the 
result into vD using saturate clamping mode.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 
unsigned integer half words from a word element in vA by the 
corresponding 2 unsigned integer half words in a word element in 
vB. Add the sum of these products to the zero-extended unsigned 
integer word element in vC and then place the unsigned integer 
word result into vD, (following this process for each 4-word element 
in vA and vB). If the intermediate result is > (232–1) saturate to 
(232–1).

If the result saturates, VSCR[SAT] is set.

Vector 
Multiply-Sum 
Mixed Byte 
Modulo

vmsummbm v D,vA,vB,vC Add the product of (vA) * (vB) to vC and place into vD using 
modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, multiply 4 signed integer 
bytes from a word element in vA by the corresponding 4 unsigned 
integer bytes from a word element in vB. Add the sum of these 4 
signed products to the signed integer word element in vC and then 
place the signed integer word result into vD, following this process 
for each 4-word element in vA and vB.

Vector 
Multiply-Sum 
Signed Half-
Word Modulo

vmsumshm v D,vA,vB,vC Add the product of (vA) * (vB) to vC and place into vD using 
modulo arithmetic.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed 
integer half words from a word element in vA by the corresponding 
2 signed integer half words in a word element in vB. Add the sum of 
these 2 products to the signed integer word element in vC and then 
place the signed integer word result into vD, following this process 
for each 4-word element in vA and vB.

Vector Sum 
Across Signed 
Word Saturate

vsumsws v D,vA,vB Place the sum of signed word elements in vA and the word in 
vB[96–127] into vD.

For w, word, integer length = 32 bits = 4 bytes, add the sum of the 4 
signed integer word elements in vA to the word element in vB[96-
127]. If the intermediate product is > (231–1) saturate to (231–1) and 
if < –231 saturate to –231. Place the signed integer result in vD[96-
127],vD[0-95] are cleared.

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector Sum 
Across Partial 
(1/2) Signed 
Word Saturate

vsum2sws v D,vA,vB Add vA[word 0 + word 1] + vB[word 1] and place in vD[word 1]. 
Repeat only add vA[word 2 + word 3] + vB[word 3] and place in 
vD[word 3].

word 0 = Bits 0–31

word 1 = Bits 32-63

word 2 = Bits 64-95

word 3 = Bits 96-127,

See Figure1-2, “Big-Endian Byte Ordering for a Vector Register” for 
a picture of what the word elements would look like in a vector 
register.

Add the sum of word 0 and word 1 of vA to word 1 of vB using 
saturate clamping mode and place the result is into word 1of vD. 
Then add the sum of word 2 and word 3 of (vA) to word 3 of vB 
using saturate clamping mode and place those results into word 3 
in vD. If the intermediate result for either calculation is > (231–1) 
then saturate to (231–1) and if < –231 then saturate to –231.

Vector Sum 
Across Partial 
(1/4) Unsigned 
Byte Saturate

vsum4ubs v D,vA,vB Add vA[sum of 4 byte elements in word] and vB[word element] then 
place in vD[word element] using saturate clamping mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element 
in vB, add the sum of 4 unsigned bytes in the word in vA to the 
unsigned word element in vB and then place the results into the 
corresponding unsigned word element in vD. If the intermediate 
result for is > (232–1) it saturates to (232–1).

If the result saturates, VSCR[SAT] is set.

Vector Sum 
Across Partial 
(1/4) Signed 
Integer 
Saturate

vsum4sbs
vsum4shs

vD,vA,vB Add vA[sum of signed integer elements in word] and vB[word 
element] then place in vD[word element] using saturate clamping 
mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element 
in vB, add the sum of 4 signed bytes in the word in vA to the signed 
word element in vB and then place the results into the 
corresponding signed word element in vD. If the intermediate result 
is > (231–1) then saturate to (231–1) and if < –231 then saturate to 
–231. 

For h, half word, integer length = 16 bits = 2 bytes, for each word 
element in vB, add the sum of 2 signed half words in the word in vA 
to the signed word element in vB and then place the results into the 
corresponding signed word element in vD. If the intermediate result 
is > (231–1) then saturate to (231–1) and if < –231 then saturate to 
–231. 

If the result saturates, VSCR[SAT] is set.

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Vector 
Average 
Unsigned 
Integer

vavgub
vavguh
vavguw

vD,vA,vB Add the sum of (vA[unsigned integer elements]+ vB[unsigned 
integer elements]) +1 and place into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned 
integers from vA to 16 unsigned integers from vB and then add 1 to 
the sums and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add 8 unsigned 
integers from vA to 8 unsigned integers from vB and then add 1 to 
the sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned 
integers from vA to 4 unsigned integers from vB and then add 1 to 
the sums and place the high order result in vD.

If the result saturates, VSCR[SAT] is set.

Vector 
Average 
Signed Integer

vavgsb
vavgsh
vavgsw

vD,vA,vB Add the sum of (vA[signed integer elements]+ vB[signed integer 
elements]) +1 and place into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, add 16 signed integers 
from vA to 16 signed integers from vB and then add 1 to the sums 
and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add 8 signed 
integers from vA to 8 signed integers from vB and then add 1 to the 
sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add 4 signed 
integers from vA to 4 signed integers from vB and then add 1 to the 
sums and place the high order result in vD.

Vector 
Maximum 
Unsigned 
Integer

vmaxub
vmaxuh
vmaxuw

vD,vA,vB Compare the maximum of vA and vB unsigned integers for each 
integer value and which ever value is larger, place that unsigned 
integer value into vD

For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned 
integers from vA with 16 unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare 8 
unsigned integers from vA with 8 unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned 
integers from vA with 4 unsigned integers from vB.

Vector 
Maximum 
Signed Integer

vmaxsb
vmaxsh
vmaxsw

vD,vA,vB Compare the maximum of vA and vB signed integers for each 
integer value and which ever value is larger, place that signed 
integer value into vD

For b, byte, integer length = 8 bits =1 byte, compare 16 signed 
integers from vA with 16 signed integers from vB

For h, half word, integer length =16 bits = 2 bytes, compare 8 
signed integers from vA with 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed 
integers from vA with 4 signed integers from vB

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
4-12 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec UISA Instructions

nts of

x00,
perand
gister
bining

ed from

it can
ctor

on, as
4.2.1.3  Vector Integer Compare Instructions
The vector integer compare instructions algebraically or logically compare the conte
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (0xFF, 0xFFFF, 0xFFFFFFFF) or FALSE (0
0x0000, 0x00000000) elements of the size specified by the compare source o
element (byte, half word, or word). The result vector can be directed to any vector re
and can be manipulated with any of the instructions as normal data, for example, com
condition results.

Vector compares provide equal-to and greater-than predicates. Others are synthesiz
these by logically combining and/or inverting result vectors.

If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-3) 
optionally set the CR6 field of the PowerPC condition register. If Rc = 1 in the ve
integer compare instruction, then CR6 is set to reflect the result of the comparis
follows in Table 4-2.

Vector 
Minimum 
Unsigned 
Integer

vminub
vminuh
vminuw

vD,vA,vB Compare the minimum of vA and vB unsigned integers for each 
integer value and which ever value is smaller, place that unsigned 
integer value into vD

For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned 
integers from vA with 16 unsigned integers from vB

For h, half word, integer length = 16 bits = 2 bytes, compare 8 
unsigned integers from vA with 8 unsigned integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned 
integers from vA with 4 unsigned integers from vB

Vector 
Minimum 
Signed Integer

vminsb
vminsh
vminsw

vD,vA,vB Compare the minimum of vA and vB signed integers for each 
integer value and which ever value is smaller, place that signed 
integer value into vD.

For b, byte, integer length = 8 bits = 1 byte, compare 16 signed 
integers from vA with 16 signed integers from vB

For h, half word, integer length = 16 bits = 2 bytes, compare 8 
signed integers from vA with 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed 
integers from vA with 4 signed integers from vB

Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions  

CR 
Bit

CR6 
Bit

Vector Compare 

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared)

27 3 0

Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
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Table 4-3 summarizes the vector integer compare instructions.

Table 4-3. Vector Integer Compare Instructions 

Name Mnemonic Syntax Operation

Vector 
Compare
Greater 
than 
Unsigned 
Integer

vcmpgtub [.]
vcmpgtuh [.]
vcmpgtuw [.]

CR06,vD,vA,vB Compare the value in vA with the value in vB, treating the 
operands as unsigned integers. Place the result of the 
comparison into the vD field specified by operand vD.

if vA > vB then vD = 1’s; otherwise vD = 0’s

If the record bit (Rc) is set in the vector compare instruction then 

vD == 1’s, (all elements true) then CR6[0] is set

vD == 0’s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits = 1 byte, compare 16 
unsigned integers from vA to 16 unsigned integers from vB and 
place the results in the corresponding 16 elements in vD

For h, half word, integer length = 16 bits = 2 bytes, compare 8 
unsigned integers from vA to 8 unsigned integers from vB and 
place the results in the corresponding 8 elements in vD

For w, word, integer length = 32 bits = 4 bytes, compare 4 
unsigned integers from vA to 4 unsigned integers from vB and 
place the results in the corresponding 4 elements in vD.

Vector 
Compare
Greater 
Than 
Signed 
Integer

vcmpgtsb [.]
vcmpgtsh [.]
vcmpgtsw [.]

CR06,vD,vA,vB Compare the value in vA with the value in vB, treating the 
operands as signed integers. Place the result of the comparison 
into the vD field specified by operand vD

if vA > vB then vD =1’s; otherwise vD = 0’s

If the record bit (Rc) is set in the vector compare instruction then 

vD == 1’s, (all elements true) then CR6[0] is set

VD == 0’s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits = 1 byte, compare 16 signed 
integers from vA to 16 signed integers from vB

and place the results in the 16 corresponding elements in vD

For h, half word, integer length = 16 bits = 2 bytes, compare 8 
signed integers from vA to 8 signed integers from vB and place 
the results in the 8 corresponding elements in vD

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed 
integers from vA to 4 signed integers from vB and place the 
results in the 4 corresponding elements in vD
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4.2.1.4  Vector Integer Logical Instructions
The vector integer logical instructions shown in Table 4-4 perform bit-parallel opera
on the operands.

Vector 
Compare
Equal To 
Unsigned 
Integer

vcmpequb [.]
vcmpequh [.]
vcmpequw [.]

vD,vA,vB Compare the value in vA with the value in vB, treating the 
operands as unsigned integers. Place the result of the 
comparison into the vD field specified by operand vD.

if vA = vB then vD =1’s; otherwise vD = 0’s

If the record bit (Rc) is set in the vector compare instruction then 

vD == 1’s, (all elements true) then CR6[0] is set

VD == 0’s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits =1 byte, compare 16 unsigned 
integers from vA to 16 unsigned integers from vB and place the 
results in the corresponding 16 elements in vD

For h, half word, integer length =16 bits = 2 bytes, compare 8 
unsigned integers from vA to 8 unsigned integers from vB and 
place the results in the corresponding 8 elements in vD

For w, word, integer length=32 bits = 4 bytes, compare 4 
unsigned integers from vA to 4 unsigned integers from vB and 
place the results in the corresponding 4 elements in vD.

Note: vcmpequb [.], vcmpequh [.], and vcmpequw [.] can use 
both unsigned and signed integers

Table 4-4. Vector Integer Logical Instructions 

Name Mnemonic Syntax Operation

Vector Logical AND vand v D,vA,vB AND the contents of vA with vB and place the result into vD.

Vector Logical OR vor v D,vA,vB OR the contents of vA with vB and place the result into vD.

Vector Logical XOR vxor v D,vA,vB XOR the contents of vA with vB and place the result into vD.

Vector Logical AND 
with Complement

vandc v D,vA,vB AND the contents of vA with the complement of vB and place the 
result into vD.

Vector Logical NOR vnor v D,vA,vB NOR the contents of vA a with vB and place the result into vD.

Table 4-3. Vector Integer Compare Instructions (Continued)

Name Mnemonic Syntax Operation
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4.2.1.5  Vector Integer Rotate and Shift Instructions
The vector integer rotate instructions are summarized in Table 4-5.

The vector integer shift instructions are summarized in Table 4-6.

Table 4-5. Vector Integer Rotate Instructions 

Name Mnemonic Syntax Operation

Vector 
Rotate Left 
Integer

vrlb
vrlh
vrlw

vD,vA,vB Rotate each element in vA left by the number of bits specified in the low-
order log2(n) bits of the corresponding element in vB. Place the result 
into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 
16 integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA 
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA 
with 4 integers from vB

Table 4-6. Vector Integer Shift Instructions 

Name Mnemonic Syntax Operation

Vector 
Shift Left 
Integer

vslb
vslh
vslw

vD,vA,vB Shift each element in vA left by the number of bits specified in the low-order 
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit 0 
of the element they are lost. Supply zeros to the vacated bits on the right. 
Place the result into the corresponding element of vD

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16 
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA 
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4 
integers from vB

Vector 
Shift Right 
Integer

vsrb
vsrh
vsrw

vD,vA,vB Shift each element in vA right by the number of bits specified in the low-order 
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit 
n–1 of the element they are lost. Supply zeros to the vacated bits on the left. 
Place the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16 
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA 
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4 
integers from vB
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4.2.2  Vector Floating-Point Instructions
This section describes the vector floating-point instructions, that include the followin

• Vector floating-point arithmetic instructions
• Vector floating-point rounding and conversion instructions
• Vector floating-point compare instructions
• Vector floating-point estimate instructions

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard
quantity in this format represents: a signed normalized number, a signed denorm
number, a signed zero, a signed infinity, a quiet not a number (QNaN), or a signalling
(SNaN). Operations perform to a Java/IEEE/C9X-compliant subset of the IEEE stan
for further details on the Java or Non-Java mode see Section 3.2.1, “Floating-Point M
The AltiVec ISA does not report IEEE exceptions but rather produces default resu
specified by the Java/IEEE/C9X Standard, for further details on exceptions
Section 3.2.4, “Floating-Point Exceptions.”

4.2.2.1  Floating-Point Division and Square-Root
AltiVec instructions do not have division or square-root instructions. AltiVec I
implements Vector Reciprocal Estimate Floating-Point (vrefp) and Vector Reciprocal-
Square-Root Estimate Floating-Point (vrsqrtefp ) instructions along with a Vector Negativ
Multiply-Subtract Floating-Point (vnmsubfp) instruction assisting in the Newton-Raphso
refinement of the estimates. To accomplish division simply multiply the dividend (x/y
* 1/y) and square-root by multiplying the original number (√x = x * 1/√x). In this way, the
AltiVec ISA provides inexpensive divides and square-roots that are fully pipelined,
operation scheduled, and faster even than many hardware dividers. Methods are a
to further refine these to correct IEEE results, where necessary at the cost of add
software overhead.

Vector 
Shift Right 
Algebraic 
Integer

vsrab
vsrah
vsraw

vD,vA,vB Shift each element in vA right by the number of bits specified in the low-order 
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit 
n–1 of the element they are lost. Replicate bit 0 of the element to fill the 
vacated bits on the left. Place the result into the corresponding element of 
vD. 

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16 
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA 
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4 
integers from vB

Table 4-6. Vector Integer Shift Instructions (Continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-17



AltiVec UISA Instructions  

ere B is
t,

phson
its of

n
n be

iply-

 must
be less

ing:

orate
re, but
4.2.2.1.1  Floating-Point Division
The Newton-Raphson refinement step for the reciprocal 1/B looks like this:

y1 = y0 + y0*(1 - B*y0),  where y0 = recip_est(B)

This is implemented in the AltiVec ISA as follows:

y0 = vrefp(B)

 t = vnmsubfp(y0,B,1)

y1 = vmaddfp(y0,t,y0)

This produces a result accurate to almost 24 bits of precision (except in the case wh
a sufficiently small denormalized number that vrefp generates an infinity, that, if importan
must be explicitly guarded against).

To get a correctly rounded IEEE quotient from the above result, a second Newton-Ra
iteration is performed to get a correctly rounded reciprocal (y2) to the required 24 b
precision, then the residual.

R = A - B*Q

is computed with vnmsubfp (where A is the dividend, B the divisor, and Q a
approximation of the quotient from A*y2). The correctly rounded quotient can the
obtained.

Q' = Q + R*y2

The additional accuracy provided by the fused nature of the AltiVec instruction mult
add is essential to producing the correctly rounded quotient by this method.

The second Newton-Raphson iteration may ultimately not be needed but more work
be done to show that the absolute error after the first refinement step would always 
than 1 ulp, that is a requirement of this method.

4.2.2.1.2  Floating-Point Square-Root
The Newton-Raphson refinement step for reciprocal square root looks like the follow

y1 = y0 + 0.5*y0*(1 - B*y0*y0),   where y0 = recip_sqrt_est(B)

That can be implemented as follows:

y0 = vrsqrtefp(B)

t0 = vmaddfp(y0,y0,0.0)

t1 = vmaddfp(y0,0.5,0.0)

t0 = vnmsubfp(B,t0,1)

y1 = vmaddfp(t0,t1,y0)

Various methods can further refine a correctly rounded IEEE result—all more elab
than the simple residual correction for division, and therefore are not presented he
most of which also benefit from the negative multiply-subtract instruction. 
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4.2.2.2  Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-7.

4.2.2.3  Floating-Point Multiply-Add Instructions
Vector multiply-add instructions are critically important to performance since a mul
followed by a data dependent addition is the most common idiom in DSP algorithm
most implementations, floating-point multiply-add instructions will perform with the sa
latency as either a multiply or add alone, thus doubling performance in comparing 
otherwise serial multiply and adds.

AltiVec floating-point multiply-adds instructions fuse (a multiply-add fuse implies that
full product participates in the add operation without rounding, only the final result rou
This not only simplifies the implementation and reduces latency (by eliminating
intermediate rounding) but also increases the accuracy compared to separate multi
adds.

Be careful as Java-compliant programs can not use multiply-add instructions fused d
because Java requires both the product and sum to round separately. Thus to achie
Java compliance, perform the multiply and add with separate instructions.

Table 4-7. Floating-Point Arithmetic Instructions 

Name Mnemonic Syntax Operation

Vector 
Add 
Floating-
Point

vaddfp v D,vA,vB Add the 4-word (32-bit) floating-point elements in vA to the 4-word (32-bit) 
floating-point elements in vB. Round the four intermediate results to the 
nearest single-precision number and placed into vD.

Vector 
Subtract 
Floating-
Point

vsubfp v D,vA,vB The 4-word (32-bit) floating-point values in vB are subtracted from the 4 32-
bit values in vB. The four intermediate results are rounded to the nearest 
single-precision floating-point and placed into vD.

Vector 
Maximum
Floating-
Point 

vmaxfp v D,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding 4 single-precision word elements in vB

For each of the four elements, place the larger value within each pair into vD.

vmaxfp  is sensitive to the sign of 0.0. When both operands are ±0.0:

max(+0.0,±0.0) = max(±0.0,+0.0) ⇒  +0.0

max(-0.0,-0.0) ⇒  -0.0

max(NaN,x) ⇒  QNaN where x = any value

Vector 
Minimum 
Floating-
Point 

vminfp v D,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding 4 single-precision word elements in vB

For each of the four elements, place the smaller value within each pair into 
vD.

vminfp  is sensitive to the sign of 0.0. When both operands are ±0.0:

min(-0.0,±0.0) = min(±0.0,-0.0) ⇒  -0.0

min(+0.0,+0.0) ⇒  +0.0

min(NaN,x) ⇒  QNaN where x = any value
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To realize multiply in the AltiVec ISA use multiply-add instructions with a zero addend
example, vmaddfp vD,vA,vC,vB where (vB = 0.0).

Note that in order to use multiply-add instructions to perform an IEEE or Java-com
multiply, the addend must be -0.0. This is necessary to insure that the sign of a zero
is correct when the product is either +0.0 or -0.0 (+0.0 + -0.0 ⇒  +0.0, and -0.0 + -0.0 ⇒  -
0.0). When the sign of a resulting 0.0 is not important, then use +0.0 as the addend th
in some cases, avoiding the need for a second register to hold a -0.0 in addition to the
0/floating-point +0.0 that may already be available.

The floating-point multiply-add instructions are summarized in Table 4-8.

4.2.2.4  Floating-Point Rounding and Conversion Instructions
All AltiVec floating-point arithmetic instructions use the IEEE default rounding mo
round-to-nearest. The AltiVec ISA does not provide the IEEE directed rounding mod

The AltiVec ISA provides separate instructions for converting floating-point numbe
integral floatin
g-point values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin ) (round)
• Round-toward-zero (vrfiz ) (truncate)
• Round-toward-minus-infinity (vrfim ) (floor)
• Round-toward-positive-infinity (vrfip ) (ceiling).

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate
The floating-point rounding instructions are shown in Table 4-9.

Table 4-8. Floating-Point Multiply-Add Instructions 

Name Mnemonic Syntax Operation

Vector 
Multiply- 
Add 
Floating-
Point

vmaddfp v D,vA,vC,vB Multiply the four word floating-point elements in vA by the corresponding 
four word elements in vC. Add the four word elements in vB to the four 
intermediate products. Round the results to the nearest single-precision 
numbers and place the corresponding word elements into vD.

Vector 
Negative 
Multiply- 
Subtract 
Floating-
Point

vmmsubfp v D,vA,vC,vB Multiply the four word floating-point elements in vA by the corresponding 
four word elements in vC. Subtract the four word floating-point elements in 
vB from the four intermediate products and invert the sign of the 
difference. Round the results to the nearest single-precision numbers and 
place the corresponding word elements into vD.

Table 4-9. Floating-Point Rounding and Conversion Instructions 

Name Mnemonic Syntax Operation

Vector Round to 
Floating-Point Integer 
Nearest

fvrfin v D,vB Round to the nearest the four word floating-point elements in 
vB and place the four corresponding word elements into vD.
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4.2.2.5  Floating-Point Compare Instructions
This section describes floating-point unordered compare instructions.

All AltiVec floating-point compare instructions (vcmpeqfp, vcmpgtfp, vcmpgefp, and
vcmpbfp) return FALSE if either operand is a NaN. Not equal-to, not greater-than
greater-than-or-equal-to, and not-in-bounds NaNs compare to everything, incl
themselves.

Compares always return a Boolean mask (TRUE = 0x_FFFF_FFFF, FALS
0x_0000_0000) and never return a NaN. The vcmpeqfp instruction is recommended as th
Isnan(vX) test. No explicit unordered compare instructions or traps are provided. How
the greater-than-or-equal-to predicate (≥) (vcmpgefp) is provided—in addition to the > and
= predicates available for integer comparison—specifically to enable IEEE unor

Vector Round to 
Floating-Point Integer 
toward Zero

fvrfiz v D,vB Round towards zero the four word floating-point elements in 
vB and place the four corresponding word elements into vD.

Vector Round to 
Floating-Point Integer 
toward Positive 
Infinity

fvrfip v D,vB Round towards +Infinity the four word floating-point elements 
in vB and place the four corresponding word elements into 
vD.

Vector Round to 
Floating-Point Integer 
toward Minus Infinity

fvrfim v D,vB Round towards -Infinity the four word floating-point elements 
in vB and place the four corresponding word elements into 
vD.

Vector Convert from 
Unsigned Fixed-Point 
Word 

vcfux v D,vB, UIMM Convert each of the four unsigned fixed-point integer word 
elements in vB to the nearest single-precision value. Divide 
the result by 2UIMM and place into the corresponding word 
element of vD.

Vector Convert from 
Signed Fixed-Point 
Word 

vcfsx v D,vB, UIMM Convert each signed fixed-point integer word element in vB to 
the nearest single-precision value. Divide the result by 2UIMM 
and place into the corresponding word element of vD.

Vector Convert to 
Unsigned Fixed-Point 
Word Saturate

vctuxs v D,vB, UIMM Multiply each of the four single-precision word elements in vB 
by 2UIMM. The products are converted to unsigned fixed-point 
integers using the Round toward Zero mode. If the 
intermediate results are > 232–1 saturate to 232–1 and if it is < 
0 saturate to 0. Place the unsigned integer results into the 
corresponding word elements of vD.

Vector Convert to 
Signed Fixed-Point 
Word Saturate

vctsxs v D,vB, UIMM Multiply each of the four single-precision word elements in vB 
by 2UIMM. The products are converted to signed fixed-point 
integers using Round toward Zero mode. If the intermediate 
results are > 232–1 saturate to 232–1 and if it is < –231 
saturate to –231. Place the unsigned integer results into the 
corresponding word elements of vD.

Table 4-9. Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic Syntax Operation
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comparison that would not be possible with just the > and = predicates. Table 4-10 li
six common mathematical predicates and how they would be realized in AltiVec cod

Table 4-11 shows the remaining eight useful predicates and how they might be real
AltiVec code.

The vector floating-point compare instructions compares the elements in two v
registers word-by-word, interpreting the elements as single-precision numbers. Wi
exception of the Vector Compare Bounds Floating-Point (vcmpbfp) instruction they set the
target vector register, and CR[6] if Rc = 1, in the same manner as do the vector i
compare instructions.

Table 4-10. Common Mathematical Predicates

Case
Mathematical 

Predicate
AltiVec 

Realization 

Relations

a>b a<b a=b ?

1 a = b a = b F F T F

2 a ≠ b (?<>) ¬ (a = b) T T F T

3 a > b a > b T F F F

4 a < b b > a F T F F

5 a ≥ b ¬ (b > a) T F T *T

6 a ≤ b ¬ (a > b) F T T *T

5a a ≥ b a ≥ b T F T F

6a a ≤ b b ≥ a F T T F

* Note : cases 5 and 6 implemented with greater-than (vcmpgtfp  and vnor ) 
would not yield the correct IEEE result when the relation is unordered.

Table 4-11. Other Useful Predicates

Case Predicate
AltiVec

Realization

Relations

a>b a<b a=b ?

7 a ? b ¬ ((a=b) ∨  (b>a) ∨  (a>b)) F F F T

8 a <> b (a ≥ b) ⊕  (b ≥ a) T T F F

9  a <=> b (a ≥ b) ∨  (b ≥ a) T T T F

10 a ?> b ¬ (b ≥ a) T F F T

11 a ?>= b ¬ (b > a) T F T T

12 a ?< b ¬ (a ≥ b) F T F T

13 a ?<= b ¬ (a > b) F T T T

14 a ?= b ¬ ((a > b) ∨  (b > a)) F F T T
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The Vector Compare Bounds Floating-Point (vcmpbfp) instruction sets the target vecto
register, and CR[6] if Rc = 1, to indicate whether the elements in vA are within the bounds
specified by the corresponding element in vB, as explained in the instruction description.
single-precision value x is said to be within the bounds specified by a single-precision
y if (-y≤x≤y).

The floating-point compare instructions are summarized in Table 4-12.

Table 4-12. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation

Vector 
Compare
Greater 
Than 
Floating-
Point 
[Record]

vcmpgtfp [.] CR6, vD,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding four single-precision word elements in vB

For each element, if vA > vB then set the corresponding element in vD 
to all 1’s otherwise clear the element in vD to all 0’s

If the record bit (Rc = 1) is set in the vector compare instruction, then 

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector 
Compare
Equal to 
Floating-
Point 
[Record]

vcmpeqfp [.] CR6,vD,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding 4 single-precision word elements in vB.

For each element, if vA = vB then set the corresponding element in vD 
to all 1’s otherwise clear the element in vD to all 0’s

If the record bit (Rc = 1) is set in the vector compare instruction then 

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector 
Compare
Greater 
Than or 
Equal to 
Floating-
Point 
[Record]

vcmpgeqfp [.] CR6,vD,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding 4 single-precision word elements in vB.

For each element, if vA >= vB then set the corresponding element in 
vD to all 1’s otherwise clear the element in vD to all 0’s

If the record bit (Rc = 1) is set in the vector compare instruction then 

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector 
Compare
Bounds 
Floating-
Point 
[Record]

vcmpbfp [.] CR6,vD,vA,vB Compare each of the 4 single-precision word elements in vA to the 
corresponding single-precision word elements in vB. A 2-bit value is 
formed that indicates whether the element in vA is within the bounds 
specified by the element in vB, as follows.

Bit 0 of the two-bit value is cleared if the element in vA is <= to the 
element in vB, and is set otherwise.

Bit 1 of the two-bit value is cleared if the element in vA is >= to the 
negation of the element in vB, and is set otherwise.

The two-bit value is placed into the high-order two bits of the 
corresponding word element of vD and the remaining bits of the 
element are cleared to 0.

If Rc=1, CR6[2] is set when all four elements in vA are within the 
bounds specified by the corresponding element in vB
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4.2.2.6  Floating-Point Estimate Instructions
The floating-point estimate instructions are summarized in Table 4-13.

4.2.3  Load and Store Instructions
Only very basic load and store operations are provided in the AltiVec ISA. This keep
circuitry in the memory path fast so the latency of memory operations will be low. Ins
a powerful set of field manipulation instructions are provided to manipulate data int
desired alignment and arrangement after the data has been brought into the vector re

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aligned quad-word vector between memory and vector registers. Load vector e
indexed (lvebx, lvehx, lvewx) and store vector element indexed instructions (stvebx,
stvehx, stvewx) transfer byte, half-word, and word scalar elements between memory
vector registers. 

All vector loads and vector stores use the index (rA|0 + rB) addressing mode to specify th
target memory address. The AltiVec ISA does not provide any update forms. An lvebx,
lvehx, or lvewx instruction transfers a scalar data element from memory into the destina
vector register, leaving other elements in the vector with boundedly-undefined valu
stvebx, stvehx, or stvewx instruction transfers a scalar data element from the source v
register to memory leaving other elements in the quad word unchanged. No data alig
occurs, that is, all scalar data elements are transferred directly on their natural m
byte-lanes to or from the corresponding element in the vector register. Quad word m
accesses made by lvx, lvxl , stvx, and stvxl instructions are not guaranteed to be atom
Direct-store segments (T=1) are not supported. Any vector load or store that attem
access a direct-store segment will cause a DSI exception.

Table 4-13. Floating-Point Estimate Instructions 

Name Mnemonic Syntax Operation

Vector Reciprocal 
Estimate Floating-
Point

vrefp v D,vB Place estimates of the reciprocal of each of the four word floating-point 
source elements in vB in the corresponding four word elements in vD. 

Vector Reciprocal 
Square Root 
Estimate Floating-
Point

vrsqrtefp v D,vB Place estimates of the reciprocal square-root of each of the four word 
source elements in vB in the corresponding four word elements in vD.

Vector Log2 
Estimate Floating-
Point

vlogefp v D,vB Place estimates of the base 2 logarithm of each of the four word source 
elements in vB in the corresponding four word elements in vD. 

Vector 2 Raised to 
the Exponent 
Estimate Floating-
Point

vexptefp v D,vB Place estimates of 2 raised to the power of each of the four word source 
elements in vB in the corresponding four word elements in vD.
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4.2.3.1  Alignment
All memory references must be size aligned. If a vector load or store address is not p
size aligned, the suitable number of least significant bits are ignored, and a size a
transfer occurs instead. Data alignment must be performed explicitly after being br
into the registers. No assistance is provided to assist in aligning individual scalar ele
that are not aligned on their natural size boundary. However, assistance is provid
justifying non-size-aligned vectors. This is provided through the special Load Vector for
Shift Left (lvsl) and Load Vector for Shift Right (lvsr) instructions that compute the prope
Vector Permute (vperm) control vector from the misaligned memory address. For de
on how to use these instructions to align data see Section 3.1.6, “Quad-Word
Alignment.” 

The lvx, lvxl, stvx, and stvxl instructions can be used to move all sorts of data, not 
multimedia data, in typical PowerPC environments. Therefore, because vector loa
stores are size-aligned, care should be taken to align data on even quad-word bou
for maximum performance.

4.2.3.2  Load and Store Address Generation
Vector load and store operations generate effective addresses using register indire
index mode.

All AltiVec load and store instructions use register indirect with index addressing m
that cause the contents of two general-purpose registers (specified as operands rA and rB)
to be added in the generation of the effective address (EA). A zero in place of trA
operand causes a zero to be added to the contents of the GPR specified in rB. The option
to specify rA or 0 is shown in the instruction descriptions as (rA|0). If the address become
unaligned, for a half word, word, or quad word, when combining addresses (rA|0 + rB),
the effective address is ANDed with the appropriate zero values to boundary alig
address and is summarized in Table 4-14.

Figure 4-1 shows how an effective address is generated when using register indire
index addressing.

