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About This Book

The primary objective of this manual is to help programmers provide software that is
compatible with the family of PowerPC™ processors using AltiVec™ technology. This
book describes how the AltiVec technology relates to both the 64- and the 32-bit portions
of the PowerPC architecture.

To locate any published errata or updates for this document, refer to the website at
http://www.motorola.com/PowerPC/.

AltiVec Technology Programming Environments Man(fdtivec PEM) is used as a
reference guide for programmers. The AltiVec PEM provides a description for each
instruction that includes the instruction format and figures to help in understanding how the
instruction works.

Because it is important to distinguish between the levels of the PowerPC architecture in
order to ensure compatibility across multiple platforms, those distinctions are shown
clearly throughout this book. Most the discussions on the AltiVec technology are at the
UISA level. The level of the architecture to which text refers is indicated in the outer
margin, using the conventions shown in “Conventions,” on page Xxii.

This document stays consistent with the PowerPC architecture in referring to three levels,
or programming environments, which are as follows:

e PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

* PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, and defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.
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» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

For ease in reference, this book and the processor user's manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the
architecture but when discussing OEA and VEA, this will be noted in the text.

It is beyond the scope of this manual to describe individual AltiVec technology
implementations on PowerPC processors. It must be kept in mind that each PowerPC
processor is unique in its implementation of the AltiVec technology.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative or visit our web
site at: http://www.mot.com/SPS/PowerPC/.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products using the AltiVec technology extension to the
PowerPC processors in general. It is assumed that the reader understands operating
systems, microprocessor system design, and the basic principles of RISC processing.

This book describes how the AltiVec technology interacts with both the 64- and the 32-bit
portions of the PowerPC architecture

Organization
Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the AltiVec technology. This chapter provides an overview
of how the AltiVec technology defines the register set, operand conventions,
addressing modes, instruction set, cache model, and exception model.

» Chapter 2, “AltiVec Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments. The chapter also discusses the functionality of the AltiVec technology
registers and how they interact with the other PowerPC registers.
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Chapter 3, “Operand Conventions,” describes how the AltiVec technology interacts
with the PowerPC conventions for storing data in memory, including information
regarding alignment, single-precision floating-point conventions, and big- and little-
endian byte ordering.

Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview
of the AltiVec technology addressing modes and a brief description of the AltiVec
technology instructions organized by function.

Chapter 5, “Cache, Exceptions, and Memory Management,” provides a discussion
of the cache and memory model defined by the VEA and aspects of the cache model
that are defined by the OEA. It also describes the exception model defined in the
UISA.

Chapter 6, “AltiVec Instructions,” functions as a handbook for the AltiVec

instruction set. Instructions are sorted by mnemonic. Each instruction description
includes the instruction formats and figures where it helps in understanding what the
instruction does.

Appendix A, “AltiVec Instruction Set Listings,” lists all the AltiVec instructions.
Instructions are grouped according to mnemonic, opcode, and form.

This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the AltiVec technology and PowerPC
architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
ProcessorsSecond Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference PlatfigrApple
Computer, Inc.

— Computer Architecture: A Quantitative Approa&econd Edition, by
John L. Hennessy and David A. Patterson
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Inside Macintosh: PowerPC System SoftwAdgison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

PowerPC Programming for Intel Programmebs, Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404,
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunctiod hdéRArogramming
Environments Manuallhese include the following:

— PowerPC 60I" RISC Microprocessor User's Manu&iPC601UM/AD
(Motorola order #)

— PowerPC 6038 RISC Microprocessor User’'s Manual with Supplement for
PowerPC 603 Microprocessor
MPC603EUM/AD (Motorola order #)

— PowerPC 602¥ RISC Microprocessor User’'s Manual
MPC604UM/AD (Motorola order #)

Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming EnvironmeRéy 1:
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
MicroprocessorsRev. 1: MPCFPE32B/AD (Motorola order #)

Implementation Variances Relative to Rev. 1 of The Programming Environments
Manualis available via the world-wide web at http://www.motorola.com/PowerPC/.

Addenda/errata to user's manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’'s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User's Manual: PowerPC
603e Microprocessor Supplement and User’'s Manual Errata:
MPC603EUMAD/AD (Motorola order #)

— Addendum t@owerPC 604 RISC Microprocessor User's MantrgwerPC
604 Microprocessor Supplement and User's Manual Errata
MPC604UMAD/AD (Motorola order #)
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» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications
MPCG601EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications
MPCG603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications
MPCG603EEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications
MPCG603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications
MPCG604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications
MPCG604E9VEC/D (Motorola order #)

» Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, and 604e as well as the
following:

— PowerPC 620" RISC Microprocessor Technical Summary
MPC620/D (Motorola order #)

— PowerPC 75(RISC Microprocessor Technical Summary
MPC750/D (Motorola order #)

« PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

» PowerPC Microprocessor Family: The Programmer’s Reference Guide
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.
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* PowerPC Microprocessor Family: The Programmer’s Pocket Reference :Guide
MPCPRGREF/D (Motorola order #)
This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

« Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

¢ Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User's Manual
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’'s Manual
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.motorola.com/PowerPC/.

Conventions
Throughout the documentation when a register or bit is “set” it means the register or bit is

set to 1, and when a register is “cleared” it means the register or bit is set to 0.

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for exarbptarx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSRI[LE] refers to the little-endian mode enable bit in the machine
state register.

VA, vB, vC Instruction syntax used to identify a source VR

vD Instruction syntax used to identify a destination VR

X In certain contexts, such as a signal encoding, this indicates a don't

care.

XXii
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n Used to express an undefined numerical value

- NOT logical operator

& AND logical operator

| OR logical operator

m This symbol identifies text that is relevant with respect to the

PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

v This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
as well as for explanatory information related to that programming
environment.

® This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates reserved bits or bit fields in a register. Although these bits

may be written to as either ones or zeros, they are always read as
zeros.

Additional conventions used with instruction encodings are described in Section 6.1,
“Instruction Formats.”

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ASR Address space register
BAT Block address translation
BPU Branch processing unit
CR Condition register
CTR Count register
DAR Data address register
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
DEC Decrementer register
DSISR Register used for determining the source of a DSI exception
EA Effective address
ECC Error checking and correction
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSQ Least-significant quad-word
Isq Least-significant quad-word
MERSI Modified/exclusive/reserved/shared/invalid—cache coherency protocol
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSQ Most-significant quad-word
msq Most-significant quad-word
MSR Machine state register
NaN Not a number
NIA Next instruction address
No-op No operation
OEA Operating environment architecture
PTEG Page table entry group
RISC Reduced instruction set computing
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
RTL Register transfer language
RWITM Read with intent to modify
SIMM Signed immediate value
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
STE Segment table entry
B Time base register
TLB Translation lookaside buffer
UIMM Unsigned immediate value
UISA User instruction set architecture
VA Virtual address
VEA Virtual environment architecture
VR Vector register

Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Swizzling

Double-word swap
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Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)
BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UIMM

VA, VB, VT, VS VA, VB, vD, vS (respectively)
VEC AltiVec technology

1,00, 10 0...0 (shaded)
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Chapter 1
Overview

The AltiVec™ technology provides a software model that accelerates the performance of
various software applications and runs on reduced instruction set computing (RISC)
microprocessors. The AltiVec technology extends the instruction set architecture (ISA) of
the PowerPC architecture. AltiVec technology is a short vector parallel architecture. The
AltiVec ISA is based on separate vector/SIMD-style (single instruction stream, multiple
data streams) execution units that have high data parallelism. That is, the AltiVec
technology operations can perform on multiple data elements in a single instruction. The
term‘vector’ in this document refers to the spatial parallel processing of short, fixed-length
one-dimensional matrices performed by an execution unit. It should not be confused with
the temporal parallel (pipelined) processing of long, variable-length vectors performed by
classical vector machines. High degrees of parallelism are achievable with simple in-order
instruction dispatch and low-instruction bandwidth. However, the ISA is designed so as not
to impede additional parallelism through superscalar dispatch to multiple execution units
or multithreaded execution unit pipelines.

All instructions are designed to be easily pipelined with pipeline latencies no greater than
scalar, double-precision, floating-point multiply-add. No instruction specifies an operation

that presents a frequency limitation beyond those already imposed by existing PowerPC
instructions. There are no operating mode switches which preclude fine grain interleaving
of instructions with the existing floating-point and integer instructions. Parallelism with the

integer and floating-point instructions is simplified by the fact that the vector unit never

generates an exception and has few shared resources or communication paths that require
it to be tightly synchronized with the other units. By using the SIMD parallelism,
performance can be accelerated on PowerPC processors to a level that can allow concurrent
real-time processing of one or more data streams.

In this document, the term ‘implementation’ refers to a hardware device (typically a
microprocessor) that complies with the PowerPC architecture.
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Overview

The AltiVec technology can be used as an extension to various RISC microprocessors;
however, in this book it is discussed within the context of the PowerPC architecture
described as follows:

e Programming model

— Instruction set. The AltiVec instruction set specifies instructions that extend the
PowerPC instruction set. These instructions are organized similar to PowerPC
instructions (such as vector load/store, vector integer, and vector floating-point
instructions). The specific instructions, and the forms used for encoding them,
are provided in Appendix A, “Instruction Set.”

— Register set. The AltiVec programming model defines new AltiVec registers,
additions to the PowerPC register set, and how existing PowerPC registers are
affected by the AltiVec technology. The model also discusses memory
conventions, including details regarding the byte ordering for quad words.

«  Memory model. The AltiVec technology specifies additional cache management
instructions. That is, a program can execute AltiVec software instructions that
indicate when a sequence of memory units (data stream/stream) are likely to be
accessed.

» Exception model. To ensure efficiency, the AltiVec technology provides only an
AltiVec unavailable interrupt (VUI) exception, a DSI exception, and trace exception
(if implemented). There are no exceptions other than DSI exceptions on loads and
stores. The AltiVec instructions can cause PowerPC exceptions.

*  Memory management model. The memory model for the AltiVec technology is the
same as it is implemented for the PowerPC architecture. AltiVec memory accesses
are always assumed to be aligned. If an operand is unaligned, additional AltiVec
instructions are used to ensure that it is correctly placed in a vector register or in
memory.

« Time-keeping model—The PowerPC time-keeping model is not impacted by the
AltiVec technology.

To locate any published errata or updates for this document, refer to the website at
http://www.motorola.com/PowerPC.

This chapter provides an overview of the major characteristics of the AltiVec technology in
the order in which they are addressed in this book:

* Register set and programming model

« Instruction set and addressing modes

« Cache, exceptions, and memory management

1.1 Overview

The AltiVec technology’s SIMD-style extension provides an approach to accelerating the
processing of data streams. Using the AltiVec instructions can provide a significant speedup
for communications, multimedia, and other performance-driven applications by using data-

1-2 AltiVec Technology Programming Environments Manual MOTOROLA



Overview

level parallelism where available, matching scalar performance in serial sections of media
applications, keeping media processing within the AltiVec unit, and minimizing bandwidth
and latency memory access bottlenecks.

AltiVec technology expands the PowerPC architecture through the addition of a 128-bit
vector execution unit, which operates concurrently with the existing integer- and floating-
point units. A new vector execution unit provides highly parallel operations, allowing for
simultaneous execution of multiple operations in a single clock cycle.

The AltiVec technology can be thought of as a set of registers and execution units that can
be added to the PowerPC architecture in a manner analogous to the addition of floating-
point units. Floating-point units were added to provide support for high-precision scientific
calculations and the AltiVec technology is added to the PowerPC architecture to accelerate
the next level of performance-driven, high-bandwidth communications and computing
applications. Figure 1-1 provides the high level structural overview for PowerPC with the
AltiVec technology.

-
Branch Unit
———— P

INST INST INST

C

Integer Unit Floating-Point Vector Unit
Unit
[FPRs_] [ o |
INST INST D?TA DAi DA?A DA?A
ADDR  ADDR
Memory

Figure 1-1. High Level Structural Overview of PowerPC with AltiVec Technology

The AltiVec technology is purposefully simple such that there are no exceptions other than
DSl exceptions on loads and stores, no hardware unaligned access support, and no complex
functions. The AltiVec technology is scaled down to only the necessary pieces in order to
facilitate efficient cycle time, latency, and throughput on hardware implementations.
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The AltiVec technology defines the following:

Fixed 128-bit wide vector length that can be subdivided into sixteen 8-bit bytes,
eight 16-bit half words, or four 32-bit words

Vector register file (VRF) architecturally separate from floating-point registers
(FPRs) and general-purpose registers (GPRS)

Vector integer and floating-point arithmetic
Four operands for most instructions (three source operands and one result)
Saturation clamping, (that is, unsigned results are clamped to zero on underflow and

to the maximum positive integer valué(2, for example, 255 for byte fields) on
overflow. For signed results, saturation clamps results to the smallest representable

negative number (2%, for example, -128 for byte fields) on underflow, and to the

largest representable positive numbé&ra, for example, +127 for byte fields) on
overflow)

No mode switching that would increase the overhead of using the instructions

Operations selected based on utility to digital signal processing algorithms
(including 3D).

AltiVec instructions provide a vector compare and select mechanism to implement
conditional execution as the preferred way to control data flow in AltiVec programs

Enhanced cache/memory interface

The AltiVec ISA supports the following:

Voice over IP (VolP). VoIP transmits voice as compressed digital data packets over
the internet.

Access Concentrators/DSLAMS. An access concentrator strips data traffic off of
POTS lines and inserts it into the INet. Digital subscriber loop access multiplexer
(DSLAM) pulls data off at a switch and immediately routes it to the Internet. This
allows to concentrate ADSL digital traffic at the switch and off-load the network.

Speech recognition. Speech processing allows voice recognition for use in
applications like directory assistance and automatic dialing.

Voice/Sound Processing (Audio decode and encode): G.711, G.721, G.723,
G,729A, and AC-3. Voice processing is used to improve sound quality on lines.

Communications

— Multi-channel modems

— Software modem: V.34, 56K
— Data encryption: RSA

— Modem banks can use the AltiVec technology to replace signal processors in
DSP farms.

1-4

AltiVec Technology Programming Environments Manual MOTOROLA



Overview

e 2D and 3D graphics: QuickDraw, OpenGL, VRML, Games, Entertainment, High-
precision CAD

» Virtual Reality
» High-fidelity audio: 3D audio, AC-3. Hi-Fi Audio uses AltiVec's FPU.
« Image and video processing: JPEG, Filters

« Echo cancellation. The echo cancellation is used to eliminate echo build up on long
landline calls.

* Array number processing

e Basestation Processing. Cellular basestation compresses digital voice data for
transmission within the Internet.

* High bandwidth data communication

* Motion video decode and encode: MPEG-1, MPEG-2, MPEG-4, and H.234

« Real-time continuous speech I/0: HMM, Viterbi acceleration, Neural algorithms
» Video conferencing: H.261, H.263

* Machine Intelligence

1.1.1 The 64-Bit AltiVec Technology and the 32-Bit Subset
The AltiVec technology supports the following modes of PowerPC operations:

* 64-bit implementations/64-bit mode—The AltiVec technology defines interactions
with the PowerPC 64-bit registers.

* 64-bit implementations/32-bit mode—The AltiVec technology defines interaction
with the conventions for 32-bit implementations of PowerPC registers.

For further details on the 64-bit PowerPC architecture and the 32-bit subset refer to Chapter
1, “Overview,” in thePowerPC Microprocessor Family: The Programming Environments
Manual

This book describes both the 64-bit and 32-bit PowerPC architecture modes. Instructions
are described from a 64-bit perspective and in most cases, details of the 32-bit subset can
easily be determined from the 64-bit descriptions. Significant differences in the 32-bit
subset are highlighted and described separately as they occur.

1.1.2 The Levels of the AltiVec ISA

The AltiVec ISA follows the layering of PowerPC architecture. The PowerPC architecture
has three levels defined as follows:

» PowerPC user instruction set architecture (UISA) —The UISA defines the le\@ of
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
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instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant to the UISA.

* PowerPC virtual environment architecture (VEA)—The VEA defines additional
user-level functionality that falls outside typical user-level software requirements.
The VEA describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspective.
The icon shown in the margin identifies text that is relevant to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level (referred to as privileged state in the architecture specification) resources
typically required by an operating system. The OEA defines the PowerPC memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant to the
OEA.

The AltiVec technology defines instructions at the UISA and VEA levels. The distinctions
between the levels is noted in the text throughout the document

1.1.3 Features Not Defined by the AltiVec ISA

Because flexibility is an important design goal of the AltiVec technology, there are many
aspects of the microprocessor design, typically relating to the hardware implementation,
that the AltiVec ISA does not define, for example, the number and the nature of execution
units. The AltiVec ISA is a vector/SIMD architecture, and as such makes it easier to
implement pipelining instructions and parallel execution units to maximize instruction
throughput. However, the AltiVec ISA does not define the internal hardware details of
implementations. For example, one processor may use a simple implementation having two
vector execution units whereas another may provide a bigger, faster microprocessor design
with several concurrently pipelined vector arithmetic logical units (ALUs) with separate
load/store units (LSUs) and prefetch units.

1.2 The AltiVec Architectural Model

This section provides overviews of aspects defined by the AltiVec ISA, following the same
order as the rest of this book. The topics are as follows:

» Registers and programming model

e Operand conventions

« Instruction set and addressing modes

« Cache model, exceptions, and memory management
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1.2.1 AltiVec Registers and Programming Model

In the AltiVec technology, the ALU operates on from one to three source vectors and
produces a single result/destination vector on each instruction. The ALU is a SIMD-style
arithmetic unit thaperforms the same operation on all the data elements that comprise each
vector This scheme allows efficient code scheduling in a highly parallel processor. Load
and store instructions are the only instructions that transfer data between registers and
memory. The vector unit and vector register file are shown in Figure 1-2.

VRO
VR1
VR2

e Vector Register File (VRF) e

VR30
VR31

128 128 128 128

Vector Unit

| Result/Destination Vector Register

Figure 1-2. AltiVec Top-Level Diagram

The vector unit is a SIMD-style unit in which an instruction performs operations in parallel
on the data elements that comprise each vector. Architecturally, the vector register file
(VRF) is separate from the GPRs and FPRs. The AltiVec programming model incorporates
the 32 registers of the VRF, each register is 128 bits.wide

1.2.2 Operand Conventions
Operand conventions define how data is stored in vector registers and memory.

1.2.2.1 Byte Ordering

The default mapping for AltiVec ISA is PowerPC big-endian, but AltiVec ISA provides the
option of operating in either big- or little-endian mode. The endian support of the PowerPC
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architecture does not address any data element larger than a double word; the basic memory
unit for vectors is a quad word.

Big-endian byte ordering is shown in Figure 1-3.

Quad Word

Word 0 Word 1 Word 2 Word 3

High Order | Low Order | Half Word 2 | Half Word 3 | Half Word 4 | Half Word 5 | Half Word 6 | Half Word 7
Half Word 0 | Half Word 1

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

1 1

MSB LSB
(High (Low
Order) Order)

Figure 1-3. Big-Endian Byte Ordering for a Vector Register

As shown in Figure 1-3, the elements in vector registers are numbered using big-endian
byte ordering. For example, the high-order (or most significant) byte element is numbered
0 and the low-order (or least significant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful not to
confuse its meaning based on the bit numbering. That is, in Figure 1-3 the high-order half
word for word 0 (bits 0-15), would be half word 0 (bits 0-7), and the low-order half word
for word 0 would be half word 1 (bits 8-15).

In big-endian mode, an AltiVec quad word load instruction for which the effective address
(EA) is quad-word aligned places the byte addressed by EA into byte element O of the target
vector register. The byte addressed by EA + 1 is placed in byte element 1, and so forth.
Similarly, an AltiVec quad word store instruction for which the EA is quad word-aligned
places byte element 0 of the source vector register into the byte addressed by EA. Byte
element 1 is placed into the byte addressed by EA + 1, and so forth.

1.2.2.2 Floating-Point Conventions

The AltiVec ISA basically has two modes for floating-point, that is a Java-/IEEE-/C9X-
compliant mode or a possibly faster non-Java/non-IEEE mode. AltiVec ISA conforms to the
Java Language Specification 1 (hereafter referred to as Java), that is a subset of the default
environment specified by the IEEE standard (ANSI/IEEE Standard 754-1985, IEEE
Standard for Binary Floating-Point Arithmetic). For aspects of floating-point behavior that
are not defined by Java but are defined by the IEEE standard, AltiVec ISA conforms to the
IEEE standard. For aspects of floating-point behavior that are defined neither by Java nor
by the IEEE standard but are defined by the C9X Floating-Point Proposal, WG14/N546
X3J11/96-010 (Draft 2/26/96) (hereafter referred to as C9X), AltiVec ISA conforms to C9X
when in Java-compliant mode.
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1.2.3 AltiVec Addressing Modes

As with PowerPC instructions, AltiVec instructions are encoded as single-word (32-bit)
instructions. Instruction formats are consistent among all instruction types, permitting
decoding to be parallel with operand accesses. This fixed instruction length and consistent
format simplifies instruction pipelining. AltiVec load, store, and stream prefetch
instructions use secondary opcodes in primary opcode 31 (0b011111). AltiVec ALU-type
instructions use primary opcode point 4 (0b000100).

AltiVec ISA supports both intraelement and interelement operations. In an intraeclement
operation, elements work in parallel on the corresponding elements from multiple source
operand registers and place the results in the corresponding fields in the destination operand
register. An example of an intraelement operation is the Vector Add Signed Word Saturate
(vaddsws)instructionshown in Figure 1-4.

N ‘V ¢ Yy
+ + + +
v v y v

I | | | | vo

Figure 1-4. Intraelement Example, vaddsws

In this example, the four signed integer (32 bits) elements in reghtare added to the
corresponding four signed integer (32 bits) elements in regBtand the four results are
placed in the corresponding elements in regidier

In interelement operations data paths cross over. That is, different elements from each
source operand are used in the resulting destination operand. An example of an interelement
operation is the Vector Permutgerm) instruction shown in Figure 1-5.

[o1 141810 16]15]19]1a]1c]1c]1c]13] 081D [1B]0E] vC

[oJ172]3]a]s5]6]7[8]9]A]BJC[D[E]F]vaA

[0 711 T12 J13 14 15 [16 [ 17 [18 [19J1A [1B [iC [1D 1E\|IF | vB

U AT Tz TR |w

Figure 1-5. Interelement Example, vperm

In this exampleyperm allows any byte in two source vector registes éndvB) to be
copied to any byte in the destination vector register,The bytes in a third source vector
register YC) specify from which byte in the first two source vector registers the
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corresponding target byte is to be copied. In this case the elements from the source vector
registers do not have corresponding elements that operate on the destination register.

Most arithmetic and logical instructions are intraelement operations. The data paths for the
ALU run primarily north and south with little crossover. The crossover data paths have been
restricted as much as possible to the interelement manipulation instructions (unpack, pack,
permute, etc.) with a vision toward implementing the ALU and shift/permute networks as
separate execution units. The following list of instructions distinguishes between
interelement and intraelement instructions:
« \ector intraelement instructions
— \ector integer instructions
— Vector integer arithmetic instructions
— Vector integer compare instructions
— Vector integer rotate and shift instructions
— Vector floating-point instructions
— Vector floating-point arithmetic instructions
— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction
— Vector floating-point estimate instructions
— Vector memory access instructions
* Vector interelement instructions
— Vector alignment support instructions
— Vector permutation and formatting instructions
— Vector pack instructions
Vector unpack instructions
\Vector merge instructions
Vector splat instructions
Vector permute instructions
Vector shift left/right instructions

1.2.4 AltiVec Instruction Set

M@ Although these categories are not defined by the AltiVec ISA, the AltiVec instructions can
be grouped as follows:

WV -+ \Vector integer arithmetic instructions—These instructions are defined by the UISA.
They include computational, logical, rotate, and shift instructions.

— Vector integer arithmetic instructions

— Vector integer compare instructions

— Vector integer logical instructions

— Vector integer rotate and shift instructions
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» \Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions defined by the UISA.

— Vector floating-point arithmetic instructions

— Vector floating-point multiply/add instructions

— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction

— Vector floating-point estimate instructions

* Vector load and store instructions—These include load and store instructions for
vector registers defined by the UISA.

« Vector permutation and formatting instructions—These instructions are defined by
the UISA.