Table 4-14. Effective Address Alignment 

Operand Effective Address Bit Setting

Indexed Half word EA[63] 0b0

Indexed Word EA[62–63] 0b00

Indexed Quad word EA[60–63] 0b0000
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Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

4.2.3.3  Vector Load Instructions
For vector load instructions, the byte, half word, or word addressed by the EA (effe
address) is loaded into rD.

The default byte and bit ordering is big-endian as in the PowerPC architecture
Section 3.1.2, “AltiVec Byte Ordering,” for information about little-endian byte orderin

Table 4-15 summarizes the vector load instructions.

No

0 63

GPR (rA)

0

+

0 63

VR (vD)
Memory 
Interface

Store
Load

Yes

0 63

GPR (rB)

Instruction Encoding:

rA=0?

0 63

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode vD/vS rA rB Subopcode 0Reserved

Boundary 
Align EA
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The lvsl and lvsr instructions can be used to create the permute control vector to be
by a subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the val
EA[60-63]). The control vector created by lvsr causes the vperm to select the low-order 16
bytes of the result of shifting X || Y right by sh bytes. 

These instructions can also be used to rotate or shift the contents of a vector registerlvsl
or right lvsr by sh bytes. For rotating, the vector register to be rotated should be spe
as both the vA and the vB register for vperm. For shifting left, the vB register for vperm
should be a register containing all zeros and vA should contain the value to be shifted, a
vice versa for shifting right. For further examples on how to align the data see Section
“Quad-Word Data Alignment.” The default byte and bit ordering is big-endian as in
PowerPC architecture; see Section 3.1.2.2, “Little-Endian Byte Ordering,” for inform
about little-endian byte ordering.

Table 4-15. Integer Load Instructions 

Name Mnemonic Syntax Operation

Load Vector 
Element 
Integer 
Indexed

lvebx
lvehx
lvewx

vD,rA,rB The EA is the sum (rA|0) + (rB). Load the byte, half word, or word in 
memory addressed by the EA into the low-order bits of vD. The remaining 
bits in vD are set to boundedly undefined values.

Because memory must stay aligned, the EA is set to default to alignment:

For b, byte, integer length = 8 bits = 1 byte, 

For h, half word, integer length = 16 bits = 2 bytes, EA[62-63] is set to 0b0

For w, word, integer length= 32 bits = 4 bytes, EA[61-63] is set to 0b00

Load Vector 
Element 
Indexed

lvx v D,rA,rB The EA is the sum (rA|0) + (rB). Load the double word in memory 
addressed by the EA into vD.

Because memory needs to stay aligned, the EA is set to default to 
alignment:

For q, quad word, integer length =128 bits = 8 bytes, the EA[60-63] is set 
to 0b0000

LRU = 0

If the processor is in little-endian mode, load the double word in memory 
addressed by EA into vD[6–127] and load the double word in memory 
addressed by EA+8 into vD[0–63].

Load Vector 
Element 
Indexed LRU

lvxl v D,rA,rB The EA is the sum (rA|0) + (rB). Load the double word in memory 
addressed by the EA into vD.

For d, double word, integer length=64 bits = 4 bytes, the EA[60-63] is set 
to 0b0000

LRU =1, least recently used, hints that the quad word in the memory 
addressed by EA will probably not be needed again by the program in the 
near future.

If the processor is in little-endian mode, load the double word in memory 
addressed by EA into vD[64–127] and load the double word in memory 
addressed by EA+8 into vD[0–63].
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Table 4-16 summarizes the vector alignment instructions.

Table 4-16. Vector Load Instructions Supporting Alignment 

Name Mnemonic Syntax Operation

Load Vector 
for Shift Left

lvsl v D,rA,rB The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based on a 
table lookup place the value in vD

if sh = 0x0 then (vD)0:127 <- 
0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then (vD)0:127 <- 
0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then (vD)0:127 <- 
0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then (vD)0:127 <- 
0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then (vD)0:127 <- 
0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then vD)0:127 <- 
0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then (vD)0:127 <- 
0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then (vD)0:127 <- 
0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then (vD)0:127 <- 
0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD)0:127 <- 
0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then (vD)0:127 <- 
0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then (vD)0:127 <- 
0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then (vD)0:127 <- 
0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then (vD)0:127 <- 
0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then (vD)0:127 <- 
0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then (vD)0:127 <- 
0x0F101112131415161718191A1B1C1D1E
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Load Vector 
for Shift Right

lvsr v D,rA,rB The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based on the 
table lookup below place the value in vD

if sh = 0x0 then (vD)0:127 <- 
0x101112131415161718191A1B1C1D1E1F
if sh = 0x1 then (vD)0:127 <- 
0x0F101112131415161718191A1B1C1D1E
if sh = 0x2 then (vD)0:127 <- 
0x0E0F101112131415161718191A1B1C1D
if sh = 0x3 then (vD)0:127 <- 
0x0D0E0F101112131415161718191A1B1C
if sh = 0x4 then (vD)0:127 <- 
0x0C0D0E0F101112131415161718191A1B
if sh = 0x5 then (vD)0:127 <- 
0x0B0C0D0E0F101112131415161718191A
if sh = 0x6 then (vD)0:127 <- 
0x0A0B0C0D0E0F10111213141516171819
if sh = 0x7 then (vD)0:127 <- 
0x090A0B0C0D0E0F101112131415161718
if sh = 0x8 then (vD)0:127 <- 
0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD)0:127 <- 
0x0708090A0B0C0D0E0F10111213141516
if sh = 0xA then (vD)0:127 <- 
0x060708090A0B0C0D0E0F101112131415
if sh = 0xB then (vD)0:127 <- 
0x05060708090A0B0C0D0E0F1011121314
if sh = 0xC then (vD)0:127 <- 
0x0405060708090A0B0C0D0E0F10111213
if sh = 0xD then (vD)0:127 <- 
0x030405060708090A0B0C0D0E0F101112
if sh = 0xE then (vD)0:127 <- 
0x02030405060708090A0B0C0D0E0F1011
if sh = 0xF then (vD)0:127 <- 
0x0102030405060708090A0B0C0D0E0F10

Table 4-16. Vector Load Instructions Supporting Alignment (Continued)
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4.2.3.4  Vector Store Instructions 
For vector store instructions, the contents of vector register used as a source (vS) are stored
into the byte, half word, word or quad word in memory addressed by the effective ad
(EA). Table 4-17 provides a summary of the vector store instructions.

4.2.4  Control Flow
AltiVec instructions can be freely intermixed with existing PowerPC instructions to fo
complete program. AltiVec instructions do provide a vector compare and select mech
to implement conditional execution as the preferred mechanism to control data fl
AltiVec programs. And AltiVec vector compare instructions can update the cond
register thus providing the communication from AltiVec execution units to Powe
branch instructions necessary to modify program flow based on vector data.

4.2.5  Vector Permutation and Formatting Instructions
Vector pack, unpack, merge, splat, permute, and select can be used to accelerate
vector math and vector formatting. Details of the various instructions follow.

Table 4-17. Integer Store Instructions 

Name Mnemonic Syntax Operation

Store Vector 
Element 
Integer 
Indexed

svetbx
svethx
svetwx

vS,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of the low-order bits of 
vS into the integer in memory addressed by the EA.

Because memory needs to stay aligned, the EA is set to default to 
alignment:

For b, byte, integer length = 8 bits =1 byte, 

For h, half word, integer length = 16 bits = 2 bytes, EA[62–63] is set to 0b0

For w, word, integer length = 32 bits = 4 bytes, EA[61–63] is set to 0b00

Store Vector 
Element 
Indexed

stvx v S,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word 
in memory addressed by the EA.

For q, quad word, integer length = 64 bits = 4 bytes, the EA[60–63] is set to 
0b0000

LRU = 0

If the processor is in little-endian mode, store the contents of vS[64–127] 
into the double word in memory addressed by EA, and store the contents of 
vS[0–63] into the double word in memory addressed by EA+8.

Store Vector 
Element 
Indexed 
LRU

stvxl v D,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word 
in memory addressed by the EA.

For d, double word, integer length=64 bits = 4 bytes, the EA[60–63] is set to 
0b0000

LRU = 1, least recently used, hints that the quad word in the memory 
addressed by EA will probably not be needed again by the program in the 
near future.

If the processor is in little-endian mode, store the contents of vS[64–127] 
into the double word in memory addressed by EA, and store the contents of 
vS[0–63] into the double word in memory addressed by EA+8.
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4.2.5.1  Vector Pack Instructions
Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single re
sixteen bytes (quad word) using either modulo(28), 8-bit signed-saturation, or 8-bi
unsigned-saturation to perform the truncation. Similarly, word vector pack instruc
(vpkuwum, vpkuwus, vpkswus, vpksws) truncate the eight words from two concatenat
source operands producing a single result of eight half words using modulo(2^16), 
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

One special purpose form of Vector Pack Pixel (vpkpx) instruction is provided that pack
eight 32-bit (8/8/8/8) pixels from two concatenated source operands into a single re
eight 16-bit 1/5/5/5 αRGB pixels. The least significant bit of the first 8-bit element becom
the 1-bit α field, and each of the three 8-bit R, G, and B fields are reduced to 5 b
discarding the 3 lsbs.

Table 4-18 describes the vector pack instructions.

Table 4-18. Vector Pack Instructions 

Name Mnemonic Syntax Operation

Vector 
Pack 
Unsigned 
Integer 
[h,w] 
Unsigned 
Modulo

vpkuhum
vpkuwum

vD, vA, vB Concatenate the low-order unsigned integers of vA and the low-order 
unsigned integers of vB and place into vD using unsigned modulo 
arithmetic. vA is placed in the lower order double word of vD and vB is 
placed into the higher order double word of vD. 

For h, half word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in 
other words the 8 low-order bytes of the half words from vA and vB

For w, word, integer length = 32 bits = 4 bytes,4 unsigned integers, in other 
words the 4 low-order half words of the words from vA and vB

Vector 
Pack 
Unsigned 
Integer 
[h,w] 
Unsigned 
Saturate

vpkuhus
vpkuwus

vD, vA, vB Concatenate he low-order unsigned integers of vA and the low-order 
unsigned integers of vB and place into vD using unsigned saturate 
clamping mode. vA is placed in the lower order double word of vD and vB 
is placed into the higher order double word of vD. 

For h, half word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in 
other words the 8 low-order bytes of the half words from vA and vB

For w, word, integer length = 32 bits = 4 bytes,4 unsigned integers, in other 
words the 4 low-order words of the half words from vA and vB

Vector 
Pack 
Signed 
Integer 
[h,w] 
Unsigned 
Saturate

vpkshus
vpkswus

vD, vA, vB Concatenate the low-order signed integers of vA and the low-order signed 
integers of vB and place into vD using unsigned saturate clamping mode. 
vA is placed in the lower order double word of vD and vB is placed into the 
higher order double word of vD. 

For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in 
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other 
words the 4 low-order half words of the words from vA and vB
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4.2.5.2  Vector Unpack Instructions
Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one s
operand into 8 half words using sign extension to fill the MSBs. Half word vector un
instructions unpack the 4 low half words (or 4 high half words) of one source operan
4 words using sign extension to fill the MSbs.

A special purpose form of vector unpack is provided, the Vector Unpack Low P
(vupklpx ) and the Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacks the four low 1/5/5/5 pixels (or four 1/
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit α element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 

Vector 
Pack 
Signed 
Integer 
[h,w] 
Unsigned 
Saturate

vpkshss
vpkswss

vD, vA, vB Concatenate the low-order signed integers of vA and the low-order signed 
integers of vB are concatenated and place into vD using signed saturate 
clamping mode. vA is placed in the lower order double word of vD and vB 
is placed into the higher order double word of vD. 

For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in 
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other 
words the 4 low-order half words of the words from vA and vB

Vector 
Pack Pixel

vpkpx v D, vA, vB Each word element in vA and vB is packed to 16 bits and the half word is 
placed into vD. Each word from vA and vB is packed to 16 bits in the 
following order:

[bit 7 of the first byte (bit 7 of the word)]

[bits 0–4 of the second byte (bits 8–12 of the word)

[bits 0–4 of the third byte (bits 16–20 of the word)]

[bits 0–4 of the fourth byte (bits 24–28 of the word)]

vA half words are placed in the lower order double word of vD and vB half 
words are placed into the higher order double word of vD. 

For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in 
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other 
words the 4 low-order half words of the words from vA and vB

Table 4-18. Vector Pack Instructions (Continued)

Name Mnemonic Syntax Operation
4-32 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec UISA Instructions

ource
tions
ing a
 (or 2
erge

SIMD
Table 4-19 describes the unpack instructions.

4.2.5.3  Vector Merge Instructions
Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two s
operands producing a result of 16 bytes. Similarly, half-word vector merge instruc
interleave the 4 low half words (or 4 high half words) of two source operands produc
result of 8 half words, and word vector merge instructions interleave the 2 low words
high words) from two source operands producing a result of 4 words. The vector m
instruction has many uses, notable among them is a way to efficiently transpose 
vectors. Table 4-20 describes the merge instructions.

Table 4-19. Vector Unpack Instructions 

Name Mnemonic Syntax Operation

Vector 
Unpack 
High 
Signed
Integer

vupkhsb
vupkhsh

vD, vB Each signed integer element in the high order double word of vB is sign 
extended to fill the MSBs in a signed integer and then is placed into vD. 

For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the high 
order double word of vB are unpacked and sign extended to 8 half words 
into vD.

For h, half word, integer length = 16 bits = 2 bytes, 8 signed half words 
from the high order double word of vB are unpacked and sign extended to 
4 words into vD

Vector 
Unpack 
High Pixel

vupkhpx v D, vB Each half-word element in the high order double word of vB is unpacked 
to produce a 32-bit word that is then placed in the same order into vD. 

A half-word element is unpacked to 32 bits by concatenating, in order, the 
results of the following operations.

sign-extend bit 0 of the half word to 8 bits
zero-extend bits 1–5 of the half word to 8 bits
zero-extend bits 6–10 of the half word to 8 bits
zero-extend bits 11–15 of the half word to 8 bits

Vector 
Unpack 
Low 
Signed
Integer

vupklsb
vupklsh

vD, vB Each signed integer element in the low-order double word of vB is sign 
extended to fill the MSBs in a signed integer and then is placed into vD. 

For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the low-
order double word of vB are unpacked and sign extended to 8 half words 
into vD.

For h, half word, integer length = 16 bits = 2 bytes, 8 signed half words 
from the low-order double word of vB are unpacked and sign extended 
into 4 words in vD

Vector 
Unpack 
Low Pixel

vupklpx v D, vB Each half-word element in the low-order double word of vB is unpacked to 
produce a 32-bit word that is then placed in the same order into vD. 

A half-word element is unpacked to 32 bits by concatenating, in order, the 
results of the following operations.

sign-extend bit 0 of the half word to 8 bits
zero-extend bits 1–5 of the half word to 8 bits
zero-extend bits 6–10 of the half word to 8 bits
zero-extend bits 11–15 of the half word to 8 bits
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4.2.5.4  Vector Splat Instructions
When a program needs to perform arithmetic vector, the vector splat instructions c
used in preparation for performing arithmetic for which one source vector is to cons
elements that all have the same value (for example, multiplying all elements of a V
Register by a constant). Vector splat instructions can be used to move data whe
required. For example to multiply all elements of a vector register by a constant, the 
splat instructions can be used to splat the scalar into the vector register. Likewise
storing a scalar into an arbitrary memory location, it must be splatted into a vector re
and that register specified as the source of the store. This will guarantee that th
appears in all possible positions of that scalar size for the store. Table 4-21 descri
vector splat instructions.

Table 4-20. Vector Merge Instructions 

Name Mnemonic Syntax Operation

Vector 
Merge 
High 
Integer

vmrghb
vmrghh
vmrghw

vD, vA, vB Each integer element in the high order double word of vA is placed into the 
low-order integer element in vD. Each integer element in the high order 
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the high order 
double word of vA are placed into the low-order byte of each half word in 
vD and 8 bytes from the high order double word of vB are placed into the 
high order byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the 
high order double word of vA are placed into the low-order half word of 
each word in vD and 4 half words from the high order double word of vB are 
placed into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the high order 
double word of vA are placed into the low-order word of each double word 
in vD and 2 words from the high order double word of vB are placed into the 
high order word of each double word in vD.

Vector 
Merge 
Low 
Integer

vmrglb
vmrglh
vmrglw

vD, vA, vB Each integer element in the low-order double word of vA is placed into the 
low-order integer element in vD. Each integer element in the low-order 
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the low-order 
double word of vA are placed into the low-order byte of each half word in 
vD and 8 bytes from the low-order double word of vB are placed into the 
high order byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the 
low-order double word of vA are placed into the low-order half word of each 
word in vD and 4 half words from the low-order double word of vB are 
placed into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the low-order 
double word of vA are placed into the low-order word of each double word 
in vD and 2 words from the low-order double word of vB are placed into the 
high order word of each double word in vD.
4-34 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec UISA Instructions

 to any
 field
ector
ns.
ment
 3.1.6,

pare
sed

 of the
ction

e 
4.2.5.5  Vector Permute Instructions
Permute instructions allow any byte in any two source vector registers to be directed
byte in the destination vector. The fields in a third source operand specify from which
in the source operands the corresponding destination field will be taken. The V
Permute (vperm) instruction is a very powerful one that provides many useful functio
For example, it provides a good way to perform table-lookups and data align
operations. An example of how to use the command in aligning data see Section
“Quad-Word Data Alignment.” Table 4-22 describes the vector permute instruction.

4.2.5.6  Vector Select Instruction
Data flow in the vector unit can be controlled without branching by using a vector com
and the vector select (vsel) instructions. In this use, the compare result vector is u
directly as a mask operand to vector select instructions.The vsel instruction selects one field
from one or the other of two source operands under control of its mask operand. Use
TRUE/FALSE compare result vector with select in this manner produces a two instru
equivalent of conditional execution on a per-field basis. Table 4-23 describes thvsel
instruction.

Table 4-21. Vector Splat Instructions

Name Mnemonic Syntax Operation

Vector 
Splat 
Integer

vspltb
vsplth
vspltw

vD, vB, UIMM Replicate the contents of element UIMM in vB and place into each 
element in vD.

For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

For h, half word, integer length =16 bits = 2 bytes, each element is a half 
word.

For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a 
word.

Vector 
Splat 
Immediat
e Signed 
Integer

vspltisb
vspltish
vspltisw

vD, SIMM Sign-extend the value of the SIMM field to the length of the element and 
replicate that value and place into each element in vD.

For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

For h, half word, integer length =16 bits = 2 bytes, each element is a half 
word.

For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a 
word.

Table 4-22. Vector Permute Instruction

Name Mnemonic Syntax Operation

Vector 
Permute

vperm v D, vA,vB,vC vC specifies which bytes from vA and vB are to be copied and placed 
into the byte elements in vD.
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4.2.5.7  Vector Shift Instructions
The vector shift instructions shift the contents of a vector register or of a pair of v
registers left or right by a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr).
Depending on the instruction, this shift count is specified either by low-order bits
vector register or by an immediate field in the instruction. In the former case the low-
7 bits of the shift count register give the shift count in bits (0 ≤ count ≤ 127). Of these 7 bits,
the high-order 4 bits give the number of complete bytes by which to shift and are us
vslo and vsro; the low-order 3 bits give the number of remaining bits by which to shift 
are used by vsl and vsr.

There are two methods of specifying an inter-element shift or rotate of two source 
registers, extracting 16 bytes as the result vector. There is also a method for shifting a
source vector register left or right by any number of bits.

Table 4-24 describes the various vector shift instructions.

4.2.5.7.1  Immediate Interelement Shifts/Rotates
The Vector Shift Left Double by Octet Immediate (vsidoi) instruction provides the basic
mechanism that can be used to provide inter-element shifts and/or rotates. This inst
is like a vperm, except that the shift count is specified as a literal in the instruction ra
than as a control vector in another vector register, as is required by vperm. The result vector
consists of the left-most 16 bytes of the rotated 32-byte concatenation of vA:vB, where shift
(SH) is the rotate count. Table 4-25 below enumerates how various shift functions c
achieved using the vsidoi instruction.

Table 4-23. Vector Select Instruction

Name Mnemonic Syntax Operation

Vector 
Select

vsel v D,vA,vB,vC For each bit, compare the value in vC to the value 0b0 and if it equals 0b0 
then load vD with vA’s corresponding bit value otherwise compare the 
value in vC to the value 0b1 and if it equals 0b1 then load vD with vB’s 
corresponding bit value.

Table 4-24. Vector Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift Left vsl v D,vA,vB Shift vA left by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is boundely undefined

Vector Shift Left 
Double by Octet 
Immediate

vsldoi v D,vA,vB,SH Shift vB left by the 3 lsbs of SH value and then OR with vA, 
place the result is into vD

If vB value in invalid, the default result is 0 

Vector Shift Left 
by Octet

vslo v D,vA,vB Shift vA left by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is 0b000

Vector Shift 
Right by Octet

vsro v D,vA,vB Shift vA right by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is 0b000
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4.2.5.7.2  Computed Interelement Shifts/Rotates
The Load Vector for Shift Left (lvsl) instruction and Load Vector for Shift Right (lvsr)
instruction are supplied to assist in shifting and/or rotating vector registers by an a
determined at run time. The input specifications have the same form as the vector lo
store instructions, that is, it uses register indirect with index addressing mode(rA|0 +rB).
This is because one of their primary purposes is to compute the permute control 
necessary for post-load and pre-store shifting necessary for dealing with unaligned v

This lvsl instruction can be used to align a big-endian unaligned vector after loading
(aligned) vectors that contain its pieces. The lvsl instruction can be used to unalign a vec
tor register for use in a read-modify-write sequence that will store an unaligned little
endian vector.

The lvsr instruction can be used to align a little-endian unaligned vector after loading
(aligned) vectors that contain its pieces. The lvsl instruction can be used to unalign a vec
tor register for use in a read-modify-write sequence that will store an unaligned big-e
vector.

For an example on how the lvsl instruction is used to align a vector in big-endian mode 
Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode.” Fo
example on how lvsr is used to align a vector in little-endian mode see Section 3.1
“Accessing a Misaligned Quad Word in Little-Endian Mode.”

4.2.5.7.3  Variable Interelement Shifts
A vector register may be shifted left or right by a number of bits specified in a v
register. This operation is supported with four instructions, two for right shift and tw
left shift.

The Vector Shift Left by Octet (vslo) and Vector Shift Right by Octet (vsro) instructions
shift a vector register from 0 to 15 bytes as specified in bits 121–124 of another 

Table 4-25. Coding Various Shifts and Rotates with the vsidoi Instruction

To Get This: Code This:

Operation sh Instruction Immediate vA vB

rotate left double 0–15 vsidoi 0–15 MSV LSV

rotate left double 16–31 vsidoi mod16(SH) LSV MSV

rotate right double 0–15 vsidoi 16–sh MSV LSV

rotate right double 16–31 vsidoi 16–mod16(SH) LSV MSV

shift left single, zero fill 0–15 vsidoi 0–15 MSV 0x0

shift right single, zero fill 0–15 vsidoi 16–SH 0x0 MSV

rotate left single 0–15 vsidoi 0–15 MSV =VA

rotate right single 0–15 vsidoi 16–SH MSV =VA
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register. The Vector Shift Left (vsl) and Vector Shift Right (vsr) instructions shift a vector
register from 0 to 7 bits as specified in another vector register (the shift count mu
specified in the three lsbs of each byte in the vector and must be identical in all bytes
result is boundedly undefined). In all of these instructions, zeros are shifted into va
element and bit positions.

Used sequentially with the same shift-count vector register, these instructions will s
vector register left or right from 0 to 127 bits as specified in bits 121–127 of the shift-
vector register. For example:

vslo      VZ, VX, VY
vspltb    VY, VY, 15
vsl       VZ, VZ, VY

will shift vX by the number of bits specified in vY and place the results in vZ.

With these instructions a full double-register shift can be performed in seven instruc
The following code will shift vW||vX left by the number of bits specified in vY placing the
result in vZ:

vslo      t1, VW, VY ; shift the most significant. register left
vspltb    VY, VY, 15
vsl       t1, t1, VY
vsububm   VY, V0, VY ; adjust count for right shift (V0=0)
vsro      t2, VX, VY ; right shift least sign. register
vsr       t2, t2, VY
vor       VZ, t1, t2 ; merge to get the final result

4.2.6  Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the PowerPC co
register (CR), machine state register (MSR), and special-purpose registers (SPR
Chapter 4, “Addressing Mode and Instruction Set Summary,” in PowerPC: The
Programming Environments Manual, for information about the instructions used fo
reading from and writing to the MSR and SPRs.

4.2.6.1  AltiVec Status and Control Register Instructions
Table 4-26 summarizes the instructions for reading from or writing to the AltiVec status
and control register (VSCR). For more information on VSCR see section in Section 2.
“The Vector Status and Control Register (VSCR).”

Table 4-26. Move to/from Condition Register Instructions 

Name Mnemonic Syntax Operation

Move to AltiVec Status and Control 
Register 

mtvscr CRM,rS Place the contents of vB into VSCR.

Move from AltiVec Status and Control 
Register 

mfvscr v B Place the contents of VSCR into vB.
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4.2.7  Recommended Simplified Mnemonics
To simplify assembly language programs, a set of simplified mnemonics is provide
some of the most frequently used operations (such as no-op, load immediate, load a
move register, and complement register). Assemblers should provide the simp
mnemonics listed below. Programs written to be portable across the various assemb
the PowerPC architecture should not assume the existence of mnemonics not desc
this document.

Simplified mnemonics are provided for the Data Stream Touch (dst) and Data Stream Touch
for Store (dstst) instructions so that they can be coded with the transient indicator as
of the mnemonic rather than as a numeric operand. Similarly, simplified mnemonic
provided for the Data Stream Stop (dss) instruction so that it can be coded with the 
streams indicator as part of the mnemonic. These are shown as examples w
instructions in Table 4-27. 

4.3  AltiVec VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics o
memory model that can be assumed by software processes, and includes description
cache model, cache-control instructions, address aliasing, and other related 
Implementations that conform to the VEA also adhere to the UISA, but may not neces
adhere to the OEA. For further details see Chapter 4, “Addressing Mode and Instructi
Summary,” in PowerPC: The Programming Environments Manual.

This section describes the additional instructions that are provided by the AltiVec IS
the VEA.

4.3.1  Memory Control Instructions—VEA
Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Segment lookaside buffer management instructions
• Translation lookaside buffer (TLB) management instructions

Table 4-27. Simplified Mnemonics for Data Stream Touch (dst) 

Operation Simplified Mnemonic Equivalent to

Data Stream Touch (non-transient) dst r A, rB, STRM  dst  rA, rB, STRM,0

Data Stream Touch Transient dstt r A, rB, STRM  dst  rA, rB, STRM,1

Data Stream Touch for Store (non-transient) dstst r A, rB, STRM  dstst  rA, rB, STRM,0

Data Stream Touch for Transient dststt r A, rB, STRM  dststt  rA, rB, STRM,1

Data Stream Stop (one stream) dss STRM  dss STRM,0

Data Stream Stop All dssall  dss 0 ,1
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This section describes the user-level cache management instructions defined by th
See Chapter 4, “Addressing Mode and Instruction Set Summary,” in PowerPC: The
Programming Environments Manual for more information about supervisor-level cach
segment register manipulation, and TLB management instructions.

4.3.2  User-Level Cache Instructions—VEA
The instructions summarized in this section provide user-level programs the abil
manage on-chip caches if they are implemented. See Chapter 5, “Cache Mod
Memory Coherency,” in PowerPC: The Programming Environments Manual for more
information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the progra
through the use of cache management instructions. These instructions provide a w
software to communicate to the cache hardware how it should prefetch and pri
writeback of data. The principal instruction for this purpose is a software directed 
prefetch instruction called Data Stream Touch (dst). Other related instructions are provide
for complete control of the software directed cache prefetch mechanism.

Table 4-28 summarizes the directed prefetch cache instructions defined by the VEA
that these instructions are accessible to user-level programs.

Table 4-28. User-Level Cache Instructions 

Name Mnemonic Syntax Operation

Data 
Stream 
Touch

dst r A,rB,STRM,T This instruction associates the data stream specified by the contents of rA 
and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the 
cache blocks containing the specified data stream are fetched into the data 
cache, because the program will probably soon load from the stream, and 
that prefetching from any data stream that was previously associated with 
the specified stream ID is no longer needed. The hint is ignored for blocks 
that are Caching Inhibited.

The specified data stream is defined by the following.

EA: (rA), where rA ^= 0
unit size: (rB)[35–39 {3–7 for 32-bit implementations}] if (rB)[35-39 

{3–7for 32-bit implementations)}] ^= 0; otherwise 32
count: (rB)[40–47 {8–15for 32-bit implementations}] if (rB)[40–47 

{8–15for 32-bit implementations}] ^= 0; otherwise 256
stride: (rB)[48–63 {16–31for 32-bit implementations}] if (rB)[48–63 

{16–31for 32-bit implementations}] ^= 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be 
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid.

V
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Data 
Stream 
Touch

dstt r A,rB,STRM,T This instruction associates the data stream specified by the contents of 
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the 
cache blocks containing the specified data stream are not fetched into the 
data cache, because the program will probably not load from the 
stream.That is, the data stream will be relatively transient in nature. That is, 
it will have poor locality and is likely to be referenced a very few times or 
over a very short period of time. The memory subsystem can use this 
persistent/transient knowledge to manage the data as is most appropriate 
for the specific design of the cache/memory hierarchy of the processor on 
which the program is executing. An implementation is free to ignore dstt , 
in that case it should simply be executed as a dst.  However, software 
should always attempt to use the correct form of dst or dstt regardless of 
whether the intended processor implements dstt or not. In this way the 
program will automatically benefit when run on processors that do support 
dstt .

The specified data stream is defined by the following.

EA: (rA), where rA ^= 0
unit size: (rB)[35–39 {3–7 for 32-bit implementations}] if (rB)[35-39 

{3–7for 32-bit implementations)}] ^= 0; otherwise 32
count: (rB)[40–47 {8–15for 32-bit implementations}] if (rB)[40–47 

{8–15for 32-bit implementations}] ^= 0; otherwise 256
stride: (rB)[48–63 {16–31for 32-bit implementations}] if (rB)[48–63 

{16–31for 32-bit implementations}] ^= 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be 
accessed into fairly frequently in the near future (T=0) or to be transient 
(T=1).

If rA=0, the instruction form is invalid.

Data 
Stream 
Touch 
for 
Store 
(non-
transien
t)

dstst r A,rB,STRM,T This instruction associates the data stream specified by the contents of 
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the 
cache blocks containing the specified data stream are fetched into the data 
cache, because the program will probably soon access into the stream, 
and that prefetching from any data stream that was previously associated 
with the specified stream ID is no longer needed. The hint is ignored for 
blocks that are caching inhibited.

The specified data stream is defined by the following.

EA: (rA), where rA ^= 0
unit size: (rB)[35–39 {3–7 for 32-bit implementations}] if (rB)[35-39 {3-

7for 32-bit implementations)}] ^= 0; otherwise 32
count: (rB)[40–47 {8–15for 32-bit implementations}] if (rB)[40–47 

{8–15for 32-bit implementations}] ^= 0; otherwise 256
stride: (rB)[48–63 {16–31for 32-bit implementations}] if (rB)[48–63 

{16–31for 32-bit implementations}] ^= 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be 
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid

Table 4-28. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Operation
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Data 
Stream 
Touch 
for 
Store

dststt r A,rB,STRM,T This instruction associates the data stream specified by the contents of rA 
and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably not be improved if 
the cache blocks containing the specified data stream are fetched into the 
data cache, because the program will probably not access the stream. 
That is, the data stream will be relatively transient in nature. That is, it will 
have poor locality and is likely to be referenced a very few times or over a 
very short period of time. The memory subsystem can use this 
persistent/transient knowledge to manage the data as is most appropriate 
for the specific design of the cache/memory hierarchy of the processor on 
which the program is executing.

The specified data stream is defined by the following.

EA: (rA), where rA ^= 0
unit size: (rB)[35–39 {3–7 for 32-bit implementations}] if (rB)[35-39 {3-

7for 32-bit implementations)}] ^= 0; otherwise 32
count: (rB)[40–47 {8–15for 32-bit implementations}] if (rB)[40–47 

{8–15for 32-bit implementations}] ^= 0; otherwise 256
stride: (rB)[48–63 {16–31for 32-bit implementations}] if (rB)[48–63 

{16–31for 32-bit implementations}] ^= 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be 
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid

Data 
Stream 
Stop

dss STRM,A If A = 0 and a data stream associated with the stream ID specified by 
STRM exists, this instruction terminates prefetching of that data stream.