— Vector pack instructions
Vector unpack instructions
Vector merge instructions
Vector splat instructions
Vector permute instructions
Vector select instructions
Vector shift instructions

* Processor control instructions—These instructions are used to read and write from
the AltiVec status and control register (VSCR). These instructions are defined by the

UISA.
« Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level). The instructions are defined by VEA. v
1.2.5 AltiVec Cache Model U]

The AltiVec ISA defines several instructions for enhancements to cache managggent.
These instructions allow software to indicate to the cache hardware how it should pré&fetch
and prioritize writeback of data. The AltiVec ISA does not define hardware aspects of cache
implementations.

1.2.6 AltiVec Exception Model

The AltiVec vector unit never generates an exception. Data stream instructions will never
cause an exception themselves. Therefore, on any event that would cause an exception on
a normal load or store, such as a page fault or protection violation, the data stream
instruction does not take a DSI exception; instead, it simply aborts and is ignored. Most
AltiVec instructions do not generate any kind of exception. Vector load and store
instructions that attempt to access a direct-store segment will cause a DSI exception.
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The AltiVec unit does not report IEEE exceptions; there are no status flags and the unit has
no architecturally visible traps. Default results are produced for all exception conditions as
specified first by the Java specification. If no default exists, the IEEE standard’s default is
used. Then, if no default exists, the C9X default is used.

1.2.7 Memory Management Model

In a PowerPC processor the MMU'’s primary functions are to translate logical (effective)
addresses to physical addresses for memory accesses and I/O accesses (most I/0O accesses
are assumed to be memory-mapped) and to provide access protection on a block or page
basis. Some protection is also available even if translation is disabled. Typically, it is not
programmable. The AltiVec ISA does not provide any additional instructions to the
PowerPC memory management model, but the AltiVec instructions have options to ensure
that an operand is correctly placed in a vector register or in memory.
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Chapter 2
AltiVec Register Set

This chapter describes the register organization defined by the AltiVec technology. It also
describes how AltiVec instructions affect some of the PowerPC registers. The AltiVec ISA
defines register-to-register operations for all computational instructions. Source data for
these instructions is accessed from the on-chip vector registers (VRs) or are provided as
immediate values embedded in the opcode. Architecturally, the VRs are separate from the
general-purpose registers (GPRs) and floating-point registers (FPRs). Data is transferred
between memory and vector registers with explicit AltiVec load and store instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However, a
subsequent reading of the reserved bit returns 0 if the value last written to the bit was 0 and
returns an undefined value (may be 0 or 1) otherwise. This means that even if the last value
written to a reserved bit was 1, reading that bit may return 0.

2.1 AltiVec Register File (VRF)

The VRF, shown in Figure 2-1, has 32 registers, each is 128 bits wide. Each vector register
can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements.

MOTOROLA Chapter 2. AltiVec Register Set 2-1



AltiVec Register File (VRF)

128-Bits —» -
32-Bits —»t

<
16-Bits —» -<—
8-Bits —» %

G I N T
VRL |1 2,3 4,56, 7,8, 9/10,1112,1314 15,16
VR2| 4 | 2 | 3 | 4 | 5 | 6| 1| 8
VR3 1 ‘ 2 [ 3 ‘ 4

32
Vector

Registers e Vector Register File (VRF) e

VR30
VR31

Figure 2-1. AltiVec Register File

The vector registers are accessed as vector instruction operands. Access to registers are
explicit as part of the execution of an instruction.

2.1.1 The Vector Status and Control Register (VSCR)

The vector status and control register (VSCR) is a special 32-bit vector register (not an
SPR) that is read and written in a manner similar to the FPSCR in the PowerPC scalar
floating-point unit. The VSCR is shown in Figure 2-2.

D Reserved

|000000000000OOO‘NJ‘OOOO00000000000‘5AT|

0 14 15 16 30 31

Figure 2-2. Vector Status and Control Register (VSCR)

The VSCR has two defined bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and the
AltiVec saturation (SAT) bit (VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Regisifes¢r) and Move to
Vector Status and Control Registert{scr) are provided to move the VSCR from and to

a vector register. When moved to or from a vector register, the 32-bit VSCR is right-justi-
fied in the 128-bit vector register. When moved to a vector register, the upper 96 bits
VRx[0-95] of the vector register are cleared, so the VSCR in a vector register looks as
shown in Figure 2-3.
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D Reserved

0000...0000 0000...0000‘NJ‘ 0000...0000 ‘SAT|

95 96 110 111 112 126 127
Figure 2-3. VSCR Moved to a Vector Register

VSCR bit settings are shown in Table 2-1.

Table 2-1. VSCR Field Descriptions

Bits

Name

Description

0-14

Reserved. The handling of reserved bits is the same as the normal PowerPC implementation,
that is, system registers such as XER and FPSCR are implementation-dependent. Software is
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value
last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

15

NJ

Non-Java. A mode control bit that determines whether AltiVec floating-point operations will be
performed in a Java-IEEE-C9X—compliant mode or a possibly faster non-Java/non-IEEE
mode.

0 The Java-IEEE-C9X—compliant mode is selected. Denormalized values are handled as
specified by Java, IEEE, and C9X standard.

1  The non-Java/non-IEEE—compliant mode is selected. If an element in a source vector
register contains a denormalized value, the value 0 is used instead. If an instruction
causes an underflow exception, the corresponding element in the target VR is cleared to
0. In both cases the 0 has the same sign as the denormalized or underflowing value.

This mode is described in detail in the floating—point overview Section 3.2.1, “Floating-Point

Modes”

16-30

Reserved. The handling of reserved bits is the same as the normal PowerPC implementation,
that is, system registers such as XER and FPSCR are implementation-dependent. Software is
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value
last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

31

SAT

Saturation. A sticky status bit indicating that some field in a saturating instruction saturated
since the last time SAT was cleared. In other words when SAT = 1 it remains set to 1 until it is
cleared to 0 by an mtvscr instruction. For further discussion refer to Section 4.2.1.1,
“Saturation Detection.”
1 The AltiVec saturate instruction implicitly sets when saturation has occurred on the
results one of the AltiVec instructions having saturate in its name:
Move To VSCR (mtvscr )
Vector Add Integer with Saturation (vaddubs , vadduhs , vadduws , vaddsbs ,
vaddshs , vaddsws )
Vector Subtract Integer with Saturation (vsububs , vsubuh s, vsubuws , vsubsbs ,
vsubshs , vsubsws )
Vector Multiply-Add Integer with Saturation (vmhaddshs , vmhraddshs )
Vector Multiply-Sum with Saturation (vmsumuhs , vmsumshs , vsumsws )
Vector Sum-Across with Saturation (vsumsws , vsum2sws , vsum4sbs ,
vsumd4shs , vsum4ubs )
Vector Pack with Saturation (vpkuhus , vpkuwus , vpkshus , vpkswus , vpkshss ,
vpkswss )
Vector Convert to Fixed-Point with Saturation (vctuxs , vctsxs )

0 Indicates no saturation occurred, mtvscr can explicitly clear this bit.
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The mtvscr is context synchronizing. This implies that all AltiVec instructions logically
preceding armtvscr in the program flow will execute in the architectural context (NJ
mode) that existed prior to completion of timvscr, and that all instructions logically
following themtvscr will execute in the new context (NJ mode) established bmtiascr.

After an mfvscr instruction executes, the result in the target vector register will be
architecturally precise. That s, it will reflect all updates to the SAT bit that could have been
made by vector instructions logically preceding it in the program flow, and further, it will
not reflect any SAT updates that may be made to it by vector instructions logically
following it in the program flow. Reading the VSCR can be much slower than typical
AltiVec instructions, and therefore care must be taken in reading it to avoid performance
problems.

2.1.2 VRSAVE Register (VRSAVE)

The VRSAVE register is a separate register used to assist in application and operating
system software in saving and restoring the architectural state across process context-
switched events. VRSAVE is a new user-mode accessible 32-bit special-purpose register
(SPR 256) that is added to the PowerPC architecture to assist software in providing efficient
save and restore operations. The VRSAVE register (VRSAVE) is entirely maintained and
managed by software, VRSAVE is shown in Figure 2-4.

|VRO‘VRA‘VR2 %/RS‘VM’\/RS‘VRB’\/R?‘VRB‘ VR%VRlO‘VRll‘VRlZ‘VRB‘VRlA ‘vms‘vms%/lm ‘vms%m ‘VRZO %/RZJ{VRZZ‘VRZS‘VRZA‘VRZ%/RZG %/R27%/R28%/R29PR30%/R31|
0123456 78 91 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-4. Saving/Restoring the AltiVec Context Register (VRSAVE)
VRSAVE bit settings are shown in Table 2-2.

Table 2-2. VRSAVE Bit Settings

Bits Name Description

0-31 VRn 1  VRnis live, it is using VRO of the VRF for the current running process
0 VRnis dead, it is not being used for the current running process

The VRSAVE register is read or written only as the direct result mfspr or mtspr
instruction, respectively. The recommended usage of VRSAVE is for each bit in this register
to correspond to one of the vector registers and its values indicate whether the
corresponding register is currently live (1) or dead (0). A live register contains data that is
currently in use by the executing process, a dead register does not contain data. If VRSAVE
is used to indicate which vector registers (VRS) are being used by a program, the operating
system could save only those VRs when an exception occurs, and could restore only those
VRs when resuming from the exception. If this approach is taken it must be applied
rigorously; if a program fails to indicate that a given VR is in use, software errors may occur
that will be difficult to detect and correct because they are timing-dependent. Some

2-4 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Register File (VRF)

operating systems save and restore VRSAVE only for programs that also use other AltiVec
registers.

2.1.3 PowerPC Condition Register

The PowerPC condition register (CR) is a 32-bit register that reflects the result of certain
operations and provides a mechanism for testing and branching. For AltiVec ISA, the CR6
field can optionally be used, that is if an AltiVec instruction field’s record bit (Rc) is set in

a vector compare instruction. The CR6 field is updated. The bits in the PowerPC CR are
grouped into eight 4-bit fields, CRO-CR7, as shown in Figure 2-5.

CRO CR1 CR2 CR3 CR4 | CR5 | CR6 | CR7 |

0 34 7 8 11 12 15 16 19 20 23 24 27 28 31
Figure 2-5. Condition Register (CR)

For more details on the CR see Chapter 2, “PowerPC Register SBgWwerPC: The
Programming Environments Manual.

To control program flow based on vector data, all vector compare instructions can
optionally update CR6. If the instruction field’s record bit (Rc) is set in a vector compare
instruction, the CR6 field is updated according to Table 2-3.

Table 2-3. CR6 Field Bit Settings for Vector Compare Instructions

. CR6
CR Bit Field Bit Vector Compare Vector Compare Bounds

24 0 1 Relation is true for all 0
element pairs

25 1 0 0

26 2 1 Relation is false for all 1  Allfields are in bounds for the vempbfp
element pairs instruction so the result code of all fields is

0  Allfields were in bounds 0b00
0  One of the fields is out of bounds for the
vempbfp instruction
27 3 0 0

The Rc bit should be used sparingly. As for other PowerPC instructions, in some
implementations instructions with Rc bit = 1 could have somewhat longer latency or be
more disruptive to instruction pipeline flow than instructions with Rc bit = 0. Therefore
techniques of accumulating results and testing infrequently are advised.

2.1.4 AltiVec Bit in the PowerPC Machine State Register (MSR)

An AltiVec Available bit is added to the PowerPC machine state register (MSR). In 64-bit
implementations, the MSR is 64 bits wide as shown in Figure 2-6.
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D Reserved
|SF‘ 0 ‘ISF‘ 0000...0000 ‘VEC‘ 0000 ‘POM 0 ‘ILE‘EE‘PR‘FP‘ME‘FEO‘SE‘BE‘FE].‘ 0 ‘ P ‘ IR ‘DR‘ 0 0 ‘RI ‘ LE ‘|
01 23 37 38 39 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6162 63

Figure 2-6. Machine State Register (MSR)—64-Bit Implementation

In 32-bit PowerPC implementations, the MSR is 32 bits wide as shown in Figure 2-7. Note
that the 32-bit implementation of the MSR is comprised of the 32 least-significant bits of
the 64-bit MSR.

[] Reserved
0000 00 |VEC| 0 0000 0 |POW| 0 |ILE|EE|PR|FP|ME|FEO|SE|BE|FE1| 0 | IP|IR|DR| 00 |RI|LE|
0 6 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 272829 30 31

Figure 2-7. Machine State Register (MSR)—32-Bit Implementation

In 32-bit PowerPC implementations, bit 6, VEC, is added to the MSR as shown in
Figure 2-7. Also AltiVec data stream prefetching instructions will be suspended and
resumed based on MSR[PR] and MSR[DR]. The Data Stream Tds@}lad Data Stream

Touch for Store dstst) instructions are supported whenever MSR[DR] = 1. If either
instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined. For each existing data stream, prefetching is enabled if the MSR[DR]
=1 and MSR[PR] bit has the value it had whendsieor dstst instruction that specified

the data stream was executed. Otherwise prefetching for the data stream is suspended. In
particular, the occurrence of an exception suspends all data stream prefetching.

Table 2-4 shows the AltiVec bit definitions for the MSR as well as how the PR and DR bits
are affected by the AltiVec data stream instructions.
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Table 2-4. MSR Bit Settings Affected by AltiVec

Bits

Name Description
64 Bit | 32 Bit

38 6 VEC AltiVec Available

0 When the bit is cleared to zero, the processor executes an “AltiVec Unavailable
Exception” when any attempt to execute a vector instruction that accesses the
vector register file (VRF) or VSCR register.

1 The VRF and VSCR registers are accessible to vector instructions.

Note: the VRSAVE register is not protected by MSR [VEC].

The data streaming family of instructions (dst, dstt, dstst , dststt , dss, and dssall ) are

not affected by the MSR[VEC], that is, the VRF and VSCR registers are available to the

data streaming instructions even when the MSR[VEC] is cleared.

49 17 PR Privilege level

0  The processor can execute both user- and supervisor-level instructions.

1  The processor can only execute user-level instructions.

Note: Care should be taken if data-stream prefetching is used in privileged state
(MSR[PR] = 0). For each existing data stream, prefetching is enabled if (a) MSR[DR] = 1
and (b) MSR[PR] has the value it had when the dst or dstst instruction that specified the
data stream was executed. Otherwise, prefetching for the data stream is suspended.

59 27 DR Data address translation

0 Data address translation is disabled. If data stream touch (dst) and data stream
touch for store (dstst ) instructions are executed whenever DR = 0, the results are
boundedly undefined.

1 Data address translation is enabled. Data stream touch (dst) and data stream
touch for store (dstst ) instructions are supported whenever DR = 1.

For more detailed information including the other bit settings for MSR, refer to Chapter 2,
“PowerPC Register Set,” irPowerPC Microprocessor Family: The Programming
Environments Manual

2.1.5 Machine Status Save/Restore Registers (SRR)

The machine status save/restore (SRR) registers are part of the PowerPC OEA sui@®rvisor-
level registers. The SRRO and SRR1 registers are used to save machine status on exceptions
and to restore machine status whenrfign(or rfi) instruction is executed. For more detailed
information, refer to Chapter 2, “PowerPC Register SetP?awerPC: The Programming
Environments Manual

2.1.5.1 Machine Status Save/Restore Register 0 (SRRO)

The SRRO is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRRO is used to save machine status on exceptions and restore machine
status when arfid (orrfi) instruction is executed. For the AltiVec ISA, it holds the effective
address (EA) for the instruction that caused the AltiVec unavailable exception. The AltiVec
unavailable exception occurs when no higher priority exception exists, and an attempt is
made to execute an AltiVec instruction when MSR[VEC] = 0. The format of SRRO is shown

in Figure 2-8.
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For 32-bit implementations, the format of SRRO is that of the low-order bits (32—-63) of
Figure 2-8.
[] Reserved

SRRO | 00 |

0 61 62 63

Figure 2-8. Machine Status Save/Restore Register 0 (SRRO)

2.1.5.2 Machine Status Save/Restore Register 1 (SRR1)

The SRRL1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRR1 is used to save machine status on exceptions and to restore
machine status when afid (or rfi) instruction is executed. The format of SRR1 is shown

in Figure 2-9.

SRR1 |

Figure 2-9. Machine Status Save/Restore Register 1 (SRR1)

In 64-bit implementations, when an AltiVec unavailable exception occurs, SRR1[33-36]
and SRR1[42-47] are cleared to zero and bits MSR[0], MSR[48-55], MSR[57-59], and
MSR[62—63] are placed into the corresponding bit positions of SRR1 as it was just prior to
the exception. For 32-bit implementations, when an AltiVec unavailable exception occurs,
SRR1[1-4] and SRR[10-15] are cleared and MSR[16-23], MSR[25-27], and
MSR[30-31] are placed into the corresponding bit positions of SRR1 as they were before
the exception.

2.2 PowerPC Register Set

The addition of the AltiVec technology adds some additional new registers as well as
affecting bit settings in some of the PowerPC registers when AltiVec instructions are
executed. Figure 2-10 shows a graphic representation of the entire PowerPC register set and
how the AltiVec register set resides within the PowerPC architecture. The PowerPC
registers affected by AltiVec instructions are shaded.
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Figure 2-10. Programming Model—All Registers
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Chapter 3
Operand Conventions

This section describes the operand conventions as they are represented in the AltiVec
technology at the UISA level. Detailed descriptions are provided of conventions used for
transferring data between vector registers and memory, and representing data in these
vector registers using both big- and little-endian byte ordering. Additionally, the floating-
point default conditions for exceptions are described.

3.1 Data Organization in Memory m

The AltiVec instruction set architecture (ISA) follows the same data organization as the
PowerPC architecture UISA with a few extensions. In addition to supporting byte, half-
word and word operands, as defined in the PowerPC architecture UISA, AltiVec ISA
supports quad-word (128-bit) operands.

The following sections describe the concepts of alignment and byte ordering of data for
guad words, otherwise alignment is the same as described in Chapter 3, “Operand
Conventions,” in théPowerPC Microprocessor Family: The Programming Environments
Manual.

3.1.1 Aligned and Misaligned Accesses

Vectors are accessed from memory with instructions such as Vector Load Irdekxadd

Store Vector Indexed{vx) instructions. The operand of a vector register to memory access
instruction has a natural alignment boundary equal to the operand length. In other words,
the natural address of an operand is an integral multiple of the operand length. A memory
operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. AltiVec instructions are four bytes long and word-aligned like PowerPC
instructions.

Operands for vector register to memory access instructions have the characteristics shown
in Table 3-1.
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Table 3-1. Memory Operand Alignment

an | e | s e
Byte 8 bits (1 byte) XXXX XXXX
Half word 2 bytes XXX0 Xxx0
Word 4 bytes xx00 xx00
Quad word 16 bytes 0000 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1 independent of
the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example,
an 8-byte data item is said to be half-word—aligned if its address is a multiple of two; that
is, the effective address (EA) points to the next effective address that is 2 bytes (a half word)
past the current effective address, that would be the EA + 2 bytes, and then the next being
the EA + 4 bytes, and effective address would continue skipping every 2 bytes (2 bytes =1
half word). This ensures that the effective address is half-word aligned as it points to each
successive half word in memory.

It is important to understand that AltiVec memory operands are assumed to be aligned, and
AltiVec memory accesses are performed as if the appropriate number of low-order bits of
the specified effective address were zero. This assumption is different from PowerPC
integer and floating-point memory access instructions where alignment is not always
assumed. So for AltiVec ISA, the low-order bit of the effective address is ignored for half-
word AltiVec memory access instructions, and the low-order four bits of the effective
address are ignored for quad-word AltiVec memory access instructions. The effectis to load
or store the memory operand of the specified length that contains the byte addressed by the
effective address.

If a memory operand is misaligned, additional instructions must be used to correctly place
the operand in a vector register or in memory. AltiVec technology provides instructions to
shift and merge the contents of two vector registers. These instructions facilitate copying
misaligned quad-word operands between memory and the vector registers.

3.1.2 AltiVec Byte Ordering

For PowerPC and AltiVec processors, the smallest addressable memory unit is the byte (8
bits), and scalars are composed of one or more sequential bytes. The AltiVec ISA supports
both big- and little-endian byte ordering. The default byte ordering is big-endian. However,
the code sequence used to switch from big- to little-endian mode may differ among
processors.

The PowerPC architecture uses the machine state register (MSR) for specifying byte
ordering—little-endian mode (LE). The MSR[LE] specifies the endian mode in which the
processor is currently operating. A value of 0 specifies big-endian mode and a value of 1
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specifies little-endian mode. For further details on PowerPC byte ordering, refer to Chapter
3, “Operand Conventions,” in thRowerPC Microprocessor Family: The Programming
Environments Manual

AltiVec ISA follows the endian support of PowerPC for elements up to double words.
AltiVec ISA also supports quad words and additional support is provided for this. In
AltiVec ISA when a 64-bit scalar is moved from a register to memory, it occupies eight
consecutive bytes in memory and a decision must be made regarding byte ordering in these
eight addresses.

The default byte ordering for AltiVec ISA is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the LSB is stored at the lowest (or starting) address while the MSB
is stored at the highest (or ending) address. This is called little-endian because the little end
of the scalar comes first in memory.

3.1.3 Quad Word Byte Ordering Example

The idea of big- and little-endian byte ordering is best illustrated in an example of a quad
word such as 0x2021 2223 2425 2627 2829 2A2B_2C2D_2E2F located in memory.
This quad word is used throughout this section to demonstrate how the bytes that comprise
a quad word are mapped into memory.

The quad word (0x2021_2223 2425 2627 2829 2A2B 2C2D_2EZ2F) is shown in big-
endian mapping in Figure 3-1. A hexadecimal representation is used for showing address
values and the values in the contents of each byte. The address is shown below each byte’s
contents. The big-endian model addresses the quad word at address 0x00, which is the MSB
(0x20), proceeding to the address OxOF, which contains the LSB (0x2F).

Byte 0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15

Quad Word

Contents 20 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F

Address 00 01| 02| 03| 04 05| O6 | O7 | 08 [ 09 [ OA | OB | OC | OD | OE | OF

1 1
MSB LSB

Figure 3-1. Big-Endian Mapping of a Quad Word

MOTOROLA Chapter 3. Operand Conventions 3-3



Data Organization in Memory

Figure 3-2 shows the same quad word using little-endian mapping. In the little-endian
model, the quad word’s 0x00 address specifies the LSB (0x2F) and proceeds to address
0xOF which contains its MSB (0x20).

Byte 0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15

Quad Word

Contents| 2F | 2E | 2D | 2C | 2B | 2A | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20

Address | 00 | 01 | 02 | 03 | 04 | O5 | 06 | O7 | OB | 09 | OA| OB | OC | OD | OE | OF

1 1
LSB MSB

Figure 3-2. Little-Endian Mapping of a Quad Word
Figure 3-3 shows the sequence of bytes laid out with addresses increasing from left to right.

Programmers familiar with little-endian byte ordering may be more accustomed to viewing
quad words laid out with addresses increasing from right to left, as shown in Figure 3-3.

Byte O‘1‘2‘3‘4‘5‘6‘Q7d‘8d‘9‘10‘11‘12‘13‘14‘15

Contents| 20 | 21 | 22 | 23 | 24 | 256 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F

Address | OF | OE | OD | OC | OB | OA | 09 | 08 | 07 06 | 05| 04| 03 | 02 | 01 | 00

1 1
MSB LSB

Figure 3-3. Little-Endian Mapping of Quad Word—Alternate View

This allows the little-endian programmer to view each scalar in its natural byte order of
MSB to LSB. This section uses both conventions based of ease of understanding for the
specific example.

3.1.4 Aligned Scalars in Little-Endian Mode

The effective address (EA) calculation for the load and store instructions is described in

Chapter 4, “Addressing Modes and Instruction Set Summary.” For PowerPC processors in
little-endian mode, the effective address is modified before being used to access memory.
In PowerPC, the three low-order address bits of the effective address are exclusive-ORed
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes),
as shown in Table 3-2. This address modification is called munging.
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Table 3-2 Effective Address Modifications

Data Width (Bytes) EA Modification
1 XOR with 0b111
2 XOR with 0b110
4 XOR with 0b100
8 No change

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-
endian, when in fact they are stored in big-endian order but at different byte addresses
within double words. Only the address is modified, not the byte order. For further details
on how to align scalars in little-endian mode see Chapter 3, “Operand Conventions,” in
PowerPC: The Programming Environments Manual

The PowerPC address munging is performed on double-word units. In the PowerPC
architecture, little-endian mode would have the double words of a quad word appear
swapped. When the quad word in memory shown at the top of Figure 3-4, loads from
address 0x00, the bottom of Figure 3-4 shows how it appears to the processor as it munges
the address.

Contents [ 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F
Address | 00 ‘ 010203 ‘ 04 ‘ 05 ‘ 06 | 07 ‘ 08 ‘ 09 ‘ 0A ‘ 08 ‘ 0C ‘ 0D | OE | OF | Memory Image

Byte 0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15

Quad Word

Contents 27 | 26 | 25 | 24 | 283 | 22 | 21 | 20 | 2F | 2E | 2D | 2C | 2B | 2A | 29 | 28

Address 00 | O1 | 02| 03 | 04| O5| 06 | 07 | 08 09 | OA| OB | OC | OD | OE | OF

Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied

Note that double words are swapped. The byte element addressed by the quad word'’s base
address, 0xOF, contains 0x28, while its MSB at address 0x0 contains 0x27. This is due to
the PowerPC munging being applied to offsets within double words; AltiVec ISA requires

a munge within quad words.

To accommodate the quad-word operands, the PowerPC architecture can not simply be
extended by munging an extra address bit. It would break existing code and/or platforms.
Processors that implement AltiVec technology could not be mixed with non-AltiVec
processors. Instead, AltiVec processors implement a double-word swap when moving quad
words between vector registers and memory.
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Figure 3-5 shows how this swapping could be implemented. This diagram represents the
load path double-word swapping; the store path looks the same, except that the memory and
internal boxes are reversed.

Contents 27‘26‘25‘24‘23‘22 ZI‘ZO‘ZF‘ZE‘ZD‘ZC 2B | 2A | 29 28|
Address |oo 0102|0304 |05| 06|07 08| 09]|0A|0B|0OC|0D|OE | OF | Memory Image

v \ \ ¢

MSRILE —\ © L/ wsrig —\ © L.

P

Contents|2F‘2E‘2D‘ZC‘ZB‘ZA 29‘28‘27‘26 25 24‘23 22 ] 21 20|It n
Address | 00 ] 01 |02 | 03|04 |05 0607|0809 |0A|OB|OC|OD|OE| OF | 'Memalimage

Figure 3-5. AltiVec Little Endian Double-Word Swap

In the diagram, the numbers at the bottom of the byte boxes represent the offset address of
that byte; the numbers at the top are the values of the bytes at that offset.The little-endian
ordering is discontinuous because the PowerPC munging is performed only on double-
word units. The purpose of the double word swap within the AltiVec unit is to perform an
additional swap that is not part of the PowerPC architecture.

When MSRI[LE] = 1, double words are swapped and the bytes now appear in their expected
ordering. When MSR[LE] = 0, no swapping is done.

To summarize, in little-endian mode, the load vector element indexed instrubtiEmsg (

Ivehx, lvewx) andthe store vector element indexed instructisiggbx, stvehx stvewx

have the same 3-bit address munge applied to the memory address as is specified by the
PowerPC architecture for integer and floating-point loads and stores. For the quad word
load vector indexed instructionisX, Ivxl) and the store vector indexed instructiostsX,

stvxl) the two double words of the quad-word scalar data are munged and swapped as they
are moved between the vector register and memory.

3.1.5 Vector Register and Memory Access Alignment

When loading an aligned byte, half word, or word memory operand into a vector register,
the element that receives the data is the element that would have received the data had the
entire aligned quad word containing the memory operand addressed by the effective
address been loaded. Similarly, when an element in a vector register is stored into an
aligned memory operand, the element selected to be stored is the element that would have
been stored into the memory operand addressed by the effective address had the entire
vector register been stored to the aligned quad word containing the memory operand
addressed by the effective address. The position of the element in the target or source vector
register depends on the endian mode, as described above. (Byte memory operands are
always aligned.)
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For aligned byte, half word, and word memory operands, if the corresponding element
number is known when the program is written, the appropriate vector splat and vector
permute instructions can be used to copy or replicate the data contained in the memory
operand after loading the operand into a vector register. A vector splat instructions will take
the contents of an element in a vector register and replicates that into each element in the
destination vector register. A vector permute instruction is the concatenation of the contents
of two vectors. An example of this is given in detail in Section 3.1.6, “Quad-Word Data
Alignment.” Another example is to replicate the element across an entire vector register
before storing it into an arbitrary aligned memory operand of the same length; the
replication ensures that the correct data is stored regardless of the offset of the memory
operand in its aligned quad word in memaory.

Since vector loads and stores are size-aligned, application binary interfaces (ABIs) should
specify, and programmers should take care to align data on quad-word boundaries for
maximum performance.

3.1.6 Quad-Word Data Alignment

The AltiVec ISA does not provide for alignment exceptions for loading and storing data.
When performing vector loads and stores, the effect is as if the low-order four bits of the
address are 0x0, regardless of the actual effective address generated. Since vectors may
often be misaligned due to the nature of the algorithm, AltiVec ISA provides support for
post-alignment of quad-word loads and pre-alignment for quad-word stores. Note that in
the following diagrams, the effect of the swapping described above is assumed and the
memory diagrams will be with respect to the logical mapping of the data.

Figure 3-6 and Figure 3-7 show misaligned vectors in memory for both big- and little-
endian ordering. The big-endian and little-endian examples assumes that the desired vector
begins at address 0x03.

Byte |0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15 16‘17‘18‘19‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31

Quad Word HI Quad Word LO

Contents 20|21(22|23|24|25|26|27|28|29|2A|2B|2C|2D|2E|2F

Address |00/01|02(03|04|05|06|07|08|09|0A|0B|0C|0D(OE|OF|10{11|12{13|14|15|16|17|18|{19|1A|1B|1C|1D|1E|1F

MSB LSB

Figure 3-6. Misaligned Vector in Big-Endian Mode
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Byte 31‘30‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0

Quad Word HlI Quad Word LO

Contents 2F|2E|2D|2C|2B|2A[29|28|27|26|25|24|23|22|21|20

Address [1F|1E|1D(1C|1B|1A[19|18|17|16 (15|14 |13 |12 |11 |10|0OF [OE|OD|0C|OB|0OA|09|08|07|06|05|04|03 |02 |01|00

1 1
MSB LSB

Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode

Figure 3-6 and Figure 3-7 show how such misaligned data causes data to be split across
aligned quad words; only aligned quad words are loaded and/or stored by AltiVec load/store
instructions. To align this vector, a program must load both (aligned) quad words that
contain a portion of the misaligned vector data and then execute a Vector Permute (vperm)
instruction to align the result.

3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode

Figure 3-1 shows the big-endian alignment model, using the example in FigwelB-8,
andvLO (HI = high order quad word, LO = low order quad word) represent vector registers
that contain the misaligned quad words containing the MSBs and LSBs, respectively, of the
misaligned quad worg;D is the target vector register.

00 vHI OF 10 VLo 1F

[ | [ J[a|ze[ea]ee]os s [r]ze o]n| e eclofeclae] | [ [ [ [ [ [ []]]]]

|20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘2A‘28‘2C‘2D‘2E‘2F|

00 vD OF

Figure 3-8. Big-Endian Quad Word Alignment

Alignment is performed by left-rotating the combined 32-byte quagufdy:vLO) by an
amount determined by the address of the first byte of the desired data. This left-rotation is
done by means of\gperm instruction whose control vector is generated by a Load Vector
for Shift Left (vsl) instruction after loading the most-significant quad word (MSQ) and
least-significant quad word (LSQ) that contain the desired vectolv3lhiestruction uses

the same address specification as the load vector indexed that loa#l toenponent,

which for big-endian ordering is the address of the desired vector.
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The following instruction sequence extracts the quad word in big-endian mode:

Ivx VHI,rA,rB # load the MSQ

Ivsl vP,rA,rB ;# set the permute vector
addi rB,rB,16 # address of LSQ

Ivx VvLO,rA,rB # load LSQ component

vperm  vD,vHI,vLO,vP ;# align the data

Note that when streaming data is used, the overhead of generating the alignment permute
vector can be spread out and the latency of the loads may be covered by loop unrolling.

The process of storing a misaligned vector is essentially the reverse of that for loading;
except that the code has a read-modify-write sequence. The logical algorithm is that the
vector source must be right-shifted and split into two parts, each of which is merged (via a
Vector Select\{se) instruction) with the current contents of its MSQ and its LSQ and
stored back using a Store Vector Index®k) instruction.

The Load Vector for Shift Right\sr) instruction is used to produce the permute control
vector to be used for the right-shifting. An observation is that a single register can be used
for the shifted contents if a right-rotate is done. The rotate is affected by specifying the
source register for both components of the Vector Permpear(); that is, a shift of a

double register with the same contents in both parts results in a rotate. In addition, the same
permute control vector can be used on a sequence of ones and zeros to generate a mask for
use by thesselinstruction to do the merging.

The complete code sequence for the store case is as follows:

Ivx VvHI,rA,rB ;# load current MSQ for update
Ivsr vP,rA,rB ;# load the alignment vector
addi rB,rB,16 ;# address of LSQ

Ivx vLO,rA,rB ;# load the current LSQ’s data
vspltib v1s,-1 ;# generate the select mask bits
vspltib v0s,0

vperm  vMask,v0s,v1s,vP ;# right rotate the select mask
vperm  vSrc,vSrc,vSrc,vP ;# right rotate the data

vsel vLO,vSrc,vLO,vMask ;# insert LSQ component

vsel vHI,vHI,vSrc,vMask ;# insert MSQ component

Stvx vLO,rA,IB i# store LSQ

addi rB,rB,-16 ;# address of MSQ

Stvx VHI,rA,rB # store MSQ

When fetching a linear stream of misaligned quad words, the control vector need only be
computed once. Thus the time required for aligned fetches on the ends of the stream is
proportioned out. None of the data fetched internally to the stream is wasted and only gets
fetched once. The average time expended for a misalibedhstruction in a long
sequence approaches dwe and onevperm instruction
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3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode

The instruction sequences used to access misaligned quad-word operands in little-endian
mode are similar to those used in big-endian mode. The following instruction sequence can
be used to load the misaligned quad word shown in Figure 3-7 into a vector register in little-
endian mode. The load alignment case is shown in Figure 3-9. The vector redlistad

vLO receive the MSQ and LSQ respectivelfd is the target vector register. Thesr
instruction uses the same address specification dgxthestruction that loadsLO; in
little-endian byte ordering this is the address of the desired misaligned quad word.

Ivx vLO,rA,rB # load the LSQ

Ivsr vP,rA,rB # set the permute vector
addi rB,rB,16 # address of MSQ

Ivx VHI,IA,rB # load MSQ component

vperm vD,vHI,vLO,vP  # align the data

Similarly, the following sequence of instructions stores the contents of regisiato a
misaligned quad word in memory in little-endian mode.

Ivx v LOrAB # load current LSQ for update
Ivsl VvP,rA,rB # load the alignment vector
addi rB,rB,16 # address of MSQ
Ivx VHI,rA,rB # load the current MSQ'’s data
vspltib vls,-1 # generate the select mask bits
vspltib v0s,0
vperm vMask,v0s,v1s,vP # left rotate the select mask
vperm vSrc,vSrc,vSrc,vP  # left rotate the data
vsel VHI,vHI,vSrc,vMask # insert MSQ component
vsel vLO,vSrc,vLO,vMask # insert LSQ component
Stvx VHI,rA,rB # store MSQ
addi rB,rB,-16 # address of LSQ
Stvx VLO,rA,rB # store LSQ

1F vHI 10 OF VLo 00

LI LT LT LT T ofeeloolec]en [ o s]a] ar] ] s o [ ] e[ ] o] ] ] |

|2F‘2E ‘ZD ‘ZC‘ZB‘ZA‘ 29‘28‘ 27‘ 26‘ 25‘24‘23‘ 22‘ 21‘ 20|
OF 00

vD

Figure 3-9. Little-Endian Alignment

3-10 AltiVec Technology Programming Environments Manual MOTOROLA



Data Organization in Memory

3.1.6.3 Scalar Loads and Stores

No alignment is performed for scalar load or store instructions in the AltiVec ISA. If a
vector load or store address is not properly size aligned, the suitable number of least
significant bits are ignored, and a size aligned transfer occurs instead. Data alignment must
be performed explicitly after being brought into the registers. No assistance is provided for
aligning individual scalar elements that are not aligned on their natural boundary. The
placement of scalar data in a vector element depends upon its address. That is, the
placement of the addressed scalar is the same as if a load vector indexed instruction has
been performed, except that only the addressed scalar is accessed (for cache-inhibited
space); the values in the other vector elements are boundedly undefined. Also, data in the
specified scalar is the same as if a store vector indexed instruction had been performed,
except that only the scalar addressed is affected. No instructions are provided to assist in
aligning individual scalar elements that are not aligned on their natural size boundary.

When a program knows the location of a scalar, it can perform the correct vector splats and
vector permutes to move data to where it is required. For example, if a scalar is to be used
as a source for a vector multiply (that is, each element multiplied by the same value), the
scalar must be splatted into a vector register. Likewise, a scalar stored to an arbitrary
memory location must be splatted into a vector register, and that register must be specified
as the source of the store. This guarantees that the data appears in all possible positions of
that scalar size for the store.

3.1.6.4 Misaligned Scalar Loads and Stores

Although no direct support of misaligned scalars is provided, the load-aligning sequence
for big-endian vectors described in Section 3.1.6.1, “Accessing a Misaligned Quad Word in
Big-Endian Mode” can be used to position the scalar to the left vector element, which can
then be used as the source for a splat. That is, the address of a scalar is also the address of
the left-most element of the quad word at that address. Similarly, the read-modify-write
sequences, with the mask adjusted for the scalar size, can be used to store misaligned
scalars. The same is true for little-endian mode, the load-aligning sequence for little-endian
vectors described Section 3.1.6.2, “Accessing a Misaligned Quad Word in Little-Endian
Mode” can be used to position the scalar to the right vector element, which can then be used
as the source for a splat. That is, the address of a scalar is also the address of the right-most
element of the quad word at that address.

Note that while these sequences work in cache-inhibited space, the physical accesses are
not guaranteed to be atomic.

3.1.7 Mixed-Endian Systems

In many systems, the memory model is not as simple as the examples in this chapter. In
particular, big-endian systems with subordinate little-endian buses (such as PCI) comprise
a mixed-endian environment.

The basic mechanism to handle this is to use the Vector Pervpeten] instruction to
swap bytes within data elements. The value of the permute control vector depends on the
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size of the elements (8, 16, 32). That is, the permute control vector performs a parallel
equivalent of the PowerPC Load Word Byte-Reverse Inddwdax) instruction, within
the vector registers.

The ultimate problem is when there are misaligned, mixed-endian vectors. This can be
handled by applying a vector permute of the data as required for the misaligned case,
followed by the swapping vector permute on that result. Note that for streaming cases, the
effect of this double permute can be accomplished by computing the swapping permute of
the alignment permute vector, and then applying the resulting permute control vector to
incoming data.

3.2 AltiVec Floating-Point Instructions—UISA

There are two kinds of floating-point instructions defined for the PowerPC and AltiVec
ISA—computational and noncomputational. Computational instructions consist of those
operations defined by the IEEE-754 standard for 32-bit arithmetic (those that perform
addition, subtraction, multiplication, and division) and the multiply-add defined by the
architecture. Noncomputational floating-point instructions consist of the floating-point
load and store instructions. Only the computational instructions are considered floating-
point operations throughout this chapter.

The single-precision format, value representations, and computational model defined in
Chapter 3, “Operand Conventions,” iPowerPC Microprocessor Family: The
Programming Environments Manuapply to AltiVec floating-point except as follows:

« Ingeneral, no status bits are set to reflect the results of floating-point operations. The
only exception is that VSCR[SAT] may be set by the Vector Convert to Fixed-Point
Word instructions.

» With the exception of the two Vector Convert to Fixed-Point Wectuks, vctsxg
instructions and three of the four Vector Round to Floating-Point Intedr, (
vrfip, vrfim) instructions, all AltiVec floating-point instructions that round use the
round-to-nearest rounding mode.

» Floating-point exceptions cannot cause the system error handler to be invoked.

If a function is required that is specified by the IEEE standard, is not supported by AltiVec
ISA, and cannot be emulated satisfactorily using the functions that are supported by AltiVec
ISA, the functions provided by the floating-point processor should be used; see Chapter 4,
“Addressing Modes and Instruction Set Summary,”PowerPC: The Programming
Environments Manual

3.2.1 Floating-Point Modes

AltiVec ISA supports two floating-point modes of operation—a Java mode and a non-Java
mode of operation that is useful in circumstances where real-time performance is more
important than strict Java and IEEE-standard compliance.
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When VSCR[NJ] is 0 (default), operations are performed in Java mode. When VSCR[NJ]
is 1, operations are carried out in the non-Java mode.

3.2.1.1 Java Mode

Java compliance requires compliance with only a subset of the Java/IEEE/C9X standard.
The Java subset helps simplify floating-point implementations, as follows:

« Reducing the number of operations that must be supported

« Eliminating exception status flags and traps

» Producing results corresponding to all disabled exceptions thus eliminating enabling
control flags

« Requiring only round-to-nearest rounding mode eliminates directed rounding
modes and the associated rounding control flags.

Java compliance requires the following aspects of the IEEE standard:

» Supporting denorms as inputs and results (gradual underflow) for arithmetic
operations

« Providing NaN results for invalid operations

* NaNs compare unordered with respect to everything, so that the result of any
comparison of any NaN to any data type is always false

In some implementations, floating-point operations in Java mode may have somewhat
longer latency on normal operands and possibly much longer latency on denormalized
operands than operations in non-Java mode. This means that in Java mode overall real-time
response may be somewhat worse and deadline scheduling may be subject to much larger
variance than non-Java mode.

3.2.1.2 Non-Java Mode

In the non-Java/non-IEEE/non-C9X mode (VSCR[MJL), gradual underflow is not
performed. Instead, any instruction that would have produced a denormalized result in Java
mode substitutes a correctly signed zero (+0.0) as the final result. Also, denormalized input
operands are flushed to the correctly signed zero (+0.0) before being used by the
instruction.

The intent of this mode is to give programmers a way to assure optimum, data-insensitive,
real-time response across implementations. Another way to improved response time would
be to implement denormalized operations through software emulation.

It is architecturally permitted, but strongly discouraged, for an implementation to
implement only non-Java mode. In such an implementation, the VSCR[NJ] does not
respond to attempts to clear it and is always read back as a 1.

No other architecturally-visible, implementation-specific deviations from this specification
are permitted in either mode.
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3.2.2 Floating-Point Infinities
Valid operations on infinities are processed according to the IEEE standard.

3.2.3 Floating-Point Rounding

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. The IEEE directed rounding modes are not provided.

3.2.4 Floating-Point Exceptions
The following floating-point exceptions may occur during execution of AltiVec floating-
point instructions.

« NaN operand exception

« Invalid operation exception

« Zero divide exception

» Log of zero exception

« Overflow exception

» Underflow exception
If an exception occurs, a result is placed into the corresponding target element as described
in the following subsections. This result is the default result specified by Java, the IEEE

standard, or C9X, as applicable. Recall that denormalized source values are treated as if
they were zero when VSCR[NJ] =1. The consequences regarding exceptions are as follows:

» Exceptions that can be caused by a zero source value can be caused by a
denormalized source value when VSCR[NJ] = 1.

» Exceptions that can be caused by a nonzero source value cannot be caused by a
denormalized source value when VSCR[NJ] = 1.

3.2.4.1 NaN Operand Exception

If the exponent of a floating-point number is 255 and the fraction is non-zero, then the value
is a NaN. If the most significant bit of the fraction field of a NaN is zero, then the value is
a signaling NaN (SNaN), otherwise it is a quiet NaN (QNaN). In all cases the sign of a NaN
is irrelevant.

A NaN operand exception occurs when a source value for any of the following instructions
is a NaN.
* An AltiVec instruction that would normally produce floating-point results

» Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturetigx€)
or Vector Convert to Signed Fixed-Point Word Saturatésis instructions

« Any of the four vector floating-point compare instructions
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The following actions are taken:

1. If the AltiVec instruction would normally produce floating-point results, the
corresponding result is a source NaN selected as follows. In all cases, if the selected
source NaN is an SNaN it is converted to the corresponding QNaN (by setting the
high-order bit of the fraction field to 1 before being placed into the target element).

if the element in register VAis a NaN
then the result is that NaN
else if the element in register vBis a NaN
then the result is that NaN
else if the element in register vCis aNaN

then the result is that NaN

2. If the instruction is either of the two vector convert to fixed-point word instructions
(vctuxs, vetsxg, the corresponding result is 0x0000_0000. VSCR[SAT] is not
affected.

3. If the instruction is Vector Compare Bounds Floating-Paeictnfpbfp[.]), the
corresponding result is 0xC000_0000.

4. If the instruction is one of the other three vector floating-point compare instructions
(vempeqfp[.], vempfgefp.], vempbfp[.]), the corresponding result is
0x0000_0000.

3.2.4.2 Invalid Operation Exception

An invalid operation exception occurs when a source value is invalid for the specified
operation. The invalid operations are as follows:

* Magnitude subtraction of infinities
* Multiplication of infinity by zero
» \ector Reciprocal Square Root Estimate F(@edqrtefp) of a negative, nonzero
number or -X
* Log base 2 estimafglogefp) of a negative, nonzero number or -X
The corresponding result is the QNaN 0x7FCO0_0000. This is the single-precision format

analogy of the double precision format generated QNaN described in Chapter 3, “Operand
Conventions,” irPowerPC: The Programming Environments Manual.

3.2.4.3 Zero Divide Exception

A zero divide exception occurs when a Vector Reciprocal Estimate FloatingeRefp}
or Vector Reciprocal Square Root Estimate Floating-Poirgqftefp) instruction is
executed with a source value of zero.

MOTOROLA Chapter 3. Operand Conventions 3-15



AltiVec Floating-Point Instructions—UISA

The corresponding result is infinity, where the sign is the sign of the source value, as
follows:

e 1/40.0- 4o
e 1/-00- -

e 1/(J/+0.0) - +
e 1/(J/-0.0) - -

3.2.4.4 Log of Zero Exception

A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-Point
instruction(vlogefp) is executed with a source value of zero. The corresponding result is
infinity. The exception cases are as follows:

* viogefp logy(+0.0) - -
» vlogefp logy(-x) - QNaN, where %0

3.2.4.5 Overflow Exception
An overflow exception happens when either of the following conditions occur:

« For an AltiVec instruction that would normally produce floating-point results, the
magnitude of what would have been the result if the exponent range were unbounded
exceeds that of the largest finite single-precision number.

» For either of the two Vector Convert To Fixed-Point Word instructiootiXs,
vctsx9, either a source value is an infinity or the product of a source value and 2
unsigned immediate value (UIMM) is a number too large to be represented in the
target integer format.

The following actions are taken:

1. If the AltiVec instruction would normally produce floating-point results, the
corresponding result is infinity, where the sign is the sign of the intermediate result.

2. Ifthe instruction is Vector Convert to Unsigned Fixed-Point Word Satwettexf),
the corresponding result is OxFFFF_FFFF if the source value is a positive number or
+X, and is 0x0000_0000 if the source value is a negative number or -X. VSCR[SAT]
is set.

3. Ifthe instruction is Vector Convert to Signed Fixed-Point Word Satwrefte, the
corresponding result is Ox7FFF_FFFF if the source value is a positive number or +X,
and is 0x8000_0000 if the source value is a negative number or -X. VSCR[SAT] is
set.

3.2.4.6 Underflow Exception

Underflow exceptions occur only for AltiVec instructions that would normally produce
floating-point results. It is detected before rounding. It occurs when a nonzero intermediate
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result, computed as though both the precision and the exponent range were unbounded, is
less in magnitude than the smallest normalized single-precision nuritsey. (2

The following actions are taken:

1. If VSCRINJ] = 0, the corresponding result is the value produced by denormalizing
and rounding the intermediate result.