If A = 1, this instruction terminates prefetching of all existing data streams. 
(The STRM field is ignored.)

In addition, executing a dss  instruction ensures that all memory accesses 
associated with data stream prefetching caused by preceding dst and dstst 
instructions that specified the same stream ID as that specified by the dss  
instruction (A = 0), or by all preceding dst and dstst instructions (A = 1), will 
be in group G1 with respect to the memory barrier created by a 
subsequent sync  instruction.

dss  serves as both a basic and an extended mnemonic. The assembler 
will recognize a dss  mnemonic with two operands as the basic form, and a 
dss  mnemonic with one operand as the extended form.

Execution of a dss  instruction causes address translation for the specified 
data stream(s) to cease. Prefetch requests for which the effective address 
has already been translated may complete and may place the 
corresponding data into the data cache

Data 
Stream 
Stop
All

dssall Terminates prefetching of all existing data streams. All active streams may 
be stopped.

If the optional data stream prefetch facility is implemented, dssall  
(extended mnemonic for dss ), to terminate any data stream prefetching 
requested by the interrupted program, in order to avoid prefetching data in 
the wrong context, consuming memory bandwidth fetching data that are 
not likely to be needed by the other program, and interfering with data 
cache use by the other program. The dssall  must be followed by a sync , 
and additional software synchronization may be required.

Table 4-28. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Operation
4-42 AltiVec Technology Programming Environments Manual MOTOROLA
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This chapter summarizes details of the AltiVec™ technology definition that pertain to c
and memory management models. Note that the AltiVec technology defines most
instructions at the user-level (UISA). Because most AltiVec instructions are computa
there is little effect on the VEA and OEA portions of the PowerPC architecture defini

Because the AltiVec instruction set architecture (ISA) uses 128-bit operands, add
instructions are provided to optimize cache and memory bus use.

5.1  PowerPC Shared Memory
In order to fully understand the data stream prefect instructions for the AltiVec, one 
a knowledge on the PowerPC architecture for shared memory . The following pro
updated details on the PowerPC architecture for shared memory.

The PowerPC architecture supports the sharing of memory between programs, b
different instances of the same program, and between processors and other mecha
also supports access to memory by one or more programs using different eff
addresses. All these cases are considered memory sharing. Memory is shared in blo
are an integral number of pages.

When the same memory has different effective addresses, the addresses are sa
aliases. Each application can be granted separate access privileges to aliased page

5.1.1  PowerPC Memory Access Ordering
The memory model for the ordering of memory accesses is weakly consistent. This 
provides an opportunity for improved performance over a model that has str
consistency rules, but places the responsibility on the program to ensure that orde
synchronization instructions are properly placed when necessary for the correct exe
of the program. The order in which the processor performs memory accesses, the o
which those accesses are performed with respect to another processor or mechani
the order in which those accesses are performed in main memory may all be differe

V
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Several means of enforcing an ordering of memory accesses are provided to
programs to share memory with other programs, or with mechanisms such as I/O de

• If two Store instructions specify memory locations that are both caching inhibi
and guarded, the corresponding memory accesses are performed in program
with respect to any processor or mechanism.

• If a load instruction depends on the value returned by a preceding load instru
(because the value is used to compute the effective address specified by the 
load), the corresponding memory accesses are performed in program order w
respect to any processor or mechanism to the extent required by the memory
coherence required attributes associated with the access, if any. This applies 
the dependency has no effect on program logic (for example, the value return
the first load is ANDed with zero and then added to the effective address spec
by the second load).

• When a processor (P1) executes a sync or eieio instruction a memory barrier is 
created, which separates applicable memory accesses into two groups, G1 a
G1 includes all applicable memory accesses associated with instructions prec
the barrier-creating instruction, and G2 includes all applicable memory access
associated with instructions following the barrier-creating instruction. The mem
barrier ensures that all memory accesses in G1 wi l l be performed with respe
any processor or mechanism, to the extent required by the memory coherenc
required attributes associated with the access, if any, before any memory acce
G2 are performed with respect to that processor or mechanism.

The ordering done by a memory barrier is said to be “cumulative” if it also orders me
accesses that are performed by processors and mechanisms other than P1, as follo

• G1 includes all applicable memory accesses by any such processor or mecha
that have been performed with respect to P1 before the memory barrier is cre

• G2 includes all applicable memory accesses by any such processor or mecha
that are performed after a load instruction executed by that processor or mech
has returned the value accessed by a store that is in G2.

The memory barrier created by sync is cumulative, and applies to all memory acces
except those associated with fetching instructions following the sync instruction. See the
description of eieio instruction in the PowerPC Microprocessor Family: The Programmin
Environments Manual for a description of the corresponding properties of the mem
barrier created by that instruction.

No ordering should be assumed among the memory accesses caused by a single in
(that is, by an instruction for which the access is not atomic), and no means are pr
for controlling that order.
5-2 AltiVec Technology Programming Environments Manual MOTOROLA
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5.2  AltiVec Memory Bandwidth Management
The AltiVec ISA provides a way for software to speculatively load larger blocks of 
from memory. That is, you can use bandwidth that would otherwise be idle which pe
the software to take advantage of locality and reduces the number of system m
accesses. 

5.2.1  Software-Directed Prefetch
Bandwidth between the processor and memory is managed explicitly by the progra
through use of cache management instructions. These instructions let software indi
the cache hardware how to prefetch and prioritize writeback of data. The prin
instruction for this purpose is a software-directed cache prefetch instruction, Data S
Touch (dst), described in the following section.

5.2.1.1  Data Stream Touch (dst)
The data stream prefetch facility permits a program to indicate that a sequence of u
memory is likely to be accessed soon by memory access instructions. Such a sequ
called a data stream or, when the context is clear, simply a stream. A data stream is 
by the following: 

• EA—The effective address of the first unit in the sequence

• Unit size—The number of quad words in each unit; 0 < unit size ≤ 32

• Count—The number of units in the sequence; 0 < count ≤ 256

• Stride—The number of bytes between the effective address of one unit in the
sequence and the effective address of the next unit in the sequence (that is, t
effective address of the nth unit in the sequence is EA + (n - 1) x stride); (-327≤ 
stride < 0 or 0 < stride ≤ 32768)

The units need not be aligned on a particular memory boundary. The stride may be ne

The dst instruction specifies a starting address, a block size (1–32 vectors), a num
blocks to prefetch (1–256 blocks), and a signed stride in bytes (-32,768 to +32,768 
The 2-bit tag, specified as an immediate field in the opcode, identifies one of four po
touch streams. The starting address of the stream is specified in rA (if rA = 0, the
instruction form is invalid). BlockSize, BlockCount, and BlockStride are specified inrB.
Do not confuse the term ‘cache block’, the term ‘block’ always indicates a PowerPC 
block. 

The format of the rB register is shown in Figure 5-1.

Figure 5-1. Format of rB in dst Instruction

U

BlockSize

31161587320

BlockCount Signed BlockStride0 0 0
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-3
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There is no zero-length block size, block count, or block stride. A BlockSize of 0 indi
32 vectors, a BlockCount of 0 indicates 256 blocks, and a BlockStride of 0 indi
+32,768 bytes. Otherwise, these fields correspond to the numerical value of the size
and stride. Do not specify strides smaller than 1 block (16 bytes).

The programmer specifies block size in terms of vectors (16 bytes), regardless of the
block size. Hardware automatically optimizes the number of cache blocks it fetches to
a block into the cache. The number of cache blocks fetched into the cache for each b
the fewest natural cache blocks needed to fetch the entire block, including the effe
block misalignment to cache blocks, as shown in the following: 

The address of each block in a stream is a function of the stream’s starting addre
block stride, and the block being fetched. The starting address may be any 32-b
address. Each block’s address is computed as a full 32-bit byte address from the foll

The address of the first cache block fetched in each block is that block’s address alig
the next lower natural cache-block boundary by ignoring log2(CacheBlockSize) leas
significant bits (lsbs) (for example, for 32-byte cache-blocks, the five lsbs are igno
Cache blocks are then fetched sequentially forward until the entire block of vect
brought into the cache. An example of a six-block data stream is shown in Figure 5-

Figure 5-2. Data Stream Touch

Executing a dst instruction notifies the cache/memory subsystem that the program
soon need specified data. If bandwidth is available, the hardware starts loading the sp
stream into the cache. To the extent that hardware can acquire the data, when th
requiring the data finally execute, the target data will be in the cache. Executing a s
dst to the tag of a stream in progress aborts the existing stream (at hardware’s e
convenience) and establishes a new stream with the same stream tag ID.

CacheBlocksFetched = ceiling
BlockSize + mod(BlockAddr,CacheBlockSize)

CacheBlockSize

BlockAddrn = (rA) + n (rB)16–31
where n = {0 ... (BlockCount – 1)}
and      if ((rB)16–31 = 0) then ((rB)16–31         32768)

0 1 2 3 4 5

Starting Address = (rA)

BlockSize = (rB)3–7

BlockStride = (rB)16–31

BlockAddrn   (n = 3)

Memory

Stream
5-4 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Memory Bandwidth Management

n the
 it can,
it. If a
nce the

store
not
o, 

lative
nt the

ve
sonably
 (
locality
stem

ign. An
at case

ent for
Touch
ficient

nership

gment
The dst instruction is a hint to hardware and has no architecturally visible effects (i
PowerPC UISA sense). The hardware is free to ignore it, to start the prefetch when
to abort the stream at any time, or to prioritize other memory operations ahead of 
stream is aborted, the program still functions properly, but subsequent loads experie
full latency of a cache miss. 

The dst instruction does not introduce implementation problems like those of load/
multiple/string instructions. Because dst does not affect the architectural state, it does 
cause interlock problems associated with load/store multiple/string instructions. Alsdst
does take exceptions and requires no complex recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly specu
situations could waste considerable bandwidth. Implementations that do not impleme
stream mechanism treat stream instructions (dst, dstt, dsts, dstst, dss, and dssall) as no-
ops. If the stream mechanism is implemented, all four streams must be provided.

5.2.1.2  Transient Streams (dstt)
The memory subsystem considers dst an indication that its stream data is likely to ha
some reasonable degree of locality and be referenced several times or over some rea
long period. This is called persistence. The Data Stream Touch Transient instructiondstt)
indicates to the memory system that its stream data is transient, that is, it has poor 
and is likely to be used very few times or only for a very short time. A memory subsy
can use this knowledge to manage data for the processor’s cache/memory des
implementation may ignore the distinction between transience and persistence, in th
dstt acts like dst. However, portable software should always use the correct form of dst or
dstt regardless of whether the intended processor makes that distinction. 

5.2.1.3  Storing to Streams (dstst)
A dst instruction brings a cache block into the cache subsystem in a state most effici
subsequent reading of data from it (load). The companion instruction, Data Stream 
for Store (dstst), brings the cache block into the cache subsystem in a state most ef
for subsequent writing to it (store). For example, in a MESI cache subsystem, a dst might
bring a cache block in shared (S) state, whereas a dstst would bring the cache block in
exclusive (E) state to avoid a subsequent demand-driven bus transaction to take ow
of the cache block so the store can proceed. 

The dstst streams are the same physical streams as dst streams, that is, dstst stream tags
are aliases of dst tags. If not implemented, dstst defaults to dst. If dst is not implemented,
it is a no-op. The dststt instruction is a transient version of dstst.

Data stream prefetching of memory locations is not supported when bit 57 of the se
table entry or bit 0 of the segment register (SR) is set . If a dst or dstst instruction specifies
a data stream containing these memory locations, results are undefined.
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-5
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5.2.1.4  Stopping Streams (dss)
The dst instructions have a counterpart called Data Stream Stop (dss). A program can stop
any given stream prefetch by executing dss with that stream’s tag. This is useful when
program speculatively starts a stream prefetch but later determines that the inst
stream went the wrong way. The dss instruction can stop the stream so no more bandw
is wasted. All active streams may be stopped by using dssall. This is useful when the
operating system needs to stop all active streams (process switch) but does not kn
many streams are in progress. 

Because dssall does not specify the number of implemented streams, it should alwa
used instead of a sequence of dss instructions to stop all streams. 

Neither dss nor dssall is execution synchronizing; the time between when a dss is issued
and the stream stops is not specified. Therefore, when software must ensure that the
is physically stopped before continuing (for example, before changing virtual me
mapping), a special sequence of synchronizing instructions is required. The sequen
differ for different situations, but the following sequence works in all contexts:

dssall ; stop all streams
sync ; insert a barrier in memory pipe
lwz Rn,... ; stick one more operation in memory pipe
cmpd Rn,Rn ;
bne- *-4 ; make sure load data is back
isync ; wait for all previous instructions to

; complete to ensure 
; memory pipe is clear and nothing is 
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appropriadss
instruction. The termination can be synchronized by executing a sync instruction after the
dss instruction if the memory barrier created by sync orders all address translation effec
of the subsequent context-altering instructions. Otherwise, data dependencies a
required. For example, the following instruction sequence terminates all data s
prefetching before altering the contents of an segment register (SR):

dssall ; stop all data stream prefetching 
sync ; order dssall before load 
lwz  Ry,sr_y(Rx) ; load new SR value
mtsr y,Ry ; alter SR y

The mtsr instruction cannot be executed until the lwz loads the SR value into ry. The
memory access caused by the lwz cannot be performed until the dssall instruction takes
effect (that is, until address translation stops for all data streams and all memory ac
associated with data stream prefetches for which the effective address was translate
the translation stopped are performed).
5-6 AltiVec Technology Programming Environments Manual MOTOROLA
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5.2.1.5  Exception Behavior of Prefetch Streams
In general, exceptions do not cancel streams. Streams are sensitive to whether the p
is in user or supervisor mode (determined by MSR[PR]) and whether data ad
translation is used (determined by MSR[DR]). This allows prefetch streams to be
predictably when an exception occurs.

Streams are suspended in real addressing mode (MSR[DR] = 0) and remain suspend
translation is turned back on (MSR[DR] is set). A dst instruction issued while data
translation is off (MSR[DR] = 0) produces boundedly-undefined results.

A stream is suspended whenever the MSR[PR] is different than it was when the dst that
established it was issued. For example, if a dst is issued in user mode (MSR[PR] = 1), th
resulting stream is suspended when the processor enters supervisor mode (MSR[P
and remains suspended until the processor returns to user mode. Conversely, if the dst were
issued in supervisor mode, it is suspended if the machine enters user mode. 

Because exceptions do not cancel streams automatically, the operating system mu
streams explicitly when warranted, for example when switching processes or cha
virtual memory context. Care must be taken if data stream prefetching is used in supe
level state (MSR[PR] = 0).

After an exception, the supervisor-level program that next changes MSR[DR] from 0
cause data-stream prefetching to resume for any data streams for which the corresp
dst or dstst instruction was executed in supervisor mode; such streams are c
supervisor-level data streams. This program is unlikely to be the one that execut
corresponding dst or dstst instruction and is unlikely to use the same address transla
context as that in which the dst or dstst was executed. (Suspension and resumption of d
stream prefetching work more naturally for user level data streams, because th
application program to be dispatched after an exception occurs is likely to be the
recently interrupted program.) Thus, an exception handler that changes the context in
data addresses are translated may need to terminate data-stream prefetching for sup
level data streams and to synchronize the termination before changing MSR[DR] to

Although terminating all data stream prefetching in this case would satisfy
requirements of the architecture, doing so would adversely affect the performan
applications that use data-stream prefetching. Thus, it may be better for the ope
system to record stream IDs associated with any supervisor-level data streams 
terminate prefetching for those streams only.

Cache affects of supervisor-level data-stream prefetching can also adversely 
performance of applications that use data stream prefetching, as supervisor-level us
associated stream ID can take over an applications’ data stream. 

Data stream instructions cannot cause exceptions directly. Therefore, any event tha
cause an exception on a normal load or store, such as a page fault or protection vi
is instead aborted and ignored. 
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-7
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Suspension or termination of data stream prefetching for a given data stream ne
cancel prefetch requests for that data stream for which the effective address ha
translated and need not cause data returned by such requests to be discarded. Ho
improve software’s ability to pace data stream prefetching with data consumption, i
be better to limit the number of these pending requests that can exist simultaneousl

5.2.1.6  Synchronization Behavior of Streams
Streams are not affected (stopped or suspended) by execution of any Po
synchronization instructions (sync, isync, or eieio). This permits these instructions to b
used for synchronizing multiple processors without disturbing background pre
streams. Prefetch streams have no architecturally observable effects and are not affe
synchronization instructions. Synchronizing the termination of data stream prefetch
needed only by the operating system

5.2.1.7  Address Translation for Streams
Like dcbt and dcbtst instructions, dst, dstst, dstt, and dststt are treated as loads wit
respect to address translation, memory protection, and reference and change recor

Unlike dcbt and dcbtst instructions, stream instructions that cause a TLB miss cause a
table search and the page descriptor to be loaded into the TLB. Conceptually, a
translation and protection checking is performed on every cache-block access in the
and proceeds normally across page boundaries and TLB misses, terminating only o
faults or protection violations that cause a DSI exception.

Stream instructions operate like normal PowerPC cache instructions (such as dcbt) with
respect to guarded memory; they are not subject to normal restrictions against prefe
in guarded space because they are program directed. However, speculative dst instructions
can not start a prefetch stream to guarded space. 

If the effective address of a cache block within a data stream cannot be translate
loading from the block would violate memory protection, the processor will termi
prefetching of that stream. (Continuing to prefetch subsequent cache blocks with
stream might cause prefetching to get too far ahead of consumption of prefetched d
the effective address can be translated, a TLB miss can cause such termination, e
implementations for which TLBs are reloaded in software.

5.2.1.8  Stream Usage Notes 
A given data stream exists if a dst or dstst instruction has been executed that specifies
stream and prefetching of the stream has neither completed, terminated, or been sup
Prefetching of the stream has completed, when all the memory locations within the s
that will ever be prefetched as a result of executing the dst or dstst instruction have been
prefetched (for example, locations for which the effective address cannot be translat
never be prefetched). Prefetching of the stream is terminated by executing the appr
dss instruction; it is supplanted by executing another dst or dstst instruction that specifies
5-8 AltiVec Technology Programming Environments Manual MOTOROLA
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the stream ID associated with the given stream. Because there are four stream IDs, a
as four data streams may exist simultaneously.

The maximum block count of dst is small because of its preferred usage. It is not inten
for a single dst instruction to prefetch an entire data stream. Instead, dst instructions should
be issued periodically, for example on each loop iteration, for the following reasons:

• Short, frequent dst instructions better synchronize the stream with consumption

• With prefetch closely synchronized just ahead of consumption, another activit
less likely to inadvertently evict prefetched data from the cache before it is nee

• The prefetch stream is restarted automatically after an exception (that could h
caused the stream to be terminated by the operating system) with no addition
complex hardware mechanisms needed to restart the prefetch stream.

Issuing new dst instructions to stream tag IDs in progress terminates old streams—dst
instructions cannot be queued. 

For example, when multiple dst instructions are used to prefetch a large stream, it wo
be poor strategy to issue a second dst whose stream begins at the specified end of the 
stream before it was certain that the first stream had completed. This could termin
first stream prematurely, leaving much of the stream unprefetched.

Paradoxically, it would also be unwise to wait for the first stream to complete before is
the second dst. Detecting completion of the first stream is not possible, so the prog
would have to introduce a pessimistic waiting period before restarting the stream an
incur the full start-up latency of the second stream. 

The correct strategy is to issue the second dst well before the anticipated completion of th
first stream and begin it at an address overlapping the first stream by an amount su
to cover any portion of the first stream that could not yet have been prefetched. Issu
second dst too early is not a concern because blocks prefetched by the first stream hit
cache and need not be refetched. Thus, even if issued prematurely and ove
excessively, the second dst rapidly advances to the point of prefetching new blocks. T
strategy allows a smooth transition from the first stream to the second without sign
breaks in the prefetch stream.

For the greatest performance benefit from data-stream prefetching, use the dst and dstst
(and dss) instructions so that the prefetched data is used soon after it is available in th
cache. Pacing data stream prefetching with consumption increases the likelihoo
prefetched data is not displaced from the cache before it is used, and reduces the lik
that prefetched data displaces other data needed by the program.
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-9
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Specifying each logical data stream as a sequence of shorter data streams helps ac
desired pacing, even in the presence of exceptions, and address translation failur
components of a given logical data stream should have the following attributes:

• The same stream ID should be associated with each component.

• The components should partially overlap (that is, the first part of a componen
should consist of the same memory locations as the last part of the preceding
component).

• The memory locations which do not overlap with the next component should b
large enough that a substantial portion of the component is prefetched. That i
prefetch enough memory locations for the current component before it is taken
by the prefetching being done for the next component.

5.2.1.9  Stream Implementation Assumptions
Some processors can treat dst instructions as no-ops. However, if a processor impleme
dst, a minimum level of functionality will be provided to create as consisten
programming model across different machines as possible. Programs can assu
functionality in a dst instruction:

• Implements all four tagged streams

• Implements each tagged stream as a separate, independent stream with arbi
for memory access performed on a round-robin basis. 

• Searches the table for each stream access that misses in the TLB.

• Does not abort streams on page boundary crossings

• Does not abort streams on exceptions (except DSI exceptions caused by the s

• Does not abort streams, or hold up execution pending completion of streams, 
PowerPC synchronization instructions sync, isync, or eieio.

• Does not abort streams on TLB misses that occur on loads or stores issued 
concurrently with running streams. However, a DSI exception from one of tho
loads or stores may cause streams to abort.

5.2.2  Prioritizing Cache Block Replacement 
Load Vector Indexed LRU (lvxl ) and Store Vector Indexed LRU (stvxl) instructions provide
explicit control over cache block replacement by letting the programmer indicate wh
an access is likely to be the last reference made to the cache block containing this 
store. The cache hardware can then prioritize replacement of this cache block over
with older but more useful data. 

Data accessed by a normal load or store is likely to be needed more than once. Mark
data as most-recently used (MRU) indicates that it should be a low-priority candida
replacement. However, some data, such as that used in DSP multimedia algorith
rarely reused and should be marked as the highest priority candidate for replaceme
5-10 AltiVec Technology Programming Environments Manual MOTOROLA
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Normal accesses mark data MRU. Data unlikely to be reused can be marked LR
example, on replacing a cache block marked LRU by one of these instructions, a pro
may improve cache performance by evicting the cache block without storing 
intermediate levels of the cache hierarchy (except to maintain cache consistency). 

5.2.3  Partially Executed AltiVec Instructions
The OEA permits certain instructions to be partially executed when an alignment o
exception occurs. In the same way that the target register may be altered when fl
point load instructions cause a DSI exception, if the AltiVec facility is implemented
target register (vD) may be altered when lvx or lvxl  is executed and the TLB entry i
invalidated before the access completes. 

Exceptions cause data stream prefetching to be suspended for all existing data s
Prefetching for a given data stream resumes when control is returned to the inter
program, if the stream still exists (for example, the operating system did not term
prefetching for the stream).

5.3  DSI Exception—Data Address Breakpoint
A data address breakpoint register (DABR) match causes a DSI exceptio
implementations that support the data breakpoint feature. When a DABR match occ
a non-AltiVec PowerPC processor, the DAR is set to any effective address betwee
including the word (for a byte, half word, or word access) or double word (for a do
word access) specified by the effective address computed by the instruction a
effective address of the last byte in the word or double word in which the match occ
In processors that support AltiVec technology, this would include a quad-word acces
an lvx, lvxl , stvx, or stvxl instruction to a segment or BAT area. 

5.4  AltiVec Unavailable Exception (0x00F20)
The AltiVec facility includes an additional instruction-caused, precise exception to t
defined by the OEA and discussed in Chapter 6, “Exceptions,” in the Pow
Programming Environments Manual. An AltiVec unavailable exception occurs when n
higher priority exception exists (see Table 5-2), an attempt is made to execute an A
instruction, and MSR[VEC] = 0.
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Register settings for AltiVec unavailable exceptions are described in Table 5-1.

When an AltiVec unavailable exception is taken, instruction execution resumes as
0x00F20 from the base address determined by MSR[IP].

The dst and dstst instructions are supported if MSR[DR] = 1. If either instruction
executed when MSR[DR] = 0 (real addressing mode), results are boundedly undefin

Conditions that cause this exception are prioritized among instruction-ca
(synchronous), precise exceptions as shown in Table 5-2 (taken from the s
“Exception Priorities,” in Chapter 6, “Exceptions,” in PowerPC: The Programming
Environments Manual. 

Table 5-1. AltiVec Unavailable Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 64-Bit 32-Bit
0–32 0 Loaded with equivalent bits from the MSR 
33–36 1–4 Cleared
37–41 5–9 Loaded with equivalent bits from the MSR 
42–47 10–15 Cleared
48–63 16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR SF 1 1
ISF 1 —
VEC 0
POW 0
ILE —

1   64-bit implementations only

EE 0
PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE
5-12 AltiVec Technology Programming Environments Manual MOTOROLA
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Table 5-2. Exception Priorities (Synchronous/Precise Exceptions) 

Priority Exception

3 1

1  The exceptions are third in priority after system reset and machine check exceptions

Instruction dependent—When an instruction causes an exception, the exception mechanism waits for any 
instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions caused by 
these instructions are handled first. It then generates the appropriate exception if no higher priority exception 
exists when the exception is to be generated. 
Note that a single instruction can cause multiple exceptions. When this occurs, those exceptions are ordered 
in priority as indicated in the following:
A. Integer loads and stores

a. Alignment
b. DSI
c. Trace (if implemented)

B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSI
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)

D. AltiVec Loads and Stores (if AltiVec facility implemented)
a. AltiVec unavailable
b. DSI
c. Trace (if implemented)

E. Other AltiVec Instructions (if AltiVec facility implemented)
a. AltiVec unavailable
b. Trace (if implemented)

F. The rfid  (or rfi ) and mtmsrd (or mtmsr )
a. Program—Supervisor level Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr ) only
If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is set, a 
program exception occurs no later than the next synchronizing event.

G. Other instructions
a. These exceptions are mutually exclusive and have the same priority:

— Program: Trap
— System call (sc )
— Program: Supervisor level instruction
— Program: Illegal Instruction

b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions prior to 
the instruction causing this exception appear to have completed and that instruction is to be executed. The 
priority of this exception is specified for completeness and to ensure that it is not given more favorable 
treatment. An implementation can treat this exception as though it had a lower priority.
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-13
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Chapter 6  
AltiVec Instructions
60
60

This chapter lists the AltiVec instruction set in alphabetical order by mnemonic. Note
each entry includes the instruction format and a graphical representation of the instr
All the instructions are 32 bit and a description of the instruction fields and pseud
conventions are also provided. For more information on the AltiVec instruction set, re
Chapter 4 “Addressing Modes and Instruction Set Summary,” for more information o
PowerPC instruction set, refer to Chapter 8, “Instruction Set,” in The PowerPC
Microprocessor Family: The Programming Environments Manual.

6.1  Instruction Formats
AltiVec instructions are four bytes (32 bits) long and are word-aligned. AltiVec instruc
set architecture (ISA) has 4 operands, three source vectors and one result vector. B
always specify the primary opcode for AltiVec instructions. AltiVec ALU type instructio
specify the primary opcode point 4(0b000100). AltiVec load, store, and stream pre
instructions use secondary opcode in primary opcode 31 (0b011111).

Within a vector register, a byte, half-word, or word element, are referred to as follow

• Byte elements, each byte = 8 bits, so in the pseudocode, n = 8 and there wou
total of 16 elements

• Half-word elements, each byte = 16 bits, so in the pseudocode, n = 16 and th
would be a total of 8 elements

• Word elements, each byte = 32 bits, so in the pseudocode, n = 32 and there w
be a total of 4 elements

Refer to Figure 1-3, for an example of how elements are placed in a vector register.
MOTOROLA Chapter 6. AltiVec Instructions 6-1
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6.1.1  Instruction Fields 
Table 6-1 describes the instruction fields used in the various instruction formats.  

6.1.2  Notation and Conventions
The operation of some instructions is described by a semiformal language (pseudo
See Table 6-2 for a list of additional pseudocode notation and conventions used thro
this section.

Table 6-1. Instruction Syntax Conventions 

Field Description

OPCD (0–5) Primary opcode field

rA, A(11–15) Specifies a GPR to be used as a source or destination.

rB, B(16–20) Specifies a GPR to be used as a source.

Rc (31) Record bit.
0 Does not update the condition register (CR).
1 For the optional AltiVec facility, set CR field 6 to control program flow as described in 

Section 2.1.3, “PowerPC Condition Register”

vA (11–15) Specifies a vector register to be used as a source 

vB (16–20) Specifies a vector register to be used as a source.

vC (21–25) Specifies a vector register to be used as a source.

vD (6–10) Specifies a vector register to be used as a destination.

vS (6–10) Specifies a vector register to be used as a source.

SHB (22–25) Specifies a shift amount in bytes. 

SIMM (11–15) This immediate field is used to specify a (5 bit) signed integer.

UIMM (11–15) This immediate field is used to specify a 4-,8-,12-, or 16-bit unsigned integer.

XO Extended Opcode Field.

Table 6-2. Notation and Conventions 

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

do i=X to Y by Z Do the following starting at X and iterating to Y by Z

+int 2’s complement integer add

-int 2’s complement integer subtract

+ui Unsigned integer add

-ui Unsigned integer subtract

*ui Unsigned integer multiply

+si Signed integer add

-si Signed integer subtract
6-2 AltiVec Technology Programming Environments Manual MOTOROLA



Instruction Formats
*si Signed integer multiply

*sui Signed integer (first operand) multiplied by unsigned integer (second operand) 
producing signed result

/ Integer divide

+fp Single-precision floating-point add

-fp Single-precision floating-point subtract

*fp Single-precision floating-point multiply

÷fp Single-precision floating-point divide

√ fp Single-precision floating-point square root

<ui, ≤ui, >ui, ≥ui Unsigned integer comparison relations

<si, ≤si, >si, ≥si Signed integer comparison relations

<fp, ≤fp, >fp, ≥fp Single precision floating point comparison relations

≠ Not equal

=int Integer equal to

=ui Unsigned integer equal to

=si Signed integer equal to

=fp Floating-point equal to

X >>ui Y Shift X right by Y bits extending Xs vacated bits with zeros

X >>si Y Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X << ui Y Shift X left by Y bits inserting Xs vacated bits with zeros

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same 
as 010111)

& AND logical operator

 | OR logical operator

⊕ , ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

? Unordered comparison relation

X0 X zeros

X1 X ones

XY X copies of Y

XY bit Y of X

XY:Z bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word “element”, LENGTH(x) is the length, in bits, of 
the element implied by the instruction mnemonic.

Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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ROTL(x,y) Result of rotating x left by y bits

UItoUImod(X,Y) Chop unsigned integer X- to Y-bit unsigned integer

UItoUIsat(X,Y) Result of converting the unsigned-integer x to a y-bit unsigned-integer with 
unsigned-integer saturation

SItoUIsat(X,Y) Result of converting the signed-integer x to a y-bit unsigned-integer with 
unsigned-integer saturation

SItoSImod(X,Y) Chop integer X- to Y-bit integer

SItoSIsat(X,Y) Result of converting the signed-integer x to a y-bit signed-integer with signed-
integer saturation

RndToNearFP32 The single-precision floating-point number that is nearest in value to the infinitely-
precise floating-point intermediate result x (in case of a tie, the even single-
precision floating-point value is used).

RndToFPInt32Near The value x if x is a single-precision floating-point integer; otherwise the single-
precision floating-point integer that is nearest in value to x (in case of a tie, the 
even single-precision floating-point integer is used).

RndToFPInt32Trunc The value x if x is a single-precision floating-point integer; otherwise the largest 
single-precision floating-point integer that is less than x if x>0, or the smallest 
single-precision floating-point integer that is greater than x if x<0

RndToFPInt32Ceil The value x if x is a single-precision floating-point integer; otherwise the smallest 
single-precision floating-point integer that is greater than x

RndToFPInt32Floor The value x if x is a single-precision floating-point integer; otherwise the largest 
single-precision floating-point integer that is less than x

CnvtFP32ToUI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit 
unsigned-integer with unsigned-integer saturation

CnvtFP32ToSI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit signed-
integer with signed-integer saturation

CnvtUI32ToFP32(x) Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x) Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y) Value at memory location X of size Y bytes

SwapDouble Swap the doublewords in a quadword vector

ZeroExtend(X,Y) Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit 0 of x) to produce 
Y-bit value

RotateLeft(X,Y) Rotate X left by Y bits

mod(X,Y) Remainder of X/Y

UImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

SImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

FPmaximum(X,Y) Maximum of 2 floating-point values, X and Y

UIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

SIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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FPminimum(X,Y) Minimum of 2 floating-point values, X and Y

FPReciprocalEstimate12(X) 12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X) 12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog2Estimate3(X) 3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X) 3-bit-accurate floating-point estimate of 2**X

CarryOut(X + Y) Carry out of the sum of X and Y

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 32-bit value x || x left y positions, where x is 32 bits long

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:

• (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
 0b00000.

• (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field 
is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the 
text.

CIA Current instruction address.
The 64- or 32-bit address of the instruction being described by a sequence of 
pseudocode. Used by relative branches to set the next instruction address (NIA) 
and by branch instructions with LK = 1 to set the link register. Does not 
correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for 
rotate and shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This 
operation can be used to scale a known non-negative array index by the width of 
an element. These operations are used for rotate and shift instructions.

Cleared Bits = 0.

Do Do loop.
• Indenting shows range. 
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point 
double-precision format.

Extract Select a field of n bits starting at bit position b in the source register, right or left 
justify this field in the target register, and clear all other bits of the target register 
to zero. This operation is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert Select a field of n bits in the source register, insert this field starting at bit position 
b of the target register, and leave other bits of the target register unchanged. (No 
simplified mnemonic is provided for insertion of a field when operating on double 
words; such an insertion requires more than one instruction.) This operation is 
used for rotate and shift instructions. (Note that simplified mnemonics are 
referred to as extended mnemonics in the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros 
elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 64- or 32-bit address of the next instruction 
to be executed (the branch destination) after a successful branch. In pseudocode, 
a successful branch is indicated by assigning a value to NIA. For instructions 
which do not branch, the next instruction address is CIA + 4. Does not 
correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This 
operation is used for rotate and shift instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical 
shift). This operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point 
single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and 
from one execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning
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Table 6-3 describes instruction field notation conventions used throughout this chap

Precedence rules for pseudocode operators are summarized in Table 6-4. 

Operators higher in Table 6-4 are applied before those lower in the table. Operators
same level in the table associate from left to right, from right to left, or not at all, as sh
For example, ‘-’ (unary minus) associates from left to right, so a - b - c = (a - b)
Parentheses are used to override the evaluation order implied by Table 6-4, or to in
clarity; parenthesized expressions are evaluated before serving as operands.

Table 6-3. Instruction Field Conventions 

The PowerPC Architecture 
Specification 

Equivalent in AltiVec Technology 
Specification as:

D d

DS ds

FLM FM

RA, RB, RT, RS rA, rB, rD, rS 

RA, RB, RT, RS A, B, D, S

SI SIMM

U IMM

UI UIMM

VA, VB, VC, VT, VS vA, vB, vC, vD, vS

/, //, /// 0...0 (shaded)

Table 6-4. Precedence Rules 

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication, 
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗ , ÷ Left to right

+, - Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕ , ≡ Left to right

| Left to right

– (range), : (range) None

←, ←iea None
MOTOROLA Chapter 6. AltiVec Instructions 6-7
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6.2  AltiVec Instruction Set
The remainder of this chapter lists and describes the instruction set for the A
architecture. The instructions are listed in alphabetical order by mnemonic. The dia
below shows the format for each instruction description page.

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8
aop0:8 ← SignExtend(( vA) i:i+7 ,9)
bop0:8 ← SignExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  bop 0:8
vDi:i+7 ← SItoSIsat(temp 0:8 ,8)

end

Eacj element of vaddsbs  is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to -
27. If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-11 shows the usage of the vaddsbs  command. Each of the sixteen elements in the vectors, vA, vB, and

vD, is 8 bits in length..

Figure 6-11. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 1011 1516 2021 25262728 31

+ +++++++++++++++

vA

vB

vD

Instruction name

Instruction syntax and Form

Instruction encoding

Pseudocode description 
of instruction operation

Text description of
instruction operation

Figure showing 
instruction usage
6-8 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

stream

 field

tream
ream ID

t 
ore

 

nd
dss dss
Data Stream Stop

dss STRM (A=0) Form X
dssall STRM (A=1)

DataStreamPrefetchControl ← “stop” || STRM

Note that A does not represent rA in this instruction.

If A=0 and a data stream associated with the stream ID specified by STRM exists, this
instruction terminates prefetching of that data stream. It has no effect if the specified 
does not exist.

If A=1, this instruction terminates prefetching of all existing data streams (the STRM
is ignored.)

In addition, executing a dss instruction ensures that all accesses associated with data s
prefetching caused by preceding dst and dstst instructions that specified the same st
as that specified by the dss instruction (A=0), or by all preceding dst and dstst instructions
(A=1), will be in group G1 with respect to the memory barrier created by a subsequensync
instruction, refer to Section 5.1.1, “PowerPC Memory Access Ordering,” for m
information.

See Section 5.2.1, “Software-Directed Prefetch” for more information on using thedss
instruction.

Other registers altered: 

• None

Simplified mnemonics:

dss STRM equivalent to dss STRM, 0

dssall equivalent to dss 0, 1

For more information on the dss instruction, refer to Chapter 5, “Cache, Exceptions, a
Memory Management.”

31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31
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dst dst
Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

addr 0:63  ← ( r A)
DataStreamPrefetchControl ← “start” || STRM || T || ( r B) || addr

This instruction initiates a software directed cache prefetch. The instruction is a h
hardware that performance will probably be improved if the cache blocks containin
specified data stream are fetched into the data cache because the program will p
soon load from the stream. 

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an “Effective Address” (rA) and having “Count” units of “Size” bytes separated by “Strid
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream
likely to be loaded from fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA 
may soon be loaded

• Indicates whether memory locations within the stream are likely to be needed
a longer period of time (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with t
specified stream ID, STRM.

31 T 0 0 STRM A B 342 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size 

BlockStride 

BlockAddrn   (n=3)

Memory

Stream

Block Block Block Block Block Block
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The specified data stream is encoded for 32-bit as:

• Effective Address: rA, where rA ≠ 0
• Block Size: rB[3-7] if rB[3-7] ≠ 0; otherwise 32
• Block Count: rB[8-15] if rB[8-15] ≠ 0; otherwise 256
• Block Stride: rB[16-31] if rB[16-31] ≠ 0; otherwise 32768

Figure 6-1. Format of rB in dst instruction (32-bit)

The specified data stream is encoded for 64-bit as:

• Effective Address: rA, where rA ≠ 0
• Block Size: rB[35-39] if rB[35-39] ≠ 0; otherwise 32
• Block Count: rB[40-47] if rB[40-47] ≠ 0; otherwise 256
• Block Stride: rB[48-63] if rB[48-63] ≠ 0; otherwise 32768

Figure 6-2. Format of rB in dst instruction (64-bit)

Other registers altered: 

• None

Simplified mnemonics:

dst rA,rB,STRM equivalent to dst rA,rB,STRM,0

dstt rA,rB,STRM equivalent to dst rA,rB,STRM,1

For more information on the dst instruction, refer to Chapter 5, “Cache, Exceptions, a
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63
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nto 

he 
dstst dstst
Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

addr 0:63  ← ( r A)
DataStreamPrefetchControl ← “start” || T || static || ( r B) || addr

This instruction initiates a software directed cache prefetch. The instruction is a h
hardware that performance will probably be improved if the cache blocks containin
specified data stream are fetched into the data cache because the program will p
soon write to (store into) the stream. 

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an “Effective Address” (rA) and having “Count” units of “Size” bytes separated by “Strid
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream
likely to be stored into fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dstst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA 
may soon be stored in to memory

• Indicates whether memory locations within the stream are likely to be stored i
fairly frequently in the near future (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with t
specified stream ID, STRM.

31 T 0 0 STRM A B 374 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size 

BlockStride 

BlockAddrn   (n=3)

Memory

Stream

Block Block Block Block Block Block
6-12 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

nd
The specified data stream is encoded for 32-bit as:

• Effective Address: rA, where rA ≠ 0
• Block Size: rB[3-7] if rB[3-7] ≠ 0; otherwise 32
• Block Count: rB[8-15] if rB[8-15] ≠ 0; otherwise 256
• Block Stride: rB[16-31] if rB[16-31] ≠ 0; otherwise 32768

Figure 6-3. Format of rB in dst instruction (32-Bit)

The specified data stream is encoded for 64-bit as:

• Effective Address: rA, where rA ≠ 0
• Block Size: rB[35-39] if rB[35-39] ≠ 0; otherwise 32
• Block Count: rB[40-47] if rB[40-47] ≠ 0; otherwise 256
• Block Stride: rB[48-63] if rB[48-63] ≠ 0; otherwise 32768

Figure 6-4. Format of rB in dst instruction (64-Bit)

Other registers altered: 

• None

Simplified mnemonics:

dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information on the dstst instruction, refer to Chapter 5, “Cache, Exceptions, a
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63
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lvebx lvebx  
Load Vector Element Byte Indexed

lvebx vD,rA,rB Form X

• For 32-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← b + ( r B)
eb ← EA 28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+7 ← MEM(EA,1)
 else vD120-(eb*8):127-(eb*8) ← MEM(EA,1)

— EA = (rA|0)+(rB); m = EA[28-31] (the offset of the byte in its aligned 
quadword). 

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← b + ( r B)
eb ← EA 60:63
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+7 ← MEM(EA,1)
 else vD120-(eb*8):127-(eb*8 ) ← MEM(EA,1)

— EA = (rA|0)+(rB); m = EA[60–63] (the offset of the byte in its aligned 
quadword). 

For big-endian mode, the byte addressed by EA is loaded into byte m of vD. In little-endian
mode, it is loaded into byte (15–m) of vD. Remaining bytes in vD are undefined.

Other registers altered: 

• None

31 vD A B 7 0

0 5 6 10 11 15 16 20 21 30 31
6-14 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set
Figure 6-5. Effects of Example Load/Store Instructions

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x0x0000_0000

0x0000_0010

0x0000_0020

0x0000_0030

0x0000_0040

0x0000_0050

0x0000_0060

0x0000_0070

0x0000_0080

0x0000_0090

0x0000_00A0

0x0000_00B0

Byte at x1E

Half at x2A

Word at x54

Quad at A0

vR

vR

vR

vR

Load or Store:

Memory

x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x

x  x

Note: In vector registers, x means boundedly undefined after a load and don’t care after a store. In memory, x means don’t care
after a load, and leave at current value after a store.
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 in 

 in 

 half-
A is
lvehx lvehx  
Load Vector Element Half Word Indexed

lvehx vD,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~1)
eb ← EA 28:31
vD ← undefined
if the processor is in big-endian mode
 then vD(eb*8):(eb*8)+15 ← MEM(EA,2)
 else vD112-(eb*8):127-(eb*8) ← MEM(EA,2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m = 
EA[28-30]; m is the half-word offset of the half-word in its aligned quadword
memory.

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~1)
eb ← EA 60:63
vD ← undefined
if the processor is in big-endian mode
 then vD(eb*8):(eb*8)+15 ← MEM(EA,2)
 else vD112-(eb*8):127-(eb*8) ← MEM(EA,2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m = 
EA[60–62]; m is the half-word offset of the half-word in its aligned quadword
memory.

If the processor is in big-endian mode, the half-word addressed by EA is loaded into
word m of vD. If the processor is in little-endian mode, the half-word addressed by E
loaded into half-word (7-m) of vD. The remaining half-word s in vD are set to undefined
values. Figure 6-5 shows this instruction.

Other registers altered: 

• None

31 vD A B 39 0

0 5 6 10 11 15 16 20 21 30 31
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this
lvewx lvewx  
Load Vector Element Word Indexed

lvewx vD,rA,rB Form X

• For 32-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~3)
eb ← EA 28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+31 ← MEM(EA,4)
 else vD96-(eb*8):127-(eb*8 ) ← MEM(EA,4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m = 
EA[28–29]; m is the word offset of the word in its aligned quadword in mem

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~3)
eb ← EA 60:63
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+31 ← MEM(EA,4)
 else vD96-(eb*8):127-(eb*8 ) ← MEM(EA,4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m = 
EA[60–61]; m is the word offset of the word in its aligned quadword in mem

If the processor is in big-endian mode, the word addressed by EA is loaded into wor
vD. If the processor is in little-endian mode, the word addressed by EA is loaded into
(3-m) of vD. The remaining words in vD are set to undefined values. Figure 6-5 shows 
instruction.

Other registers altered: 

• None

. 

31 vD A B 71 0

0 5 6 10 11 15 16 20 21 30 31
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lvsl lvsl
Load Vector for Shift Left

lvsl vD,rA,rB Form X

• For 32-bit:
if r A = 0 then b ← 0
    else b ← ( r A)
addr 0:31  ← b + ( r B)
sh ← addr 28-31
if sh = 0x0 then ( vD)0:127  ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then ( vD)0:127  ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then ( vD)0:127  ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then ( vD)0:127  ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then ( vD)0:127  ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then ( vD)0:127  ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then ( vD)0:127  ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then ( vD)0:127  ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then ( vD)0:127  ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then ( vD)0:127  ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then ( vD)0:127  ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then ( vD)0:127  ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then ( vD)0:127  ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then ( vD)0:127  ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then ( vD)0:127  ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then ( vD)0:127  ← 0x0F101112131415161718191A1B1C1D1E

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31].

• For 64-bit:
if r A = 0 then b ← 0
    else b ← ( r A)
addr 0:63  ← b + ( r B)
sh ← addr 60:63
if sh = 0x0 then ( vD)0:127  ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then ( vD)0:127  ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then ( vD)0:127  ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then ( vD)0:127  ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then ( vD)0:127  ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then ( vD)0:127  ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then ( vD)0:127  ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then ( vD)0:127  ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then ( vD)0:127  ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then ( vD)0:127  ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then ( vD)0:127  ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then ( vD)0:127  ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then ( vD)0:127  ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then ( vD)0:127  ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then ( vD)0:127  ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then ( vD)0:127  ← 0x0F101112131415161718191A1B1C1D1E

31 vD A B 6 0

0 5 6 10 11 15 16 20 21 30 31
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— Let the EA be the sum (rA|0)+(rB). Let sh = EA[60–63].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes sh:sh+15 o
placed into vD. Figure 6-6 shows how this instruction works.

Other registers altered: 

• None

Figure 6-6. Load Vector for Shift Left

The above lvsl instruction followed by a Vector Permute (vperm) would do a simulated
alignment of a four-element floating-point vector misaligned on quad-word bounda
address 0x0....C.

Figure 6-7. Instruction vperm Used in Aligning Data

Refer, also, to the description of the lvsr instruction for suggested uses of the lvsl
instruction.

0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

r A0  0  0  0  0  0  0  8

r B

Temp

vD

0  0  0  0  0  0  0  4

0  0  0  0  0  0  0  CTable Lookup

+

=

vC0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
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-sh) of
lvsr lvsr
Load Vector for Shift Right

lvsr vD,rA,rB Form X

• For 32-bit:
if r A = 0 then b ← 0
else           b ← ( r A)
EA ← b + ( r B)
sh ← EA 28:31
if sh=0x0 then vD ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then vD ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then vD ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then vD ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then vD ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then vD ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then vD ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then vD ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then vD ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then vD ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then vD ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then vD ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then vD ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then vD ← 0x0102030405060708090A0B0C0D0E0F10

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31]. 

• For 64-bit:
if r A = 0 then b ← 0
else           b ← ( r A)
EA ← b + ( r B)
sh ← EA 60:63
if sh=0x0 then vD ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then vD ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then vD ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then vD ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then vD ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then vD ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then vD ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then vD ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then vD ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then vD ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then vD ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then vD ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then vD ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then vD ← 0x0102030405060708090A0B0C0D0E0F10

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[60-63]. 

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes (16-sh):(31
X are placed into vD.

31 vD A B 38 0

0 5 6 10 11 15 16 20 21 30 31
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Note that lvsl and lvsr can be used to create the permute control vector to be used
subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by the
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes. The control v
created by vsr causes the vperm to select the low-order 16 bytes of the result of shifting
|| Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector registe
bytes. For rotating, the vector register to be rotated should be specified as both vA and vB
for vperm. For shifting left, the vB register for vperm should contain all zeros and vA
should contain the value to be shifted, and vice versa for shifting right. Figure 6-6 sh
similar instruction only in that figure the shift is to the left

Other registers altered: 

• None
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lvx lvx
Load Vector Indexed

lvx vD,rA,rB (LRU = 0) Form X

• For 32-bit and 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword in memory addressed by EA is 
into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loade
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1,
Organization in Memory,” for more information.

Figure 6-5 shows this instruction.

Other registers altered: 

• None

31 vD A B 103 0
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lvxl lvxl
Load Vector Indexed LRU

lvxl vD,rA,rB (LRU = 1) Form X

• For 32-bit and 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword addressed by EA is loaded intvD.

If the processor is in little-endian mode, the doubleword addressed by EA is loade
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1,
Organization in Memory,” for more information.

lvxl  provides a hint that the quadword addressed by EA will probably not be needed
by the program in the near future.

Note that on some implementations, the hint provided by the lvxl  instruction and the
corresponding hint provided by the Store Vector Indexed LRU (stvxl) instruction (see
Section 5.2.1.2, “Transient Streams (dstt)”) are applied to the entire cache block con
the specified quadword. On such implementations, the effect of the hint may be to
that cache block to be considered a likely candidate for reuse when space is neede
cache for a new block. Thus, on such implementations, the hint should be used with c
if the cache block containing the quadword also contains data that may be needed
program in the near future. Also, the hint may be used before the last referenc
sequence of references to the quadword if the subsequent references are likely t
sufficiently soon that the cache block containing the quadword is not likely to be disp
from the cache before the last reference. Figure 6-5 shows this instruction.

Other registers altered: 

• None

31 vD A B 359 0
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mfvscr mfvscr
Move from Vector Status and Control Register

mfvscr vD Form VX

vD ← 960 || (VSCR)

The contents of the VSCR are placed into vD.

Note that the programmer should assume that mtvscr and mfvscr take substantially longer
to execute than other VX instructions

Other registers altered: 

• None

04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

0 5 6 10 11 15 16 20 21 30 31
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mtvscr mtvscr
Move to Vector Status and Control Register

mtvscr vB Form VX

VSCR ← ( vB) 96:127

The contents of vB are placed into the VSCR.

Other registers altered: 

• None

04 0 0 0 0 0 0 0 0 0 0 vB 1604 0

0 5 6 10 11 15 16 20 21 30 31
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stvebx stvebx
Store Vector Element Byte Indexed

stvebx vS,rA,rB Form X

• For 32-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← b + ( r B)
eb ← EA 28:31
if the processor is in big-endian mode
 then MEM(EA,1) ← ( vS) eb*8:(eb*8)+7
 else MEM(EA,1) ← ( vS) 120-(eb*8):127-eb*8

— Let the EA be the sum (rA|0)+(rB). Let m = EA[28–31]; m is the byte offset o
the byte in its aligned quadword in memory.

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← b + ( r B)
eb ← EA 60:63
if the processor is in big-endian mode
 then MEM(EA,1) ← ( vS) eb*8:(eb*8)+7
 else MEM(EA,1) ← ( vS) 120-(eb*8):127-eb*8

— Let the EA be the sum (rA|0)+(rB). Let m = EA[60–63]; m is the byte offset o
the byte in its aligned quadword in memory.

If the processor is in big-endian mode, byte m of vS is stored into the byte in memor
addressed by EA. If the processor is in little-endian mode, byte (15-m) of vS is stored into
the byte addressed by EA. Figure 6-5 shows how a store instruction is performed
vector register.

Other registers altered: 

• None

31 vS A B 135 0
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rmed
stvehx stvehx
Store Vector Element Half Word Indexed

stvehx vS,rA,rB Form X

• For 32-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~0x1)
eb ← EA 28:31
if the processor is in big-endian mode
 then MEM(EA,2) ← ( vS) eb*8:(eb*8)+15
 else MEM(EA,2) ← ( vS) 112-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0x1. Let m = 
EA[28–30]; m is the half-word offset of the half-word in its aligned quadword
memory.

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & (~0x1)
eb ← EA 60:63
if the processor is in big-endian mode
 then MEM(EA,2) ← ( vS) eb*8:(eb*8)+15
 else MEM(EA,2) ← ( vS) 112-(eb*8):127-eb*8

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0x1. Let m = 
EA[60–62]; m is the half-word offset of the half-word in its aligned quadword
memory.

If the processor is in big-endian mode, half-word m of vS is stored into the half-word
addressed by EA. If the processor is in little-endian mode, half-word (7-m) of vS is stored
into the half-word addressed by EA. Figure 6-5 shows how a store instruction is perfo
for a vector register.

Other registers altered: 

• None

31 vS A B 167 0
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by

vector
stvewx stvewx
Store Vector Element Word Indexed

stvewx vS,rA,rB Form X

• For 32-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFFC
eb ← EA 28:31
if the processor is in big-endian mode
 then MEM(EA,4) ← ( vS) eb*8:(eb*8)+31
 else MEM(EA,4) ← ( vS) 96-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFC. 
Let m = EA[28-29]; m is the word offset of the word in its aligned quadword
memory.

• For 64-bit:
if r A=0 then b ← 0
else         b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFFF_FFFF_FFFC
eb ← EA 60:63
if the processor is in big-endian mode
 then MEM(EA,4) ← ( vS) eb*8:(eb*8)+31
 else MEM(EA,4) ← ( vS) 96-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 
0xFFFF_FFFF_FFFF_FFFC. Let m = EA[60-61]; m is the word offset of th
word in its aligned quadword in memory.

If the processor is in big-endian mode, word m of vS is stored into the word addressed 
EA. If the processor is in little-endian mode, word (3-m) of vS is stored into the word
addressed by EA. Figure 6-5 shows how a store instruction is performed for a 
register.

Other registers altered: 

• None

31 vS A B 199 0

0 5 6 10 11 15 16 20 21 30 31
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d

t be
stvx stvx
Store Vector Indexed

stvx vS,rA,rB (LRU = 0) Form X

• For 32-bit:
if r A=0 then b ← 0
else b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← ( vS)
 else MEM(EA,16) ← ( vS) 64:127  || ( vS) 0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

• For 64-bit:
if r A=0 then b ← 0
else b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFFF_FFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← ( vS)
 else MEM(EA,16) ← ( vS) 64:127  || ( vS) 0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 
0xFFFF_FFFF_FFFF_FFF0.

If the processor is in big-endian mode, the contents of vS are stored into the quadwor
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8.

stvxl and stvxlt provide a hint that the quadword addressed by EA will probably no
needed again by the program in the near future.

Figure 6-5 shows how a store instruction is performed for a vector register.

Other registers altered: 

• None

31 vS A B 231 0
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stvxl stvxl
Store Vector Indexed LRU

stvxl vS,rA,rB (LRU = 1) Form X

• For 32-bit:
if r A=0 then b ← 0
else b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← ( vS)
 else MEM(EA,16) ← ( vS) 64:127  || ( vS) 0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

• For 64-bit:
if r A=0 then b ← 0
else b ← ( r A)
EA ← (b + ( r B)) & 0xFFFF_FFFF_FFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← ( vS)
 else MEM(EA,16) ← ( vS) 64:127  || ( vS) 0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 
0xFFFF_FFFF_FFFF_FFF0.

Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFF_FFFF_FFF0
If the processor is in big-endian mode, the contents of vS are stored into the quadwor
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8. The stvxl and stvxlt instructions provide a hint tha
the quad word addressed by EA will probably not be needed again by the program
near future.

Note that on some implementations, the hint provided by the stvxl instruction (see
Section 5.2.2, “Prioritizing Cache Block Replacement”) is applied to the entire cache 
containing the specified quadword. On such implementations, the effect of the hint m
to cause that cache block to be considered a likely candidate for reuse when space is
in the cache for a new block. Thus, on such implementations, the hint should be use
caution if the cache block containing the quadword also contains data that may be 
by the program in the near future. Also, the hint may be used before the last referen
sequence of references to the quadword if the subsequent references are likely t
sufficiently soon that the cache block containing the quadword is not likely to be disp
from the cache before the last reference. Figure 6-5 shows how a store instruc
performed on the vector registers.

Other registers altered: 
• None

31 vS A B 487 0
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vaddcuw vaddcuw
Vector Add Carryout Unsigned Word

vaddcuw vD,vA,vB Form VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend(( vA) i:i+31 ,33)
bop0:32 ← ZeroExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  bop 0:32
vDi:i+31 ← ZeroExtend(temp 0,32)

end

Each unsigned-integer word element in vA is added to the corresponding unsigned-integ
word element in vB. The carry out of bit 0 of the 32-bit sum is zero-extended to 32 bits
placed into the corresponding word element of vD.

Other registers altered: 

• None

Figure 6-8 shows the usage of the vaddcuw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-8. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)

04 vD vA vB 384

0 5 6 10 11 15 16 20 21 31

vA

vB

33-bit Intermedediate

vD

+ + + +
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vaddfp vaddfp
Vector Add Floating Point

vaddfp vD,vA,vB Form VX

do i = 0,127,32
( vD)i:i+31  ← RndToNearFP32(( vA) i:i+31  + fp  ( vB) i:i+31 )

end

The four 32-bit floating-point values in vA are added to the four 32-bit floating-point valu
in vB. The four intermediate results are rounded and placed in VD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Other registers altered: 

• None

Figure 6-9 shows the usage of the vaddfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-9. vaddfp—Add Four Floating-Point Elements (32-Bit)

04 vD vA vB 10
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nt
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vaddsbs vaddsbs 
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8
aop0:8 ← SignExtend(( vA) i:i+7 ,9)
bop0:8 ← SignExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  bop 0:8
vDi:i+7 ← SItoSIsat(temp 0:8 ,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer eleme
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to -
27. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-10 shows the usage of the vaddsbs command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-10. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768
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vaddshs vaddshs 
Vector Add Signed Half Word Saturate

vaddshs vD,vA,vB Form VX

do i=0 to 127 by 16
aop0:16 ← SignExtend(( vA) i:i+15 ,16)
bop0:16 ← SignExtend(( vB) i:i+15 ,16)
temp 0:16 ← aop 0:16  + int  bop 0:16
vDi:i+15 ← SItoSIsat(temp 0:16 ,16)

end

Each element of vaddshs is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer eleme
in vB.

If the sum is greater than (215-1) it saturates to (215-1) and if it is less than -215 it saturates to
-215. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of the vaddshs command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-11. vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)

04 vD vA vB 832
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vaddsws vaddsws 
Vector Add Signed Word Saturate

vaddsws vD,vA,vB Form VX

do i=0 to 127 by 32
aop0:32 ← SignExtend(( vA) i:i+31 ,33)
bop0:32 ← SignExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  bop 0:32
vDi:i+31 ← SItoSIsat(temp 0:32 ,32)

end

Each element of vaddsws is a word.

Each signed-integer element in vA is added to the corresponding signed-integer eleme
in vB.

If the sum is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it saturates
to (-231). If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-12 shows the usage of the vaddsws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-12. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)

04 vD vA vB 896
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vaddubm vaddubm 
Vector Add Unsigned Byte Modulo

vaddubm vD,vA,vB Form VX

do i=0 to 127 by 8
vDi:i+7 ← ( vA) i:i+7  + int  ( vB) i:i+7

end

Each element of vaddubm is a byte.

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vaddubm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-13 shows the vaddubm command usage. Each of the sixteen elements in
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-13. vaddubm—Add Sixteen Integer Elements (8-Bit)

04 vD vA vB 0
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+ +++++++++++++++
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vaddubs vaddubs 
Vector Add Unsigned Byte Saturate

vaddubs vD,vA,vB Form VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend(( vA) i:i+7 ,9)
bop0:8 ← ZeroExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  bop 0:8
vDi:i+7 ← UItoUIsat(temp 0:8 ,8)

end

Each element of vaddubs is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB.

If the sum is greater than (28-1) it saturates to (28-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-14 shows the usage of the vaddubs command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-14. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 512
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vadduhm vadduhm 
Vector Add Unsigned Half Word Modulo

vadduhm vD,vA,vB Form VX

do i=0 to 127 by 16
vDi:i+15 ← ( vA) i:i+15  + int  ( vB) i:i+15

end

Each element of vadduhm is a half word. 

Each integer element in vA is added to the corresponding integer element in vB. The integer
result is placed into the corresponding element of vD.

Note that the vadduhm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-15 shows the usage of the vadduhm command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-15. vadduhm—Add Eight Integer Elements (16-Bit)

04 vD vA vB 64
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vadduhs vadduhs 
Vector Add Unsigned Half Word Saturate

vadduhs vD,vA,vB Form VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend(( vA) i:i+15 ,17)
bop0:16 ← ZeroExtend(( vB) i:i+15 ,17)
temp 0:16 ← aop 0:16  + int  bop 0:16
vDi:i+15 ← UItoUIsat(temp 0:16 ,16)

end

Each element of vadduhs is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB.

If the sum is greater than (216-1) it saturates to (216-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of the vadduhs command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-16. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 576
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vadduwm vadduwm 
Vector Add Unsigned Word Modulo

vadduwm vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← ( vA) i:i+31  + int  ( vB) i:i+31

end

Each element of vadduwm is a word. 

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vadduwm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Form:

• VX

Figure 6-17 shows the usage of the vadduwm command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-17. vadduwm—Add Four Integer Elements (32-Bit)

04 vD vA vB 128
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vadduws vadduws 
Vector Add Unsigned Word Saturate

vadduws vD,vA,vB Form: VX

do i=0 to 127 by 3
aop0:32 ← ZeroExtend(( vA) i:i+31 ,33)
bop0:32 ← ZeroExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  bop 0:32
vDi:i+31 ← UItoUIsat(temp 0:32 ,32)

end

Each element of vadduws is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB.

If the sum is greater than (232-1) it saturates to (232-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-18 shows the usage of the vadduws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-18. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 640
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MOTOROLA Chapter 6. AltiVec Instructions 6-41



AltiVec Instruction Set  
vand vand 
Vector Logical AND

vand vD,vA,vB Form: VX

vD ← ( vA) & ( vB)

The contents of vA are bitwise ANDed with the contents of vB and the result is placed into
vD.

Other registers altered: 

• None

Figure 6-19 shows usage of the vand command.

Figure 6-19. vand—Logical Bitwise AND 

04 vD vA vB 1028
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vandc vandc
Vector Logical AND with Complement

vandc vD,vA,vB Form: VX

vD ← ( vA) & ¬( vB)

The contents of vA are ANDed with the one’s complement of the contents of vB and the
result is placed into vD.

Other registers altered: 

• None

Figure 6-19 shows usage of the vandc command.

Figure 6-20 . vand—Logical Bitwise AND with Complement

04 vD vA vB 1092
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vavgsb vavgsb
Vector Average Signed Byte

vavgsb vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← SignExtend(( vA) i:i+7 ,9)
bop0:8 ← SignExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  bop 0:8  + int  1
vDi:i+7 ← temp 0:7

end

Each element of vavgsb is a byte.

Each signed-integer byte element in vA is added to the corresponding signed-integer b
element in vB, producing an 9-Bit signed-integer sum. The sum is incremented by 1
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-21 shows the usage of the vavgsb command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-21. vavgsb— Average Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1282

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 bits

9 bits
6-44 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

t in
-order

he
vavgsh vavgsh
Vector Average Signed Half Word

vavgsh vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← SignExtend(( vA) i:i+15 ,17)
bop0:16 ← SignExtend(( vB) i:i+15 ,17)
temp 0:16 ← aop 0:15  + int  bop 0:15  + int  1
vDi:i+15 ← temp 0:15

end

Each element of vavgsh is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer elemen
vB, producing an 17-bit signed-integer sum. The sum is incremented by 1. The high
16 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-22 shows the usage of the vavgsh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-22. vavgsh—Average Eight Signed Integer Elements (16-bits)

04 vD vA vB 1346
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vavgsw vavgsw
Vector Average Signed Word

vavgsw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← SignExtend(( vA) i:i+31 ,33)
bop0:32 ← SignExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  bop 0:32  + int  1
vDi:i+31 ← temp 0:31

end

Each element of vavgsw is a word.

Each signed-integer element in vA is added to the corresponding signed-integer elemen
vB, producing an 33-bit signed-integer sum. The sum is incremented by 1. The high
32 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-23 shows the usage of the vavgsw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-23. vavgsw— Average Four Signed Integer Elements (32-Bit)

04 vD vA vB 1410
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vavgub vavgub
Vector Average Unsigned Byte

vavgub vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend(( vA) i:i+7 ,9)
bop0:n ← ZeroExtend(( vB) i:i+71 ,9)
temp 0:n ← aop 0:8  + int  bop 0:8  + int  1
vDi:i+7 ← temp 0:7

end

Each element of vavgub is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB, producing an 9-bit unsigned-integer sum. The sum is incremented by 1
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-24 shows the usage of the vavgub command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

. 