2. IfVSCR[NJ] = 1, the corresponding result is a zero, where the sign is the sign of the
intermediate result.

3.2.5 Floating-Point NaNs

The AltiVec floating-point data format is compliant with the Java/IEEE/C9X single-
precision format. A quantity in this format can represent a signed normalized number, a
signed denormalized number, a signed zero, a signed infinity, a quiet not a number (QNaN),
or a signaling NaN (SNaN).

3.2.5.1 NaN Precedence

Whenever only one source operand of an instruction that returns a floating-point result is a
NaN, then that NaN is selected as the input NaN to the instruction. When more than one
source operand is a NaN, the precedence order for selecting the NaN is fingA fiioem

from vB and then fronvC. If the selected NaN is an SNaN, it is processed as described in
Section 3.2.5.2, “SNaN Arithmetic.” If the selected NaN is a QNaN, it is processed
according to Section 3.2.5.3, “QNaN Arithmetic.”

3.2.5.2 SNaN Arithmetic

Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the result,
as specified by the IEEE standard when no trap occurs. The delivered QNaN is an exact
copy of the original SNaN except that it is quieted; that is, the most-significant bit (msb) of
the fraction is set to one (1).

3.2.5.3 QNaN Arithmetic

Whenever the input NaN to an instruction is a QNaN, it is propagated as the result
according to the IEEE standard. All information in the QNaN is preserved through all
arithmetic operations.

3.2.5.4 NaN Conversion to Integer
All NaNs convert to zero on conversions to integer instructions sugitas andvctsxs

3.2.5.5 NaN Production

Whenever the result of an AltiVec operation originates a NaN (for example, an invalid
operation), the NaN produced is a QNaN with the sign bit = 0, exponent field = 255, msb
of the fraction field = 1, and all other bits = 0.
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Chapter 4
Addressing Modes and Instruction Set
Summary

This chapter describes instructions and addressing modes defined by the AltiVec Instruction
Set Architecture (ISA) and according to the three levels of the PowerPC architecturefjuser
instruction set architecture (UISA), virtual environment architecture (VEA), and openVing
environment architecture (OEA). AltiVec instructions are primarily UISA, and if othergise
they are noted in the chapter. These instructions are divided into the following categories:

* \ector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate and shift instructions, described in Section 4.2.1, “Vector Integer
Instructions.”

» Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions, as well as a discussion on floating-point modes, described in
Section 4.2.2, “Vector Floating-Point Instructions.”

* Vector load and store instructions—These include load and store instructions for
vector registers, described in Section 4.2.3, “Load and Store Instructions.”

» \ector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select and shift instructions, described in Section 4.2.5,
“Vector Permutation and Formatting Instructions.”

* Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register, described in Section 4.2.6, “Processor
Control Instructions—UISA."

« Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level), described in Section 4.3.1, “Memory Control
Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. The AltiVec ISA uses instructions that
are four bytes long and word-aligned. It provides for byte, half-word, and word operand
fetches and stores between memory and the vector registers (VRS).
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Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

4.1 Conventions

This section describes conventions used for the AltiVec instruction set. Descriptions of
memory addressing, synchronization, and the AltiVec exception summary follow.

4.1.1 Execution Model

When used with the PowerPC instructions, AltiVec instructions can be viewed by the
programmer as simply new PowerPC instructions that are freely intermixed with existing
ones to provide additional features in the instruction set. PowerPC processors appear to
execute instructions in program order. Some AltiVec implementations may not allow out-
of-order execution and completion. Non-data dependent vector instructions may issue and
execute while longer latency previously issued instructions are still in the execution stage.
Register renaming is useful for AltiVec instructions to avoid stalling dispatch on false
dependencies and allow maximum register name reuse in heavily unrolled loops. The
execution of a sequence of instructions will not be interrupted by exceptions as the unit does
not report IEEE exceptions but rather produces the default results as specified in the
Java/lEEE/C9X standards. The execution of a sequence of instructions may only be
interrupted by a vector load or store instruction, otherwise AltiVec instructions do not
generate any exceptions.

4.1.2 Computation Modes
The AltiVec ISA supports the following PowerPC architecture types of implementations:

« 64-bitimplementations, in that all general-purpose and floating-point registers, and
some special-purpose registers (SPRs) are 64 bits long and effective addresses are
64 bits long. All 64-bit implementations have two modes of operation: the default
64-bit mode and 32-bit mode. The mode controls how an effective address is
interpreted, how condition bits are set, and how the count register (CTR) is tested by
branch conditional instructions.

The machine state register bit 0, MSR[SF], is used to choose between 64- and 32-bit
modes. When MSR[SF] = 0, the processor runs in 32-bit mode, and when
MSR[SF] = 1 the processor runs in the default 64-bit mode.

« 32-bit implementations, in that all registers except FPRs are 32 bits long and
effective addresses are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 32-bit
implementations unless otherwise stated.
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4.1.3 Classes of Instructions

AltiVec instructions follows the illegal instruction class defined by the PowerPC
architecture in the section “Classes of Instructions” in Chapter 4, “Addressing Modes and
Instruction Set Summary,” of thBeowerPC Microprocessor Family: The Programming
Environments ManuaFor AltiVec ISA, all unspecified encodings within the major opcode
(04) that are not defined are illegal PowerPC instructions. The only exclusion in defining
an unspecified encoding is an unused bit in an immediate field or specifier field (///).

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, or cache instruction, and when it fetches the next
sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or quad words for AltiVec instructions.
The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction. The AltiVec ISA supports
both big-endian and little-endian byte ordering. The default byte and bit ordering is big-
endian; see Section 3.1.2, “AltiVec Byte Ordering,” for more information.

The natural alignment boundary of an operand of a single-register memory access
instruction is equal to the operand length. In other words, the natural address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Section 3.1, “Data Organization in Memory.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is thé4- or 32-bit sum computed by the processor when
executing a memory access or when fetching the next sequential instruction. For a memory
access instruction, if the sum of the EA and the operand length exceeds the maximum EA,
the memory operand is considered to wrap around from the maximum EA through EA 0O,
as described in the Chapter 4, “Addressing Modes and Instruction Set Summary,” in
PowerPC Microprocessor Family: The Programming Environments Manual

A zero in ther A field indicates the absence of the corresponding address component. For
the absent component, a value of zero is used for the address. This is shown in the
instruction description as4|0).

In all implementations (including 32-bit mode in 64-bit implementations), the processor
can modify the three low-order bits of the calculated effective address before accessing
memory if the PowerPC system is operating in little-endian mode. The double words of a
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guad word may be swapped as well. See Section 3.1.2, “AltiVec Byte Ordering,” for more
information about little-endian mode.

AltiVec load and store operations use register indirect with index mode and boundary align
to generate effective addresses. For further details see Section 4.2.3.2, “Load and Store
Address Generation.”

4.2 AltiVec UISA Instructions

AltiVec instructions can provide additional supporting instructions to the PowerPC
architecture. This section discusses the instructions defined in the AltiVec user instruction
set architecture (UISA).

4.2.1 Vector Integer Instructions
The following are categories for vector integer instructions:

» \ector integer arithmetic instructions

» \ector integer compare instructions

* \ector integer logical instructions

» \ector integer rotate and shift instructions

Integer instructions use the content of the vector registers (VRs) as source operands and
place results into VRs as well. Setting the Rc bit of a vector compare instruction causes the
PowerPC condition register (CR) to be updated.

The AltiVec integer instructions treat source operands as signed integers unless the
instruction is explicitly identified as performing an unsigned operation. For example,
Vector Add Unsigned Word Moduloddduwm) and Vector Multiply Odd Unsigned Byte
(vmuloub) instructions interpret both operands as unsigned integers.

4.2.1.1 Saturation Detection

Most integer instructions have both signed and unsigned versions and many have both
modulo (wrap-around) and saturating clamping modes. Saturation occurs whenever the
result of a saturating instruction does not fit in the result field. Unsigned saturation clamps
results to zero on underflow and to the maximum positive integer v&ile i@ example,

255 for byte fields) on overflow. Signed saturation clamps results to the smallest
representable negative number"(2for example, -128 for byte fields) on underflow, and

to the largest representable positive numb&r{2, for example, +127 for byte fields) on
overflow. When a modulo instruction is used, the resultant number truncates overflow or
underflow for the length (byte, half word, word, quad word) and type of operand (unsigned,
signed). The AltiVec ISA provides a way to detect saturation and sets the SAT bit in the
Vector Status and Control Register (VSCR[SAT]) in a saturating instruction.
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Borderline cases that generate results equal to saturation values, for example unsigned 0+0
- 0 and unsigned byte 1+254 255, are not considered saturation conditions and do not
cause VSCR[SAT] to be set.

The VSCR[SAT] can be set by the following types of integer, floating-point, and formatting
instructions:

Move to VSCR fntvscr)

Vector add integer with saturatiova@ddubs vadduhs, vadduws, vaddsbs
vaddshs vaddswg

Vector subtract integer with saturatiorsbubs vsubuhs, vsubuws vsubsbs
vsubshs vsubswg

Vector multiply-add integer with saturatiomnhaddshs vmhraddshs)
Vector multiply-sum with saturatiowihsumuhs vmsumshs vsumsws

Vector sum-across with saturatiorsmsws vsum2sws vsum4sbs vsum4shs
vsum4ubg

Vector pack with saturatiovipkuhus, vpkuwus, vpkshus vpkswus vpkshss
vpkswsg

Vector convert to fixed-point with saturatiorcfuxs, vctsx9

Note that only instructions that explicitly call for saturation can set VSCR[SAT]. Modulo
integer instructions and floating-point arithmetic instructions never set VSCR[SAT]. For
further details see Section 2.1.1, “The Vector Status and Control Register (VSCR).”

4.2.1.2 Vector Integer Arithmetic Instructions
Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax Operation
Vector Add vaddubm vD,vA,vB Place the sum (vA[unsigned integer elements]) + (vB[unsigned
Unsigned vadduhm integer elements]) into vD[unsigned integer elements] using
Integer [b,h,w] | vadduwm modulo arithmetic.
Modulo

For b, byte, integer length = 8 bits =1 byte, add 16 unsigned
integers from VA to the corresponding 16 unsigned integers from
vB

For h, half word, integer length =16 bits = 2 bytes, add 8 unsigned
integers from VA to the corresponding 8 unsigned integers from vB

For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned
integers from VA to the corresponding 4 unsigned integers from vB

Note: unsigned or signed integers can be used with these
instructions
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
Vector Add vaddubs vD,vA,vB Place the sum (vA[unsigned integer elements]) + (vB[unsigned
Unsigned vadduhs integer elements]) into vD[unsigned integer elements] using
Integer [b,h,w] | vadduws saturate clamping mode. Saturate clamping mode means if the
Saturate resulting sum is >(2"-1) saturate to (2"-1), where n = b,h,w.

For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned
integers from vA to the corresponding 16 unsigned integers from
vB

For h, half word, integer length = 16 bits = 2 bytes, add 8 unsigned
integers from vA to the corresponding 8 unsigned integers formable

For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned
integers from vA to the corresponding 4 unsigned integers from vB

If the result saturates, VSCR[SAT] is set.

Vector Add vaddsbs vD,vA,vB Place the sum (vA[signed integer elements]) + (vB[signed integer
Signed vaddshs elements]) into vD[signed integer elements] using saturate
Integer[b.h.w] vddsws clamping mode. Saturate clamping mode means:

Saturate

if the sum is >(2"1-1) saturate to (2™-1) and
if < (- 2™1) saturate to (-2™1), where n = b,h,w.

For b, byte, integer length = 8 bits = byte, add 16 signed integers
from VA to the corresponding 16 signed integers from vB

For h, half word, integer length = 16 bits = 2 bytes, add 8 signed
integers from vA to the corresponding 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, add 4 signed
integers from VA to the corresponding 4 signed integers from vB

If the result saturates, VSCR[SAT] is set.

Vector Add vaddcuw v D,vA,vB Take the carry out of summing (vA) + (vB) and place it into vD.
and Write For w, word, integer length = 32 bits = 2 bytes, add 4 unsigned
Carry-out

integers from vA to the corresponding 4 unsigned integers from vB

\L,JVr;sr:?ned and the resulting carry outs are correspondingly placed in vD.
Vector vsububm vD,vA,vB Place the unsigned integer sum (vA) - (vB) into vD using modulo
Subtract vsubuhm arithmetic.

IU?SIQnEd vsubuwm For b, byte, integer length = 8 bits =1 byte, subtract 16 unsigned
'\:oedgj; integers in vB from the corresponding 16 unsigned integers in VA

For h, half word, integer length = 16 bits = 2 bytes, subtract 8
unsigned integers in vB from the corresponding 8 unsigned
integers in vA

For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned
integers in vB from the corresponding 4 unsigned integers in VA

Note that unsigned or signed integers can be used with these
instructions
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vsububs vD,vAvB Place the unsigned integer sum vA - vB into vD using saturate
Subtract vsubuhs clamping mode, that is, if the sum < 0, it saturates to 0
Unsigned vsubuws corresponding to b,h,w.
ISnt::-gert For b, byte, integer length = 8 bits = 1 byte, subtract 16 unsigned
aturate integers in vB from the corresponding 16 unsigned integers in VA
For h, half word, integer length =16 bits = 2 bytes, subtract 8
unsigned integers in vB from the corresponding 8 unsigned
integers in vA
For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned
integers in vB from the corresponding 4 unsigned integers in VA
If the result saturates, VSCR[SAT] is set.
Vector vsububs vD,vA,vB Place the signed integer sum (vA) - (vB) into vD using saturate
Subtract vsubuhs clamping mode. Saturate clamping mode means:
Signed Integer | vsubuws if the sum is >(2"1-1) saturate to (2"-1) and
Saturate
if < (- 2™1) saturate to (-2"1), where n=b,h,w.
For b, byte, integer length = 8 bits = 1 byte, subtract 16 signed
integers in vB from the corresponding 16 signed integers in vA
For h, half word, integer length = 16 bits = 2 bytes, subtract 8
signed integers in vB from the corresponding 8 signed integers in
VA
For w, word, integer length = 32 bits = 4 bytes, subtract 4 signed
integers in vB from the corresponding 4 signed integers in vA
Vector vasubcuw v D,vA,vB Take the carry out of the sum (vA) - (vB) and place it into vD.
%F;traé:t and For w, word, integer length = 32 bits = 2 bytes, subtract 4 unsigned
rite Larry- integers in vB from the corresponding 4 unsigned integers in vA
out Unsigned : .
and place the resulting carry outs into vD.
Word
Vector Multiply | vmuloub vD,vAvB Place the unsigned integer products of (vA) * (vB) into vD using
Odd Unsigned | vmulouh modulo arithmetic mode.
Integer [b,h] . o e .
Modul For b, byte, integer length = 8 bits =1 byte, multiply 8 odd-numbered
odulo unsigned integer byte elements from vA to the corresponding 8
odd-numbered unsigned integer byte elements from vB resulting in
8 unsigned integer half-word products in vD.
For h, half word, integer length =16 bits = 2 bytes, multiply 4 odd-
numbered unsigned integer half word elements from vA to the
corresponding 4 odd numbered unsigned integer half-word
elements from vB resulting in 4 unsigned integer word products in
vD.
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Syntax

Operation

Vector Multiply
Odd Signed
Integer [b,h]
Modulo

vmulosb
vmulosh

vD,vA,vB

Place the signed integer product of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 odd-
numbered signed integer byte elements from vA to 8 odd-
numbered signed integer byte elements from vB resulting in 8
signed integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 odd-
numbered signed integer half word elements from vA to 4 odd-
numbered signed integer half word elements from vB resulting in 4
signed integer word products in vD.

Vector Multiply
Even
Unsigned
Integer [b,h]
Modulo

vmuleub
vmuleuh

vD,vA,vB

Place the unsigned integer products of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 even-
numbered unsigned integer byte elements from vA to 8 even-
numbered unsigned integer byte elements from vB resulting in 8
unsigned integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 even-
numbered unsigned integer half-word elements from vA to 4 even
numbered unsigned integer half- word elements from vB resulting
in 4 unsigned integer word products in vD

Vector Multiply
Even Signed
Integer [b,h]
Modulo

vmulesb
vmulesh

vD,vA,vB

Place the signed integer product of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 even-
numbered signed integer byte elements from vA to 8 even-
numbered signed integer byte elements from vB resulting in 8
signed integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4 even-
numbered signed integer half-word elements from vA to 4 even-
numbered signed integer half-word elements from vB resulting in 4
signed integer word products in vD.

Vector
Multiply-High
and Add
Signed Half-
Word Saturate

vmhaddshs

v D,vVA,vB, vC

The 17 most significant bits (msb’s)of the product of (vA) * (vB)
adds to sign-extended vC and places the result into vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply the 8
signed half words from vA with the corresponding 8 signed half
words from vB to produce a 32-bit intermediate product and then
take the 17 msb’s (bits 0-16) of the 8 intermediate products and
add them to the 8 sign-extended half words in vC, place the 8 half-
word saturated results in vD. If the intermediate product is as
follows:

> (215-1) saturate to (2°-1) and if
< —215 saturate to —2°.
If the results saturates, VSCR[SAT] is set.
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vmhraddshs |v D,vA,vB,vC | Add the rounded product of (vA) * (vB) to sign-extended vC and
Multiply-High place the result into vD.
iggnsdi anndd For h, half word, integer length = 16 bits = 2 bytes, multiply the 8
Half Wg § signed integers from VA to the corresponding 8 signed integers
S:t _ratc:er from vB and then round the 8 immediate products by adding the
u value 0x0000_4000 to it. Then add the most significant bits (msb’s),
bits 0-16, of the 8 rounded immediate products to the 8 sign-
extended values in vC and place the 8 signed half-word saturated
results into vD. If the intermediate product is:
> (215-1) saturate to (21°-1) and if
< 215 saturate to —215.
If the result saturates, VSCR[SAT] is set.
Vector vmladduhm |v D,vA,vB,vC | Add the product of (vA) * (vB) to zero-extended vC and place into
Multiply-Low vD.
?Jr;i'Aggd For h, half word, integer length =16 bits = 2 bytes, multiply the 8
q IfI?N d signed integers from VA to the corresponding 8 signed integers
Mad- | N from vB to produce a 32-bit intermediate product. The 16-bit value
odulo in vC is zero-extended to 32 bits and added to the intermediate
product and the lower 16 bits of the sum (bit 16-31) is placed in vD.
Note that unsigned or signed integers can be used with these
instructions
Vector vmsumubm vD,vA,vB,vC | The product of (vA) * (vB) is added to zero-extended vC and placed
Multiply-Sum vmsumuhm into vD using modulo arithmetic.
IL;rg:ger:eg h For b, byte, integer length = 8 bits = 1 byte, multiply 4 unsigned
M dg | [b.f] integer bytes from a word element in vA by the corresponding 4
odulo unsigned integer bytes in a word element in vB and the sum of
these products are added to the zero-extended unsigned integer
word element in vC and then placed the unsigned integer word
result into vD, following this process for each 4-word element in vA
and vB.
For h, half word, integer length = 16 bits = 2 bytes, multiply 2
unsigned integer half words from a word element in vA by the
corresponding 2 unsigned integer half words in a word element in
vB and the sum of these products are added to zero-extended
unsigned integer word element in vC and then place the unsigned
integer word result into vD, following this process for each 4 word
element in vA and vB.
Vector vmsumshs v D,vA,vB,vC | Add the product of (vA) * (vB) to vC and place the result into vD
Multiply-Sum using saturate clamping mode.
Signed Half- For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
Word Saturate . . .
integer half words from a word element in vA by the corresponding
2 signed integer half words in a word element in vB. Add the sum of
these products to the signed integer word element in vC and then
place the signed integer word result into vD, (following this process
for each 4-word element in vA and vB). If the intermediate result is
> (281-1), saturate to (231-1) and if the result is < -23, saturate to -
238,
If the result saturates, VSCR[SAT] is set.
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vmsumuhs v D,vA,vB,vC | Add the product of (vA) * (vB) to zero-extended vC and place the
Multiply-Sum result into vD using saturate clamping mode.
Unsigned For h, half word, integer length = 16 bits = 2 bytes, multiply 2
Half-Word . } B
Saturate unsigned |n_teger half Word_s from a word element in VA by the _
corresponding 2 unsigned integer half words in a word element in
vB. Add the sum of these products to the zero-extended unsigned
integer word element in vC and then place the unsigned integer
word result into vD, (following this process for each 4-word element
in vA and vB). If the intermediate result is > (23-1) saturate to
(2%2-1).
If the result saturates, VSCR[SAT] is set.
Vector vmsummbm |v D,vA,vB,vC | Add the product of (vA) * (vB) to vC and place into vD using
Multiply-Sum modulo arithmetic.
mE(jdkl’Byte For b, byte, integer length = 8 bits = 1 byte, multiply 4 signed integer
u bytes from a word element in vA by the corresponding 4 unsigned
integer bytes from a word element in vB. Add the sum of these 4
signed products to the signed integer word element in vC and then
place the signed integer word result into vD, following this process
for each 4-word element in vA and vB.
Vector vmsumshm  |v D,vA\vB,vC | Add the product of (vA) * (vB) to vC and place into vD using
Multiply-Sum modulo arithmetic.
\?\;gndedMHglfl- For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
ord Modulo integer half words from a word element in vA by the corresponding
2 signed integer half words in a word element in vB. Add the sum of
these 2 products to the signed integer word element in vC and then
place the signed integer word result into vD, following this process
for each 4-word element in vA and vB.
Vector Sum VSUmMsws v D,vAVB Place the sum of signed word elements in vA and the word in
Across Signed vB[96-127] into vD.
Word Saturate For w, word, integer length = 32 bits = 4 bytes, add the sum of the 4
signed integer word elements in VA to the word element in vB[96-
127]. If the intermediate product is > (231-1) saturate to (237-1) and
if < =23 saturate to —231. Place the signed integer result in vD[96-
127],vD[0-95] are cleared.

4-10
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Syntax

Operation

Vector Sum
Across Partial
(1/2) Signed
Word Saturate

VSuUm2sws

v D,vA,vB

Add vA[word 0 + word 1] + vB[word 1] and place in vD[word 1].
Repeat only add vA[word 2 + word 3] + vB[word 3] and place in
vD[word 3].

word 0 = Bits 0-31
word 1 = Bits 32-63
word 2 = Bits 64-95
word 3 = Bits 96-127,

See Figurel-2, “Big-Endian Byte Ordering for a Vector Register” for
a picture of what the word elements would look like in a vector
register.

Add the sum of word 0 and word 1 of vA to word 1 of vB using
saturate clamping mode and place the result is into word 1of vD.
Then add the sum of word 2 and word 3 of (vA) to word 3 of vB
using saturate clamping mode and place those results into word 3
in vD. If the intermediate result for either calculation is > (231-1)
then saturate to (231-1) and if < —23! then saturate to —2°1.

Vector Sum

Across Partial
(1/4) Unsigned
Byte Saturate

vsum4ubs

v D,vA,vB

Add vA[sum of 4 byte elements in word] and vB[word element] then
place in vD[word element] using saturate clamping mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element
in vB, add the sum of 4 unsigned bytes in the word in VA to the
unsigned word element in vB and then place the results into the
corresponding unsigned word element in vD. If the intermediate
result for is > (232-1) it saturates to (232-1).

If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Signed
Integer
Saturate

vsumd4sbs
vsumd4shs

vD,vA,vB

Add vA[sum of signed integer elements in word] and vB[word
element] then place in vD[word element] using saturate clamping
mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element
in vB, add the sum of 4 signed bytes in the word in vA to the signed
word element in vB and then place the results into the
corresponding signed word element in vD. If the intermediate result
is 31(231—1) then saturate to (231-1) and if < —231 then saturate to
-2

For h, half word, integer length = 16 bits = 2 bytes, for each word
element in vB, add the sum of 2 signed half words in the word in vA
to the signed word element in vB and then place the results into the
corresponding signed word element in vD. If the intermediate result

is > (231-1) then saturate to (231-1) and if < =231 then saturate to
_231.

If the result saturates, VSCR[SAT] is set.
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation

Vector vavgub vD,vA,vB Add the sum of (vA[unsigned integer elements]+ vB[unsigned

Average vavguh integer elements]) +1 and place into vD using modulo arithmetic.

IL::S'gand vavguw For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned

€ge integers from vA to 16 unsigned integers from vB and then add 1 to

the sums and place the high order result in vD.
For h, half word, integer length = 16 bits = 2 bytes, add 8 unsigned
integers from VA to 8 unsigned integers from vB and then add 1 to
the sums and place the high order result in vD.
For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned
integers from VA to 4 unsigned integers from vB and then add 1 to
the sums and place the high order result in vD.
If the result saturates, VSCR[SAT] is set.