Figure 6-24. vavgub—Average Sixteen Unsigned Integer Elements (8-bits)
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vavguh vavguh
Vector Average Unsigned Half Word

vavguh vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend(( vA) i:i+15 ,17)
bop0:16 ← ZeroExtend(( vB) i:i+15 ,17)
temp 0:16 ← aop 0:16  + int  bop 0:16  + int  1
vDi:i+15 ← temp 0:15

end

Each element of vavguh is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB, producing a 17-bit unsigned-integer. The sum is incremented by 1. The 
order 16 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-22 shows the usage of the vavgsh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-25. vavgsh— Average Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1090

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 bits

17 bits

+

+1

Temp
6-48 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

er
by 1.

he
vavguw vavguw
Vector Average Unsigned Word

vavguw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend(( vA) i:i+31 ,33)
bop0:32 ← ZeroExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  bop 0:32  + int  1
vDi:i+31 ← temp 0:31

end

Each element of vavguw is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integ
element in vB, producing an 33-bit unsigned-integer sum. The sum is incremented 
The high-order 32 bits of the result are placed into the corresponding element of vD.

Other registers altered: 

• None

Figure 6-26 shows the usage of the vavguw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-26. vavguw—Average Four Unsigned Integer Elements (32-Bit)
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vcfsx vcfsx
Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31  ← CnvtSI32ToFP32(( vB) i:i+31 ) ÷fp  2 UIMM

end

Each signed fixed-point integer word element in vB is converted to the nearest singl
precision floating-point value. The result is divided by 2UIMM (UIMM = Unsigned
immediate value) and placed into the corresponding word element of vD.

Other registers altered: 

• None

Figure 6-26 shows the usage of the vcfsx command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-27. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point 
Elements (32-Bit)

04 vD UIMM vB 842
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vcfux vcfux
Vector Convert from Unsigned Fixed-Point Word

vcfux vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31  ← CnvtUI32ToFP32(( vB) i:i+31 ) ÷fp  2 UIMM

end

Each unsigned fixed-point integer word element in vB is converted to the nearest singl
precision floating-point value. The result is divided by 2UIMM and placed into the
corresponding word element of vD.

Other registers altered: 

• None

Figure 6-28 shows the usage of the vcfux command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-28. vcfux—Convert Four Unsigned Integer Elements to Four Floating-
Point Elements (32-Bit)
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vcmpbfp x vcmpbfp x
Vector Compare Bounds Floating Point

vcmpbfp  vD,vA,vB (Rc = 0) Form: VXR
vcmpbfp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32
le ← (( vA) i:i+31  ≤fp  ( vB) i:i+31 )
ge ← (( vA) i:i+31  ≥fp  -( vB) i:i+31 )

vDi:i+31  ← −le || −ge || 300

end
if Rc=1 then do

ib ← ( vD = 1280)
CR24:27  ← 0b00 || ib || 0b0

end

Each single-precision word element in vA is compared to the corresponding element in vB.
A 2-bit value is formed that indicates whether the element in vA is within the bounds
specified by the element in vB, as follows.

Bit 0 of the 2-bit value is zero if the element in vA is less than or equal to the element 
vB, and is one otherwise. Bit 1 of the 2-bit value is zero if the element in vA is greater than
or equal to the negative of the element in vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word ele
(bits 0–1 for word element 0, bits 32–33 for word element 1, bits 64–65 for word ele
2, bits 96–97 for word element 3) of vD and the remaining bits of the element are clear

If Rc=1, CR Field 6 is set to indicate whether all four elements in vA are within the bounds
specified by the corresponding element in vB, as follows.

•       CR6 = 0b00 || all_within_bounds || 0

Note that if any single-precision floating-point word element in vB is negative; the
corresponding element in vA is out of bounds. Note that if a vA or a vB element is a NaN,
the two high order bits of the corresponding result will both have the value 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 befor
comparison is made.

Other registers altered:

• Condition register (CR6):

Affected: Bit 2 (if Rc = 1)

04 vD vA vB Rc 966

0 5 6 10 11 15 16 20 21 22 31
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Figure 6-29 shows the usage of the vcmpbfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-29. vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)
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vcmpeqfp x vcmpeqfp x
Vector Compare Equal-to-Floating Point

vcmpeqfp vD,vA,vB Form: VXR
vcmpeqfp. vD,vA,vB

do i=0 to 127 by 32
if ( vA) i:i+31  = fp  ( vB) i:i+31

then vDi:i+31  ← 0xFFFF_FFFF
else vDi:i+31  ← 0x0000_0000

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR24:27  ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the correspondin
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1. CR6 filed is set according to all, some, or none of the elements pairs co
equal. 

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that if a vA or vB element is a NaN, the corresponding result will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-29 shows the usage of the vcmpeqfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-30. vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit)
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vcmpequb x vcmpequb x
Vector Compare Equal-to Unsigned Byte

vcmpequb vD,vA,vB Form: VXR
vcmpequb. vD,vA,vB

do i=0 to 127 by 8
if ( vA) i:i+7  = int  ( vB) i:i+7

then vDi:i+7  ← 81

else vDi:i+7  ← 80

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequb is a byte. 

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare eq

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequb[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-31 shows the usage of the vcmpequb command. Each of the sixteen elements
the vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-31. vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)
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vcmpequh x vcmpequh x
Vector Compare Equal-to Unsigned Half Word

vcmpequh vD,vA,vB Form: VXR
vcmpequh. vD,vA,vB

do i=0 to 127 by 16
if ( vA) i:i+15  = int  ( vB) i:i+15

then vDi:i+15  ← 161

else vDi:i+15  ← 160

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequh is a half word. 

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare eq

• CR6 = all_equal || 0b0 || none_equal || 0b0.

Note that vcmpequh[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-32 shows the usage of the vcmpequh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-32. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)
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vcmpequw x vcmpequw x
Vector Compare Equal-to Unsigned Word

vcmpequw vD,vA,vB Form: VXR
vcmpequw. vD,vA,vB

do i=0 to 127 by 32
if ( vA) i:i+311  = int  ( vB) i:i+31

    then vDi:i+31  ← n1

    else vDi:i+31  ← n0

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequw is a word. 

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare eq

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequw[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-33 shows the usage of the vcmpequw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-33. vcmpequw—Compare Equal of Four Integer Elements (32-Bit)
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vcmpgefp x vcmpgefp x
Vector Compare Greater-Than-or-Equal-to Floating Point

vcmpgefp vD,vA,vB (Rc = 0) Form: VXR
vcmpgefp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32
if ( vA) i:i+31  ≥fp  ( vB) i:i+31
then vDi:i+31  ← 0xFFFF_FFFF
else vDi:i+31  ← 0x0000_0000

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR24:27  ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the correspondin
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than or equal to the element in vB, and is
cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_or_equal || some_greater_or_e
none_great_or_equal.

CR6 = all_greater_or_equal || 0b0 || none greater_or_equal || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-17 shows the usage of the vcmpgefp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-34. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point 
Elements (32-Bit)
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vcmpgtfpx vcmpgtfpx
Vector Compare Greater-Than Floating-Point

vcmpgtfp vD,vA,vB Form: VXR
vcmpgtfp. vD,vA,vB

do i=0 to 127 by 32
if ( vA) i:i+31  > fp  ( vB) i:i+31
    then vDi:i+31  ← 0xFFFF_FFFF
    else vDi:i+31  ← 0x0000_0000

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the correspondin
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_th
none_greater_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

]Figure 6-17 shows the usage of the vcmpgtfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-35. vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements 
(32-Bit)

04 vD vA vB Rc 710

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-59



AltiVec Instruction Set  

er

at_than.

00.

 in
vcmpgtsb x vcmpgtsb x
Vector Compare Greater-Than Signed Byte

vcmpgtsb vD,vA,vB  Form: VXR
vcmpgtsb. vD,vA,vB

do i=0 to 127 by 8
if ( vA) i:i+7  > si  ( vB) i:i+7

    then vDi:i+7  ← 81

    else vDi:i+7  ← 80

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR24:27  ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsb is a byte. 

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-36 shows the usage of the vcmpgtsb command. Each of the sixteen elements
the vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-36. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer 
Elements (8-Bit)
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vcmpgtsh x vcmpgtsh x
Vector Compare Greater-Than Condition Register Signed Half Word

vcmpgtsh vD,vA,vB  Form: VXR
vcmpgtsh. vD,vA,vB

do i=0 to 127 by 16
if ( vA) i:i+15  > si  ( vB) i:i+15

    then vDi:i+15  ← 161

    else vDi:i+15  ← 160

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR24:27  ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsh is a half word. 

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-16 shows the usage of the vcmpgtsh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-37. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements 
(16-Bit)
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vcmpgtsw x vcmpgtsw x
Vector Compare Greater-Than Signed Word

vcmpgtsw vD,vA,vB  Form: VXR
vcmpgtsw. vD,vA,vB

do i=0 to 127 by 32
if ( vA) i:i+31  > si  ( vB) i:i+31

    then vDi:i+31  ← 321

    else vDi:i+31  ← 320

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR24:27  ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsw is a word. 

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-38 shows the usage of the vcmpgtsw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-38. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements 
(32-Bit)
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vcmpgtub x vcmpgtub x
Vector Compare Greater-Than Unsigned Byte

vcmpgtub vD,vA,vB  Form: VXR
vcmpgtub. vD,vA,vB

do i=0 to 127 by 8
if ( vA) i:i+7  > ui  ( vB) i:i+7

    then vDi:i+7  ← 81

    else vDi:i+7  ← 80

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtub is a byte. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-14 shows the usage of the vcmpgtub command. Each of the sixteen elements
the vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-39. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer 
Elements (8-Bit)
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vcmpgtuh x vcmpgtuh x
Vector Compare Greater-Than Unsigned Half Word

vcmpgtuh vD,vA,vB  Form: VXR
vcmpgtuh. vD,vA,vB

do i=0 to 127 by 16
if ( vA) i:i+151  > ui  ( vB) i:i+15

    then vDi:i+15  ← 161

    else vDi:i+15  ← 160

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuh is a half word. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-16 shows the usage of the vcmpgtuh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-40. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer 
Elements (16-Bit)
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vcmpgtuw x vcmpgtuw x
Vector Compare Greater-Than Unsigned Word

vcmpgtuw vD,vA,vB  Form: VXR
vcmpgtuw. vD,vA,vB

do i=0 to 127 by 32
if ( vA) i:i+31  > ui  ( vB) i:i+31

    then vDi:i+31  ← 321

    else vDi:i+31  ← 320

end
if Rc=1 then do

t ← ( vD = 1281)
f ← ( vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuw is a word. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_gre

CR6 = all_greater_than || 0b0 || none_greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_00

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-41 shows the usage of the vcmpgtuw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-41. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer 
Elements (32-Bit)

04 vD vA vB Rc 646
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vctsxs vctsxs
Vector Convert to Signed Fixed-Point Word Saturate

vctsxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32
if ( vB) i+1:i+8 =255 | ( vB) i+1:i+8  + UIMM ≤ 254 then

    vDi:i+31  ← CnvtFP32ToSI32Sat(( vB) i:i+31  * fp  2 UIMM)
 else
    do

if ( vB) i =0 then vDi:i+31  ← 0x7FFF_FFFF
      else vDi:i+31  ← 0x8000_0000
      VSCR SAT ← 1

end
end

Each single-precision word element in vB is multiplied by 2UIMM. The product is converted
to a signed integer using the rounding mode, Round toward Zero.

If the intermediate result is greater than (231-1) it saturates to (231-1); if it is less than -231 it
saturates to -231. A signed-integer result is placed into the corresponding word eleme
vD.

Fixed-point integers used by the vector convert instructions can be interpreted as con
of 32-UIMM integer bits followed by UIMM fraction bits. The vector convert to fixe
point word instructions support only the rounding mode, Round toward Zero. A si
precision number can be converted to a fixed-point integer using any of the other
rounding modes by executing the appropriate vector round to floating-point in
instruction before the vector convert to fixed-point word instruction.

Other registers altered:

• Vector status and control register (VSCR):
Affected: SAT

Figure 6-42 shows the usage of the vctsxs command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-42. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer 
Elements (32-Bit)

04 vD UIMM vB 970
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vctuxs vctuxs
Vector Convert to Unsigned Fixed-Point Word Saturate

vctuxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32
if ( vB) i+1:i+8 =255 | ( vB) i+1:i+8  + UIMM ≤ 254 then

    vDi:i+31  ← CnvtFP32ToUI32Sat(( vB) i:i+31  * fp  2 UIM)
 else
    do
      if ( vB) i =0 then vDi:i+31  ← 0xFFFF_FFFF
      else vDi:i+31  ← 0x0000_0000
      VSCR SAT ← 1

end
end

Each single-precision floating-point word element in vB is multiplied by 2UIM. The product
is converted to an unsigned fixed-point integer using the rounding mode Round t
Zero.

If the intermediate result is greater than (232-1) it saturates to (232-1) and if it is less than 0
it saturates to 0.

The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• Vector status and control register (VSCR):
Affected: SAT

Figure 6-43 shows the usage of the vctuxs command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-43. vctuxs—Convert Four Floating-Point Elements to Four Unsigned 
Integer Elements (32-Bit)

04 vD UIMM vB 906
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Vector 2 Raised to the Exponent Estimate Floating Point

vexptefp vD,vB Form: VX

do i=0 to 127 by 32
x ← ( vB) i:i+31

vDi:i+31  ← 2 x

end

The single-precision floating-point estimate of 2 raised to the power of each s
precision floating-point element in vB is placed into the corresponding element of vD.

The estimate has a relative error in precision no greater than one part in 16, that is, 

where x is the value of the element in vB. The most significant 12 bits of the estimate
significant are monotonic. Note that the value placed into the element of vD may vary
between implementations, and between different executions on the same implemen

If an operation has an integral value and the resulting value is not 0 or +∞, the result is exact.

Operation with various special values of the element in vB is summarized below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Other registers altered:

• None

04 vD 0 0 0 0 0 vB 394

0 5 6 10 11 15 16 20 21 31

Value of 
Element in 

vB
Result

-∞ +0

-0 +1

+0 +1

+∞ +∞

NaN QNaN

estimate 2
x

–

2
x

-------------------------------------
1

16
------≤
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Figure 6-44 shows the usage of the vexptefp command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-44. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four 
Floating-Point Elements (32-Bit)

2x2x2x 2x

vB

vD

x x x x
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vlogefp vlogefp
Vector Log2 Estimate Floating Point

vlogefp vD,vB Form: VX

do i=0 to 127 by 32
x ← ( vB) i:i+31

vDi:i+31  ← log 2(x)

end

The single-precision floating-point estimate of the base 2 logarithm of each s
precision floating-point element in vB is placed into the corresponding element of vD.

The estimate has an absolute error in precision (absolute value of the difference b
the estimate and the infinitely precise value) no greater than 2-5. The estimate has a relativ
error in precision no greater than one part in 8, as described below:

where x is the value of the element in vB, except when |x-1| ≤ 1 ÷ 8. The most significant
12 bits of the estimate's significant are monotonic. Note that the value placed in
element of vD may vary between implementations, and between different executions o
same implementation.

Operation with various special values of the element in vB is summarized below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Other registers altered:
• None

04 vD 0 0 0 0 0 vB 458

0 5 6 10 11 15 16 20 21 31

Value Result

-∞ QNaN

less than 0 QNaN

±0 -∞

+∞ +∞

NaN QNaN

estimate - log2 x( ) 1
32
------≤ 

              unless              x 1–
1
8
---≤
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Figure 6-44 shows the usage of the vexptefp command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-45. vexptefp—Log 2 Estimate Floating-Point for Four Floating-Point 
Elements (32-Bit)

log2(x)log2(x)log2(x)log2(x)

vB

vD

x x x x
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vmaddfp vmaddfp
Vector Multiply Add Floating Point

vmaddfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32
vDi:i+31  ← RndToNearFP32((( vA) i:i+31  * fp  ( vC)i:i+31 ) + fp  ( vB) i:i+31 )

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precisio
floating-point word element in vB is added to the product. The result is rounded to 
nearest single-precision floating-point number and placed into the corresponding
element of vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such
instruction can be obtained by using vmaddfp with vB containing the value -0.0
(0x8000_0000) in each of its four single-precision floating-point word elements. (The 
must be -0.0, not +0.0, in order to obtain the IEEE-conforming result of -0.0 when the 
of the multiplication is -0.)

Other registers altered:

• None

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Figure 6-46 shows the usage of the vmaddfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-46. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 46
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vmaxfp vmaxfp
Vector Maximum Floating Point

vmaxfp vD,vA,vB Form: VX

do i=0 to 127 by 32

if ( vA) i:i+31  ≥fp  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each single-precision floating-point word element in vA is compared to the correspondin
single-precision floating-point word element in vB. The larger of the two single-precisio
floating-point values is placed into the corresponding word element of vD.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN

Other registers altered:

• None

Figure 6-47 shows the usage of the vmaxfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-47. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1034
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vmaxsb vmaxsb
Vector Maximum Signed Byte

vmaxsb vD,vA,vB Form: VX

do i=0 to 127 by 8
if ( vA) i:i+7  ≥si  ( vB) i:i+7
    then vDi:i+7  ← ( vA) i:i+7
    else vDi:i+7  ← ( vB) i:i+7

end

Each element of vmaxsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vmaxsb command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-48. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 258
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vmaxsh vmaxsh
Vector Maximum Signed Half Word

vmaxsh vD,vA,vB Form: VX

do i=0 to 127 by 16
if ( vA) i:i+7  ≥si  ( vB) i:i+15
    then vDi:i+15 ← ( vA) i:i+15
    else vDi:i+15  ← ( vB) i:i+15

end

Each element of vmaxsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vmaxsh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-49. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 322
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vmaxsw vmaxsw
Vector Maximum Signed Word

vmaxsw vD,vA,vB Form: VX

do i=0 to 127 by 32
if ( vA) i:i+31  ≥si  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each element of vmaxsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vmaxsw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-50. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 386
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vmaxub vmaxub
Vector Maximum Signed Byte

vmaxub vD,vA,vB Form: VX

do i=0 to 127 by 8
if ( vA) i:i+7  ≥ui  ( vB) i:i+7
    then vDi:i+7  ← ( vA) i:i+7
    else vDi:i+7  ← ( vB) i:i+7

end

Each element of vmaxub is a byte. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vmaxub command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-51. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 2
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vmaxuh vmaxuh
Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX

do i=0 to 127 by 16
if ( vA) i:i+15  ≥ui  ( vB) i:i+15
    then vDi:i+15  ← ( vA) i:i+15
    else vDi:i+15  ← ( vB) i:i+15

end

Each element of vmaxuh is a half word. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-52 shows the usage of the vmaxuh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-52. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 66
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vmaxuw vmaxuw
Vector Maximum Unsigned Word

vmaxuw vD,vA,vB Form: VX

do i=0 to 127 by 32
if ( vA) i:i+31  ≥ui  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each element of vmaxuw is a word. 

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vmaxuw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-53. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)
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vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Half Word Saturate

vmhaddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16
prod 0:31 ← ( vA) i:i+15  * si  ( vB) i:i+15
 temp 0:16 ← prod 0:16  + int  SignExtend(( vC)i:i+15 ,17)
 vDi:i+15 ← SItoSIsat(temp 0:16 ,16)

end

Each signed-integer half word element in vA is multiplied by the corresponding signed
integer half word element in vB, producing a 32-bit signed-integer product. Bits 0-16 of 
intermediate product are added to the corresponding signed-integer half-word elem
vC after they have been sign extended to 17-bits. The 16-bit saturated result from e
the eight 17-bit sums is placed in register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than (-
215) it saturates to (-215).

The signed-integer result is placed into the corresponding half-word element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of the vmhaddshs command. Each of the eight elements 
the vectors, vA, vB, vC, and vD, are 16 bits in length.

Figure 6-54. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements 
(16-Bit)

04 vD vA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

+

S

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+

S

Sat

1716

16
+

S

+

S

+

S

+

S

+

S

+

S

6-80 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

t.
m. Bits
ent in

egister

 in
vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Half Word Saturate

vmhraddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16
prod 0:31  ← ( vA) i:i+15  * si  ( vB) i:i+15

prod 0:31  ← prod 0:31  + int  0x0000_4000
temp 0:16  ← prod 0:16  + int  SignExtend(( vC)i:i+15 ,17) 

( vD)i:i+15  ← SItoSIsat(temp 0:16 ,16)

end

Each signed integer halfword element in register vA is multiplied by the corresponding
signed integer halfword element in register vB, producing a 32-bit signed integer produc
The value 0x0000_4000 is added to the product, producing a 32-bit signed integer su
0—16 of the sum are added to the corresponding signed integer halfword elem
register vD. 

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than (-
215) it saturates to (-215).

The signed integer result is and placed into the corresponding halfword element of r
vD.

Figure 6-16 shows the usage of the vmhraddshs command. Each of the eight elements
the vectors, vA, vB, vC, and vD, are 16 bits in length.

Figure 6-55. vmhraddshs—Multiply-High Round and Add Eight Signed Integer 
Elements (16-Bit)

04 vD vA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

Const

Temp

vD

* * * * * * * *

+

Sat

1716

16
+ + ++++

0......01

S vCS S S SSSS
18

0......01 0......01 0......01 0......01 0......01 0......01 0......01
MOTOROLA Chapter 6. AltiVec Instructions 6-81



AltiVec Instruction Set  

word

NaN.

e the

he
vminfp vminfp
Vector Minimum Floating Point

vminfp vD,vA,vB Form: VX

do i=0 to 127 by 32
if ( vA) i:i+31  < fp  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each single-precision floating-point word element in register vA is compared to the
corresponding single-precision floating-point word element in register vB. The smaller of
the two single-precision floating-point values is placed into the corresponding 
element of register vD.

The minimum of + 0.0 and - 0.0 is - 0.0. The minimum of any value and a NaN is a Q

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 befor
comparison is made.

Figure 6-56 shows the usage of the vminfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-56. vminfp—Minimum of Four Floating-Point Elements (32-Bit)
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vminsb vminsb
Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX

do i=0 to 127 by 8
if ( vA) i:i+7  < si  ( vB) i:i+7
    then vDi:i+7  ← ( vA) i:i+7
    else vDi:i+7  ← ( vB) i:i+7

end

Each element of vminsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vminsb command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-57. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)
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vminsh vminsh
Vector Minimum Signed Half Word

vminsh vD,vA,vB Form: VX

do i=0 to 127 by 16
if ( vA) i:i+15 <si  ( vB) i:i+15
    then vDi:i+15  ← ( vA) i:i+15
    else vDi:i+15  ← ( vB) i:i+15

end

Each element of vminsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vminsh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-58. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)
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vminsw vminsw
Vector Minimum Signed Word

vminsw vD,vA,vB Form: VX

do i=0 to 127 by 32
if ( vA) i:i+31  < si  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each element of vminsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integ
element in vB. The larger of the two signed-integer values is placed into the correspo
element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vminsw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-59. vminsw—Minimum of Four Signed Integer Elements (32-Bit)
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vminub vminub
Vector Minimum Unsigned Byte

vminub vD,vA,vB Form: VX

do i=0 to 127 by 8
if ( vA) i:i+7  < ui  ( vB) i:i+7
    then vDi:i+7  ← ( vA) i:i+7
    else vDi:i+7  ← ( vB) i:i+7

end

Each element of vminub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-60 shows the usage of the vminub command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-60. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)
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vminuh vminuh
Vector Minimum Unsigned Half Word

vminuh vD,vA,vB Form: VX

do i=0 to 127 by 16
if ( vA) i:i+15 <ui  ( vB) i:i+15
    then vDi:i+15  ← ( vA) i:i+15
    else vDi:i+15  ← ( vB) i:i+15

end

Each element of vminuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vminuh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-61. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)
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vminuw vminuw
Vector Minimum Unsigned Word

vminuw vD,vA,vB Form: VX

do i=0 to 127 by 32
if ( vA) i:i+31  < ui  ( vB) i:i+31
    then vDi:i+31  ← ( vA) i:i+31
    else vDi:i+31  ← ( vB) i:i+31

end

Each element of vminuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-inte
element in vB. The larger of the two unsigned-integer values is placed into 
corresponding element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vminuw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-62. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)
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vmladduhm vmladduhm
Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 16
prod 0:31 ← ( vA) i:i+15  * ui  ( vB) i:i+15
vDi:i+15 ← prod 0:31  + int  ( vC)i:i+15

end

Each integer half-word element in vA is multiplied by the corresponding integer half-wo
element in vB, producing a 32-bit integer product. The product is added to 
corresponding integer half-word element in vC. The integer result is placed into th
corresponding half-word element of vD.

Note that vmladduhm can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-16 shows the usage of the vmladduhm command. Each of the eight elements 
the vectors, vA, vB, vC, and vD, are 16 bits in length.

Figure 6-63. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)
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vmrghb vmrghb
Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15  ← ( vA) i:i+7  || ( vB) i:i+7

end

Each element of vmrghb is a byte. 

The elements in the high-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the high-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-64 shows the usage of the vmrghb command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-64. vmrghb—Merge Eight High-Order Elements (8-Bit)
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vmrghh vmrghh
Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31  ← ( vA) i:i+15  || ( vB) i:i+15

end

Each element of vmrghh is a half word. 

The elements in the high-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the high-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-65 shows the usage of the vmrghh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-65. vmrghh—Merge Four High-Order Elements (16-Bit)
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vmrghw vmrghw
Vector Merge High Word

vmrghw vD,vA,vB Form: VX

do i=0 to 63 by 32
vDi*2:(i*2)+63  ← ( vA) i:i+31  || ( vB) i:i+31

end

Each element of vmrghw is a word. 

The elements in the high-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the high-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-66 shows the usage of the vmrghw command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-66. vmrghw—Merge Four High-Order Elements (32-Bit)
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vmrglb vmrglb
Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15  ← ( vA) i+64:i+71  || ( vB) i+64:i+71

end

Each element offer vmrglb  is a byte. 

The elements in the low-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the low-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-67 shows the usage of the vmrglb  command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-67. vmrglb—Merge Eight Low-Order Elements (8-Bit)
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vmrglh vmrglh
Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31  ← ( vA) i+64:i+79  || ( vB) i+64:i+79

end

Each element of vmrglh  is a half word. 

The elements in the low-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the low-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-65 shows the usage of the vmrglh command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-68. vmrglh—Merge Four Low-Order Elements (16-Bit)
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vmrglw vmrglw
Vector Merge Low Word

vmrglw vD,vA,vB Form: VX

do i=0 to 63 by 32
vDi*2:(i*2)+63  ← ( vA) i+64:i+95  || ( vB) i+64:i+95

end

Each element of vmrglw  is a word. 

The elements in the low-order half of vA are placed, in the same order, into the eve
numbered elements of vD. The elements in the low-order half of vB are placed, in the sam
order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-69 shows the usage of the vmrglw command. Each of the eight elements in t
vectors, vA, vB, and vD, are 16 bits in length.

Figure 6-69. vmrglw—Merge Four Low-Order Elements (32-Bit)
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vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo

vmsummbm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:31  ← ( vC)i:i+31
 do j=0 to 31 by 8

prod 0:15  ← ( vA) i+j:i+j+7  * sui  ( vB) i+j:i+j+7
temp 0:31  ← temp 0:31  + int  SignExtend(prod 0:15 ,32)
end

vDi:i+31  ← temp 0:31

end

For each word element in vC the following operations are performed in the order show

• Each of the four signed-integer byte elements contained in the corresponding
element of vA is multiplied by the corresponding unsigned-integer byte elemen
vB, producing a signed-integer 16-bit product.

• The signed-integer modulo sum of these four products is added to the signed-in
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-70 shows the usage of the vmsummbm command. Each of the sixteen elemen
in the vectors, vA, and vB, are 8 bits in length. Each of the four elements in the vectors vC
and vD are 32 bits in length.

Figure 6-70. vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit)
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vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo

vmsumshm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:31  ← ( vC)i:i+31
 do j=0 to 31 by 16

prod 0:31  ← ( vA) i+j:i+j+15  * si  ( vB) i+j:i+j+15
temp 0:31  ← temp 0:31  + int  prod 0:31
vDi:i+31  ← temp 0:31

end
end

For each word element in vC the following operations are performed in the order show

• Each of the two signed-integer half-word elements contained in the correspon
word element of vA is multiplied by the corresponding signed-integer half-word
element in vB, producing a signed-integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the signed-in
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-71 shows the usage of the vmsumshm command. Each of the eight elements
the vectors, vA, and vB, are16 bits in length. Each of the four elements in the vectors vC
and vD are 32 bits in length.

Figure 6-71. vmsumshm—Multiply-Sum of Signed Integer Elements 
(16-Bit to 32-Bit)
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vmsumshs vmsumshs
Vector Multiply Sum Signed Half Word Saturate

vmsumshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:33  ← SignExtend(( vC)i:i+31 ,34)
 do j=0 to 31 by 16

prod 0:31  ← ( vA) i+j:i+j+15  * si  ( vB) i+j:i+j+15
temp 0:33  ← temp 0:33  + int  SignExtend(prod 0:31 ,34)
vDi:i+31  ← SItoSIsat(temp 0:33 ,32)

end
end

For each word element in vC the following operations are performed in the order show

• Each of the two signed-integer half-word elements in the corresponding word
element of vA is multiplied by the corresponding signed-integer half-word elem
in vB, producing a signed-integer 32-bit product.

• The signed-integer sum of these two products is added to the signed-integer 
element in vC.

• If this intermediate result is greater than (231-1) it saturates to (231-1) and if it is less 
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.
Other registers altered:

• SAT

Figure 6-72 shows the usage of the vmsumshs command. Each of the eight elements in t
vectors, vA, and vB, are16 bits in length. Each of the four elements in the vectors, vC and
vD are 32 bits in length.

Figure 6-72. vmsumshs—Multiply-Sum of Signed Integer Elements (16-Bit to 32-Bit)
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vmsumubm vmsumubm
Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:31  ← ( vC)i:i+31
 do j=0 to 31 by 8

prod 0:15  ← ( vA) i+j:i+j+7  * ui  ( vB) i+j:i+j+7
temp 0:32  ← temp 0:32  + int  ZeroExtend(prod 0:15 ,32)
vDi:i+31  ← temp 0:31

end
end

For each word element in vC the following operations are performed in the order show

• Each of the four unsigned-integer byte elements contained in the correspondi
word element of vA is multiplied by the corresponding unsigned-integer byte 
element in vB, producing an unsigned-integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the unsi
integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element ofvD.

Other registers altered:

• None

Figure 6-73 shows the usage of the vmsumubm command. Each of the sixteen elements
the vectors, vA, and vB, are 8 bits in length. Each of the four elements in the vectors vC
and vD are 32 bits in length.

Figure 6-73. vmsumubm—Multiply-Sum of Unsigned Integer Elements 
(8-Bit to 32-Bit)
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vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Half Word Modulo

vmsumuhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:31  ← ( vC)i:i+31
 do j=0 to 31 by 16

prod 0:31  ← ( vA) i+j:i+j+15  * ui  ( vB) i+j:i+j+15
temp 0:31  ← temp 0:31  + int  prod 0:31
vDi:i+31  ← temp 2:33

end
end

For each word element in vC the following operations are performed in the order show

• Each of the two unsigned-integer half-word elements contained in the correspo
word element of vA is multiplied by the corresponding unsigned-integer half-wo
element in vB, producing a unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the unsigned-int
word element in vC.

• The unsigned-integer result is placed into the corresponding word element ofvD.

Other registers altered:

• None

Figure 6-74 shows the usage of the vmsumuhm command. Each of the eight elements 
the vectors, vA, and vB, are16 bits in length. Each of the four elements in the vectors vC
and vD are 32 bits in length.

Figure 6-74. vmsumuhm—Multiply-Sum of Unsigned Integer Elements 
(16-Bit to 32-Bit)
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vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Half Word Saturate

vmsumuhs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp 0:33  ← ZeroExtend(( vC)i:i+31 ,34)
 do j=0 to 31 by 16

prod 0:31  ← ( vA) i+j:i+j+15  * ui  ( vB) i+j:i+j+15
temp 0:33  ← temp 0:33  + int  ZeroExtend(prod 0:31 ,34)
vDi:i+31  ← UItoUIsat(temp 0:33 ,32)

end
end

For each word element in vC the following operations are performed in the order show

• Each of the two unsigned-integer half-word elements contained in the correspo
word element of vA is multiplied by the corresponding unsigned-integer half-wo
element in vB, producing an unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is saturate-added to the uns
integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element ofvD.

Other registers altered:

• SAT

Figure 6-75 shows the usage of the vmsumuhs command. Each of the eight elements in t
vectors, vA, and vB, are16 bits in length. Each of the four elements in the vectors, vC and
vD are 32 bits in length.

Figure 6-75. vmsumuhs—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)
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vmulesb vmulesb
Vector Multiply Even Signed Byte

vmulesb vD,vA,vB Form: VX

do i=0 to 127 by 16
prod 0:15 ← ( vA) i:i+7  * si  ( vB) i:i+7
 vDi:i+15 ← prod 0:15

end

Each even-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-76 shows the usage of the vmulesb command. Each of the sixteen elements in 
vectors, vA, and vB, is 8 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-76. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)
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vmulesh vmulesh
Vector Multiply Even Signed Half Word

vmulesh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod 0:31 ← ( vA) i:i+15  * si  ( vB) i:i+15
vDi:i+31 ← prod 0:31

end

Each even-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-intege
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-77 shows the usage of the vmulesh command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the four elements in the vector vD, is 32
bits in length.

Figure 6-77. vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)
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vmuleub vmuleub
Vector Multiply Even Unsigned Byte

vmuleub vD,vA,vB Form: VX

do i=0 to 127 by 16
prod 0:15  ← ( vA) i:i+7  * ui  ( vB) i:i+7
( vD)i:i+15  ← prod 0:15

end

Each even-numbered unsigned-integer byte element in register vA is multiplied by the
corresponding unsigned-integer byte element in register vB. The eight 16-bit unsigned
integer products are placed, in the same order, into the eight halfwords of register vD.

Other registers altered:

• None

Figure 6-78 shows the usage of the vmuleub command. Each of the sixteen elements in 
vectors, vA, and vB, is 8 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-78. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)
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vmuleuh vmuleuh
Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod 0:31  ← ( vA) i:i+15  * ui  ( vB) i:i+15
( vD)i:i+31  ← prod 0:31

end

Each even-numbered unsigned-integer halfword element in register vA is multiplied by the
corresponding unsigned-integer halfword element in register vB. The four 32-bit unsigned-
integer products are placed, in the same order, into the four words of register vD.

Other registers altered:

• None

Figure 6-79 shows the usage of the vmuleuh command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the four elements in the vector vD, is 32
bits in length.

Figure 6-79. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)
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vmulosb vmulosb
Vector Multiply Odd Signed Byte

vmulosb vD,vA,vB Form: VX

do i=0 to 127 by 16
prod 0:15 ← ( vA) i+8:i+15  * si  ( vB) i+8:i+15
vDi:i+15 ← prod 0:15

end

Each odd-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-80 shows the usage of the vmulosb command. Each of the sixteen elements in 
vectors, vA, and vB, is 8 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-80. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)
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vmulosh vmulosh
Vector Multiply Odd Signed Half Word

vmulosh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod 0:31 ← ( vA) i+16:i+31  * si  ( vB) i+16:i+31
vDi:i+31 ← prod 0:31

end

Each odd-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-intege
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-81 shows the usage of the vmuleuh command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the four elements in the vector vD, is 32
bits in length.

Figure 6-81. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)
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vmuloub vmuloub
Vector Multiply Odd Unsigned Byte

vmuloub vD,vA,vB Form: VX

do i=0 to 127 by 8
prod 0:15 ← ( vA) i+8:i+15  * ui  ( vB) i+n:i+15
vDi:i+15 ← prod 0:15

end

Each odd-numbered unsigned-integer byte element in vA is multiplied by the
corresponding unsigned-integer byte element in vB. The eight 16-bit unsigned-intege
products are placed, in the same order, into the eight half-word s of vD.

Other registers altered:

• None

Figure 6-76 shows the usage of the vmuloub command. Each of the sixteen elements in 
vectors, vA, and vB, is 8 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-82. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)
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r
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vmulouh vmulouh
Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX

do i=0 to 127 by 16
prod 0:31 ← ( vA) i+16:i+31  * ui  ( vB) i+n:i+311
vDi:i+31 ← prod 0:31

end

Each odd-numbered unsigned-integer half-word element in vA is multiplied by the
corresponding unsigned-integer half-word element in vB. The four 32-bit unsigned-intege
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-79 shows the usage of the vmulouh command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the four elements in the vector vD, is 32
bits in length.

Figure 6-83. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)
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vnmsubfp vnmsubfp
Vector Negative Multiply-Subtract Floating Point

vnmsubfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32
vDi:i+31  ← -RndToNearFP32((( vA) i:i+31  * fp  ( vC)i:i+31 ) - fp  ( vB) i:i+31 )

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precisio
floating-point word element in vB is subtracted from the product. The sign of the differen
is inverted. The result is rounded to the nearest single-precision floating-point numb
placed into the corresponding word element of vD.

Note that only one rounding occurs in this operation. Also note that a QNaN result 
negated.

Other registers altered:

• None

Figure 6-84 shows the usage of the vnmsubfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-84. vnmsubfp—Negative Multiply-Subtract of Four Floating-Point 
Elements (32-Bit)
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vnor vnor 
Vector Logical NOR

vnor vD,vA,vB Form: VX

vD ← ¬(( vA) | ( vB))

The contents of vA are bitwise ORed with the contents of vB and the complemented resu
is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vnot vD, vS equivalent to vnor vD, vS, vS

Figure 6-85 shows the usage of the vnor command.

Figure 6-85. vnor—Bitwise NOR of 128-bit Vector
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vor vor
Vector Logical OR

vor vD,vA,vB Form: VX

vD ← ( vA) | ( vB)

The contents of vA are ORed with the contents of vB and the result is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vmr  vD, vS  equivalent to vor vD, vS, vS

Figure 6-85 shows the usage of the vor command.

Figure 6-86. vor—Bitwise OR of 128-bit Vector
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vperm vperm
Vector Permute

vperm vD,vA,vB,vC Form: VA

temp 0:255  ← ( vA) || ( vB)
do i=0 to 127 by 8

b ← ( vC)i+3:i+7  || 0b000
vDi:i+7  ← temp b:b+7

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. For each integer i in the range 0–15, the contents of the byte element in the 
vector specified in bits 3–7 of byte element i in vC are placed into byte element i of vD.

Other registers altered:

• None

Programming note: See the programming notes with the Load Vector for Shift Lef
Load Vector for Shift Right instructions for examples of usage on the vperm instruction.

Figure 6-87 shows the usage of the vperm command. Each of the sixteen elements in 
vectors, vA, vB, vC, and vD, is 8 bits in length.

Figure 6-87. vperm—Concatenate Sixteen Integer Elements (8-Bit)
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vpkpx vpkpx
Vector Pack Pixel32

vpkpx vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi ← ( vA) i*2+7
vDi+1:i+5 ← ( vA)( i*2)+8:(i*2)+12
vDi+6:i+10 ← ( vA) (i*2)+16:(i*2)+20
vDi+11:i+15 ← ( vA)( (i*2)+24:(i*2)+28
vDi+64 ← ( vB) (i*2)+7
vDi+65:i+69 ← ( vB) (i*2)+8:(i*2)+12
vDi+70:i+74 ← ( vB) (i*2)+16:(i*2)+20
vDi+75:i+79 ← ( vB) (i*2)+24:(i*2)+28

end

The source vector is the concatenation of the contents of vA followed by the contents of
vB. Each word element in the source vector is packed to produce a 16-bit value as de
below and placed into the corresponding half-word element of vD. A word is packed to 16
bits by concatenating, in order, the following bits.

• bit 7 of the first byte (bit 7 of the word)
• bits 0–4 of the second byte (bits 8–12 of the word)
• bits 0–4 of the third byte (bits 16–20 of the word)
• bits 0–4 of the fourth byte (bits 24–28 of the word)

Other registers altered:

• None

Programming note: Each source word can be considered to be a 32-bit pixel consis
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel con
of one 1-bit channel and three 5-bit channels. A channel can be used to specify the in
of a particular color, such as red, green, or blue, or to provide other information need
the application.

Figure 6-88 shows the usage of the vpkpx command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-88. vpkpx—Pack Eight Elements (32-Bit) to Eight 
Elements (16-Bit)
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vpkshss vpkshss
Vector Pack Signed Half Word Signed Saturate

vpkshss vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← SItoSIsat(( vA) i*2:(i*2)+15 ,8)
vDi+64:i+71 ← SItoSIsat(( vB) i*2:(i*2)+15 ,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit 
integer. If the value of the element is greater than (2 7 - 1) the result saturates to (27 - 1) and
if the value is less than -27 the result saturates to -27. The result is placed into the
corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-89 shows the usage of the vpkshss command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the sixteen elements in the vector vD, is
8 bits in length.

Figure 6-89. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen 
Signed Integer Elements (8-Bit)
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vpkshus vpkshus
Vector Pack Signed Half Word Unsigned Saturate

vpkshus vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← SItoUIsat(( vA) i*2:(i*2)+7 ,8)
vDi+64:i+71 ← SItoUIsat(( vB) i*2:(i*2)+7 ,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit un
integer. If the value of the element is greater than (28 - 1) the result saturates to (28 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresp
byte element of vD.

Other registers altered:

• SAT

Figure 6-90 shows the usage of the vpkshus command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the sixteen elements in the vector vD, is
8 bits in length.

Figure 6-90. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen 
Unsigned Integer Elements (8-Bit)
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vpkswss vpkswss
Vector Pack Signed Word Signed Saturate

vpkswss vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← SItoSIsat(( vA) i*2:(i*2)+31 ,16)
vDi+64:i+79 ← SItoSIsat(( vB) i*2:(i*2)+31 ,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit 
integer half word. If the value of the element is greater than (215 - 1) the result saturates t
(215 - 1) and if the value is less than -215 the result saturates to -215. The result is placed into
the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-91 shows the usage of the vpkswss command. Each of the four elements in t
vectors, vA, and vB, is 32 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-91. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed 
Integer Elements (16-Bit)
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vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate

vpkswus vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← SItoUIsat(( vA) i*2:(i*2)+31 ,16)
vDi+64:i+79 ← SItoUIsat(( vB) i*2:(i*2)+31 ,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit un
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresp
half-word element of vD.

Other registers altered:

• SAT

Figure 6-92 shows the usage of the vpkswus command. Each of the four elements in t
vectors, vA, and vB, is 32 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-92. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight 
Unsigned Integer Elements (16-Bit)
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vpkuhum vpkuhum
Vector Pack Unsigned Half Word Unsigned Modulo

vpkuhum vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← ( vA) (i*2)+8:(i*2)+15
vDi+64:i+71 ← ( vB) (i*2)+8:(i*2)+15

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order byte of each half-word element in the source vector is placed int
corresponding byte element of vD.

Other registers altered:

• None

Figure 6-93 shows the usage of the vpkuhum command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the sixteen elements in the vector vD, is
8 bits in length.

Figure 6-93. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen 
Unsigned Integer Elements (8-Bit)
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vpkuhus vpkuhus
Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← UItoUIsat(( vA) i*2:(i*2)+15 ,8)
vDi+64:i+71 ← UItoUIsat(( vB) i*2:(i*2)+15 ,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer half-word element in the source vector is converted to an
unsigned integer. If the value of the element is greater than (28 - 1) the result saturates to (28

- 1). The result is placed into the corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-94 shows the usage of the vpkuhus command. Each of the eight elements in t
vectors, vA, and vB, is 16 bits in length. Each of the sixteen elements in the vector vD, is
8 bits in length.

Figure 6-94. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen 
Unsigned Integer Elements (8-Bit)
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vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo

vpkuwum vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← ( vA) (i*2)+16:(i*2)+31
vDi+64:i+79 ← ( vB) (i*2)+16:(i*2)+31

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order half-word of each word element in the source vector is placed int
corresponding half-word element of vD.

Other registers altered:

• None

Figure 6-95 shows the usage of the vpkuwum command. Each of the four elements in t
vectors, vA, and vB, is 32 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-95. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight 
Unsigned Integer Elements (16-Bit)
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vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate

vpkuwus vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← UItoUIsat(( vA) i*2:(i*2)+31 ,16)
vDi+64:i+79 ← UItoUIsat(( vB) i*2:(i*2)+31 ,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit un
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1).
The result is placed into the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-96 shows the usage of the vpkuwus command. Each of the four elements in t
vectors, vA, and vB, is 32 bits in length. Each of the eight elements in the vector vD, is 16
bits in length.

Figure 6-96. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight 
Unsigned Integer Elements (16-Bit)
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vrefp vrefp
Vector Reciprocal Estimate Floating Point

vrefp vD,vB Form: VX

do i=0 to 127 by 32
x ← ( vB) i:i+31

vDi:i+31  ← 1/x

end

The single-precision floating-point estimate of the reciprocal of each single-prec
floating-point element in vB is placed into the corresponding element of vD.

For results that are not a +0, -0, +∞, -∞, or QNaN, the estimate has a relative error
precision no greater than one part in 4096, that is:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations, and between different executions on the 
implementation.

Operation with various special values of the element in vB is summarized below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Other registers altered:

• None

Figure 6-97 shows the usage of the vrefp command. Each of the four elements in t
vectors vB and vD is 32 bits in length.
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Figure 6-97. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)

1 / x1 / x1 /x1 /x

vB

vD

x x x x
6-124 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

n
o the

he
vrfim vrfim
Vector Round to Floating-Point Integer toward Minus Infinity

vrfim v D,vB Form: VX

do i=0 to 127 by 32
vDi:i+31  ← RndToFPInt32Floor(( vB) i:i+31 )

end

Each single-precision floating-point word element in vB is rounded to a single-precisio
floating-point integer, using the rounding mode Round toward -Infinity, and placed int
corresponding word element of vD.

Other registers altered:

• None

Figure 6-98 shows the usage of the vrfim command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-98. vrfim— Round to Minus Infinity of Four Floating-Point Integer 
Elements (32-Bit)
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vrfin vrfin
Vector Round to Floating-Point Integer Nearest

vrfin v D,vB Form: VX

do i=0 to 127 by 32
vDi:i+31  ← RndToFPInt32Near(( vB) i:i+31 )

end

Each single-precision floating-point word element in vB is rounded to a single-precisio
floating-point integer, using the rounding mode Round to Nearest, and placed in
corresponding word element of vD.

Note the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-99 shows the usage of the vrfin command. Each of the four elements in the vect
vB and vD is 32 bits in length.

Figure 6-99. vrfin—Nearest Round to Nearest of Four Floating-Point Integer 
Elements (32-Bit)
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vrfip vrfip
Vector Round to Floating-Point Integer toward Plus Infinity

vrfip v D,vB Form: VX

do i=0 to 127 by 32
vDi:i+31  ← RndToFPInt32Ceil(( vB) i:i+31 )

end

Each single-precision floating-point word element in vB is rounded to a single-precisio
floating-point integer, using the rounding mode Round toward +Infinity, and placed in
corresponding word element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 befor
comparison is made.

Other registers altered:

• None

Figure 6-100 shows the usage of the vrfip command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-100. vrfip—Round to Plus Infinity of Four Floating-Point Integer Elements 
(32-Bit)
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vrfiz vrfiz
Vector Round to Floating-Point Integer toward Zero

vrfiz vD,vB Form: VX

do i=0 to 127 by 32
vDi:i+31  ← RndToFPInt32Trunc(( vB) i:i+31 )

end

Each single-precision floating-point word element in vB is rounded to a single-precisio
floating-point integer, using the rounding mode Round toward Zero, and placed in
corresponding word element of vD.

Note, the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-101 shows the usage of the vrfiz command. Each of the four elements in t
vectors vB and vD is 32 bits in length.

Figure 6-101. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)
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vrlb vrlb
Vector Rotate Left Integer Byte

vrlb v D,vA,vB Form: VX

do i=0 to 127 by 8
sh ← ( vB) i+5:i+7
vDi:i+7  ← ROTL(( vA) i:i+7 ,sh)

end

Each element is a byte. Each element in vA is rotated left by the number of bits specifie
in the low-order 3 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-102 shows the usage of the vrlb  command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-102. vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)
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vrlh vrlh
Vector Rotate Left Integer Half Word

vrlh v D,vA,vB Form: VX

do i=0 to 127 by 16
sh ← ( vB) i+12:i+15
vDi:i+15  ← ROTL(( vA) i:i+15 ,sh)

end

Each element is a half word 

Each element in vA is rotated left by the number of bits specified in the low-order 4 bit
the corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-103 shows the usage of the vrlh command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-103. vrlh—Left Rotate of Eight Integer Elements (16-Bit)

04 vD vA vB 68

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
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vrlw vrlw
Vector Rotate Left Integer Word

vrlw v D,vA,vB Form: VX

do i=0 to 127 by 32
sh ← ( vB) i+27:i+31
vDi:i+31  ← ROTL(( vA) i:i+31 ,sh)

end

Each element is a word. Each element in vA is rotated left by the number of bits specifie
in the low-order 5 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-104 shows the usage of the vrlw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-104. vrlw—Left Rotate of Four Integer Elements (32-Bit)

04 vD vA vB 132

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
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vrsqrtefp vrsqrtefp
Vector Reciprocal Square Root Estimate Floating Point

vrsqrtefp vD,vB Form: VX

do i=0 to 127 by 32
x ← ( vB) i:i+31

vDi:i+31  ← 1 ÷fp (√fp(x))

end

The single-precision estimate of the reciprocal of the square root of each single-pre
element in vB is placed into the corresponding word element of vD. The estimate has a
relative error in precision no greater than one part in 4096, as explained below:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations and between different executions on the 
implementation. Operation with various special values of the element in vB is summarized
below.

Other registers altered:

• None

Figure 6-105 shows the usage of the vrsqrtefp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

04 vD 0 0 0 0 0 vB 330

0 5 6 10 11 15 16 20 21 31

Value Result

-∞ QNaN

less than 0 QNaN

-0 -∞

+0 +∞

+∞ +0

NaN QNaN

estimate 1 x⁄–

1 x⁄
------------------------------------------------

1
4096
-------------≤
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Figure 6-105. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point 
Elements (32-Bit)

1 / √x

vB

vD

1 / √x1 / √x 1 / √x
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vsel vsel
Vector Conditional Select

vsel vD,vA,vB,vC Form: VA

do i=0 to 127
if ( vC)i =0 then vDi  ← ( vA) i
 else vDi  ← ( vB) i

end

For each bit in vC that contains the value 0, the corresponding bit in vA is placed into the
corresponding bit of vD. For each bit in vC that contains the value 1, the corresponding
in vB is placed into the corresponding bit of vD.

Other registers altered:

• None

Figure 6-106 shows the usage of the vsel command. Each of the vectors, vA, vB, vC, and
vD, is 128 bits in length.

Figure 6-106. vsel—Bitwise Conditional Select of Vector Contents(128-bit)

04 vD vA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

vB

vA

vC0 1 0 0 1 1 0 0 •  •  •  •  •  •  •  •  •  •  •

vD

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •  •
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sult is
vsl vsl
Vector Shift Left

vsl vD,vA,vB Form: VX

sh ← ( vB) 125:127
t ← 1
do i = 0 to 127 by 8

t ← t & (( vB)i+5:i+7 = sh)
if t = 1 then vD ← ( vA) << ui  sh
else vD ← undefined

end

The contents of vA are shifted left by the number of bits specified in vB[125–127]. Bits
shifted out of bit 0 are lost. Zeros are supplied to the vacated bits on the right. The re
placed into vD.

The contents of the low-order three bits of all byte elements in vB must be identical to
vB[125–127]; otherwise the value placed into vD is undefined.

Other registers altered:

• None

Figure 6-107 shows the usage of the vsl command. 

Figure 6-107. vsl—Shift Bits Left in Vector (128-Bit)

04 vD vA vB 452

0 5 6 10 11 15 16 20 21 31

vA

vD

•     •     •     •     •     •     •     •     •     •

*6 = sh = Shift Count

125 127

sh zeros

vB6*

0 0 0 0 0 0

Shift 
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vslb vslb
Vector Shift Left Integer Byte

vslb vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← ( vB) i+5):i+7
vDi:i+7  ← ( vA) i:i+7  << ui  sh

end

Each element is a byte. Each element in vA is shifted left by the number of bits specifie
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is plac
the corresponding element of vD.

Other registers altered:

• None

Figure 6-102 shows the usage of the vslb command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-108. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)

04 vD vA vB 260

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0...0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
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vsldoi vsldoi
Vector Shift Left Double by Octet Immediate

vsldoi vD, vA, vB, SHB Form: VA

vD ← (( vA) || ( vB)) << ui  (SHB || 0b000)

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. Bytes SHB:SHB+15 of the source vector are placed into vD.

Other registers altered:

• None

Figure 6-14 shows the usage of the vsldoi command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-109. vsldoi—Shift Left by Bytes Specified

04 vD vA vB 0 SH 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vA

vB

vD

SHB
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vslh vslh
Vector Shift Left Integer Half Word

vslh vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← ( vB) i+12:i+15
vDi:i+15  ← ( vA) i:i+15  << ui  sh

end

Each element is a half word. Each element in vA is shifted left by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
0 of the element are lost. Zeros are supplied to the vacated bits on the right. The r
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-16 shows the usage of the vslh command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-110. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)

04 vD vA vB 324

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

*x
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e result
vslo vslo
Vector Shift Left by Octet

vslo vD,vA,vB Form: VX

shb ← ( vB) 121:124
vD  ← ( vA) << ui  (shb || 0b000)

The contents of vA are shifted left by the number of bytes specified in vB[121–124]. Bytes
shifted out of byte 0 are lost. Zeros are supplied to the vacated bytes on the right. Th
is placed into vD.

Other registers altered:

• None

Figure 6-111 shows the usage of the vslo command.

Figure 6-111. vslo—Left Byte Shift of Vector (128-Bit)

04 vD vA vB 1036

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

•     •     •     •     •     •     •     •     •     • *4 = shb = Shift Count

Don’t Care

121 124

0  00  00  00  0

*4
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vslw vslw
Vector Shift Left Integer Word

vslw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← ( vB) i+27:i+31
vDi:i+31  ← ( vA) i:i+31  << ui  sh

end

Each element is a word. Each element in vA is shifted left by the number of bits specifie
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is plac
the corresponding element of vD.

Other registers altered:

• None

Figure 6-112 shows the usage of the vslw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-112. vslw—Shift Bits Left in Four Integer Elements (32-Bit)

04 vD vA vB 388

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

000000000000000000

zeros

000000
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vspltb vspltb
Vector Splat Byte

vspltb vD,vB,UIMM Form: VX

b ← UIMM*8
do i=0 to 127 by 8

vDi:i+7  ← ( vB) b:b+7

end

Each element of vspltb is a byte. 

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for perfo
arithmetic for which one source vector is to consist of elements that all have the sam
(for example, multiplying all elements of a vector register by a constant).

Figure 6-113 shows the usage of the vspltb command. Each of the sixteen elements in 
vectors vB and vD is 8 bits in length.

Figure 6-113. vspltb—Copy Contents to Sixteen Elements (8-Bit)

04 vD UIMM vB 524

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-141



AltiVec Instruction Set  

rming
e value

he
vsplth vsplth
Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

b ← UIMM*16
do i=0 to 127 by 16

vDi:i+15  ← ( vB) b:b+15

end

Each element of vsplth is a half word. 

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for perfo
arithmetic for which one source vector is to consist of elements that all have the sam
(for example, multiplying all elements of a vector register by a constant).

Figure 6-16 shows the usage of the vsplth command. Each of the eight elements in t
vectors vB and vD is 16 bits in length.

Figure 6-114. vsplth—Copy Contents to Eight Elements (16-Bit)

04 vD UIMM vB 588

0 5 6 10 11 15 16 20 21 31

vB

vD
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vspltisb vspltisb
Vector Splat Immediate Signed Byte

vspltisb vD,SIMM Form: VX

do i=0 to 127 by 8
vDi:i+7  ← SignExtend(SIMM,8)

end

Each element of vspltisb is a byte.

The value of the SIMM field, sign-extended to the length of the element, is replicate
each element of vD.

Other registers altered:

• None

Figure 6-115 shows the usage of the vspltisb command. Each of the sixteen elements in 
vector, vD, is 8 bits in length.

Figure 6-115. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)

04 vD SIMM 0 0 0 0 0 780

0 5 6 10 11 15 16 20 21 31

SIMM

vD
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vspltish vspltish
Vector Splat Immediate Signed Half Word

vspltish vD,SIMM Form: VX

do i=0 to 127 by 16
vDi:i+15  ← SignExtend(SIMM,16)

end

Each element of vspltish is a half word. 

The value of the SIMM field, sign-extended to the length of the element, is replicate
each element of vD.

Other registers altered:

• None

Figure 6-16 shows the usage of the vspltish command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-116. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)

04 vD SIMM 0 0 0 0 0 844

0 5 6 10 11 15 16 20 21 31

SIMM

vD
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vspltisw vspltisw
Vector Splat Immediate Signed Word

vspltisw vD,SIMM Form: VX

do i=0 to 127 by 32
vDi:i+31  ← SignExtend(SIMM,32)

end

Each element of vspltisw is a word. 

The value of the SIMM field, sign-extended to the length of the element, is replicate
each element of vD.

Other registers altered:

• None

Figure 6-117 shows the usage of the vspltisw command. Each of the four elements in t
vector, and vD, is 32 bits in length.

Figure 6-117. vspltisw—Copy Value to Four Signed Elements (32-Bit)

04 vD SIMM 0 0 0 0 0 908

0 5 6 10 11 15 16 20 21 31

vD

SIMM
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vspltw vspltw
Vector Splat Word

vspltw vD,vB,UIMM Form: VX

b ← UIMM*32
do i=0 to 127 by 32

vDi:i+31  ← ( vB) b:b+31

end

Each element of vspltw is a word. 

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The Vector Splat instructions can be used in preparation for perfo
arithmetic for which one source vector is to consist of elements that all have the sam
(for example, multiplying all elements of a Vector Register by a constant).

Figure 6-118 shows the usage of the vspltw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-118. vspltw—Copy contents to Four Elements (32-Bit)

04 vD UIMM vB 652

0 5 6 10 11 15 16 20 21 31

vD

UIMM
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vsr vsr
Vector Shift Right

vsr vD,vA,vB Form: VX

sh ← ( vB) 125:127
t ← 1
do i = 0 to 127 by 8

t ← t & (( vB) i+5:i+7  = sh)
if t = 1 then vD ← ( vA) >> ui  sh
else vD ← undefined

end

Let sh = vB[125–127]; sh is the shift count in bits (0≤sh≤7). The contents of vA are shifted
right by sh bits. Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated 
the left. The result is placed into vD.

The contents of the low-order three bits of all byte elements in register vB must be identical
to vB[125-127]; otherwise the value placed into register vD is undefined.

Other registers altered:

• None

Programming notes:

A pair of vslo and vsl or vsro and vsr instructions, specifying the same shift count regist
can be used to shift the contents of a vector register left or right by the number o
(0–127) specified in the shift count register. The following example shifts the conte
vX left by the number of bits specified in vY and places the result into vZ.

vslo     VZ,VX,VY
vsl      VZ,VZ,VY

A double-register shift by a dynamically specified number of bits (0–127) can be perfo
in six instructions. The following example shifts (vW) || (vX) left by the number of bits
specified in vY and places the high-order 128 bits of the result into vZ.

vslo     t1,VW,VY  #shift high-order reg left
vsl      t1,t1,VY
vsububm  t3,V0,VY  #adjust shift count ((V0)=0)
vsro     t2,VX,t3  #shift low-order reg right
vsr      t2,t2,t3
vor      VZ,t1,t2  #merge to get final result

04 vD vA vB 708

0 5 6 10 11 15 16 20 21 31
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Figure 6-119 shows the usage of the vsr command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-119. vsr—Shift Bits Right for Vectors (128-Bit)

vB

vA

vD

•     •     •     •     •     •     •     •     •     • *6 = sh = Shift Count

6*

125 127

0...0

sh
zeros
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vsrab vsrab
Vector Shift Right Algebraic Byte

vsrab vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← ( vB) i+2:i+7
vDi:i+7  ← ( vA) i:i+7  >> si  sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specifie
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit n-1 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the lef
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-120 shows the usage of the vsrab command. Each of the sixteen elements in 
vectors, vA, and vD, is 8 bits in length.

Figure 6-120. vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 772

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

x..x

sh

6

x..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..x

*bit x *bit x = bit 0 of each element 
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vsrah vsrah
Vector Shift Right Algebraic Half Word

vsrah vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← ( vB) i+12:i+15
vDi:i+15  ← ( vA) i:i+15  >> si  sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Bit 0 of the element is replicated to fill the vacated bits o
left. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-121 shows the usage of the vsrah command. Each of the eight elements in t
vectors, vA, and vD, is 16 bits in length.

Figure 6-121. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 836

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

x...x

sh

x...xx...xx...xx...xx...xx...xx...x

*x *x = bit 0 of each element
6-150 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

d

t. The

he
vsraw vsraw
Vector Shift Right Algebraic Word

vsraw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← ( vB) i+27:i+31
vDi:i+31  ← ( vA) i:i+31  >> si  sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specifie
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the lef
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-122 shows the usage of the vsraw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-122. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 900

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

x...xx...xx....x

*x

x...x

*x = bit 0 of each element
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vsrb vsrb
Vector Shift Right Byte

vsrb vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← ( vB) i+5:i+7
vDi:i+7  ← ( vA) i:i+7  >> ui  sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specifie
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 7 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is plac
the corresponding element of vD.

Other registers altered:

• None

Figure 6-120 shows the usage of the vsrb command. Each of the sixteen elements in 
vectors, vA, and vD, is 8 bits in length.

Figure 6-123. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 516

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0..0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
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vsrh vsrh
Vector Shift Right Half Word

vsrh vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← ( vB) i+12:i+15
vDi:i+15  ← ( vA) i:i+15  >> ui  sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Zeros are supplied to the vacated bits on the left. The r
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-124 shows the usage of the vsrh command. Each of the eight elements in t
vectors, vA, and vD, is 16 bits in length.

Figure 6-124. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 580

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

zeros
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vsro vsro
Vector Shift Right by Octet

vsro vD,vA,vB Form: VX

shb ← ( vB) 121:124
vD  ← ( vA) >> ui  (shb || 0b000)

The contents of vA are shifted right by the number of bytes specified in vB[121–124]. Bytes
shifted out of vA are lost. Zeros are supplied to the vacated bytes on the left. The re
placed into vD.

Other registers altered:

• None

04 vD vA vB 1100

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

•     •     •     •     •     •     •     •     •     • *5 = Shift Count

Don’t Care *5

121 124

0  00  00  00  0 0  0
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vsrw vsrw
Vector Shift Right Word

vsrw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← ( vB) i+(27):i+31
vDi:i+31  ← ( vA) i:i+31  >> ui  sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specifie
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is plac
the corresponding element of vD.

Other registers altered:

• None

Figure 6-122 shows the usage of the vsrw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-125. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 644

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

0...00...00...0

zeros

0...0
MOTOROLA Chapter 6. AltiVec Instructions 6-155



AltiVec Instruction Set  

d-
bit
ent of

he
vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word

vsubcuw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend(( vA) i:i+31 ,33)
bop0:32 ← ZeroExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  −bop0:32  + int  1
vDi:i+31 ← ZeroExtend(temp 0,32)

end

Each unsigned-integer word element in vB is subtracted from the corresponding unsigne
integer word element in vA. The complement of the borrow out of bit 0 of the 32-
difference is zero-extended to 32 bits and placed into the corresponding word elem
vD.

Other registers altered:

• None

Figure 6-126 shows the usage of the vsubcuw command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-126. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements 
(32-Bit)

04 vD vA vB 1408

0 5 6 10 11 15 16 20 21 31

vB

vA

Zero-Ext

vD

- - - -
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vsubfp vsubfp
Vector Subtract Floating Point

vsubfp vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31  ← RndToNearFP32(( vA) i:i+31  - fp  ( vB) i:i+31 )

end

Each single-precision floating-point word element in vB is subtracted from the
corresponding single-precision floating-point word element in vA. The result is rounded to
the nearest single-precision floating-point number and placed into the corresponding
element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the sam
before the operation is carried out, and each denormalized result element truncates 
the same sign.