Vector vavgshb vD,vA,vB Add the sum of (vA[signed integer elements]+ vB[signed integer

Average vavgsh elements]) +1 and place into vD using modulo arithmetic.

Signed Integer | vavgsw For b, byte, integer length = 8 bits = 1 byte, add 16 signed integers

from vA to 16 signed integers from vB and then add 1 to the sums
and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add 8 signed
integers from VA to 8 signed integers from vB and then add 1 to the
sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add 4 signed
integers from VA to 4 signed integers from vB and then add 1 to the
sums and place the high order result in vD.

Vector vmaxub vD,vA,vB Compare the maximum of vA and vB unsigned integers for each
Maximum vmaxuh integer value and which ever value is larger, place that unsigned
Unsigned vmaxuw integer value into vD

Integer

For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned
integers from vA with 16 unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare 8
unsigned integers from vA with 8 unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned
integers from vA with 4 unsigned integers from vB.

Vector vmaxsb vD,vA,vB Compare the maximum of VA and vB signed integers for each
Maximum vmaxsh integer value and which ever value is larger, place that signed
Signed Integer | vmaxsw integer value into vD

For b, byte, integer length = 8 bits =1 byte, compare 16 signed
integers from vA with 16 signed integers from vB

For h, half word, integer length =16 bits = 2 bytes, compare 8
signed integers from vA with 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed
integers from vA with 4 signed integers from vB
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Table 4-1. Vector Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vminub vD,vA,vB Compare the minimum of vA and vB unsigned integers for each
Minimum vminuh integer value and which ever value is smaller, place that unsigned
Unsigned vminuw integer value into vD
Integer

For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned
integers from vA with 16 unsigned integers from vB

For h, half word, integer length = 16 bits = 2 bytes, compare 8
unsigned integers from vA with 8 unsigned integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned
integers from vA with 4 unsigned integers from vB

Vector vminsb vD,vA,vB Compare the minimum of vA and vB signed integers for each
Minimum vminsh integer value and which ever value is smaller, place that signed
Signed Integer | vminsw integer value into vD.

For b, byte, integer length = 8 bits = 1 byte, compare 16 signed
integers from vA with 16 signed integers from vB

For h, half word, integer length = 16 bits = 2 bytes, compare 8
signed integers from vA with 8 signed integers from vB

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed
integers from vA with 4 signed integers from vB

4.2.1.3 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector registek with the contents of the elementsviB. Each compare

result vector is comprised of TRUE (OxFF, OxFFFF, OxFFFFFFFF) or FALSE (0x00,
0x0000, 0x00000000) elements of the size specified by the compare source operand
element (byte, half word, or word). The result vector can be directed to any vector register
and can be manipulated with any of the instructions as normal data, for example, combining
condition results.

Vector compares provide equal-to and greater-than predicates. Others are synthesized from
these by logically combining and/or inverting result vectors.

If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-3) it can
optionally set the CR6 field of the PowerPC condition register. If Rc = 1 in the vector
integer compare instruction, then CR6 is set to reflect the result of the comparison, as
follows in Table 4-2.

Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions

g:? (;’;6 Vector Compare

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)
25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared)
27 3 0
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Table 4-3 summarizes the vector integer compare instructions.

Table 4-3. Vector Integer Compare Instructions

Name

Mnemonic

Syntax

Operation

Vector
Compare
Greater
than
Unsigned
Integer

vempgtub [.]
vempgtuh [.]
vempgtuw [.]

CRO6,vD,vA,vB

Compare the value in VA with the value in vB, treating the
operands as unsigned integers. Place the result of the
comparison into the vD field specified by operand vD.

if vA > vB then vD = 1's; otherwise vD = 0’s

If the record bit (Rc) is set in the vector compare instruction then
vD == 1’s, (all elements true) then CR6[0] is set

vD == 0’s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits = 1 byte, compare 16
unsigned integers from vA to 16 unsigned integers from vB and
place the results in the corresponding 16 elements in vD

For h, half word, integer length = 16 bits = 2 bytes, compare 8
unsigned integers from vA to 8 unsigned integers from vB and
place the results in the corresponding 8 elements in vD

For w, word, integer length = 32 bits = 4 bytes, compare 4
unsigned integers from VA to 4 unsigned integers from vB and
place the results in the corresponding 4 elements in vD.

Vector
Compare
Greater
Than
Signed
Integer

vempgtsb [.]
vempgtsh [.]
vempgtsw [.]

CRO6,vD,vA,vB

Compare the value in VA with the value in vB, treating the
operands as signed integers. Place the result of the comparison
into the vD field specified by operand vD

if vA > vB then vD =1’s; otherwise vD = 0's

If the record bit (Rc) is set in the vector compare instruction then
vD == 1’s, (all elements true) then CR6[0] is set

VD == 0’s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits = 1 byte, compare 16 signed
integers from vA to 16 signed integers from vB

and place the results in the 16 corresponding elements in vD

For h, half word, integer length = 16 bits = 2 bytes, compare 8
signed integers from vA to 8 signed integers from vB and place
the results in the 8 corresponding elements in vD

For w, word, integer length = 32 bits = 4 bytes, compare 4 signed
integers from vA to 4 signed integers from vB and place the
results in the 4 corresponding elements in vD

4-14
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Table 4-3. Vector Integer Compare Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vempequb [.] vD,vA,vB Compare the value in vA with the value in vB, treating the
Compare vcmpequh [.] operands as unsigned integers. Place the result of the
Equal To vempequw [.] comparison into the vD field specified by operand vD.
Unsigned if vA = vB then vD =1’s; otherwise vD = 0's
Integer

If the record bit (Rc) is set in the vector compare instruction then
vD == 1’s, (all elements true) then CR6[0] is set
VD == 0s, (all elements false) then CR6[2] is set

For b, byte, integer length = 8 bits =1 byte, compare 16 unsigned
integers from vA to 16 unsigned integers from vB and place the
results in the corresponding 16 elements in vD

For h, half word, integer length =16 bits = 2 bytes, compare 8
unsigned integers from VA to 8 unsigned integers from vB and
place the results in the corresponding 8 elements in vD

For w, word, integer length=32 bits = 4 bytes, compare 4
unsigned integers from vA to 4 unsigned integers from vB and
place the results in the corresponding 4 elements in vD.

Note: vempequb [.], vempequh [.], and vempequw [.] can use
both unsigned and signed integers

4.2.1.4 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 4-4 perform bit-parallel operations
on the operands.

Table 4-4. Vector Integer Logical Instructions

Name Mnemonic Syntax Operation
Vector Logical AND vand vD,vA,vB | AND the contents of vA with vB and place the result into vD.
Vector Logical OR vor vD,vA,vB | OR the contents of vA with vB and place the result into vD.
Vector Logical XOR vxor v D,vA,vB | XOR the contents of vA with vB and place the result into vD.
Vector Logical AND vandc v D,vA,vB | AND the contents of vA with the complement of vB and place the
with Complement result into vD.
Vector Logical NOR vnor v D,vA,vB | NOR the contents of vA a with vB and place the result into vD.
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4.2.1.5 Vector Integer Rotate and Shift Instructions
The vector integer rotate instructions are summarized in Table 4-5.

Table 4-5. Vector Integer Rotate Instructions

Name Mnemonic Syntax Operation
\ector vrlb vD,vA,vB Rotate each element in VA left by the number of bits specified in the low-
Rotate Left vrih order log,(n) bits of the corresponding element in vB. Place the result
Integer vriw into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA
with 4 integers from vB

The vector integer shift instructions are summarized in Table 4-6.

Table 4-6. Vector Integer Shift Instructions

Name Mnemonic Syntax Operation
Vector vslb vD,vA,vB | Shift each element in VA left by the number of bits specified in the low-order
Shift Left vslh log,(n) bits of the corresponding element in vB. If bits are shifted out of bit 0
Integer vslw of the element they are lost. Supply zeros to the vacated bits on the right.

Place the result into the corresponding element of vD

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB

Vector vsrb vD,vA,vB | Shift each element in vA right by the number of bits specified in the low-order
Shift Right | vsrh log,(n) bits of the corresponding element in vB. If bits are shifted out of bit
Integer VSrw n-1 of the element they are lost. Supply zeros to the vacated bits on the left.

Place the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from VA
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB
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Table 4-6. Vector Integer Shift Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vsrab vD,vA,vB | Shift each element in vA right by the number of bits specified in the low-order
Shift Right | vsrah log,(n) bits of the corresponding element in vB. If bits are shifted out of bit
Algebraic vsraw n—1 of the element they are lost. Replicate bit 0 of the element to fill the
Integer vacated bits on the left. Place the result into the corresponding element of
vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from VA
with 8 integers from vB

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB

4.2.2 Vector Floating-Point Instructions
This section describes the vector floating-point instructions, that include the following:

» Vector floating-point arithmetic instructions

* \ector floating-point rounding and conversion instructions
* \Vector floating-point compare instructions

» \ector floating-point estimate instructions

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard. A
guantity in this format represents: a signed normalized number, a signed denormalized
number, a signed zero, a signed infinity, a quiet not a number (QNaN), or a signalling NaN
(SNaN). Operations perform to a Java/l[EEE/C9X-compliant subset of the IEEE standard,
for further details on the Java or Non-Java mode see Section 3.2.1, “Floating-Point Modes.”
The AltiVec ISA does not report IEEE exceptions but rather produces default results as
specified by the Java/lEEE/C9X Standard, for further details on exceptions see
Section 3.2.4, “Floating-Point Exceptions.”

4.2.2.1 Floating-Point Division and Square-Root

AltiVec instructions do not have division or square-root instructions. AltiVec ISA
implements Vector Reciprocal Estimate Floating-Poimefp) and Vector Reciprocal-
Square-Root Estimate Floating-Poimtdgrtefp) instructions along with a Vector Negative
Multiply-Subtract Floating-Pointimsubfp) instruction assisting in the Newton-Raphson
refinement of the estimates. To accomplish division simply multiply the dividend (x/y = x

* 1/y) and square-root by multiplying the original numbéx € x * 1/Vx). In this way, the
AltiVec ISA provides inexpensive divides and square-roots that are fully pipelined, sub-
operation scheduled, and faster even than many hardware dividers. Methods are available
to further refine these to correct IEEE results, where necessary at the cost of additional
software overhead.
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4.2.2.1.1 Floating-Point Division
The Newton-Raphson refinement step for the recipﬂtbgehboks like this:

y1=y0 +y0*(1 - B*y0), where y0 = recip_est(B)
This is implemented in the AltiVec ISA as follows:

y0 = vrefp(B)
t =vnmsubfp(y0,B,1)
y1 = vmaddfp(yO,t,y0)
This produces a result accurate to almost 24 bits of precision (except in the case where B is

a sufficiently small denormalized number thiafp generates an infinity, that, if important,
must be explicitly guarded against).

To get a correctly rounded IEEE quotient from the above result, a second Newton-Raphson
iteration is performed to get a correctly rounded reciprocal (y2) to the required 24 bits of
precision, then the residual.

R=A-BQ

is computed withvnmsubfp (where A is the dividend, B the divisor, and Q an
approximation of the quotient from A*y2). The correctly rounded quotient can then be
obtained.

Q=Q+RY2

The additional accuracy provided by the fused nature of the AltiVec instruction multiply-
add is essential to producing the correctly rounded quotient by this method.

The second Newton-Raphson iteration may ultimately not be needed but more work must
be done to show that the absolute error after the first refinement step would always be less
than 1 ulp, that is a requirement of this method.

4.2.2.1.2 Floating-Point Square-Root
The Newton-Raphson refinement step for reciprocal square root looks like the following:

y1 =y0 + 0.5*y0*(1 - B*yO*y0), where yO =recip_sqrt_est(B)
That can be implemented as follows:

y0 = vrsqrtefp(B)
t0 = vmaddfp(y0,y0,0.0)
t1 = vmaddfp(y0,0.5,0.0)
t0 = vnmsubfp(B,t0,1)
y1 = vmaddfp(t0,t1,y0)
Various methods can further refine a correctly rounded IEEE result—all more elaborate

than the simple residual correction for division, and therefore are not presented here, but
most of which also benefit from the negative multiply-subtract instruction.
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4.2.2.2 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax Operation
Vector vaddfp v D,vA,vB | Add the 4-word (32-bit) floating-point elements in vA to the 4-word (32-bit)
Add floating-point elements in vB. Round the four intermediate results to the
Floating- nearest single-precision number and placed into vD.
Point
Vector vsubfp v D,VA,vB | The 4-word (32-bit) floating-point values in vB are subtracted from the 4 32-
Subtract bit values in vB. The four intermediate results are rounded to the nearest
Floating- single-precision floating-point and placed into vD.
Point
Vector vmaxfp v D,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Maximum corresponding 4 single-precision word elements in vB
S:ii?ng_ For each of the four elements, place the larger value within each pair into vD.

vmaxfp is sensitive to the sign of 0.0. When both operands are +0.0:
max(+0.0,+0.0) = max(+0.0,+0.0) O +0.0
max(-0.0,-0.0) O -0.0

max(NaN,x) 0 QNaN where x = any value

Vector vminfp v D,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Minimum corresponding 4 single-precision word elements in vB
E(;)ii?ng- For each of the four elements, place the smaller value within each pair into

vD.

vminfp is sensitive to the sign of 0.0. When both operands are +0.0:
min(-0.0,£0.0) = min(+0.0,-0.0) O -0.0

min(+0.0,+0.0) O +0.0

min(NaN,x) O QNaN where x = any value

4.2.2.3 Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance since a multiply
followed by a data dependent addition is the most common idiom in DSP algorithms. In
most implementations, floating-point multiply-add instructions will perform with the same
latency as either a multiply or add alone, thus doubling performance in comparing to the
otherwise serial multiply and adds.

AltiVec floating-point multiply-adds instructions fuse (a multiply-add fuse implies that the
full product participates in the add operation without rounding, only the final result rounds).
This not only simplifies the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

Be careful as Java-compliant programs can not use multiply-add instructions fused directly
because Java requires both the product and sum to round separately. Thus to achieve strict
Java compliance, perform the multiply and add with separate instructions.
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To realize multiply in the AltiVec ISA use multiply-add instructions with a zero addend (for
exampleymaddfp vD,vA,vC vB where ¢B = 0.0).

Note that in order to use multiply-add instructions to perform an IEEE or Java-compliant
multiply, the addend must be -0.0. This is necessary to insure that the sign of a zero result
is correct when the product is either +0.0 or -0.0 (+0.0 +(30:£0.0, and -0.0 + -0.0 -

0.0). When the sign of a resulting 0.0 is not important, then use +0.0 as the addend that may,
in some cases, avoiding the need for a second register to hold a -0.0 in addition to the integer
O/floating-point +0.0 that may already be available.

The floating-point multiply-add instructions are summarized in Table 4-8.

Table 4-8. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax Operation
Vector vmaddfp v D,vA,vC,vB | Multiply the four word floating-point elements in vA by the corresponding
Multiply- four word elements in vC. Add the four word elements in vB to the four
Add intermediate products. Round the results to the nearest single-precision
Floating- numbers and place the corresponding word elements into vD.
Point
Vector vmmsubfp |v D,vA,vC,vB | Multiply the four word floating-point elements in vA by the corresponding
Negative four word elements in vC. Subtract the four word floating-point elements in
Multiply- vB from the four intermediate products and invert the sign of the
Subtract difference. Round the results to the nearest single-precision numbers and
Floating- place the corresponding word elements into vD.
Point

4.2.2.4 Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. The AltiVec ISA does not provide the IEEE directed rounding modes.

The AltiVec ISA provides separate instructions for converting floating-point numbers to
integral floatin
g-point values for all IEEE rounding modes as follows:

¢ Round-to-nearesv(fin) (round)

* Round-toward-zerovffiz) (truncate)

* Round-toward-minus-infinityuffim ) (floor)

* Round-toward-positive-infinityvfip ) (ceiling).

Floating-point conversions to integekgtuxs, vctsx9 use round-toward-zero (truncate).
The floating-point rounding instructions are shown in Table 4-9.

Table 4-9. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax Operation
Vector Round to fvrfin v D,vB Round to the nearest the four word floating-point elements in
Floating-Point Integer vB and place the four corresponding word elements into vD.
Nearest
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Table 4-9. Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic Syntax Operation
Vector Round to fvrfiz v D,vB Round towards zero the four word floating-point elements in
Floating-Point Integer vB and place the four corresponding word elements into vD.

toward Zero

Vector Round to fvrfip v D,vB Round towards +Infinity the four word floating-point elements

Floating-Point Integer in vB and place the four corresponding word elements into

toward Positive vD.

Infinity

Vector Round to fvrfim v D,vB Round towards -Infinity the four word floating-point elements

Floating-Point Integer in vB and place the four corresponding word elements into

toward Minus Infinity vD.

Vector Convert from vcfux v D,vB, UIMM [ Convert each of the four unsigned fixed-point integer word

Unsigned Fixed-Point elements in vB to the nearest single-precision value. Divide

Word the result by 2Y"MM and place into the corresponding word
element of vD.

Vector Convert from vcfsx v D,vB, UIMM | Convert each signed fixed-point integer word element in vB to

Signed Fixed-Point the nearest single-precision value. Divide the result by 29'MM

Word and place into the corresponding word element of vD.

Vector Convert to vctuxs v D,vB, UIMM | Multiply each of the four single-precision word elements in vB

Unsigned Fixed-Point by 2Y'"MM The products are converted to unsigned fixed-point

Word Saturate integers using the Round toward Zero mode. If the

intermediate results are > 232-1 saturate to 232-1 and if it is <
0 saturate to 0. Place the unsigned integer results into the
corresponding word elements of vD.

Vector Convert to vCtsxs v D,vB, UIMM | Multiply each of the four single-precision word elements in vB
Signed Fixed-Point by 2Y"™MM The products are converted to signed fixed-point
Word Saturate integers using Round toward Zero mode. If the intermediate

results are > 2%2_1 saturate to 23%-1 and if it is < 23!
saturate to —231. Place the unsigned integer results into the
corresponding word elements of vD.

4.2.2.5 Floating-Point Compare Instructions
This section describes floating-point unordered compare instructions.

All AltiVec floating-point compare instructionsydmpeqfp, vempgtfp, vempgefp, and
vempbfp) return FALSE if either operand is a NaN. Not equal-to, not greater-than, not
greater-than-or-equal-to, and not-in-bounds NaNs compare to everything, including
themselves.

Compares always return a Boolean mask (TRUE = Ox_FFFF_FFFF, FALSE =
0x_0000_0000) and never return a NaN. Vbompeqgfpinstructionis recommended as the
Isnan{X) test. No explicit unordered compare instructions or traps are provided. However,
the greater-than-or-equal-to predicap(ycmpgefp is provided—in addition to the > and
= predicates available for integer comparison—specifically to enable IEEE unordered
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comparison that would not be possible with just the > and = predicates. Table 4-10 lists the
six common mathematical predicates and how they would be realized in AltiVec code.

Table 4-10. Common Mathematical Predicates

Case Mi;}?etzr;lzttigal . Qltii;/;(i:on Relations

a>b a<b a=b ?
1 a=b a=b . = = -
2 a#b (?<>) ~(a=h) = - - -
3 a>b a>b T F F -
4 a<b b>a = T . =
5 azb -(b>a) T E T -
6 as<b - (a>b) = T T -
5a azb azb T F T F
6a as<hb b>a F T T E

* Note: cases 5 and 6 implemented with greater-than (vempgtfp and vnor)
would not yield the correct IEEE result when the relation is unordered.

Table 4-11 shows the remaining eight useful predicates and how they might be realized in
AltiVec code.

Table 4-11. Other Useful Predicates

Case | Predicate Rgltii;/;(i:on Relations

a>b a<b a=b ?
7 a?b = ((a=b) 0 (b>a) 0 (@>b)) F F F T
8 a<>b (azb)d(b=a) T T F F
9 a<=>b (@a=b)O(b=a) T T T F
10 a?>b -(b=a) T F [= T
11 | a»=b - (b>a) T F T T
12 a?<b -(azb) F T F T
13 a?<=b - (a>b) F T T T
14 | a?b - (@>b) 0(b > a) F F T

The vector floating-point compare instructions compares the elements in two vector
registers word-by-word, interpreting the elements as single-precision numbers. With the
exception of the Vector Compare Bounds Floating-Petrhpbfp) instruction they set the
target vector register, and CR[6] if Rc = 1, in the same manner as do the vector integer
compare instructions.
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The Vector Compare Bounds Floating-Powitriipbfp) instruction sets the target vector
register, and CR[6] if Rc = 1, to indicate whether the elememA Bre within the bounds
specified by the corresponding elementBn as explained in the instruction description. A
single-precision value X is said to be within the bounds specified by a single-precision value

y if (-ysxsy).
The floating-point compare instructions are summarized in Table 4-12.

Table 4-12. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation
Vector vempgtfp [.] CR6, vD,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Compare corresponding four single-precision word elements in vB
Greater For each element, if vA > vB then set the corresponding element in vD
Than , . . \
. to all 1's otherwise clear the element in vD to all O’s
Floating-
Point If the record bit (Rc = 1) is set in the vector compare instruction, then
vD ==1, (all elements true) then is se
[Record] D ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set
Vector vempeqfp [] CR6,vD,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Compare corresponding 4 single-precision word elements in vB.
Elquattll to For each element, if vA = vB then set the corresponding element in vD
Pc?iitmg- to all 1's otherwise clear the element in vD to all 0's
[Record] If the record bit (Rc = 1) is set in the vector compare instruction then
vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set
Vector vempgeqfp [.] | CR6,vD,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Compare corresponding 4 single-precision word elements in vB.
_(?r:eater For each element, if vA >= vB then set the corresponding element in
an or vD to all 1's otherwise clear the element in vD to all 0's
Equal to
Floating- If the record bit (Rc = 1) is set in the vector compare instruction then
Point vD ==1, (all elements true) then CR6[0] is set
[Record]
vD == 0, (all elements false) then CR6[2] is set
Vector vempbfp [] CR6,vD,vA,vB | Compare each of the 4 single-precision word elements in VA to the
Compare corresponding single-precision word elements in vB. A 2-bit value is
Bounds formed that indicates whether the element in VA is within the bounds
Floating- specified by the element in vB, as follows.
P;'m d Bit 0 of the two-bit value is cleared if the element in VA is <= to the
[Record] element in vB, and is set otherwise.
Bit 1 of the two-bit value is cleared if the element in VA is >= to the
negation of the element in vB, and is set otherwise.
The two-bit value is placed into the high-order two bits of the
corresponding word element of vD and the remaining bits of the
element are cleared to 0.
If Re=1, CR6[2] is set when all four elements in vA are within the
bounds specified by the corresponding element in vB
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4.2.2.6 Floating-Point Estimate Instructions
The floating-point estimate instructions are summarized in Table 4-13.

Table 4-13. Floating-Point Estimate Instructions

Name Mnemonic | Syntax Operation
Vector Reciprocal | vrefp v D,vB Place estimates of the reciprocal of each of the four word floating-point
Estimate Floating- source elements in vB in the corresponding four word elements in vD.
Point
Vector Reciprocal | vrsqrtefp v D,vB Place estimates of the reciprocal square-root of each of the four word
Square Root source elements in vB in the corresponding four word elements in vD.
Estimate Floating-
Point
Vector Log2 vlogefp v D,vB Place estimates of the base 2 logarithm of each of the four word source
Estimate Floating- elements in vB in the corresponding four word elements in vD.
Point
Vector 2 Raisedto | vexptefp v D,vB Place estimates of 2 raised to the power of each of the four word source
the Exponent elements in vB in the corresponding four word elements in vD.
Estimate Floating-
Point

4.2.3 Load and Store Instructions

Only very basic load and store operations are provided in the AltiVec ISA. This keeps the
circuitry in the memory path fast so the latency of memory operations will be low. Instead,
a powerful set of field manipulation instructions are provided to manipulate data into the
desired alignment and arrangement after the data has been brought into the vector registers.