Other registers altered:

• None

Figure 6-17 shows the usage of the vsubfp command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-127. vsubfp—Subtract Four Floating Point Elements (32-Bit)

04 vD vA vB 74

0 5 6 10 11 15 16 20 21 31

- fp- fp- fp- fp

vA

vB

vD
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vsubsbs vsubsbs
Vector Subtract Signed Byte Saturate

vsubsbs vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← SignExtend(( vA) i:i+7 ,9)
bop0:8 ← SignExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  −bop0:8 +int  1
vDi:i+7 ← SItoSIsat(temp 0:8 ,8)

end

Each element is a byte. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (27-1) it saturates to (27-1) and if it is less than -27

it saturates to -27, where 8 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-128 shows the usage of the vsubsbs command. Each of the sixteen elements in 
vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-128. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1792

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
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vsubshs vsubshs
Vector Subtract Signed Half Word Saturate

vsubshs vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← SignExtend(( vA) i:i+15 ,17)
bop0:16 ← SignExtend(( vB) i:i+15 ,17)
temp 0:16 ← aop 0:16  + int -bop 0:16  + int  1
vDi:i+15 ← SItoSIsat(temp 0:16 ,16)

end

Each element is a half word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than -
215 it saturates to -215, where 16 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-129 shows the usage of the vsubshs command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-129. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1856

0 5 6 10 11 15 16 20 21 31

--------

vA

vB

vD
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vsubsws vsubsws
Vector Subtract Signed Word Saturate

vsubsws vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← SignExtend(( vA) i:i+31 ,33)
bop0:32 ← SignExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  −bop0:32  + int  1
vDi:i+31 ← SItoSIsat(temp 0:32 ,32)

end

Each element is a word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -
231 it saturates to -231, where 32 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-130 shows the usage of the vsubsws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-130. vsubsws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1920

0 5 6 10 11 15 16 20 21 31

----

vA

vB

vD
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vsububm vsububm
Vector Subtract Unsigned Byte Modulo

vsububm vD,vA,vB Form: VX

do i=0 to 127 by 8
vDi:i+7 ← ( vA) i:i+7  + int  −( vB) i:i+7

end

Each element of vsububm is a byte. 

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-128 shows the usage of the vsububm command. Each of the sixteen elements
the vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-131. vsububm—Subtract Sixteen Integer Elements (8-Bit)

04 vD vA vB 1024

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
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vsububs vsububs
Vector Subtract Unsigned Byte Saturate

vsububs vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend(( vA) i:i+7 ,9)
bop0:8 ← ZeroExtend(( vB) i:i+7 ,9)
temp 0:8 ← aop 0:8  + int  −bop0:8  + int  1
vDi:i+7 ← SItoUIsat(temp 0:8 ,8)

end

Each element is a byte. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 8 is the length of the e
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-128 shows the usage of the vsububs command. Each of the sixteen elements
the vectors, vA, vB, and vD, is 8 bits in length.

Figure 6-132. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 1536

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
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vsubuhm vsubuhm
Vector Subtract Signed Half Word Modulo

vsubuhm vD,vA,vB Form: VX

do i=0 to 127 by 16
vDi:i+15 ← ( vA) i:i+15  + int  −( vB) i:i+15

end

Each element is a half word. Each integer element in vB is subtracted from the
corresponding integer element in vA. The integer result is placed into the correspond
element of vD.

Other registers altered:

• None

Note the vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-133 shows the usage of the vsubuhm command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-133. vsubuhm—Subtract Eight Integer Elements (16-Bit)

04 vD vA vB 1088

0 5 6 10 11 15 16 20 21 31

--------

vB

vD
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vsubuhs vsubuhs
Vector Subtract Signed Half Word Saturate

vsubuhs vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend(( vA) i:i+15 ,17)
bop0:16 ← ZeroExtend(( vB) i:i+n:1 ,17)
temp 0:16 ← aop 0:n  + int  −bop0:16  + int  1
vDi:i+15 ← SItoUIsat(temp 0:16 ,16)

end

Each element is a half word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 16 is the length of the e
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-134 shows the usage of the vsubuhs command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-134. vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1600

0 5 6 10 11 15 16 20 21 31

--------

vB

vD
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vsubuwm vsubuwm
Vector Subtract Unsigned Word Modulo

vsubuwm vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← ( vA) i:i+31  + int  −( vB) i:i+31

end

Each element of vsubuwm is a word. 

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-135 shows the usage of the vsubuwm command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-135. vsubuwm—Subtract Four Integer Elements (32-Bit)

04 vD vA vB 1152

0 5 6 10 11 15 16 20 21 31

----

vB

vD
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vsubuws vsubuws
Vector Subtract Unsigned Word Saturate

vsubuws vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend(( vA) i:i+31 ,33)
bop0:32 ← ZeroExtend(( vB) i:i+31 ,33)
temp 0:32 ← aop 0:32  + int  −bop0:32  + int  1
vDi:i+31 ← SItoUIsat(temp 0:32 ,32)

end

Each element is a word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 32 is the length of the e
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-135 shows the usage of the vsubuws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-136. vsubuws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1664

0 5 6 10 11 15 16 20 21 31

----

vB

vD
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vsumsws vsumsws
Vector Sum Across Signed Word Saturate

vsumsws vD,vA,vB Form: VX

temp 0:34  ← SignExtend(( vB) 96:127 ,35)
do i=0 to 127 by 32

temp 0:34  ← temp 0:34  + int  SignExtend(( vA) i:i+31 ,35)

vD ← 960 || SItoSIsat(temp 0:34 ,32)

end

The signed-integer sum of the four signed-integer word elements in vA is added to the
signed-integer word element in bits of vB[96-127]. If the intermediate result is greater th
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into bits vD[96–127]. Bits vD[0–95] are cleared.

Other registers altered:

• SAT

Figure 6-137 shows the usage of the vsumsws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-137. vsumsws—Sum Four Signed Integer Elements (32-Bit)

04 vD vA vB 1928

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-167



AltiVec Instruction Set  

an

ord

he
vsum2sws vsum2sws
Vector Sum Across Partial (1/2) Signed Word Saturate

vsum2sws vD,vA,vB Form: VX

do i=0 to 127 by 64
temp 0:33  ← SignExtend((v B) i+32:i+63 ,34)
do j=0 to 63 by 32

temp 0:33  ← temp 0:33  + int  SignExtend((v A) i+j:i+j+31 ,34)

end

vDi:i+63  ← 320 || SItoSIsat(temp 0:33 ,32)

end

The signed-integer sum of the first two signed-integer word elements in register vA is added
to the signed-integer word element in vB[32–63]. If the intermediate result is greater th
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into vD[32–63]. The signed-integer sum of the last two signed-integer w
elements in register vA is added to the signed-integer word element in vB[96-127]. If the
intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it
saturates to -231. The signed-integer result is placed into vD[96–127]. The register
vD[0–31,64–95] are cleared to 0.

Other registers altered:

• SAT

Figure 6-138 shows the usage of the vsum2sws command. Each of the four elements in t
vectors, vA, vB, and vD, is 32 bits in length.

Figure 6-138. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)

04 vD vA vB 1672

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD0  0  0  0  0  0  0  00  0  0  0  0  0  0  0

+

6-168 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

n.

 the 

 in
vsum4sbs vsum4sbs
Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp 0:32  ← SignExtend(( vB) i:i+31 ,33)

 do j=0 to 31 by 8
temp 0:32  ← temp 0:32  + int  SignExtend(( vA) i+j:i+j+7 ,33)

end
vDi:i+31  ← SItoSIsat(temp 0:32 ,32)

end

For each word element in vB the following operations are performed in the order show

• The signed-integer sum of the four signed-integer byte elements contained in
corresponding word element of register vA is added to the signed-integer word 
element in register vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less 
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-139 shows the usage of the vsum4sbs command. Each of the sixteen elements
the vector vA, is 8 bits in length. Each of the four elements in the vectors vB and vD is 32
bits in length.

Figure 6-139. vsum4sbs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1800

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
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vsum4shs vsum4shs
Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp 0:32  ← SignExtend(( vB) i:i+31 ,33)
do j=0 to 31 by 16

temp 0:32  ← temp 0:32  + int  SignExtend(( vA) i+j:i+j+15 ,33)

end
vDi:i+31  ← SItoSIsat(temp 0:32 ,32)

end

For each word element in register vB the following operations are performed, in the ord
shown.

• The signed-integer sum of the two signed-integer halfword elements containe
the corresponding word element of register vA is added to the signed-integer wor
element in vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less 
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-140 shows the usage of the vsum4shs command. Each of the eight elements in t
vector vA, is 16 bits in length. Each of the four elements in the vectors vB and vD is 32 bits
in length.

Figure 6-140. vsum4shs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1608

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
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vsum4ubs vsum4ubs
Vector Sum Across Partial (1/4) Unsigned Byte Saturate

vsum4ubs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp 0:32  ← ZeroExtend(( vB) i:i+31 ,33)
do j=0 to 31 by 8

temp 0:32  ← temp 0:32  + int  ZeroExtend(( vA) i+j:i+j+7 ,33)

end
vDi:i+31  ← UItoUIsat(temp 0:32 ,32)

end

For each word element in vB the following operations are performed in the order show

• The unsigned-integer sum of the four unsigned-integer byte elements contain
the corresponding word element of register vA is added to the unsigned-integer 
word element in register vB.

• If the intermediate result is greater than (232-1) it saturates to (232-1).

• The unsigned-integer result is placed into the corresponding word element ofvD.

Other registers altered:

• SAT

Figure 6-141 shows the usage of the vsum4ubs command. Each of the four elements in t
vector vA, is 8 bits in length. Each of the four elements in the vectors vB and vD is 32 bits
in length.

Figure 6-141. vsum4ubs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1544

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
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vupkhpx vupkhpx
Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+7 ← SignExtend(( vB) i ,8)
vD(i*2)+8:(i*2)+15 ← ZeroExtend(( vB) i+1:i+5 ,8)
vD(i*2)+16:(i*2)+23 ← ZeroExtend(( vB) i+6:i+10 ,8)
vD(i*2)+24:(i*2)+31 ← ZeroExtend(( vB) i+11:i+15 ,8)

end

Each halfword element in the high-order half of register vB is unpacked to produce a 32
bit value as described below and placed, in the same order, into the four words of vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the follo
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

The source and target elements can be considered to be 16-bit and 32-bit "
respectively, having the formats described in the programming note for the Vector
Pixel instruction.

Figure 6-142 shows the usage of the vupkhpx command. Each of the eight elements in t
vectors, vB, is 16 bits in length. Each of the four elements in the vectors, vD, is 32 bits in
length.

Figure 6-142. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)

04 vD 0 0 0 0 0 vB 846

0 5 6 10 11 15 16 20 21 31

vB

vD000 000 000 000
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vupkhsb vupkhsb
Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15  ← SignExtend(( vB) i:i+7 ,16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwo
register vD.

Other registers altered:

• None

Figure 6-143 shows the usage of the vupkhsb command. Each of the sixteen elements
the vectors, vB, is 8 bits in length. Each of the eight elements in the vectors, vD, is 16 bits
in length.

Figure 6-143. vupkhsb—Unpack HIgh-Order Signed Integer Elements (8-Bit) to 
Signed Integer Elements (16-Bit)

04 vD 0 0 0 0 0 vB 526

0 5 6 10 11 15 16 20 21 31

SSSSSSSSSSSSSSSS

vB

vD
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vupkhsh vupkhsh
Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31  ← SignExtend(( vB) i:i+15 ,32)

end

Each signed integer halfword element in the high-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four wo
register vD.

Other registers altered:

• None

Figure 6-143 shows the usage of the vupkhsh command. Each of the eight elements in t
vectors vB and vD is 16 bits in length. 

Figure 6-144. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer 
Elements (32-Bit)

04 vD 0 0 0 0 0 vB 590

0 5 6 10 11 15 16 20 21 31

vB
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vupklpx vupklpx
Vector Unpack Low Pixel16

vupklpx vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+7 ← SignExtend(( vB) i+64 ,8)
vD(i*2)+8:(i*2)+15 ← ZeroExtend(( vB) i+65:i+69 ,8)
vD(i*2)+16:(i*2)+23 ← ZeroExtend(( vB) i+70:i+74 ,8)
vD(i*2)+24:(i*2)+31 ← ZeroExtend(( vB) i+75:i+79 ,8)

end

Each halfword element in the low-order half of register vB is unpacked to produce a 32-b
value as described below and placed, in the same order, into the four words of regisvD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the follo
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instru
does not reverse the packing done by the Vector Pack Pixel instruction. Specifically, i
bit pixel is unpacked to a 32-bit pixel which is then packed to a 16-bit pixel, the resu
16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for 
channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack
discards low-order bits).

Figure 6-142 shows the usage of the vupklpx command. Each of the eight elements in t
vectors, vB, is 16 bits in length. Each of the four elements in the vectors, vD, is 32 bits in
length.

Figure 6-145. vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit)

04 vD 0 0 0 0 0 vB 974

0 5 6 10 11 15 16 20 21 31

vB

vD000000000 000000
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vupklsb vupklsb
Vector Unpack Low Signed Byte

vupklsb vD,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15  ← SignExtend(( vB) i+64:i+71 ,16)

end

Each signed integer byte element in the low-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwo
register vD.

Other registers altered:

• None

Figure 6-14 shows the usage of the vaddubs command. Each of the sixteen elements in 
vectors vB and vD is 8 bits in length.

Figure 6-146. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

04 vD 0 0 0 0 0 vB 654

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
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AltiVec Instruction Set

rds of

he
vupklsh vupklsh
Vector Unpack Low Signed Half Word

vupklsh vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31  ← SignExtend(( vB) i+64:i+79 ,32)

end

Each signed integer half word element in the low-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four wo
register vD.

Other registers altered:

• None

Figure 6-147 shows the usage of the vupklpx command. Each of the eight elements in t
vectors, vA, vB, and vD, is 16 bits in length.

Figure 6-147. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to 
Signed Integer Elements (32-Bit)

04 vD 0 0 0 0 0 vB 718

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
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vxor vxor
Vector Logical XOR

vxor vD,vA,vB Form: VX

vD ← ( vA) ⊕  ( vB)

The contents of vA are XORed with the contents of register vB and the result is placed into
register vD.

Other registers altered:

• None

• Figure 6-148 shows the usage of the vxor command.

Figure 6-148. vxor—Bitwise XOR (128-Bit)

04 vD vA vB 1220

0 5 6 10 11 15 16 20 21 31

⊕

vA

vB

vD
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Appendix A 
AltiVec Instruction Set Listings
A0
A0

This appendix lists the instruction set for the AltiVec™ technology. Instructions are s
by mnemonic, opcode, and form. Also included in this appendix is a quick reference
that contains general information, such as the architecture level, privilege level, and
and indicates if the instruction is 64-bit and/or optional.

Note that split fields, which represent the concatenation of sequences from left to righ
shown in lowercase. 

A.1  Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the AltiVec architecture in alphabe
order by mnemonic. 

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dst 31 T 0 0 STRM A B 342 0

dstst 31 T 0 0 STRM A B 374 0

dststt 31 1 0 0 tag A B 11 22 0

dstt 31 1 0 0 tag A B 0 0

lvebx 31 vD A B 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

Reserved bits

Key:
MOTOROLA Appendix A. AltiVec Instruction Set Listings   A-1



Instructions Sorted by Mnemonic

                                                              
lvxl 31 vD A B 359 0

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr 04 /// 0 0 0 0 0 vD 1604 0

stvebx 31 S A B 135 0

stvehx 31 S A B 167 0

stvewx 31 S A B 199 0

stvx 31 S A B 231 0

stvxl 31 S A B 487 0

vaddcuw 04 vD vA vB 384 0

vaddfp 04 vD vA vB 10 0

vaddsbs 04 vD vA vB 768 0

vaddshs 04 vD vA vB 832 0

vaddsws 04 vD vA vB 896 0

vaddubm 04 vD vA vB 0 0

vaddubs 04 vD vA vB 512 0

vadduhm 04 vD vA vB 64 0

vadduhs 04 vD vA vB 576 0

vadduwm 04 vD vA vB 128 0

vadduws 04 vD vA vB 640 0

vand 04 vD vA vB 1028 0

vandc 04 vD vA vB 1092 0

vavgsb 04 vD vA vB 1282 0

vavgsh 04 vD vA vB 1346 0

vavgsw 04 vD vA vB 1410 0

vavgub 04 vD vA vB 1026 0

vavguh 04 vD vA vB 1090 0

vavguw 04 vD vA vB 1154 0

vcfsx 04 vD UIMM vB 842

vcfux 04 vD UIMM vB 778 0

vcmpbfp x 04 vD vA vB Rc 966

vcmpeqf x 04 vD vA vB Rc 198

vcmpequb x 04 vD vA vB Rc 6

vcmpequh x 04 vD vA vB Rc 70

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Mnemonic

                                                                                                                                                                                                                                    
vcmpequw x 04 vD vA vB Rc 134

vcmpgefp x 04 vD vA vB Rc 454

vcmpgtfp x 04 vD vA vB Rc 710

vcmpgtsb x 04 vD vA vB Rc 774

vcmpgtsh x 04 vD vA vB Rc 838

vcmpgtsw x 04 vD vA vB Rc 902

vcmpgtub x 04 vD vA vB Rc 518

vcmpgtuh x 04 vD vA vB Rc 582

vcmpgtuw x 04 vD vA vB Rc 646

vctsxs 04 vD UIMM vB 970

vctuxs 04 vD UIMM vB 906

vexptefp 04 vD 0 0 0 0 0 vB 394

vlogefp 04 vD 0 0 0 0 0 vB 458

vmaddfp 04 vD vA vB vC 46

vmaxfp 04 vD vA vB 1034

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vminfp 04 vD vA vB 1098

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vmladduhm 04 vD vA vB vC 34

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Mnemonic
vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vmsummbm 04 vD vA vB vC 37

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vmsumubm 04 vD vA vB vC 36

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vnmsubfp 04 vD vA vB vC 47

vnor 04 vD vA vB 1284

vor 04 vD vA vB 1156

vperm 04 vD vA vB vC 43

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

vrefp 04 vD 0 0 0 0 0 vB 266

vrfim 04 vD 0 0 0 0 0 vB 714

vrfin 04 vD 0 0 0 0 0 vB 522

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Mnemonic
vrfip 04 vD 0 0 0 0 0 vB 650

vrfiz 04 vD 0 0 0 0 0 vB 586

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

vsel 04 vD vA vB vC 42

vsl 04 vD vA vB 452

vslb 04 vD vA vB 260

vsldoi 04 vD vA vB 0 SH 44

vslh 04 vD vA vB 324

vslo 04 vD vA vB 1036

vslw 04 vD vA vB 388

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM vB 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vspltw 04 vD UIMM vB 652

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsro 04 vD vA vB 1100

vsrw 04 vD vA vB 644

vsubcuw 04 vD vA vB 1408

vsubfp 04 vD vA vB 74

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vsububm 04 vD vA vB 1024

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Mnemonic
vsububs 04 vD vA vB 1536

vsubuhm 04 vD vA vB 1088

vsubuhs 04 vD vA vB 1600

vsubuwm 04 vD vA vB 1152

vsubuws 04 vD vA vB 1664

vsumsws 04 vD vA vB 1928

vsum2sws 04 D A B 1672

vsum4sbs 04 D A B 1800

vsum4shs 04 D A B 1608

vsum4ubs 04 D A B 1544

vupkhpx 04 D 0 0 0 0 0 B 846

vupkhsb 04 D 0 0 0 0 0 B 526

vupkhsh 04 D 0 0 0 0 0 B 590

vupklpx 04 D 0 0 0 0 0 B 974

vupklsb 04 D 0 0 0 0 0 B 654

vupklsh 04 D 0 0 0 0 0 B 718

vxor 04 D A B 1220

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Opcode
A.2  Instructions Sorted by Opcode
Table A-2 lists the Altivec instructions grouped by opcode.

Table A-2. Instructions Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 000100 vD vA vB vC 10 0000

vmhraddshs 000100 vD vA vB vC 10 0001

vmladduhm 000100 vD vA vB vC 10 0010

vmsumubm 000100 vD vA vB vC 10 0100

vmsummbm 000100 vD vA vB vC 10 0101

vmsumuhm 000100 vD A vB vC 10 0110

vmsumuhs 000100 vD vA vB vC 10 0111

vmsumshm 000100 vD vA vB vC 10 1000

vmsumshs 000100 vD vA vB vC 10 1001

vsel 000100 vD vA vB vC 10 1010

vperm 000100 vD vA vB vC 10 1011

vsldoi 000100 vD vA vB 0 SH 10 1100

vmaddfp 000100 vD vA vB 000 0010 1110

vnmsubfp 000100 vD vA vB vC 10 1111

vaddubm 000100 vD vA vB 000 0000 0000

vadduhm 000100 vD vA vB 000 0100 0000

vadduwm 000100 vD vA vB 000 1000 0000

vaddcuw 000100 vD vA vB 001 1000 0000

vaddubs 000100 vD vA vB 010 0000 0000

vadduhs 000100 vD vA vB 010 0100 0000

vadduws 000100 vD vA vB 010 1000 0000

vaddsbs 000100 vD vA vB 011 0000 0000

vaddshs 000100 vD vA vB 011 0100 0000

vaddsws 000100 vD vA vB 011 1000 0000

vsububm 000100 vD vA vB 100 0000 0000

vsubuhm 000100 vD vA vB 100 0100 0000

vsubuwm 000100 vD vA vB 100 1000 0000

vsubcuw 000100 vD vA vB 101 1000 0000

vsububs 000100 vD vA vB 110 0000 0000

vsubuhs 000100 vD vA vB 110 0100 0000

Reserved bits

Key:
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Instructions Sorted by Opcode  
vsubuws 000100 vD vA vB 110 1000 0000

vsubsbs 000100 vD vA vB 111 0000 0000

vsubshs 000100 vD vA vB 111 0100 0000

vsubsws 000100 vD vA vB 111 1000 0000

vmaxub 000100 vD vA vB 000 0000 0010

vmaxuh 000100 vD vA vB 000 0100 0010

vmaxuw 000100 vD vA vB 000 1000 0010

vmaxsb 000100 vD vA vB 001 0000 0010

vmaxsh 000100 vD vA vB 001 0100 0010

vmaxsw 000100 vD vA vB 001 1000 0010

vminub 000100 vD vA vB 010 0000 0010

vminuh 000100 vD vA vB 010 0100 0010

vminuw 000100 vD vA vB 010 1000 0010

vminsb 000100 vD vA vB 011 0000 0010

vminsh 000100 vD vA vB 011 0100 0010

vminsw 000100 vD vA vB 011 1000 0010

vavgub 000100 vD vA vB 100 0000 0010

vavguh 000100 vD vA vB 100 0100 0010

vavguw 000100 vD vA vB 100 1000 0010

vavgsb 000100 vD vA vB 101 0000 0010

vavgsh 000100 vD vA vB 101 0100 0010

vavgsw 000100 vD vA vB 101 1000 0010

vrlb 000100 vD vA vB 000 0000 0100

vrlh 000100 vD vA vB 000 0100 0100

vrlw 000100 vD vA vB 000 1000 0100

vslb 000100 vD vA vB 001 0000 0100

vslh 000100 vD vA vB 001 0100 0100

vslw 000100 vD vA vB 001 1000 0100

vsl 000100 vD vA vB 001 1100 0100

vsrb 000100 vD vA vB 010 0000 0100

vsrh 000100 vD vA vB 010 0100 0100

vsrw 000100 vD vA vB 010 1000 0100

vsr 000100 vD vA vB 010 1100 0100

vsrab 000100 vD vA vB 011 0000 0100

vsrah 000100 vD vA vB 011 0100 0100

vsraw 000100 vD vA vB 011 1000 0100

vand 000100 vD vA vB 100 0000 0100

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Opcode
vandc 000100 vD vA vB 100 0100 0100

vor 000100 vD vA vB 100 1000 0100

vxor 000100 vD vA vB 100 1100 0100

vnor 000100 vD vA vB 101 0000 0100

mfvscr 000100 vD 0 0 0 0 0 0 0 0 0 0 11 0000 0010 0

mtvscr 000100 0 0 0 0 0 0 0 0 0 0 vB 11 0010 0010 0

vcmpequb x 000100 vD vA vB Rc 00 0000 0110

vcmpequh x 000100 vD vA vB Rc 00 0100 0110

vcmpequw x 000100 vD vA vB Rc 00 1000 0110

vcmpeqfp x 000100 vD vA vB Rc 00 1100 0110

vcmpgefp x 000100 vD vA vB Rc 01 1100 0110

vcmpgtub x 000100 vD vA vB Rc 10 0000 0110

vcmpgtuh x 000100 vD vA vB Rc 10 0100 0110

vcmpgtuw x 000100 vD vA vB Rc 10 1000 0110

vcmpgtfp x 000100 vD vA vB Rc 10 1100 0110

vcmpgtsb x 000100 vD vA vB Rc 11 0000 0110

vcmpgtsh x 000100 vD vA vB Rc 11 0100 0110

vcmpgtsw x 000100 vD vA vB Rc 11 1000 0110

vcmpbfp x 000100 vD vA vB Rc 11 1100 0110

vmuloub 000100 vD vA vB 000 0000 1000

vmulouh 000100 vD vA vB 000 0100 1000

vmulosb 000100 vD vA vB 001 0000 1000

vmulosh 000100 vD vA vB 001 0100 1000

vmuleub 000100 vD vA vB 010 0000 1000

vmuleuh 000100 vD vA vB 010 0100 1000

vmulesb 000100 vD vA vB 011 0000 1000

vmulesh 000100 vD vA vB 011 0100 1000

vsum4ubs 000100 vD vA vB 110 0000 1000

vsum4sbs 000100 vD vA vB 111 0000 1000

vsum4shs 000100 vD vA vB 110 0100 1000

vsum2sws 000100 vD vA vB 110 1000 1000

vsumsws 000100 vD vA vB 111 1000 1000

vaddfp 000100 vD vA vB 000 0000 1010

vsubfp 000100 vD vA vB 000 0100 1010

vrefp 000100 vD 0 0 0 0 0 vB 001 0000 1010

vrsqrtefp 000100 vD 0 0 0 0 0 vB 001 0100 1010

vexptefp 000100 vD 0 0 0 0 0 vB 001 1000 1010

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Opcode  
vlogefp 000100 vD 0 0 0 0 0 vB 001 1100 1010

vrfin 000100 vD 0 0 0 0 0 vB 010 0000 1010

vrfiz 000100 vD 0 0 0 0 0 vB 010 0100 1010

vrfip 000100 vD 0 0 0 0 0 vB 010 1000 1010

vrfim 000100 vD 0 0 0 0 0 vB 010 1100 1010

vcfux 000100 vD UIMM vB 011 0000 1010

vcfsx 000100 vD UIMM vB 011 0100 1010

vctuxs 000100 vD UIMM vB 011 1000 1010

vctsxs 000100 vD UIMM vB 011 1100 1010

vmaxfp 000100 vD vA vB 100 0000 1010

vminfp 000100 vD vA vB 100 0100 1010

vmrghb 000100 vD vA vB 000 0000 1100

vmrghh 000100 vD vA vB 000 0100 1100

vmrghw 000100 vD vA vB 000 1000 1100

vmrglb 000100 vD vA vB 001 0000 1100

vmrglh 000100 vD vA vB 001 0100 1100

vmrglw 000100 vD vA vB 001 1000 1100

vspltb 000100 vD UIMM vB 010 0000 1100

vsplth 000100 vD UIMM vB 010 0100 1100

vspltw 000100 vD UIMM vB 010 1000 1100

vspltisb 000100 vD SIMM 0 0 0 0 0 011 0000 1100

vspltish 000100 vD SIMM 0 0 0 0 0 011 0100 1100

vspltisw 000100 vD SIMM 0 0 0 0 0 011 1000 1100

vslo 000100 vD vA vB 100 0000 1100

vsro 000100 vD vA vB 100 0100 1100

vpkuhum 000100 vD vA vB 000 0000 1110

vpkuwum 000100 vD vA vB 000 0100 1110

vpkuhus 000100 vD vA vB 000 1000 1110

vpkuwus 000100 vD vA vB 000 1100 1110

vpkshus 000100 vD vA vB 001 0000 1110

vpkswus 000100 vD vA vB 001 0100 1110

vpkshss 000100 vD vA vB 001 1000 1110

vpkswss 000100 vD vA vB 001 1100 1110

vupkhsb 000100 vD 0 0 0 0 0 vB 010 0000 1110

vupkhsh 000100 vD 0 0 0 0 0 vB 010 0100 1110

vupklsb 000100 vD 0 0 0 0 0 vB 010 1000 1110

vupklsh 000100 vD 0 0 0 0 0 vB 010 1100 1110

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Opcode
vpkpx 000100 vD vA vB 011 0000 1110

vupkhpx 000100 vD 0 0 0 0 0 vB 011 0100 1110

vupklpx 000100 vD 0 0 0 0 0 vB 011 1100 1110

lvsl 011111 vD A B 00 0000 0110 0

lvsr 011111 vD A B 00 0010 0110 0

dst 011111 T 0 0 STRM A B 01 0101 0110 0

dstt 011111 1 0 0 0 tag A B 00 0000 0000 0

dstst 011111 T 0 0 STRM A B 01 0111 0110 0

dststt 011111 1 0 0 0 tag A B 1011 1 0110 0

dss 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

dssall 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

lvebx 011111 vD A B 00 0000 0111 0

lvehx 011111 vD A B 00 0010 0111 0

lvewx 011111 vD A B 00 0100 0111 0

lvx 011111 vD A B 00 0110 0111 0

lvxl 011111 vD A B 01 0110 0111 0

stvebx 011111 vS A B 00 1000 0111 0

stvehx 011111 vS A B 00 1010 0111 0

stvewx 011111 vS A B 00 1100 0111 0

stvx 011111 vS A B 00 1110 0111 0

stvxl 011111 vS A B 01 1110 0111 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Form  
A.3  Instructions Sorted by Form
Table A-3 through Table A-6 list the AltiVec instructions grouped by form.

 

Table A-3. VA-F orm 

OPCD vD vA vB vC XO

OPCD vD vA vB 0 SH XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD A vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB vC 46

vnmsubfp 04 vD vA vB vC 47

Table A-4. VX-F orm 

OPCD vD vA vB XO

OPCD vD 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 vB XO 0

OPCD vD 0 0 0 0 0 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0 0 0 0 0 XO

Reserved bits

Key:
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Instructions Sorted by Form
Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282
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Instructions Sorted by Form  
vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vnor 04 vD vA vB 1284

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540 0

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604 0

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Form
vsubfp 04 vD vA vB 74

vrefp 04 vD 0 0 0 0 0 vB 266

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

vexptefp 04 vD 0 0 0 0 0 vB 394

vlogefp 04 vD 0 0 0 0 0 vB 458

vrfin 04 vD 0 0 0 0 0 vB 522

vrfiz 04 vD 0 0 0 0 0 vB 586

vrfip 04 vD 0 0 0 0 0 vB 650

vrfim 04 vD 0 0 0 0 0 vB 714

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0 0 0 0 0 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Form  
  

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0 0 0 0 0 vB 526

vupkhsh 04 vD 0 0 0 0 0 vB 590

vupklsb 04 vD 0 0 0 0 0 vB 654

vupklsh 04 vD 0 0 0 0 0 vB 718

vpkpx 04 vD vA vB 12 782

vupkhpx 04 vD 0 0 0 0 0 vB 846

vupklpx 04 vD 0 0 0 0 0 vB 974

vxor 04 vD vA vB 1220

Table A-5. X-F orm 

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0 0 STRM A B XO 0

Specific Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dst 31 T 0 0 STRM A B 342 0

dstt 31 1 0 0 0 tag A B 0 0

dstst 31 T 0 0 STRM A B 374 0

dststt 31 1 0 0 0 tag A B 11 22 0

dss 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

lvebx 31 vD vA vB 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Instructions Sorted by Form
Table A-6. VXR-Form

OPCD vD vA vB Rc XO

Specific Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfp x 04 vD vA vB Rc 966

vcmpeqfp x 04 vD vA vB Rc 198

vcmpequb x 04 vD vA vB Rc 6

vcmpequh x 04 vD vA vB Rc 70

vcmpequw x 04 vD vA vB Rc 134

vcmpgefp x 04 vD vA vB Rc 454

vcmpgtfp x 04 vD vA vB Rc 710

vcmpgtsb x 04 vD vA vB Rc 774

vcmpgtsh x 04 vD vA vB Rc 838

vcmpgtsw x 04 vD vA vB Rc 902

vcmpgtub x 04 vD vA vB Rc 518

vcmpgtuh x 04 vD vA vB Rc 582

vcmpgtuw x 04 vD vA vB Rc 646
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Instruction Set Legend  

 the
A.4  Instruction Set Legend
Table A-7 provides general information on the AltiVec instruction set such as
architectural level, privilege level, and form. 