Load vector indexed\X, Ivxl) and store vector indexestyx, stvxl) instructions transfer

an aligned quad-word vector between memory and vector registers. Load vector element
indexed [vebx, Ivehx, Ivewx) and store vector element indexedtructions $tvebx

stvehx, stvewx transfer byte, half-word, and word scalar elements between memory and
vector registers.

All vector loads and vector stores use the ind&}( +rB) addressing mode to specify the
target memory address. The AltiVec ISA does not provide any update fornigeldx

Ivehx, orlvewx instructiontransfers a scalar data element from memory into the destination
vector register, leaving other elements in the vector with boundedly-undefined values. A
stvebx stvehx, or stvewxinstruction transfers a scalar data element from the source vector
register to memory leaving other elements in the quad word unchanged. No data alignment
occurs, that is, all scalar data elements are transferred directly on their natural memory
byte-lanes to or from the corresponding element in the vector register. Quad word memory
accesses made byx, Ivxl, stvx, andstvxl instructions are not guaranteed to be atomic.
Direct-store segments (T=1) are not supported. Any vector load or store that attempts to
access a direct-store segment will cause a DSI exception.
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4.2.3.1 Alignment

All memory references must be size aligned. If a vector load or store address is not properly
size aligned, the suitable number of least significant bits are ignored, and a size aligned
transfer occurs instead. Data alignment must be performed explicitly after being brought
into the registers. No assistance is provided to assist in aligning individual scalar elements
that are not aligned on their natural size boundary. However, assistance is provided for
justifying non-size-aligned vectors. This is provided through the spea#l Vector for

Shift Left (vsl) and Load Vector for Shift Righlvsr) instructions that compute the proper
Vector Permutevperm) control vector from the misaligned memory address. For details
on how to use these instructions to align data see Section 3.1.6, “Quad-Word Data
Alignment.”

Thelvx, lvxl, stvx, andstvxl instructions can be used to move all sorts of data, not just
multimedia data, in typical PowerPC environments. Therefore, because vector loads and
stores are size-aligned, care should be taken to align data on even quad-word boundaries
for maximum performance.

4.2.3.2 Load and Store Address Generation

Vector load and store operations generate effective addresses using register indirect with
index mode.

All AltiVec load and store instructions use register indirect with index addressing mode
that cause the contents of two general-purpose registers (specified as opkamdiB)

to be added in the generation of the effective address (EA). A zero in placerdf the
operand causes a zero to be added to the contents of the GPR specBiethia option

to specifyr A or 0 is shown in the instruction descriptionsra@). If the address becomes
unaligned, for a half word, word, or quad word, when combining addregsi@s+(r B),

the effective address is ANDed with the appropriate zero values to boundary align the
address and is summarized in Table 4-14.

Table 4-14. Effective Address Alignment

Operand Effective Address Bit Setting
Indexed Half word EA[63] 0b0
Indexed Word EA[62-63] 0b00
Indexed Quad word EA[60-63] 0b0000

Figure 4-1 shows how an effective address is generated when using register indirect with
index addressing.
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) ) 0 56 1011 1516 2021 30 31
D Reserved Instruction Encoding: | Opcode | vD/vS| rA | B | Subopcode |0|

0 i 63
| GPR (1B) |

w“ ®

GPR (rA) | Effective Address

Boundary
Align EA

0 63
| ! Store »| Memory

VR (vD) [ Load Interface

Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

4.2.3.3 Vector Load Instructions
For vector load instructions, the byte, half word, or word addressed by the EA (effective
address) is loaded int®.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see
Section 3.1.2, “AltiVec Byte Ordering,” for information about little-endian byte ordering.

Table 4-15 summarizes the vector load instructions.
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Table 4-15. Integer Load Instructions

Name Mnemonic | Syntax Operation
Load Vector Ivebx vD,rA,rB | The EAis the sum (rA|0) + (rB). Load the byte, half word, or word in
Element Ivehx memory addressed by the EA into the low-order bits of vD. The remaining
Integer Ivewx bits in vD are set to boundedly undefined values.
Indexed

Because memory must stay aligned, the EA is set to default to alignment:
For b, byte, integer length = 8 bits = 1 byte,

For h, half word, integer length = 16 bits = 2 bytes, EA[62-63] is set to 0b0
For w, word, integer length= 32 bits = 4 bytes, EA[61-63] is set to 0b00

Load Vector Ivx vD,rA,rB | The EAis the sum (rA|0) + (rB). Load the double word in memory
Element addressed by the EA into vD.

Indexed Because memory needs to stay aligned, the EA is set to default to

alignment:

For g, quad word, integer length =128 bits = 8 bytes, the EA[60-63] is set
to Ob0000
LRU=0

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[6-127] and load the double word in memory
addressed by EA+8 into vD[0-63].

Load Vector IvxI v D,rArB | The EAis the sum (rA|O) + (rB). Load the double word in memory

Element addressed by the EA into vD.

Indexed LRU For d, double word, integer length=64 bits = 4 bytes, the EA[60-63] is set
to Ob0000

LRU =1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64-127] and load the double word in memory
addressed by EA+8 into vD[0-63].

Thelvsl andlvsr instructions can be used to create the permute control vector to be used
by a subsequenrperm instruction. Let X and Y be the contents/éf andvB specified by
vperm. The control vector created Ibysl causes th@perm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60-63]). The control vector created wgt causes theperm to select the low-order 16
bytes of the result of shifting X || Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector redister left

or rightlvsr by sh bytes. For rotating, the vector register to be rotated should be specified
as both thevA and thevB register forvperm. For shifting left, the/B register forvperm

should be a register containing all zeros @fAcdhould contain the value to be shifted, and
vice versa for shifting right. For further examples on how to align the data see Section 3.1.6,
“Quad-Word Data Alignment.” The default byte and bit ordering is big-endian as in the
PowerPC architecture; see Section 3.1.2.2, “Little-Endian Byte Ordering,” for information
about little-endian byte ordering.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-27



AltiVec UISA Instructions

Table 4-16 summarizes the vector alignment instructions.

Table 4-16. Vector Load Instructions Supporting Alignment

Name

Mnemonic

Syntax

Operation

Load Vector
for Shift Left

Ivsl

v D,rA,rB

The EA is the sum (rA|0) + (rB). The EA[60-63] = sh, then based on a

table lookup place the value in vD

if sh = Ox0 then (vD)0:127 <-
0x000102030405060708090A0BOCODOEOF
if sh = Ox1 then (vD)0:127 <-
0x0102030405060708090A0BOCODOEOF10
if sh = 0x2 then (vD)0:127 <-
0x02030405060708090A0BOCODOEOF1011
if sh = 0x3 then (vD)0:127 <-
0x030405060708090A0BOCODOEOF101112
if sh = Ox4 then (vD)0:127 <-
0x0405060708090A0BOCODOEOF10111213
if sh = Ox5 then vD)0:127 <-
0x05060708090A0BOCODOEOF1011121314
if sh = Ox6 then (vD)0:127 <-
0x060708090A0BOCODOEOF101112131415
if sh = 0x7 then (vD)0:127 <-
0x0708090A0BOCODOEOF10111213141516
if sh = Ox8 then (vD)0:127 <-
0x08090A0BOCODOEOF1011121314151617
if sh = 0x9 then (vD)0:127 <-
0x090A0BOCODOEOF101112131415161718
if sh = OxA then (vD)0:127 <-
0xOAOBOCODOEOF10111213141516171819
if sh = 0xB then (vD)0:127 <-
0xOBOCODOEOF101112131415161718191A
if sh = OxC then (vD)0:127 <-
0xOCODOEOF101112131415161718191A1B
if sh = OxD then (vD)0:127 <-
0xODOEOF101112131415161718191A1B1C
if sh = OxE then (vD)0:127 <-
O0xOEOF101112131415161718191A1B1C1D
if sh = OxF then (vD)0:127 <-
0x0F101112131415161718191A1B1C1D1E
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Table 4-16. Vector Load Instructions Supporting Alignment (Continued)

Load Vector
for Shift Right

Ivsr

v D,rArB | The EAis the sum (rA|0) + (rB). The EA[60—63] = sh, then based on the
table lookup below place the value in vD

if sh = Ox0 then (vD)0:127 <-
0x101112131415161718191A1B1C1D1E1F
if sh = Ox1 then (vD)0:127 <-
0x0F101112131415161718191A1B1C1D1E
if sh = 0x2 then (vD)0:127 <-
O0xOEOF101112131415161718191A1B1C1D
if sh = 0x3 then (vD)0:127 <-
0xODOEOF101112131415161718191A1B1C
if sh = Ox4 then (vD)0:127 <-
0xOCODOEOF101112131415161718191A1B
if sh = Ox5 then (vD)0:127 <-
0xOBOCODOEOF101112131415161718191A
if sh = Ox6 then (vD)0:127 <-
0xOAOBOCODOEOF10111213141516171819
if sh = Ox7 then (vD)0:127 <-
0x090A0BOCODOEOF101112131415161718
if sh = 0x8 then (vD)0:127 <-
0x08090A0BOCODOEOF1011121314151617
if sh = 0x9 then (vD)0:127 <-
0x0708090A0BOCODOEOF10111213141516
if sh = OxA then (vD)0:127 <-
0x060708090A0BOCODOEOF101112131415
if sh = OxB then (vD)0:127 <-
0x05060708090A0BOCODOEOF1011121314
if sh = OxC then (vD)0:127 <-
0x0405060708090A0BOCODOEOF10111213
if sh = OxD then (vD)0:127 <-
0x030405060708090A0BOCODOEOF101112
if sh = OxE then (vD)0:127 <-
0x02030405060708090A0BOCODOEOF1011
if sh = OxF then (vD)0:127 <-
0x0102030405060708090A0BOCODOEOF10
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4.2.3.4 Vector Store Instructions

For vector store instructions, the contents of vector register used as a g8)iare Stored
into the byte, half word, word or quad word in memory addressed by the effective address
(EA). Table 4-17 provides a summary of the vector store instructions.

Table 4-17. Integer Store Instructions

Name Mnemonic | Syntax Operation
Store Vector | svetbx VS,rA,rB | The EA is the sum (rA|0) + (rB). Store the contents of the low-order bits of
Element svethx vS into the integer in memory addressed by the EA.
Integer svetwx

Because memory needs to stay aligned, the EA is set to default to

Indexed alignment:
For b, byte, integer length = 8 bits =1 byte,
For h, half word, integer length = 16 bits = 2 bytes, EA[62-63] is set to 0b0
For w, word, integer length = 32 bits = 4 bytes, EA[61-63] is set to 0b00
Store Vector | stvx v S,rA,rB | The EA is the sum (rA|O) + (rB). Store the contents of vS into the quad word
Element in memory addressed by the EA.
Indexed For g, quad word, integer length = 64 bits = 4 bytes, the EA[60-63] is set to
0b0000
LRU=0
If the processor is in little-endian mode, store the contents of vS[64—127]
into the double word in memory addressed by EA, and store the contents of
vS[0-63] into the double word in memory addressed by EA+8.
Store Vector | stvxl v D,rArB | The EAis the sum (rA|0) + (rB). Store the contents of vS into the quad word
Element in memory addressed by the EA.
:_néjsxed For d, double word, integer length=64 bits = 4 bytes, the EA[60-63] is set to

0b0000

LRU =1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

If the processor is in little-endian mode, store the contents of vS[64-127]
into the double word in memory addressed by EA, and store the contents of
vS[0-63] into the double word in memory addressed by EA+8.

4.2.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a
complete program. AltiVec instructions do provide a vector compare and select mechanism
to implement conditional execution as the preferred mechanism to control data flow in
AltiVec programs. And AltiVec vector compare instructions can update the condition
register thus providing the communication from AltiVec execution units to PowerPC
branch instructions necessary to modify program flow based on vector data.

4.2.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math and vector formatting. Details of the various instructions follow.
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4.2.5.1 Vector Pack Instructions

Half-word vector pack instructiongggkuhum, vpkuhus, vpkshus vpkshsg truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modiflp(B-bit signed-saturation, or 8-bit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, vpksws) truncate the eight words from two concatenated
source operands producing a single result of eight half words using modulo(2716), 16-bit
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

One special purpose form of Veector Pack Pixpkpx) instruction is provided that packs
eight 32-bit (8/8/8/8) pixels from two concatenated source operands into a single result of
eight 16-bit 1/5/5/%RGB pixels. The least significant bit of the first 8-bit element becomes
the 1-bita field, and each of the three 8-bit R, G, and B fields are reduced to 5 bits by
discarding the 3 Isbs.

Table 4-18 describes the vector pack instructions.

Table 4-18. Vector Pack Instructions

Name Mnemonic Syntax Operation
Vector vpkuhum vD, VA, vB | Concatenate the low-order unsigned integers of vA and the low-order
Pack vpkuwum unsigned integers of vB and place into vD using unsigned modulo
Unsigned arithmetic. vA is placed in the lower order double word of vD and vB is
Integer placed into the higher order double word of vD.
[S’W.] d For h, half word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in
M’;Z'S:;e other words the 8 low-order bytes of the half words from vA and vB
For w, word, integer length = 32 bits = 4 bytes,4 unsigned integers, in other
words the 4 low-order half words of the words from vA and vB
Vector vpkuhus vD, vA, vB | Concatenate he low-order unsigned integers of vA and the low-order
Pack vpkuwus unsigned integers of vB and place into vD using unsigned saturate
Unsigned clamping mode. VA is placed in the lower order double word of vD and vB
Integer is placed into the higher order double word of vD.
E“W.] d For h, half word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in
nsigne other words the 8 low-order bytes of the half words from vA and vB
Saturate
For w, word, integer length = 32 bits = 4 bytes,4 unsigned integers, in other
words the 4 low-order words of the half words from vA and vB
Vector vpkshus vD, VA, vB | Concatenate the low-order signed integers of vA and the low-order signed
Pack vpkswus integers of vB and place into vD using unsigned saturate clamping mode.
Signed VA is placed in the lower order double word of vD and vB is placed into the
Integer higher order double word of vD.
[S'W.] d For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in
nsigne other words the 8 low-order bytes of the half word from vA and vB
Saturate
For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other
words the 4 low-order half words of the words from vA and vB
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Table 4-18. Vector Pack Instructions (Continued)

Name Mnemonic Syntax Operation
Vector vpkshss vD, VA, vB | Concatenate the low-order signed integers of vA and the low-order signed
Pack vpkswss integers of vB are concatenated and place into vD using signed saturate
Signed clamping mode. VA is placed in the lower order double word of vD and vB
Integer is placed into the higher order double word of vD.
[h.w]

For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in

Unsigned other words the 8 low-order bytes of the half word from vA and vB
Saturate
For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other
words the 4 low-order half words of the words from vA and vB
Vector vpkpx v D, VA, vB | Each word element in vA and vB is packed to 16 bits and the half word is
Pack Pixel placed into vD. Each word from vA and vB is packed to 16 bits in the

following order:

[bit 7 of the first byte (bit 7 of the word)]

[bits 0—4 of the second byte (bits 8-12 of the word)
[bits 0—4 of the third byte (bits 16-20 of the word)]
[bits 0—4 of the fourth byte (bits 24—28 of the word)]

VA half words are placed in the lower order double word of vD and vB half
words are placed into the higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, 8 signed integers, in
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other
words the 4 low-order half words of the words from vA and vB

4.2.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to fill the MSBs. Half word vector unpack
instructions unpack the 4 low half words (or 4 high half words) of one source operand into
4 words using sign extension to fill the MSbs.

A special purpose form of vector unpack is provided, the Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixalupkhpx) instructionsfor 1/5/5/5aRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bitelement in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.
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Table 4-19 describes the unpack instructions.

Table 4-19. Vector Unpack Instructions

Name Mnemonic Syntax Operation
Vector vupkhsb vD, vB Each signed integer element in the high order double word of vB is sign
Unpack vupkhsh extended to fill the MSBs in a signed integer and then is placed into vD.
g.'gh d For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the high
Igne order double word of vB are unpacked and sign extended to 8 half words
Integer .
into vD.
For h, half word, integer length = 16 bits = 2 bytes, 8 signed half words
from the high order double word of vB are unpacked and sign extended to
4 words into vD
Vector vupkhpx v D,vB Each half-word element in the high order double word of vB is unpacked
Unpack to produce a 32-bit word that is then placed in the same order into vD.
High Pixel A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.
sign-extend bit 0 of the half word to 8 bits
zero-extend bits 1-5 of the half word to 8 bits
zero-extend bits 610 of the half word to 8 bits
zero-extend bits 11-15 of the half word to 8 bits
Vector vupkisb vD, vB Each signed integer element in the low-order double word of vB is sign
Unpack vupkish extended to fill the MSBs in a signed integer and then is placed into vD.
?v:lned For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the low-
'9 order double word of vB are unpacked and sign extended to 8 half words
Integer .
into vD.
For h, half word, integer length = 16 bits = 2 bytes, 8 signed half words
from the low-order double word of vB are unpacked and sign extended
into 4 words in vD
Vector vupklpx v D,vB Each half-word element in the low-order double word of vB is unpacked to
Unpack produce a 32-bit word that is then placed in the same order into vD.
Low Pixel

A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.

sign-extend bit O of the half word to 8 bits
zero-extend bits 1-5 of the half word to 8 bits
zero-extend bits 6—10 of the half word to 8 bits
zero-extend bits 11-15 of the half word to 8 bits

4.2.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words (or 2
high words) from two source operands producing a result of 4 words. The vector merge
instruction has many uses, notable among them is a way to efficiently transpose SIMD

vectors. Table 4-20 describes the merge instructions.
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Table 4-20. Vector Merge Instructions

Name

Mnemonic

Syntax

Operation

Vector
Merge
High
Integer

vmrghb
vmrghh
vmrghw

vD, VA, vB

Each integer element in the high order double word of vA is placed into the
low-order integer element in vD. Each integer element in the high order
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the high order
double word of vA are placed into the low-order byte of each half word in
vD and 8 bytes from the high order double word of vB are placed into the
high order byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the
high order double word of vA are placed into the low-order half word of
each word in vD and 4 half words from the high order double word of vB are
placed into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the high order
double word of vA are placed into the low-order word of each double word
in vD and 2 words from the high order double word of vB are placed into the
high order word of each double word in vD.

Vector
Merge
Low
Integer

vmrglb
vmrglh
vmrglw

vD, VA, vB

Each integer element in the low-order double word of vA is placed into the
low-order integer element in vD. Each integer element in the low-order
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the low-order
double word of vA are placed into the low-order byte of each half word in
vD and 8 bytes from the low-order double word of vB are placed into the
high order byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the
low-order double word of vA are placed into the low-order half word of each
word in vD and 4 half words from the low-order double word of vB are
placed into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the low-order
double word of VA are placed into the low-order word of each double word
in vD and 2 words from the low-order double word of vB are placed into the
high order word of each double word in vD.

4.2.5.4

When a program needs to perform arithmetic vector, the vector splat instructions can be
used in preparation for performing arithmetic for which one source vector is to consist of
elements that all have the same value (for example, multiplying all elements of a Vector
Register by a constant). Vector splat instructions can be used to move data where it is
required. For example to multiply all elements of a vector register by a constant, the vector
splat instructions can be used to splat the scalar into the vector register. Likewise, when
storing a scalar into an arbitrary memory location, it must be splatted into a vector register,
and that register specified as the source of the store. This will guarantee that the data
appears in all possible positions of that scalar size for the store. Table 4-21 describes the

Vector Splat Instructions

vector splat instructions.
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Table 4-21. Vector Splat Instructions

Name Mnemonic Syntax Operation

Vector vspltb vD, vB, UIMM | Replicate the contents of element UIMM in vB and place into each

Splat vsplth element in vD.

Integer vspltw For b, byte, integer length = 8 bits = 1 byte, each element is a byte.
For h, half word, integer length =16 bits = 2 bytes, each element is a half
word.
For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

Vector vspltisb vD, SIMM Sign-extend the value of the SIMM field to the length of the element and

Splat vspltish replicate that value and place into each element in vD.

'mS’T‘ed'Zt vspltisw For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

? 'gne For h, half word, integer length =16 bits = 2 bytes, each element is a half

nteger
word.
For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

4.2.5.5 Vector Permute Instructions

Permute instructions allow any byte in any two source vector registers to be directed to any
byte in the destination vector. The fields in a third source operand specify from which field
in the source operands the corresponding destination field will be taken. The Vector
Permute yperm) instruction is a very powerful one that provides many useful functions.
For example, it provides a good way to perform table-lookups and data alignment
operations. An example of how to use the command in aligning data see Section 3.1.6,
“Quad-Word Data Alignment.” Table 4-22 describes the vector permute instruction.

Table 4-22. Vector Permute Instruction

Name Mnemonic Syntax Operation
Vector vperm v D, vA,vB,vC | vC specifies which bytes from vA and vB are to be copied and placed
Permute into the byte elements in vD.

4.2.5.6 Vector Select Instruction

Data flow in the vector unit can be controlled without branching by using a vector compare
and the vector selecvge) instructions. In this use, the compare result vector is used
directly as a mask operand to vector select instructionsSéimstruction selects one field

from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-field basis. Table 4-23 describesethe
instruction.
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Table 4-23. Vector Select Instruction

Name | Mnemonic Syntax Operation
Vector vsel vD,vA,vB,vC | For each bit, compare the value in vC to the value Ob0 and if it equals ObO
Select then load vD with vA's corresponding bit value otherwise compare the

value in vC to the value Ob1l and if it equals Ob1 then load vD with vB’s
corresponding bit value.

4.2.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of a vector register or of a pair of vector
registers left or right by a specified number of byteso( vsro, vsldoi) or bits ¢sl, vsr).
Depending on the instruction, this shift count is specified either by low-order bits of a
vector register or by an immediate field in the instruction. In the former case the low-order
7 bits of the shift count register give the shift count in bits¢dunt< 127). Of these 7 bits,

the high-order 4 bits give the number of complete bytes by which to shift and are used by
vslo andvsro; the low-order 3 bits give the number of remaining bits by which to shift and
are used bysl andvsr.

There are two methods of specifying an inter-element shift or rotate of two source vector
registers, extracting 16 bytes as the result vector. There is also a method for shifting a single
source vector register left or right by any number of bits.

Table 4-24 describes the various vector shift instructions.

Table 4-24. Vector Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift Left vsl vD,vA,vB Shift vA left by the 3 Isbs of vB, and place the result into vD

If vB value in invalid, the default result is boundely undefined

Vector Shift Left vsldoi v D,vA,vB,SH Shift vB left by the 3 Isbs of SH value and then OR with VA,
Double by Octet place the result is into vD

Immediate If vB value in invalid, the default result is O

Vector Shift Left vslo v D,vAvB Shift vA left by the 3 Isbs of vB, and place the result into vD
by Octet

If vB value in invalid, the default result is 0b000

Vector Shift vsro v D,vA,vB Shift vA right by the 3 Isbs of vB, and place the result into vD
Right by Octet

If vB value in invalid, the default result is 0b000

4.2.5.7.1 Immediate Interelement Shifts/Rotates

The Vector Shift Left Double by Octet Immedidtesidoi) instruction provides the basic
mechanism that can be used to provide inter-element shifts and/or rotates. This instruction
is like avperm, except that the shift count is specified as a literal in the instruction rather
than as a control vector in another vector register, as is requivpeby. The result vector
consists of the left-most 16 bytes of the rotated 32-byte concatenatiarn/gf where shift

(SH) is the rotate count. Table 4-25 below enumerates how various shift functions can be
achieved using thesidoi instruction.
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Table 4-25. Coding Various Shifts and Rotates with the vsidoi Instruction

To Get This: Code This:

Operation sh Instruction Immediate VA vB
rotate left double 0-15 vsidoi 0-15 MSV LSv
rotate left double 16-31 | vsidoi mod16(SH) Lsv MSV
rotate right double 0-15 vsidoi 16-sh MSV LSV
rotate right double 16-31 | vsidoi 16—-mod16(SH) LSV MSV
shift left single, zero fill 0-15 vsidoi 0-15 MSV 0x0
shift right single, zero fill 0-15 vsidoi 16-SH 0x0 MSV
rotate left single 0-15 vsidoi 0-15 MSV =VA
rotate right single 0-15 vsidoi 16-SH MSV =VA

4.2.5.7.2 Computed Interelement Shifts/Rotates

The Load Vector for Shift Lefth{sl) instruction and Load Vector for Shift Righvgr)
instruction are supplied to assist in shifting and/or rotating vector registers by an amount
determined at run time. The input specifications have the same form as the vector load and
store instructions, that is, it uses register indirect with index addressingrizide(B).

This is because one of their primary purposes is to compute the permute control vector
necessary for post-load and pre-store shifting necessary for dealing with unaligned vectors.

ThisIvsl instruction can be used to align a big-endian unaligned vector after loading the
(aligned) vectors that contain its pieces. Mstinstruction can be used to unalign a vec-
tor register for use in a read-modify-write sequence that will store an unaligned little-
endian vector.

Thelvsr instruction can be used to align a little-endian unaligned vector after loading the
(aligned) vectors that contain its pieces. Mstinstruction can be used to unalign a vec-

tor register for use in a read-modify-write sequence that will store an unaligned big-endian
vector.

For an example on how thes| instruction is used to align a vector in big-endian mode see
Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode.” For an
example on howvsr is used to align a vector in little-endian mode see Section 3.1.6.2,
“Accessing a Misaligned Quad Word in Little-Endian Mode.”

4.2.5.7.3 Variable Interelement Shifts

A vector register may be shifted left or right by a number of bits specified in a vector
register. This operation is supported with four instructions, two for right shift and two for
left shift.

The Vector Shift Left by Octet/§lo) and Vector Shift Right by Octetgro) instructions
shift a vector register from O to 15 bytes as specified in bits 121-124 of another vector
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register. The Vector Shift Left¢l) and Vector Shift Rightusr) instructions shift a vector
register from 0 to 7 bits as specified in another vector register (the shift count must be
specified in the three Isbs of each byte in the vector and must be identical in all bytes or the
result is boundedly undefined). In all of these instructions, zeros are shifted into vacated
element and bit positions.

Used sequentially with the same shift-count vector register, these instructions will shift a
vector register left or right from 0 to 127 bits as specified in bits 121-127 of the shift-count
vector register. For example:

vslo VZ, VX, VY
vspltb VY, VY, 15
vsl VZ,VZ,VY

will shift vX by the number of bits specified WY and place the results wZ.

With these instructions a full double-register shift can be performed in seven instructions.
The following code will shifyW|X left by the number of bits specifiedviY placing the
result invZ:

vslo t1, VW, VY ; shift the most significant. register left
vspltb VY, VY, 15
vsl t1, t1, VY

vsububm VY, VO, VY ; adjust count for right shift (V0=0)
vsro  t2, VX, VY ; right shift least sign. register

vsr t2, t2, VY

vor VZ, 11, t2 ; merge to get the final result

4.2.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the PowerPC condition
register (CR), machine state register (MSR), and special-purpose registers (SPRs). See
Chapter 4, “Addressing Mode and Instruction Set Summary,’PaverPC: The
Programming Environments Manudior information about the instructions used for
reading from and writing to the MSR and SPRs.

4.2.6.1 AltiVec Status and Control Register Instructions

Table 4-26 summarizes the instructions for reading from or writing télthéec status
and control registeMSCR). For more information on VSCR see section in Section 2.1.1,
“The Vector Status and Control Register (VSCR).”

Table 4-26. Move to/from Condition Register Instructions

Name Mnemonic Syntax Operation
Move to AltiVec Status and Control mtvscr CRM,IS Place the contents of vB into VSCR.
Register
Move from AltiVec Status and Control mfvscr vB Place the contents of VSCR into vB.
Register

4-38 AltiVec Technology Programming Environments Manual MOTOROLA



odd

04

AltiVec VEA Instructions

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers should provide the simplified
mnemonics listed below. Programs written to be portable across the various assemblers for
the PowerPC architecture should not assume the existence of mnemonics not described in
this document.

Simplified mnemonics are provided for thata Stream Tougldst) and Data Stream Touch

for Store(dstst) instructions so that they can be coded with the transient indicator as part
of the mnemonic rather than as a numeric operand. Similarly, simplified mnemonics are
provided for the Data Stream Stfgss) instruction so that it can be coded with the all
streams indicator as part of the mnemonic. These are shown as examples with the
instructions in Table 4-27.

Table 4-27. Simplified Mnemonics for Data Stream Touch (dst)

Operation

Simplified Mnemonic

Equivalent to

Data Stream Touch (non-transient)

dstrA, rB, STRM

dst rA, rB, STRM,0

Data Stream Touch Transient

dsttr A, rB, STRM

dst rA, rB, STRM,1

Data Stream Touch for Store (non-transient)

dststr A, rB, STRM

dstst rA, rB, STRM,0

Data Stream Touch for Transient

dststtr A, rB, STRM

dststt rA, rB, STRM,1

Data Stream Stop (one stream)

dss STRM

dss STRM,0

Data Stream Stop All

dssall

dss 0,1

4.3 AltiVec VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache-control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA. For further details see Chapter 4, “Addressing Mode and Instruction Set
Summary,” inPowerPC: The Programming Environments Manual.

This section describes the additional instructions that are provided by the AltiVec ISA for
the VEA.

4.3.1 Memory Control Instructions—VEA
Memory control instructions include the following types:
* Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions
» Segment lookaside buffer management instructions
e Translation lookaside buffer (TLB) management instructions
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This section describes the user-level cache management instructions defined by the VEA.
See Chapter 4, “Addressing Mode and Instruction Set SummaryouwerPC: The
Programming Environments Manufdr more information about supervisor-level cache,
segment register manipulation, and TLB management instructions.

4.3.2 User-Level Cache Instructions—VEA

W The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” irPowerPC: The Programming Environments Manié@ more
information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions provide a way for
software to communicate to the cache hardware how it should prefetch and prioritize

writeback of data. The principal instruction for this purpose is a software directed cache

prefetch instruction called Data Stream Touds$t)( Other related instructions are provided

for complete control of the software directed cache prefetch mechanism.

Table 4-28 summarizes the directed prefetch cache instructions defined by the VEAgNote
that these instructions are accessible to user-level programs.

Table 4-28. User-Level Cache Instructions

Name Mnemonic Syntax Operation
Data dst rA,rB,STRM,T | This instruction associates the data stream specified by the contents of rA
Stream and rB with the stream ID specified by STRM.
Touch

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are fetched into the data
cache, because the program will probably soon load from the stream, and
that prefetching from any data stream that was previously associated with
the specified stream ID is no longer needed. The hint is ignored for blocks
that are Caching Inhibited.

The specified data stream is defined by the following.

EA: (rA), where rA"=0
unit size: (rB)[35—39 {3-7 for 32-bit implementations}] if (rB)[35-39
{3—7for 32-bit implementations)}] *= 0; otherwise 32
count: (rB)[40-47 {8—15for 32-bit implementations}] if (rB)[40-47
{8-15for 32-bit implementations}] = 0; otherwise 256
stride: (rB)[48—63 {16—31for 32-bit implementations}] if (rB)[48—63
{16-31for 32-bit implementations}] = 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid.
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Table 4-28. User-Level Cache Instructions (Continued)

Name

Mnemonic

Syntax

Operation

Data
Stream
Touch

dstt

rArB,STRM, T

This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are not fetched into the
data cache, because the program will probably not load from the
stream.That is, the data stream will be relatively transient in nature. That is,
it will have poor locality and is likely to be referenced a very few times or
over a very short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing. An implementation is free to ignore dstt,
in that case it should simply be executed as a dst. However, software
should always attempt to use the correct form of dst or dstt regardless of
whether the intended processor implements dstt or not. In this way the
program will automatically benefit when run on processors that do support
dstt.

The specified data stream is defined by the following.

EA: (rA), where rA"=0
unit size: (rB)[35-39 {3-7 for 32-bit implementations}] if (rB)[35-39
{3—7for 32-bit implementations)}] *= 0; otherwise 32
count: (rB)[40-47 {8-15for 32-bit implementations}] if (rB)[40-47
{8-15for 32-bit implementations}] = 0; otherwise 256
stride: (rB)[48—63 {16—31for 32-bit implementations}] if (rB)[48-63
{16-31for 32-bit implementations}] ~= O; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
accessed into fairly frequently in the near future (T=0) or to be transient
(T=1).

If rA=0, the instruction form is invalid.

Data
Stream
Touch
for
Store
(non-
transien

t

dstst

r ArB,STRM,T

This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are fetched into the data
cache, because the program will probably soon access into the stream,
and that prefetching from any data stream that was previously associated
with the specified stream ID is no longer needed. The hint is ignored for
blocks that are caching inhibited.

The specified data stream is defined by the following.

EA: (rA), where rA”=0
unit size: (rB)[35-39 {3-7 for 32-bit implementations}] if (rB)[35-39 {3-
7for 32-bit implementations)}] A= 0; otherwise 32
count: (rB)[40-47 {8-15for 32-bit implementations}] if (rB)[40-47
{8-15for 32-bit implementations}] *= 0; otherwise 256
stride: (rB)[48—63 {16—31for 32-bit implementations}] if (rB)[48-63
{16-31for 32-bit implementations}] = O; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid
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Table 4-28. User-Level Cache Instructions (Continued)

Name

Mnemonic

Syntax

Operation

Data
Stream
Touch
for
Store

dststt

r ArB,STRM, T

This instruction associates the data stream specified by the contents of rA
and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably not be improved if
the cache blocks containing the specified data stream are fetched into the
data cache, because the program will probably not access the stream.
That is, the data stream will be relatively transient in nature. That is, it will
have poor locality and is likely to be referenced a very few times or over a
very short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing.

The specified data stream is defined by the following.

EA: (rA), where rA"=0
unit size: (rB)[35—39 {3-7 for 32-bit implementations}] if (rB)[35-39 {3-
7for 32-bit implementations)}] *= 0; otherwise 32
count: (rB)[40-47 {8—15for 32-bit implementations}] if (rB)[40-47
{8-15for 32-bit implementations}] *= 0; otherwise 256
stride: (rB)[48—-63 {16—31for 32-bit implementations}] if (rB)[48—63
{16-31for 32-bit implementations}] = 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid

Data
Stream
Stop

dss

STRM,A

If A =0 and a data stream associated with the stream ID specified by
STRM exists, this instruction terminates prefetching of that data stream.

If A =1, this instruction terminates prefetching of all existing data streams.
(The STRM field is ignored.)

In addition, executing a dss instruction ensures that all memory accesses
associated with data stream prefetching caused by preceding dst and dstst
instructions that specified the same stream ID as that specified by the dss
instruction (A = 0), or by all preceding dst and dstst instructions (A = 1), will
be in group G1 with respect to the memory barrier created by a
subsequent sync instruction.

dss serves as both a basic and an extended mnemonic. The assembler
will recognize a dss mnemonic with two operands as the basic form, and a
dss mnemonic with one operand as the extended form.

Execution of a dss instruction causes address translation for the specified
data stream(s) to cease. Prefetch requests for which the effective address
has already been translated may complete and may place the
corresponding data into the data cache

Data
Stream
Stop
All

dssall

Terminates prefetching of all existing data streams. All active streams may
be stopped.

If the optional data stream prefetch facility is implemented, dssall
(extended mnemonic for dss), to terminate any data stream prefetching
requested by the interrupted program, in order to avoid prefetching data in
the wrong context, consuming memory bandwidth fetching data that are
not likely to be needed by the other program, and interfering with data
cache use by the other program. The dssall must be followed by a sync,
and additional software synchronization may be required.
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Chapter 5
Cache, Exceptions, and Memory
Management

This chapter summarizes details of the AltiVec™ technology definition that pertain to cache
and memory management models. Note that the AltiVec technology defines most of its
instructions at the user-level (UISA). Because most AltiVec instructions are computational
there is little effect on the VEA and OEA portions of the PowerPC architecture definition.

Because the AltiVec instruction set architecture (ISA) uses 128-bit operands, additional
instructions are provided to optimize cache and memory bus use.

5.1 PowerPC Shared Memory v

In order to fully understand the data stream prefect instructions for the AltiVec, one needs
a knowledge on the PowerPC architecture for shared memory . The following provides
updated details on the PowerPC architecture for shared memory.

The PowerPC architecture supports the sharing of memory between programs, between
different instances of the same program, and between processors and other mechanisms. It
also supports access to memory by one or more programs using different effective
addresses. All these cases are considered memory sharing. Memory is shared in blocks that
are an integral number of pages.

When the same memory has different effective addresses, the addresses are said to be
aliases. Each application can be granted separate access privileges to aliased pages.

5.1.1 PowerPC Memory Access Ordering

The memory model for the ordering of memory accesses is weakly consistent. This model
provides an opportunity for improved performance over a model that has stronger
consistency rules, but places the responsibility on the program to ensure that ordering or
synchronization instructions are properly placed when necessary for the correct execution
of the program. The order in which the processor performs memory accesses, the order in
which those accesses are performed with respect to another processor or mechanism, and
the order in which those accesses are performed in main memory may all be different.
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Several means of enforcing an ordering of memory accesses are provided to allow
programs to share memory with other programs, or with mechanisms such as I/O devices:

« If two Store instructions specify memory locations that are both caching inhibited
and guarded, the corresponding memory accesses are performed in program order
with respect to any processor or mechanism.

e If aload instruction depends on the value returned by a preceding load instruction
(because the value is used to compute the effective address specified by the second
load), the corresponding memory accesses are performed in program order with
respect to any processor or mechanism to the extent required by the memory
coherence required attributes associated with the access, if any. This applies even if
the dependency has no effect on program logic (for example, the value returned by
the first load is ANDed with zero and then added to the effective address specified
by the second load).

* When a processor (P1) executesyacor eieioinstruction a memory barrier is
created, which separates applicable memory accesses into two groups, G1 and G2.
Gl includes all applicable memory accesses associated with instructions preceding
the barrier-creating instruction, and G2 includes all applicable memory accesses
associated with instructions following the barrier-creating instruction. The memory
barrier ensures that all memory accesses in G1 wi | | be performed with respect to
any processor or mechanism, to the extent required by the memory coherence
required attributes associated with the access, if any, before any memory accesses in
G2 are performed with respect to that processor or mechanism.

The ordering done by a memory barrier is said to be “cumulative” if it also orders memory
accesses that are performed by processors and mechanisms other than P1, as follows:

e Gl includes all applicable memory accesses by any such processor or mechanism
that have been performed with respect to P1 before the memory barrier is created.

e G2 includes all applicable memory accesses by any such processor or mechanism
that are performed after a load instruction executed by that processor or mechanism
has returned the value accessed by a store that is in G2.

The memory barrier created Byncis cumulative, and applies to all memory accesses
except those associated with fetching instructions followingyhe instruction. See the
description okieioinstruction in thd?owerPC Microprocessor Family: The Programming
Environments Manudlor a description of the corresponding properties of the memory
barrier created by that instruction.

No ordering should be assumed among the memory accesses caused by a single instruction
(that is, by an instruction for which the access is not atomic), and no means are provided
for controlling that order.
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5.2 AltiVvec Memory Bandwidth Management m

The AltiVec ISA provides a way for software to speculatively load larger blocks of data
from memory. That is, you can use bandwidth that would otherwise be idle which permits
the software to take advantage of locality and reduces the number of system memory
accesses.

5.2.1 Software-Directed Prefetch

Bandwidth between the processor and memory is managed explicitly by the programmer
through use of cache management instructions. These instructions let software indicate to
the cache hardware how to prefetch and prioritize writeback of data. The principle
instruction for this purpose is a software-directed cache prefetch instruction, Data Stream
Touch @st), described in the following section.

5.2.1.1 Data Stream Touch (dst)

The data stream prefetch facility permits a program to indicate that a sequence of units of
memory is likely to be accessed soon by memory access instructions. Such a sequence is
called a data stream or, when the context is clear, simply a stream. A data stream is defined
by the following:

« EA—The effective address of the first unit in the sequence
* Unit size—The number of quad words in each unit; 0 < unitsi@2
e Count—The number of units in the sequence; 0 < cO@%6

e Stride—The number of bytes between the effective address of one unit in the
sequence and the effective address of the next unit in the sequence (that is, the
effective address of the nth unit in the sequence is EA + (n - 1) x stride); (82768
stride < 0 or 0 < stridg 32768)

The units need not be aligned on a particular memory boundary. The stride may be negative.

The dst instruction specifies a starting address, a block size (1-32 vectors), a humber of
blocks to prefetch (1-256 blocks), and a signed stride in bytes (-32,768 to +32,768 bytes),
The 2-bit tag, specified as an immediate field in the opcode, identifies one of four possible
touch streams. The starting address of the stream is specified (ifi rA = 0, the
instruction form is invalid). BlockSize, BlockCount, and BlockStride are specified.in

Do not confuse the term ‘cache block’, the term ‘block’ always indicates a PowerPC cache
block.

The format of theB register is shown in Figure 5-1.

| 000 ‘ BlockSize BlockCount Signed BlockStride

0 2 3 7 8 15 16 31

Figure 5-1. Format of rB in dst Instruction
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There is no zero-length block size, block count, or block stride. A BlockSize of 0 indicates
32 vectors, a BlockCount of O indicates 256 blocks, and a BlockStride of O indicates
+32,768 bytes. Otherwise, these fields correspond to the numerical value of the size, count,
and stride. Do not specify strides smaller than 1 block (16 bytes).

The programmer specifies block size in terms of vectors (16 bytes), regardless of the cache-
block size. Hardware automatically optimizes the number of cache blocks it fetches to bring
a block into the cache. The number of cache blocks fetched into the cache for each block is
the fewest natural cache blocks needed to fetch the entire block, including the effects of
block misalignment to cache blocks, as shown in the following:

BlockSize + mod(BlockAddr,CacheBlockSize)
CacheBlockSize

CacheBlocksFetched = ceiling (

The address of each block in a stream is a function of the stream'’s starting address, the
block stride, and the block being fetched. The starting address may be any 32-bit byte
address. Each block’s address is computed as a full 32-bit byte address from the following:

where n = {0 ... (BlockCount — 1
BlockAddrn =(A)*n (B)16-31 1y ((EB)le_(31=0) then ((rB)ligl <3132768)
The address of the first cache block fetched in each block is that block’s address aligned to
the next lower natural cache-block boundary by ignoring(@acheBlockSize) least
significant bits (Isbs) (for example, for 32-byte cache-blocks, the five Isbs are ignored).
Cache blocks are then fetched sequentially forward until the entire block of vectors is
brought into the cache. An example of a six-block data stream is shown in Figure 5-2

A
Yy

Memory
- Stream >

|
<—>{ BlockSize = (rB)3_7 ‘
KR [+ 2 Kl [+ | s ]
> Blockstride = (1B)y5 3

AL Starting Address = (rA)

BlockAddry, (n=3)

Figure 5-2. Data Stream Touch

Executing adst instruction notifies the cache/memory subsystem that the program will
soon need specified data. If bandwidth is available, the hardware starts loading the specified
stream into the cache. To the extent that hardware can acquire the data, when the loads
requiring the data finally execute, the target data will be in the cache. Executing a second
dst to the tag of a stream in progress aborts the existing stream (at hardware’s earliest
convenience) and establishes a new stream with the same stream tag ID.
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Thedst instruction is a hint to hardware and has no architecturally visible effects (in the
PowerPC UISA sense). The hardware is free to ignore it, to start the prefetch when it can,
to abort the stream at any time, or to prioritize other memory operations ahead of it. If a
stream is aborted, the program still functions properly, but subsequent loads experience the
full latency of a cache miss.

The dst instruction does not introduce implementation problems like those of load/store
multiple/string instructions. Becaudet does not affect the architectural state, it does not
cause interlock problems associated with load/store multiple/string instructionsdgtiso,
does take exceptions and requires no complex recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly speculative
situations could waste considerable bandwidth. Implementations that do not implement the
stream mechanism treat stream instructials$, @Istt, dsts, dstst, dss anddssal) as no-

ops. If the stream mechanism is implemented, all four streams must be provided.

5.2.1.2 Transient Streams (dstt)

The memory subsystem consideist an indication that its stream data is likely to have
some reasonable degree of locality and be referenced several times or over some reasonably
long period. This is called persistence. The Data Stream Touch Transient instisttijpn (
indicates to the memory system that its stream data is transient, that is, it has poor locality
and is likely to be used very few times or only for a very short time. A memory subsystem
can use this knowledge to manage data for the processor’s cache/memory design. An
implementation may ignore the distinction between transience and persistence, in that case
dstt acts likedst. However, portable software should always use the correct fodst of

dstt regardless of whether the intended processor makes that distinction.

5.2.1.3 Storing to Streams (dstst)

A dstinstruction brings a cache block into the cache subsystem in a state most efficient for
subsequent reading of data from it (load). The companion instruction, Data Stream Touch
for Store (@stst), brings the cache block into the cache subsystem in a state most efficient
for subsequent writing to it (store). For example, in a MESI cache subsysistmight

bring a cache block in shared (S) state, wheredstsa would bring the cache block in
exclusive (E) state to avoid a subsequent demand-driven bus transaction to take ownership
of the cache block so the store can proceed.

The dstst streams are the same physical streantsastreams, that igistst stream tags
are aliases dalst tags. If not implementedstst defaults tadst. If dst is not implemented,
it is a no-op. Thelststt instruction is a transient version astst

Data stream prefetching of memory locations is not supported when bit 57 of the segment
table entry or bit O of the segment register (SR) is setdsf ar dststinstruction specifies
a data stream containing these memory locations, results are undefined.
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5.2.1.4 Stopping Streams (dss)

Thedst instructions have a counterpart called Data Stream 883p A program can stop

any given stream prefetch by executasg with that stream’s tag. This is useful when a
program speculatively starts a stream prefetch but later determines that the instruction
stream went the wrong way. THesinstruction can stop the stream so no more bandwidth

is wasted. All active streams may be stopped by udssgll This is useful when the
operating system needs to stop all active streams (process switch) but does not know how
many streams are in progress.

Becausealssall does not specify the number of implemented streams, it should always be
used instead of a sequencals$instructions to stop all streams.

Neitherdssnordssallis execution synchronizing; the time between whessis issued

and the stream stops is not specified. Therefore, when software must ensure that the stream
is physically stopped before continuing (for example, before changing virtual memory
mapping), a special sequence of synchronizing instructions is required. The sequence can
differ for different situations, but the following sequence works in all contexts:

dssall ; stop all streams

sync ; insert a barrier in memory pipe

lwz Rn,... ; stick one more operation in memory pipe
cmpd Rn,Rn ;

bne- *-4 ; make sure load data is back

isync ; wait for all previous instructions to

; complete to ensure
; memory pipe is clear and nothing is
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appogwriate
instruction. The termination can be synchronized by executayg@instruction after the
dssinstruction if the memory barrier createddync orders all address translation effects

of the subsequent context-altering instructions. Otherwise, data dependencies are also
required. For example, the following instruction sequence terminates all data stream
prefetching before altering the contents of an segment register (SR):

dssall ; stop all data stream prefetching
sync ; order dssall before load

wz Ry,sr_y(Rx) ;load new SR value

mtsr y,Ry ; alter SRy

The mtsr instruction cannot be executed until the loads the SR value intoy. The

memory access caused by the cannot be performed until tlkssall instruction takes

effect (that is, until address translation stops for all data streams and all memory accesses
associated with data stream prefetches for which the effective address was translated before
the translation stopped are performed).
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5.2.1.5 Exception Behavior of Prefetch Streams

In general, exceptions do not cancel streams. Streams are sensitive to whether the processor
is in user or supervisor mode (determined by MSR[PR]) and whether data address
translation is used (determined by MSR[DR]). This allows prefetch streams to behave
predictably when an exception occurs.

Streams are suspended in real addressing mode (MSR[DR] = 0) and remain suspended until
translation is turned back on (MSR[DR set). Adst instruction issued while data
translation is off (MSR[DR] = 0) produces boundedly-undefined results.

A stream is suspended whenever the MSR[PR] is different than it was whast that
established it was issued. For example,désis issued in user mode (MSR[PR] = 1), the
resulting stream is suspended when the processor enters supervisor mode (MSR[PR] = 0)
and remains suspended until the processor returns to user mode. Converselst Viidne

issued in supervisor mode, it is suspended if the machine enters user mode.

Because exceptions do not cancel streams automatically, the operating system must stop
streams explicitly when warranted, for example when switching processes or changing
virtual memory context. Care must be taken if data stream prefetching is used in supervisor-
level state (MSR[PR] = 0).