Table A-7. AltiVec Instruction Set Legend 

UISA VEA OEA
Supervisor 

Level
Optional Form

dss √ VX

dssall √ VX

dst √ VX

dstst √ VX

dststt √ VX

dstt √ VX

lvebx √ X

lvehx √ X

lvewx √ X

lvsl √ X

lvsr √ X

lvx √ X

lvxl √ X

mfvscr √ VX

mtvscr √ VX

stvebx √ X

stvehx √ X

stvewx √ X

stvx √ X

stvxl √ X

vaddcuw √ VX

vaddfp √ VX

vaddsbs √ VX

vaddshs √ VX

vaddsws √ VX

vaddubm √ VX

vaddubs √ VX

vadduhm √ VX
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Instruction Set Legend
vadduhs √ VX

vadduwm √ VX

vadduws √ VX

vand √ VX

vandc √ VX

vavgsb √ VX

vavgsh √ VX

vavgsw √ VX

vavgub √ VX

vavguh √ VX

vavguw √ VX

vcfux √ VX

vcfsx √ VX

vcmpbfp x √ VXR

vcmpeqf x √ VXR

vcmpequb x √ VXR

vcmpequh x √ VXR

vcmpequw x √ VXR

vcmpgefp x √ VXR

vcmpgtfp x √ VXR

vcmpgtsb x √ VXR

vcmpgtsh x √ VXR

vcmpgtsw x √ VXR

vcmpgtub x √ VXR

vcmpgtuh x √ VXR

vcmpgtuw x √ VXR

vctsxs √ VX

vctuxs √ VX

vexptefp √ VX

vlogefp √ VX

vmaddfp √ VA

vmaxfp √ VX

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor 

Level
Optional Form
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Instruction Set Legend  
vmaxsb √ VX

vmaxsh √ VX

vmaxsw √ VX

vmaxub √ VX

vmaxuh √ VX

vmaxuw √ VX

vmhaddshs √ VA

vmhraddshs √ VA

vminfp √ VX

vminsb √ VX

vminsh √ VX

vminsw √ VX

vminub √ VX

vminuh √ VX

vminuw √ VX

vmladduhm √ VA

vmrghb √ VX

vmrghh √ VX

vmrghw √ VX

vmrglb √ VX

vmrglh √ VX

vmrglw √ VX

vmsummbm √ VA

vmsumshm √ VA

vmsumshs √ VA

vmsumubm √ VA

vmsumuhm √ VA

vmsumuhs √ VA

vmulesb √ VX

vmulesh √ VX

vmuleub √ VX

vmuleuh √ VX

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor 

Level
Optional Form
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Instruction Set Legend
vmulosb √ VX

vmulosh √ VX

vmuloub √ VX

vmulouh √ VX

vnmsubfp √ VA

vnor √ VX

vor √ VX

vperm √ VA

vpkpx √ VX

vpkshss √ VX

vpkshus √ VX

vpkswss √ VX

vpkuhum √ VX

vpkuhus √ VX

vpkswus √ VX

vpkuwum √ VX

vpkuwus √ VX

vrefp √ VX

vrfim √ VX

vrfin √ VX

vrfip √ VX

vrfiz √ VX

vrlb √ VX

vrlh √ VX

vrlw √ VX

vrsqrtefp √ VX

vsel √ VA

vsl √ VX

vslb √ VX

vsldoi √ VA

vslh √ VX

vslo √ VX

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor 

Level
Optional Form
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Instruction Set Legend  
vslw √ VX

vspltb √ VX

vsplth √ VX

vspltisb √ VX

vspltish √ VX

vspltisw √ VX

vspltw √ VX

vsr √ VX

vsrab √ VX

vsrah √ VX

vsraw √ VX

vsrb √ VX

vsrh √ VX

vsro √ VX

vsrw √ VX

vsubcuw √ VX

vsubfp √ VX

vsubsbs √ VX

vsubshs √ VX

vsubsws √ VX

vsububm √ VX

vsubuhm √ VX

vsububs √ VX

vsubuhs √ VX

vsubuwm √ VX

vsubuws √ VX

vsumsws √ VX

vsum2sws √ VX

vsum4sbs √ VX

vsum4shs √ VX

vsum4ubs √ VX

vupkhpx √ VX

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor 

Level
Optional Form
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Instruction Set Legend
vupkhsb √ VX

vupklsh √ VX

vupkhpx √ VX

vupklsb √ VX

vupklsh √ VX

vxor √ VX

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor 

Level
Optional Form
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Instruction Set Legend  
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Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
book. Some of the terms and definitions included in the glossary are reprinted fromIEEE
Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the I

Note that some terms are defined in the context of how they are used in this book.

Architecture. A detailed specification of requirements for a processor
computer system. It does not specify details of how the process
computer system must be implemented; instead it provide
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external
the processor’s execution. In this document, the term ‘asynchro
exception’ is used interchangeably with the word interrupt. 

Atomic access. A bus access that attempts to be part of a read-write oper
to the same address uninterrupted by any other access to that a
(the term refers to the fact that the transactions are indivisible).
PowerPC architecture implements atomic accesses through
lwarx /stwcx. instruction pair.

BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponent whose range of values is shifted by a const
(bias). Typically a bias is provided to allow a range of positive val
to express a range that includes both positive and negative valu

Big-endian. A byte-ordering method in memory where the address n 
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, wi
being the most-significant byte. See Little-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte, wh
size, translation, and protection attributes are controlled by the BAT
mechanism.
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Boundedly undefined. A characteristic of results of certain operations th
are not rigidly prescribed by the PowerPC architecture. Bounde
undefined results for a given operation may vary amo
implementations, and between execution attempts in the s
implementation. 

Although the architecture does not prescribe the exact behavio
when results are allowed to be boundedly undefined, the resu
executing instructions in contexts where results are allowed to
boundedly undefined are constrained to ones that could have 
achieved by executing an arbitrary sequence of defined instruct
in valid form, starting in the state the machine was in bef
attempting to execute the given instruction.

Cache. High-speed memory component containing recently-accessed
and/or instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied fro
memory into a cache. The size of a cache block may vary amo
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block bas
Note that the term ‘cache block’ is often used interchangeably w
‘cache line’.

Cache coherency. An attribute wherein an accurate and common view
memory is provided to all devices that share the same mem
system. Caches are coherent if a processor performing a read
its cache is supplied with data corresponding to the most recent v
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from
specified address range. This operation ensures that any mo
data within the specified address range is written back to m
memory. This operation is generated typically by a Data Ca
Block Flush (dcbf) instruction. 

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory. 

Cast-outs. Cache blocks that must be written to memory when a cache m
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is perfo
into the page. See also Page access history bits and Referenced b

C
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Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions
execution complete past the point where they can produce
exception, that all instructions in execution complete in the cont
in which they began execution, and that all subsequent instruc
are fetched and executed in the new context. Context synchroniza
may result from executing specific instructions (such as isync or rfi )
or when certain events occur (such as an exception). 

Copy-back. An operation in which modified data in a cache block is copied
back to memory. 

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and wh
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address c
appear in only one location within the cache, operates more qu
when the memory request is a cache hit.

Direct-store. Interface available on PowerPC processors only to sup
direct-store devices from the POWER architecture. When the T
of a segment descriptor is set, the descriptor defines the region 
memory that is to be used as a direct-store segment. Note tha
facility is being phased out of the architecture and will not likely
supported in future devices. Therefore, software should not dep
on it and new software should not use it.

Double-word swap. AltiVec processors implement a double-word sw
when moving quad words between vector registers and memory
double word swap performs an additional swap to keep ve
registers and memory consistent in little-endian mode. Double-w
swap is referred to as ‘swizzling’ in the AltiVec technolog
architecture specification. This feature is not supported by 
PowerPC architecture.

Effective address (EA). The 32- or 64-bit address specified for a load, sto
or an instruction fetch. This address is then submitted to the M
for translation to either a physical memory address or an I/O addres

Exception. A condition encountered by the processor that requires spe
supervisor-level processing.
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Exception handler. A software routine that executes when an exceptio
taken. Normally, the exception handler corrects the condition 
caused the exception, or performs some other meaningful task
may include aborting the program that caused the exception).
address for each exception handler is identified by an excep
vector offset defined by the architecture and a prefix selected vi
MSR. 

Extended opcode. A secondary opcode field generally located in instruct
bits 21–30, that further defines the instruction type. All Power
instructions are one word in length. The most significant 6 bits of
instruction are the primary opcode, identifying the type of
instruction. See also Primary opcode. 

Execution synchronization. A mechanism by which all instructions i
execution are architecturally complete before beginning execu
(appearing to begin execution) of the next instruction. Similar
context synchronization but doesn't force the contents of 
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, 
exponent is the component that normally signifies the integer po
to which the value two is raised in determining the value of 
represented number. See also Biased exponent.

Fetch. Retrieving instructions from either the cache or main memory 
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-poin
register file. These registers provide the source operands 
destination results for floating-point instructions. Load instructio
move data from memory to FPRs and store instructions move 
from FPRs to memory. The FPRs are 64 bits wide and store floa
point values in double-precision format. 

Fraction. In the binary representation of a floating-point number, the fiel
the significand that lies to the right of its implied binary point.

Fully-associative. Addressing scheme where every cache location (ev
byte) can have any possible address.

General-purpose register (GPR). Any of the 32 registers in the genera
purpose register file. These registers provide the source operand
destination results for all integer data manipulation instructio

F
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Integer load instructions move data from memory to GPRs and s
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. Wh
page is designated as guarded, instructions and data cann
accessed out-of-order.

Harvard architecture . An architectural model featuring separate caches
instruction and data.

Hashing. An algorithm used in the page table search process.

IEEE 754. A standard written by the Institute of Electrical and Electron
Engineers that defines operations and representations of b
floating-point arithmetic.

Illegal instructions. A class of instructions that are not implemented fo
particular PowerPC processor. These include instructions not de
by the PowerPC architecture. In addition, for 32-
implementations, instructions that are defined only for 64
implementations are considered to be illegal instructions. For 64
implementations instructions that are defined only for 32
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the Power
architecture, but may differ from other architecture-complia
implementations for example in design, feature set, 
implementation of optional features. The PowerPC architecture h
many different implementations. 

Implementation-dependent. An aspect of a feature in a processor’s des
that is defined by a processor’s design specifications rather tha
the PowerPC architecture. 

Implementation-specific. An aspect of a feature in a processor’s design 
is not required by the PowerPC architecture, but for which 
PowerPC architecture may provide concessions to ensure 
processors that implement the feature do so consistently. 

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to
handled imprecisely.

H
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Inexact. Loss of accuracy in an arithmetic operation when the rounded r
differs from the infinitely precise value with unbounded range.

In-order.  An aspect of an operation that adheres to a sequential mode
operation is said to be performed in-order if, at the time that 
performed, it is known to be required by the sequential execu
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to exec
an instruction and make ready the results of that instruction.

Instruction parallelism . A feature of PowerPC processors that allo
instructions to be processed in parallel. 

Interrupt . An asynchronous exception. On PowerPC processors, interrup
are a special case of exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a v
copy of a cache block from memory.

Key bits. A set of key bits referred to as Ks and Kp in each segment reg
and each BAT register. The key bits determine whether supervis
user programs can access a page within that segment or block. 

Kill . An operation that causes a cache block to be invalidated.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, d
element, or instruction encoding. 

Least-significant byte (LSB). The byte of least value in an address, regis
data element, or instruction encoding.

Little-endian . A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, wit
being the most-significant byte. See Big-endian.

Loop unrolling . Loop unrolling provides a way of increasing performan
by allowing more instructions to be issued in a clock cycle. T
compiler replicates the loop body to increase the number
instructions executed between a loop branch. 
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MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory sy
Note that the PowerPC architecture does not specify 
implementation of a MESI protocol to ensure cache coherency. 

Memory access ordering. The specific order in which the process
performs load and store memory accesses and the order in w
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or b
address translation mechanisms provided by the MMU and 
occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that 
accurate view of memory is provided to all devices that share sy
memory.

Memory consistency. Refers to agreement of levels of memory with resp
to a single processor and system memory (for example, on-
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable o
translating an effective (logical) address to a physical address
providing protection mechanisms, and defining caching method

Microarchitecture . The hardware details of a microprocessor’s design. S
details are not defined by the PowerPC architecture. 

Mnemonic. The abbreviated name of an instruction used for coding. 

Modified state. When a cache block is in the modified state, it has b
modified by the processor since it was copied from memory. See
MESI.

Munging. A modification performed on an effective address that allows it to
appear to the processor that individual aligned scalars are stor
little-endian values, when in fact it is stored in big-endian order, but
at different byte addresses within double words. Note that mun
affects only the effective address and not the byte order. Note
that this term is not used by the PowerPC architecture. 

Multiprocessing. The capability of software, especially operating system
to support execution on more than one processor at the same ti

Most-significant bit (msb). The highest-order bit in an address, registe
data element, or instruction encoding. 

M
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Most-significant byte (MSB). The highest-order byte in an addres
registers, data element, or instruction encoding.

NaN. An abbreviation for ‘Not a Number’; a symbolic entity encoded
floating-point format. There are two types of NaNs—signaling Na
(SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. A single-cycle operation that does not affect regis
or generate bus activity. 

Normalization. A process by which a floating-point value is manipulat
such that it can be represented in the format for the approp
precision (single- or double-precision). For a floating-point value
be representable in the single- or double-precision format, 
leading implied bit must be a 1. 

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, superv
level registers, synchronization requirements, and the excep
model. It also defines the time-base feature from a supervisor-
perspective. Implementations that conform to the PowerPC O
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, th
defined by the PowerPC architecture but not required to
implemented. 

Out-of-order. An aspect of an operation that allows it to be performed ah
of one that may have preceded it in the sequential model,
example, speculative operations. An operation is said to
performed out-of-order if, at the time that it is performed, it is n
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issu
and completed in an order that differs from their sequence in
instruction stream.

Overflow. An error condition that occurs during arithmetic operations wh
the result cannot be stored accurately in the destination regist
For example, if two 32-bit numbers are multiplied, the result may
be representable in 32 bits. 

N
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Page. A region in memory. The OEA defines a page as a 4-Kbyte are
memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit i
by the MMU whenever the page is accessed for a read or w
operation. The changed bit is set when the page is stored intoSee
Changed bit and Referenced bit. 

Page fault. A page fault is a condition that occurs when the proces
attempts to access a memory location that does not reside wit
page not currently resident in physical memory. On PowerPC
processors, a page fault exception condition occurs whe
matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table e
group). The number of PTEGs in the page table depends on the
of the page table (as specified in the SDR1 register). 

Page table entry (PTE). Data structures containing information used 
translate effective address to physical address on a 4-Kbyte pa
basis. A PTE consists of 8 bytes of information in a 32-bit proce
and 16 bytes of information in a 64-bit processor. 

Persistent data stream. A data stream is considered to be persistent whe
is expected to be loaded from frequently.

Physical memory. The actual memory that can be accessed through
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruc
processing or bus transactions, into smaller distinct stages or te
(respectively) so that a subsequent operation can begin befor
previous one has completed. 

Precise exceptions. A category of exception for which the pipeline can 
stopped so instructions that preceded the faulting instruction 
complete, and subsequent instructions can be flushed 
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instructi
encoding that identifies the type of instruction. See Secondary
opcode.

P
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Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a B
area, or a range of unmapped effective addresses. It is defined
when the appropriate relocate bit in the MSR (IR or DR) is 1. 

Quad word. A group of 16 contiguous locations starting at an addr
divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithme
operations without signaling exceptions. A quiet NaN is used
represent the results of certain invalid operations, such as in
arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

rA . The rA instruction field is used to specify a GPR to be used as a so
or destination.

rB . The rB instruction field is used to specify a GPR to be used as a sou

rD . The rD instruction field is used to specify a GPR to be used a
destination.

rS. The rS instruction field is used to specify a GPR to be used as a sou

Real address mode. An MMU mode when no address translation 
performed and the effective address specified is the same as th
physical address. The processor’s MMU is operating in real add
mode if its ability to perform address translation has been disa
through the MSR registers IR and/or DR bits. 

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is s
updates the condition register (CR) to reflect the result of 
operation.

Referenced bit. One of two page history bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for a read or write. See also Page access history bits.

Register indirect addressing. A form of addressing that specifies one GP
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents
specified GPR to form the target address for the load or store.

Q
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Register indirect with index addressing. A form of addressing that specifie
that the contents of two GPRs be added together to yield the t
address for the load or store.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx  instruction to read a
memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assign
function. A reserved field may be a single bit. The handling
reserved bits is implementation-dependent. Software is permitted to
write any value to such a bit. A subsequent reading of the bit ret
0 if the value last written to the bit was 0 and returns an undefi
value (0 or 1) otherwise.

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality a
by a separate set of load and store instructions that perform me
accesses. 

Scalability. The capability of an architecture to generate implementations
specific for a wide range of purposes, and in particu
implementations of significantly greater performance and
functionality than at present, while maintaining compatibility wi
current implementations.

Secondary cache. A cache memory that is typically larger and has a lon
access time than the primary cache. A secondary cache ma
shared by multiple devices. Also referred to as L2, or level-2, cac

Segment. A 256-Mbyte area of virtual memory that is the most basic memor
space defined by the PowerPC architecture. Each segme
configured through a unique segment descriptor. 

Segment descriptors. Information used to generate the interim virtual
address. The segment descriptors reside in 16 on-chip segm
registers for 32-bit implementations. For 64-bit implementations,
segment descriptors reside as segment table entries in a hashed
segment table in memory.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating
bit or bit field. 

S
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Set (n). A subdivision of a cache. Cacheable data can be stored in a giv
location in any one of the sets, typically corresponding to its low
order address bits. Because several memory locations can map
same location, cached data is typically placed in the set whose cache
block corresponding to that address was used least recently. See Set-
associative. 

Set-associative. Aspect of cache organization in which the cache spac
divided into sections, called sets. The cache controller associates
particular main memory address with the contents of a particular
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation progra
exception when it is specified as arithmetic operands. See Quiet
NaN. 

Significand. The component of a binary floating-point number that cons
of an explicit or implicit leading bit to the left of its implied binar
point and a fraction field to the right.

SIMD . Single instruction stream, multiple data streams. A vector instruc
can operate on several data elements within a single instruction
single functional unit. SIMD is a way to work with all the data 
once (in parallel), which can make execution faster. 

Simplified mnemonics. Assembler mnemonics that represent a m
complex form of a common operation.

Splat. A splat instruction will take one element and replicates (splats) 
value into a vector register. The purpose being to have all elem
have the same value so they can be used as a constant to m
other vector registers.

Static branch prediction. Mechanism by which software (for exampl
compilers) can give a hint to the machine hardware about 
direction a branch is likely to take. 

Sticky bit. A bit that when set must be cleared explicitly.

Strong ordering. A memory access model that requires exclusive acces
an address before making an update, to prevent another device
using stale data.

Superscalar machine. A machine that can issue multiple instructio
concurrently from a conventional linear instruction stream.
Glossary-12 AltiVec Technology Programming Environments Manual MOTOROLA
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Supervisor mode. The privileged operation state of a processor. 
supervisor mode, software, typically the operating system, 
access all control registers and can access the supervisor me
space, among other privileged operations. 

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization. 

Synchronous exception. An exception that is generated by the execution 
a particular instruction or instruction sequence. There are two t
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor. 

TLB (translation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput . The measure of the number of instructions that are proce
per clock cycle.

Tiny. A floating-point value that is too small to be represented for a partic
precision format, including denormalized numbers; they do not
include ±0.

Transient stream. A data stream is considered to be transient when it is lik
to be referenced from infrequently.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines 
base user-level instruction set, user-level registers, data ty
floating-point memory conventions and exception model as see
user programs, and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations wh
the result cannot be represented accurately in the destination reg
For example, underflow can happen if two floating-point fractio
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In o
words, the result is too small to be represented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typicall
application software. In user mode, software can only access ce
control registers and can access only user memory space
privileged operations can be performed. Also referred to as prob
state.

T
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vA. The vA instruction field is used to specify a vector register to be use
a source or destination.

vB. The vB instruction field is used to specify a vector register to be use
a source.

vC. The vC instruction field is used to specify a vector register to be use
a source.

vD. The vD instruction field is used to specify a vector register to be use
a destination.

vS. The vS instruction field is used to specify a vector register to be used
source.

VEA (virtual environment architecture) . The level of the architecture that
describes the memory model for an environment in which mult
devices can access memory, defines aspects of the cache m
defines cache control instructions, and defines the time-base fa
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necess
adhere to the OEA.

Vector. The spatial parallel processing of short, fixed-length one-dimensi
matrices performed by an execution unit.

Vector Register (VR). Any of the 32 registers in the vector register file. Ea
vector register is 128 bits wide. These registers can provide
source operands and destination results for AltiVec instructions.

Virtual address. An intermediate address used in the translation of
effective address to a physical address.

Virtual memory . The address space created using the memory manage
facilities of the processor. Program access to virtual memor
possible only when it coincides with physical memory.

Weak ordering. A memory access model that allows bus operations to
reordered dynamically, which improves overall performance an
particular reduces the effect of memory latency on instruct
throughput.

Word . A 32-bit data element. 

V

VW
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Write-back . A cache memory update policy in which processor write cyc
are directly written only to the cache. External memory is upda
only indirectly, for example, when a modified cache block is cast out
to make room for newer data. 

Write-through . A cache memory update policy in which all processor w
cycles are written to both the cache and memory.
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A
Access ordering, 5-1
Acronyms and abbreviated terms, list, xxiii
Address bus

address calculation, 4-25
address modes, 1-9
address translation for streams, 5-8

Alignment
aligned scalars, LE mode, 3-4
effective address, 4-25
load and store, 4-25
load instruction support, 4-28
memory access and vector register, 3-6
misaligned accesses, 3-1
misaligned vectors, 3-7
partially executed instructions, 5-11
quad-word data alignment, 3-7
rules, 3-4

AltiVec technology
address modes, 1-9
applications supported, 1-4
cache overview, 1-11
description, 1-1
exception handling, 1-11
features list, 1-4
features not defined, 1-6
features supported, 1-4
instruction set, 1-10, 6-9, A-1–A-23
instruction set architecture support, 1-5
interelement operations, 1-9
intraelement operations, 1-9
levels of the PowerPC architecture, 1-5
operations supported, 1-9
overview, 1-2
PowerPC architecture extension, 1-2
PowerPC modes supported, 1-5
programming model, 1-7
register file structure, 2-2
register set, 1-7, 2-2, 2-5, 2-9
SIMD-style extension, 1-2, 1-7
structural overview, 1-3

Arithmetic instructions
floating-point, 4-19
integer, 4-1

B
Big-endian mode

accessing a misaligned quad word, 3-8
byte ordering, 1-7, 3-3
concept, 3-3
mapping, quad word, 3-3
misaligned vector, 3-7
mixed-endian systems, 3-11

Block count, 5-4
Block size, 5-4
Block stride, 5-4
Byte ordering

aligned scalars, LE mode, 3-4
big-endian mode, default, 3-3
concept, 3-2
default, 1-7
LE bit in MSR, 3-2
least-significant byte (LSB), 3-3
little-endian mode description, 3-3
most-significant byte (MSB), 3-3
quad-word example, 3-3

C
Cache

cache management instructions, 4-40
data stream touch, 5-3
dss instruction, 5-6
dst instruction, 5-3
dstst instruction, 5-5
dstt instruction, 5-5
overview, 1-11, 5-1
prefetch, software-directed, 5-3
prioritizing cache block replacement, 5-10
stopping streams, 5-6
storing to streams, 5-5
transient streams, 5-5

Cache management instructions, 4-40
Classes of instructions, 4-3
Compare instructions

floating-point, 4-21
integer, 4-13, 4-14

Computation modes
effective address, 4-2
PowerPC architecture support, 1-5, 4-2

Conventions
classes of instructions, 4-3
computation modes, 4-2
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execution model, 4-2
memory addressing, 4-3
operand conventions, 3-1
terminology, xxv

CR (condition register)
bit fields, 2-5
CR6 field, compare instructions, 2-5
move to/from CR instructions, 4-38

D
Data organization, memory, 3-1
Data stream, 5-3
Double-word swap, 3-6

E
Echo cancellation, 1-5
Effective address calculation

EA modifications, 3-5
loads and stores, 4-25
overview, 4-3

Estimate instructions, 4-24
Exceptions

data address breakpoint, 5-11
DSI exception, 5-11
exception behavior of prefetch streams, 5-7
exception handling, 1-11
floating-point exceptions, 3-14
invalid operation exception, 3-15
log of zero exception, 3-16
NaN operand exception, 3-14
overflow exception, 3-16
overview, 5-1
precise exceptions, 5-13
priorities, 5-13
synchronous exceptions, 5-13
unavailable exception, 5-11
underflow exception, 3-16
zero divide exception, 3-15

Exclusive OR (XOR), 3-4
Execution model

conventions, 4-2
floating-point, 3-12

Extended mnemonics, see Simplified mnemonics

F
Features list

AltiVec technology features, 1-4
features not defined, 1-6

Floating-point model
arithmetic instructions, 4-19
compare instructions, 4-21
division function, 4-18

estimate instructions, 4-24
exceptions, 3-14
execution model, 3-12
infinities, 3-14
instructions, overview, 4-17
Java mode, 3-13
modes, 3-12
multiply-add instructions, 4-19
NaNs, 3-17
non-Java mode, 3-13
rounding mode, 3-14
rounding/conversion instructions, 4-20
square root functions, 4-18

Formatting instructions, 4-30

H
High-order byte numbering, 1-8

I
Instructions

cache management instructions, 4-40
classes of instructions, 4-3, 4-3
computation modes, 4-2
control flow, 4-30
conventions, xxvi, 6-2
detailed descriptions, 6-9–6-178
floating-point

arithmetic, 4-19
compare, 4-21
computational instructions, 3-12
division function, 4-18
estimate instructions, 4-24
multiply-add, 4-19
noncomputational instructions, 3-12
overview, 4-17
rounding/conversion, 4-20
square root functions, 4-18

format, lists, A-12
formats, 6-1
formatting instructions, 4-30
general information, A-18
integer

arithmetic, 4-1, 4-4
compare, 4-13, 4-14
load, 4-26
logical, 4-1, 4-15
rotate/shift, 4-16
store, 4-30

listed by format, A-12
listed by mnemonic, 6-9–6-178, A-1
listed by opcode, A-7
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load and store
address generation, integer, 4-25
integer load, 4-26
integer store, 4-30

memory addressing, 4-3
memory control instructions, 4-39
merge instructions, 4-33
mnemonics, lists, A-1
notations, 6-2
opcodes, lists, A-7
overview, 1-10
pack instructions, 4-31
partially executed instructions, 5-11
permutation instructions, 4-30
permute instructions, 4-35
PowerPC instructions, list, A-1
processor control instructions, 4-38
quick reference, A-18
select instruction, 4-35
shift instructions, 4-36
splat instructions, 4-34
syntax conventions, xxvi, 6-2
unpack instructions, 4-32
vector integer, see integer

Integer instructions
arithmetic instructions, 4-1, 4-4
compare instructions, 4-13, 4-14
load instructions, 4-26
logical instructions, 4-1, 4-15
rotate/shift instructions, 4-16
store instructions, 4-30

Interelement operations, 1-9
Intraelement operations, 1-9
Invalid operation exception, 3-15

J
Java mode, 3-13

L
Little-endian mode

accessing a misaligned quad word, 3-10
byte ordering, 3-3
description, 3-3
mapping, quad word, 3-4
misaligned vector, 3-7
mixed-endian systems, 3-11
swapping, 3-6

Load/store
address generation, integer, 4-25
integer load instructions, 4-26
integer store instructions, 4-30

Log of zero exception, 3-16
Logical instructions, integer, 4-1, 4-15
Low-order byte numbering, 1-8

M
Mathematical predicates, 4-22
Memory access ordering, 5-1
Memory addressing, 4-3
Memory control instructions, 4-40
Memory management unit (MMU)

memory bandwidth, 5-3
overview, 1-12, 5-1
prefetch

data stream touch, 5-3
dss instruction, 5-6
dst instruction, 5-3
dstst instruction, 5-5
dstt instruction, 5-5
exception behavior, 5-7
software-directed, 5-3
stopping streams, 5-6
storing to streams, 5-5
transient streams, 5-5

Memory operands, 4-3
Memory sharing, 5-1
Memory, data organization, 3-1
Merge instructions, 4-33
Misalignment

accessing a quad word
big-endian mode, 3-8
little-endian mode, 3-10

misaligned accesses, 3-1
misaligned vectors, 3-7

Mixed-endian systems, 3-11
Modulo mode, 4-4
Move to/from CR instructions, 4-38
MSR (machine state register)

bit settings, 2-5
LE bit, 3-2
SF bit (64-/32-bit mode), 4-2

Multiply-add instructions, 4-19
Munging, description, 3-4

N
NaN (not a number)

conversion to integer, 3-17
floating-point NaNs, 3-17
operand exception, 3-14
precedence, 3-17
production, 3-17

Non-Java mode, 3-13

O
OEA (operating environment architecture)

definition, xviii, 1-6
programming model, 2-9
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Operands
conventions, description, 1-7, 3-1
floating-point conventions, 1-8
memory operands, 4-3

Operating environment architecture, see OEA
Operations

interelement operations, 1-9
intraelement operations, 1-9

Overflow exception, 3-16

P
Pack instructions, 4-31
Permutation instructions, 4-30
Permute instructions, 4-35
PowerPC architecture support

computation modes, 1-5, 4-2
execution model, 4-2
features summary

defined features, 1-4
features not defined, 1-6

instruction list, A-1
levels of the PowerPC architecture, 1-5
memory access ordering, 5-1
operating environment architecture, xviii, 1-6
overview, 1-2
programming model, 1-7, 2-9
registers affected by AltiVec technology, 2-5–2-9
user instruction set architecture, xvii, 1-5
virtual environment architecture, xvii, 1-6

Prefetch, software-directed, 5-3
Processor control instructions, 4-38
Programming model, all registers, 2-9

Q
QNaN arithmetic, 3-17

R
Record bit (Rc), 6-2
Registers

CR, 2-5
overview, 1-7, 2-1
PowerPC register set, 2-5–??, 2-9–??
register file, 2-2
SRR0/SRR1, 2-7
VRs, 2-2
VRSAVE, 2-4
VSCR, 2-2

Rotate instructions, 4-16
Rounding/conversion instructions, FP, 4-20

S
Saturation detection, 4-4
Scalars

aligned, LE mode, 3-4
loads and stores, 3-11
misaligned loads and stores, 3-11

Select instruction, 4-35
Shift instructions, 4-16, 4-36
SIMD-style extension, 1-2, 1-7
Simplified mnemonics, 4-39
SNaN arithmetic, 3-17
Splat instructions, 4-34
SRR0/SRR1 (status save/restore registers), 2-7
Streams

address translation, 5-8
definition, 5-4
implementation assumptions, 5-10
synchronization, 5-8
usage notes, 5-8

Stride, 5-4
Swizzle, see Double-word swap
Synchronization streams, 5-8

T
Terminology conventions, xxv
Transient streams, 5-5

U
UISA (user instruction set architecture), xvii, 1-5

programming model, 2-9
Underflow exception, 3-16
Unpack instructions, 4-32
User instruction set architecture, see UISA

V
VEA (virtual environment architecture)

definition, xvii, 1-6
programming model, 2-9
user-level cache control instructions, 4-40

Vector formatting instructions, 4-30
Vector integer compare instructions, see Integer

compare instructions
Vector merge instructions, 4-33
Vector pack instructions, 4-31
Vector permutation instructions, 4-30
Vector permute instructions, 4-35
Vector select instruction, 4-35
Vector shift instructions, 4-36
Vector splat instructions, 4-34
Vector unpack instructions, 4-32
Vector, definition, 1-1
Virtual environment architecture, see VEA
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VRs (vector registers)
memory access alignment and VR, 3-6
register file, 2-2

VRSAVE register, 2-4
VSCR (vector status and control register), 2-2

X
XOR (exclusive OR), 3-4

Z
Zero divide exception, 3-15
MOTOROLA Index Index-5



INDEX
Index-6 AltiVec Technology Programming Environments Manual MOTOROLA



Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

AltiVec Instruction Set Listings

Glossary of Terms and Abbreviations

Index

1

2

3

4

5

6

A

IND

GLO



Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

AltiVec Instruction Set Listings

Glossary of Terms and Abbreviations

Index

1

2

3

4

5

6

A

IND

GLO



g

for

btain
Attention!
This book is a companion to the PowerPC Microprocessor Family: The Programmin
Environments, referred to as The Programming Environments Manual. Note that the
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a description of the following two versions:

• PowerPC Microprocessor Family: The Programming Environments, Rev 1
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