After an exception, the supervisor-level program that next changes MSR[DR] from O to 1
cause data-stream prefetching to resume for any data streams for which the corresponding
dst or dstst instruction was executed in supervisor mode; such streams are called
supervisor-level data streams. This program is unlikely to be the one that executed the
correspondingist or dststinstruction and is unlikely to use the same address translation
context as that in which thast or dsts was executed. (Suspension and resumption of data
stream prefetching work more naturally for user level data streams, because the next
application program to be dispatched after an exception occurs is likely to be the most
recently interrupted program.) Thus, an exception handler that changes the context in which
data addresses are translated may need to terminate data-stream prefetching for supervisor-
level data streams and to synchronize the termination before changing MSR[DR] to 1.

Although terminating all data stream prefetching in this case would satisfy the
requirements of the architecture, doing so would adversely affect the performance of
applications that use data-stream prefetching. Thus, it may be better for the operating
system to record stream IDs associated with any supervisor-level data streams and to
terminate prefetching for those streams only.

Cache affects of supervisor-level data-stream prefetching can also adversely affect
performance of applications that use data stream prefetching, as supervisor-level use of the
associated stream ID can take over an applications’ data stream.

Data stream instructions cannot cause exceptions directly. Therefore, any event that would
cause an exception on a normal load or store, such as a page fault or protection violation,
is instead aborted and ignored.
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Suspension or termination of data stream prefetching for a given data stream need not
cancel prefetch requests for that data stream for which the effective address has been
translated and need not cause data returned by such requests to be discarded. However, to
improve software’s ability to pace data stream prefetching with data consumption, it may
be better to limit the number of these pending requests that can exist simultaneously.

5.2.1.6 Synchronization Behavior of Streams

Streams are not affected (stopped or suspended) by execution of any PowerPC
synchronization instructionsyngc isync, or eieig). This permits these instructions to be

used for synchronizing multiple processors without disturbing background prefetch
streams. Prefetch streams have no architecturally observable effects and are not affected by
synchronization instructions. Synchronizing the termination of data stream prefetching is
needed only by the operating system

5.2.1.7 Address Translation for Streams

Like dcbt anddcbtst instructions,dst, dstst, dstt, anddststt are treated as loads with
respect to address translation, memory protection, and reference and change recording.

Unlike dcbt anddcbtstinstructions, stream instructions that cause a TLB miss cause a page
table search and the page descriptor to be loaded into the TLB. Conceptually, address
translation and protection checking is performed on every cache-block access in the stream
and proceeds normally across page boundaries and TLB misses, terminating only on page
faults or protection violations that cause a DSI exception.

Stream instructions operate like normal PowerPC cache instructions (sdchtlaith

respect to guarded memory; they are not subject to normal restrictions against prefetching
in guarded space because they are program directed. However, spedstatisguctions

can not start a prefetch stream to guarded space.

If the effective address of a cache block within a data stream cannot be translated, or if
loading from the block would violate memory protection, the processor will terminate
prefetching of that stream. (Continuing to prefetch subsequent cache blocks within the
stream might cause prefetching to get too far ahead of consumption of prefetched data.) If
the effective address can be translated, a TLB miss can cause such termination, even on
implementations for which TLBs are reloaded in software.

5.2.1.8 Stream Usage Notes

A given data stream exists ifdst or dststinstruction has been executed that specifies the
stream and prefetching of the stream has neither completed, terminated, or been supplanted.
Prefetching of the stream has completed, when all the memory locations within the stream
that will ever be prefetched as a result of executingigter dstst instruction have been
prefetched (for example, locations for which the effective address cannot be translated will
never be prefetched). Prefetching of the stream is terminated by executing the appropriate
dssinstruction; it is supplanted by executing anotie&ror dstst instruction that specifies
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the stream ID associated with the given stream. Because there are four stream IDs, as many
as four data streams may exist simultaneously.

The maximum block count afst is small because of its preferred usage. It is not intended
for a singladst instruction to prefetch an entire data stream. Instistéhstructions should
be issued periodically, for example on each loop iteration, for the following reasons:

» Short, frequentist instructions better synchronize the stream with consumption.

» With prefetch closely synchronized just ahead of consumption, another activity is
less likely to inadvertently evict prefetched data from the cache before it is needed.

« The prefetch stream is restarted automatically after an exception (that could have
caused the stream to be terminated by the operating system) with no additional
complex hardware mechanisms needed to restart the prefetch stream.

Issuing newdst instructions to stream tag IDs in progress terminates old stredsts—
instructions cannot be queued.

For example, when multiplést instructions are used to prefetch a large stream, it would
be poor strategy to issue a secdstiwhose stream begins at the specified end of the first
stream before it was certain that the first stream had completed. This could terminate the
first stream prematurely, leaving much of the stream unprefetched.

Paradoxically, it would also be unwise to wait for the first stream to complete before issuing
the secondlst. Detecting completion of the first stream is not possible, so the program
would have to introduce a pessimistic waiting period before restarting the stream and then
incur the full start-up latency of the second stream.

The correct strategy is to issue the seatstdvell before the anticipated completion of the

first stream and begin it at an address overlapping the first stream by an amount sufficient
to cover any portion of the first stream that could not yet have been prefetched. Issuing the
secondist too early is not a concern because blocks prefetched by the first stream hit in the
cache and need not be refetched. Thus, even if issued prematurely and overlapped
excessively, the secomt$t rapidly advances to the point of prefetching new blocks. This
strategy allows a smooth transition from the first stream to the second without significant
breaks in the prefetch stream.

For the greatest performance benefit from data-stream prefetching, kst dmel dstst
(anddssy instructions so that the prefetched data is used soon after it is available in the data
cache. Pacing data stream prefetching with consumption increases the likelihood that
prefetched data is not displaced from the cache before it is used, and reduces the likelihood
that prefetched data displaces other data needed by the program.
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Specifying each logical data stream as a sequence of shorter data streams helps achieve the
desired pacing, even in the presence of exceptions, and address translation failures. The
components of a given logical data stream should have the following attributes:

* The same stream ID should be associated with each component.

» The components should partially overlap (that is, the first part of a component
should consist of the same memory locations as the last part of the preceding
component).

e The memory locations which do not overlap with the next component should be
large enough that a substantial portion of the component is prefetched. That is,
prefetch enough memory locations for the current component before it is taken over
by the prefetching being done for the next component.

5.2.1.9 Stream Implementation Assumptions

Some processors can treat instructions as no-ops. However, if a processor implements
dst, a minimum level of functionality will be provided to create as consistent a
programming model across different machines as possible. Programs can assume the
functionality in a dst instruction:

« Implements all four tagged streams

« Implements each tagged stream as a separate, independent stream with arbitration
for memory access performed on a round-robin basis.

» Searches the table for each stream access that misses in the TLB.
« Does not abort streams on page boundary crossings
» Does not abort streams on exceptions (except DSI exceptions caused by the stream).

« Does not abort streams, or hold up execution pending completion of streams, on the
PowerPC synchronization instructiosyg isync, or eieio.

* Does not abort streams on TLB misses that occur on loads or stores issued
concurrently with running streams. However, a DSI exception from one of those
loads or stores may cause streams to abort.

5.2.2 Prioritizing Cache Block Replacement

Load Vector Indexed LRU\xI) and Store Vector Indexed LRBtYxI) instructiongprovide

explicit control over cache block replacement by letting the programmer indicate whether
an access is likely to be the last reference made to the cache block containing this load or
store. The cache hardware can then prioritize replacement of this cache block over others
with older but more useful data.

Data accessed by a normal load or store is likely to be needed more than once. Marking this
data as most-recently used (MRU) indicates that it should be a low-priority candidate for
replacement. However, some data, such as that used in DSP multimedia algorithms, is
rarely reused and should be marked as the highest priority candidate for replacement.
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Normal accesses mark data MRU. Data unlikely to be reused can be marked LRU. For
example, on replacing a cache block marked LRU by one of these instructions, a processor
may improve cache performance by evicting the cache block without storing it in
intermediate levels of the cache hierarchy (except to maintain cache consistency).

5.2.3 Partially Executed AltiVec Instructions

The OEA permits certain instructions to be partially executed when an alignment or DSI
exception occurs. In the same way that the target register may be altered when floating-
point load instructions cause a DSI exception, if the AltiVec facility is implemented, the
target registervyD) may be altered whelvx or Ivxl is executed and the TLB entry is
invalidated before the access completes.

Exceptions cause data stream prefetching to be suspended for all existing data streams.
Prefetching for a given data stream resumes when control is returned to the interrupted
program, if the stream still exists (for example, the operating system did not terminate
prefetching for the stream).

5.3 DSI Exception—Data Address Breakpoint

A data address breakpoint register (DABR) match causes a DSI exception in
implementations that support the data breakpoint feature. When a DABR match occurs on
a non-AltiVec PowerPC processor, the DAR is set to any effective address between and
including the word (for a byte, half word, or word access) or double word (for a double-
word access) specified by the effective address computed by the instruction and the
effective address of the last byte in the word or double word in which the match occurred.
In processors that support AltiVec technology, this would include a quad-word access from
anlvx, Ivxl, stvx, orstvxl instruction to a segment or BAT area.

5.4 AltiVec Unavailable Exception (0x00F20)

The AltiVec facility includes an additional instruction-caused, precise exception to those
defined by the OEA and discussed in Chapter 6, “Exceptions,” in the PowerPC
Programming Environments Manua\n AltiVec unavailable exception occurs when no
higher priority exception exists (see Table 5-2), an attempt is made to execute an AltiVec
instruction, and MSR[VEC] = 0.
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Register settings for AltiVec unavailable exceptions are described in Table 5-1.

Table 5-1. AltiVec Unavailable Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 64-Bit  32-Bit
0-32 0 Loaded with equivalent bits from the MSR
33-36 14 Cleared
37-41 5-9 Loaded with equivalent bits from the MSR
42-47 10-15 Cleared
48-63 16-31  Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
MSR SFl 1 EE O SE O DR O
ISF1 — PR 0 BE 0 RI 0
VEC 0 FP 0 FE1 O LE  Setto value of ILE
POW 0 ME — IP —
ILE — FEO O IR 0

1 64-bit implementations only

When an AltiVec unavailable exception is taken, instruction execution resumes as offset
0x00F20 from the base address determined by MSR[IP].

The dst and dstst instructions are supported if MSR[DR] = 1. If either instruction is
executed when MSR[DR] = 0 (real addressing mode), results are boundedly undefined.

Conditions that cause this exception are prioritized among instruction-caused
(synchronous), precise exceptions as shown in Table 5-2 (taken from the section
“Exception Priorities,” in Chapter 6, “Exceptions,” iRowerPC: The Programming
Environments Manual.
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Table 5-2. Exception Priorities (Synchronous/Precise Exceptions)

Priority

Exception

31

Instruction dependent—When an instruction causes an exception, the exception mechanism waits for any
instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions caused by
these instructions are handled first. It then generates the appropriate exception if no higher priority exception
exists when the exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those exceptions are ordered
in priority as indicated in the following:
A. Integer loads and stores
a. Alignment
b. DSI
c. Trace (if implemented)
B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c.DSI
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)
D. AltiVec Loads and Stores (if AltiVec facility implemented)
a. AltiVec unavailable
b. DSI
c. Trace (if implemented)
E. Other AltiVec Instructions (if AltiVec facility implemented)
a. AltiVec unavailable
b. Trace (if implemented)
F. The rfid (or rfi) and mtmsrd (or mtmsr )
a. Program—Supervisor level Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr ) only
If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is set, a
program exception occurs no later than the next synchronizing event.
G. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
— Program: Trap
— System call (sc)
— Program: Supervisor level instruction
— Program: lllegal Instruction
b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions prior to
the instruction causing this exception appear to have completed and that instruction is to be executed. The
priority of this exception is specified for completeness and to ensure that it is not given more favorable
treatment. An implementation can treat this exception as though it had a lower priority.

1 The exceptions are third in priority after system reset and machine check exceptions
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Chapter 6
AltiVec Instructions

This chapter lists the AltiVec instruction set in alphabetical order by mnemonic. Note that
each entry includes the instruction format and a graphical representation of the instruction.
All the instructions are 32 bit and a description of the instruction fields and pseudocode
conventions are also provided. For more information on the AltiVec instruction set, refer to
Chapter 4 “Addressing Modes and Instruction Set Summary,” for more information on the
PowerPC instruction set, refer to Chapter 8, “Instruction Set,The PowerPC
Microprocessor Family: The Programming Environments Manual

6.1 Instruction Formats

AltiVec instructions are four bytes (32 bits) long and are word-aligned. AltiVec instruction
set architecture (ISA) has 4 operands, three source vectors and one result vector. Bits 0-5
always specify the primary opcode for AltiVec instructions. AltiVec ALU type instructions
specify the primary opcode point 4(0b000100). AltiVec load, store, and stream prefetch
instructions use secondary opcode in primary opcode 31 (0b011111).

Within a vector register, a byte, half-word, or word element, are referred to as follows:
« Byte elements, each byte = 8 bits, so in the pseudocode, n = 8 and there would be a

total of 16 elements

» Half-word elements, each byte = 16 bits, so in the pseudocode, n = 16 and there
would be a total of 8 elements

» Word elements, each byte = 32 bhits, so in the pseudocode, n = 32 and there would
be a total of 4 elements

Refer to Figure 1-3, for an example of how elements are placed in a vector register.
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6.1.1 Instruction Fields
Table 6-1 describes the instruction fields used in the various instruction formats.

Table 6-1. Instruction Syntax Conventions

Field Description
OPCD (0-5) Primary opcode field
rA, A(11-15) Specifies a GPR to be used as a source or destination.

rB, B(16-20) Specifies a GPR to be used as a source.

Rc (31) Record bit.

0 Does not update the condition register (CR).

1 For the optional AltiVec facility, set CR field 6 to control program flow as described in
Section 2.1.3, “PowerPC Condition Register”

VA (11-15) Specifies a vector register to be used as a source
vB (16-20) Specifies a vector register to be used as a source.
vC (21-25) Specifies a vector register to be used as a source.
vD (6-10) Specifies a vector register to be used as a destination.
vS (6-10) Specifies a vector register to be used as a source.

SHB (22-25) Specifies a shift amount in bytes.

SIMM (11-15) This immediate field is used to specify a (5 bit) signed integer.

UIMM (11-15) This immediate field is used to specify a 4-,8-,12-, or 16-bit unsigned integer.

X0 Extended Opcode Field.

6.1.2 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode).
See Table 6-2 for a list of additional pseudocode notation and conventions used throughout
this section.

Table 6-2. Notation and Conventions

Notation/Convention Meaning
- Assignment
- NOT logical operator
doi=XtoY by Z Do the following starting at X and iterating to 'Y by Z
+int 2’'s complement integer add
-int 2's complement integer subtract
+ui Unsigned integer add
-ui Unsigned integer subtract
*ui Unsigned integer multiply
+si Signed integer add
-si Signed integer subtract
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Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning

*si Signed integer multiply

*sui Signed integer (first operand) multiplied by unsigned integer (second operand)
producing signed result

/ Integer divide

+p Single-precision floating-point add

“fp Single-precision floating-point subtract

o Single-precision floating-point multiply

“fp Single-precision floating-point divide

‘/fp Single-precision floating-point square root

<ui, <ui, >ui, 2ui Unsigned integer comparison relations

Signed integer comparison relations

Single precision floating point comparison relations

A Not equal

Sint Integer equal to

=ui Unsigned integer equal to

=i Signed integer equal to

=t Floating-point equal to

X>>,Y Shift X right by Y bits extending Xs vacated bits with zeros

X>>gY Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X<<yuY Shift X left by Y bits inserting Xs vacated bits with zeros

Il Used to describe the concatenation of two values (that is, 010 || 111 is the same
as 010111)

& AND logical operator

| OR logical operator

O,= Exclusive-OR, Equivalence logical operators (for example, (a = b) = (a - b))

Obnnnn A number expressed in binary format.

oxnnnn A number expressed in hexadecimal format.

? Unordered comparison relation

X0 X zeros

X1 X ones

Xy X copies of Y

Xy bitY of X

Xy:z bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word “element”, LENGTH(x) is the length, in bits, of
the element implied by the instruction mnemonic.
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Table 6-2. Notation and Conventions (Continued)

Notation/Convention

Meaning

ROTL(x,y)

Result of rotating x left by y bits

UltoUImod(X,Y)

Chop unsigned integer X- to Y-bit unsigned integer

UltoUlsat(X,Y)

Result of converting the unsigned-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SltoUlsat(X,Y)

Result of converting the signed-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SltoSImod(X,Y)

Chop integer X- to Y-bit integer

SltoSlsat(X,Y)

Result of converting the signed-integer x to a y-bit signed-integer with signed-
integer saturation

RndToNearFP32

The single-precision floating-point number that is nearest in value to the infinitely-
precise floating-point intermediate result x (in case of a tie, the even single-
precision floating-point value is used).

RndToFPInt32Near

The value x if x is a single-precision floating-point integer; otherwise the single-
precision floating-point integer that is nearest in value to x (in case of a tie, the
even single-precision floating-point integer is used).

RndToFPInt32Trunc

The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x if x>0, or the smallest
single-precision floating-point integer that is greater than x if x<0

RndToFPInt32Ceil

The value x if x is a single-precision floating-point integer; otherwise the smallest
single-precision floating-point integer that is greater than x

RndToFPInt32Floor

The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x

CnViFP32ToUI32Sat(x)

Result of converting the single-precision floating-point value x to a 32-bit
unsigned-integer with unsigned-integer saturation

CnViFP32ToSI32Sat(x)

Result of converting the single-precision floating-point value x to a 32-bit signed-
integer with signed-integer saturation

CnvtUI32ToFP32(x)

Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x)

Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y)

Value at memory location X of size Y bytes

SwapDouble

Swap the doublewords in a quadword vector

ZeroExtend(X,Y)

Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit 0 of x) to produce
Y-bit value

RotateLeft(X,Y) Rotate X left by Y bits

mod(X,Y) Remainder of X/Y

Ulmaximum(X,Y)

Maximum of 2 unsigned integer values, X and Y

Simaximum(X,Y)

Maximum of 2 unsigned integer values, X and Y

FPmaximum(X,Y)

Maximum of 2 floating-point values, X and Y

Ulminimum(X,Y)

Minimum of 2 unsigned integer values, X and Y

SIminimum(X,Y)

Minimum of 2 unsigned integer values, X and Y
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Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning
FPminimum(X,Y) Minimum of 2 floating-point values, X and Y
FPReciprocalEstimate12(X) 12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X) | 12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog,Estimate3(X) 3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X) 3-bit-accurate floating-point estimate of 2**X

CarryOut(X +Y) Carry out of the sum of X and Y

ROTL[64](X, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 32-bit value x || x left y positions, where x is 32 bits long
Obnnnn A number expressed in binary format.

oxnnnn A number expressed in hexadecimal format.

(n)x The replication of x, ntimes (that is, x concatenated to itself n— 1 times).

(M0 and (n)1 are special cases. A description of the special cases follows:
« (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to

0b00000.
* (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
Ob11111.
(rAj0) The contents of rA if the rA field has the value 1-31, or the value 0 if the rA field
is 0.
(rX) The contents of rX
x[n] nis a bit or field within x, where x is a register
X X is raised to the nth power
ABS(x) Absolute value of x
CEIL(x) Least integer = x
Characterization Reference to the setting of status bits in a standard way that is explained in the
text.
CIA Current instruction address.

The 64- or 32-bit address of the instruction being described by a sequence of
pseudocode. Used by relative branches to set the next instruction address (NIA)
and by branch instructions with LK = 1 to set the link register. Does not
correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for
rotate and shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This
operation can be used to scale a known non-negative array index by the width of
an element. These operations are used for rotate and shift instructions.

Cleared Bits = 0.

Do Do loop.

« Indenting shows range.

« “To” and/or “by” clauses specify incrementing an iteration variable.
« “While” clauses give termination conditions.
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Table 6-2. Notation and Conventions (Continued)

Notation/Convention Meaning

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point
double-precision format.

Extract Select a field of n bits starting at bit position b in the source register, right or left
justify this field in the target register, and clear all other bits of the target register
to zero. This operation is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert Select a field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No
simplified mnemonic is provided for insertion of a field when operating on double
words; such an insertion requires more than one instruction.) This operation is
used for rotate and shift instructions. (Note that simplified mnemonics are
referred to as extended mnemonics in the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros
elsewhere.

MEM(X, y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 64- or 32-bit address of the next instruction
to be executed (the branch destination) after a successful branch. In pseudocode,
a successful branch is indicated by assigning a value to NIA. For instructions
which do not branch, the next instruction address is CIA + 4. Does not
correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This

operation is used for rotate and shift instructions.

ROTL[64](x, y)

Result of rotating the 64-bit value x left y positions

ROTL[32](X, y)

Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical
shift). This operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point
single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and
from one execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture
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Table 6-3. Instruction Field Conventions

Instruction Formats

Table 6-3 describes instruction field notation conventions used throughout this chapter.

The PowerPC Architecture Equivalent in AltiVec Technology
Specification Specification as:

D d

DS ds

FLM FM

RA, RB, RT, RS rA, B, D, IS

RA, RB, RT, RS A/B,D, S

Sl SIMM

u IMM

ul UIMM

VA, VB, VC, VT, VS VA, vB, vC, vD, vS

1,00 10 0...0 (shaded)

Precedence rules for pseudocode operators are summarized in Table 6-4.

Table 6-4. Precedence Rules

Operators Associativity
x[n], function evaluation Left to right
(n)x or replication, Right to left
x(n) or exponentiation
unary —, - Right to left
0=+ Left to right
+, - Left to right
Il Left to right

= #%<,5,>,2,<U,>U,? Left to right

& O, = Left to right
| Left to right
— (range), : (range) None
«—, «iea None

Operators higher in Table 6-4 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown.
For example, ‘-’ (unary minus) associates from left to right, soa-b-c=(a-b) - c.
Parentheses are used to override the evaluation order implied by Table 6-4, or to increase
clarity; parenthesized expressions are evaluated before serving as operands.
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6.2 AltiVec Instruction Set

The remainder of this chapter lists and describes the instruction set for the AltiVec
architecture. The instructions are listed in alphabetical order by mnemonic. The diagram
below shows the format for each instruction description page.

Instruction name ———» vaddsbs vaddsbs
ector Add Signed Byte Saturate
Instruction syntax and Form—s\yaddsbs \D,vA,vB Form VX
Instruction encoding ———> | 04 | vD | VA | vB | 768
0 56 1011 1516 2021 25262728 31

Pseudocode description > doi=0t0 127 by 8

. . . aopgg ~ SignExtend((  VA)jj7 9)
of instruction operation bopog — Signexend((  vB)gey )
tempog < 80p g *+in bOp og
VD7 « SltoSlsat(temp 08 8)
end
Text description of —> Eagj element of vaddsbs is a byte.

instruction operation
Each signed-integer element in vA is added to the corresponding signed-integer element
invB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -2 it saturates to -
27. If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.
Other registers altered:
Vector status and control register (VSCR):

Figure showing — 1 » Affected: SAT

instruction usage Figure 6-11 shows the usage of the vaddsbs command. Each of the sixteen elements in the vectors, VA, vB, and

vD, is 8 bits in length..

O O B B B B by B By I By Iy Ty e
INinninninninnnnnnninn:
+v VJ ! +v +v +v +v V+V ! +v +v +v +v V+V VJ ! +v +v +v

Y Y ¥ Y ¥ ¥V ¥V Y VYV ¥ ¥ ¥V ¥V VY
N N N N O

Figure 6-11. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)
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dss dss

Data Stream Stop

dss STRM (A=0) Form X
dssall STRM (A=1)
31 |A| 00 |STRM| 00000 | 00000 | 822 |0|
0 56 7 8 9 10 11 15 16 20 21 30 31
DataStreamPrefetchControl ~ “stop” || STRM

Note that A does not represewt in this instruction.

If A=0 and a data stream associated with the stream ID specifi8T R exists, this
instruction terminates prefetching of that data stream. It has no effect if the specified stream
does not exist.

If A=1, this instruction terminates prefetching of all existing data streams (the STRM field
is ignored.)

In addition, executing dssinstruction ensures that all accesses associated with data stream
prefetching caused by preceding dst and dstst instructions that specified the same stream ID
as that specified by tlissinstruction (A=0), or by all precedirdst anddststinstructions

(A=1), will be in group G1 with respect to the memory barrier created by a subsgguent
instruction, refer to Section 5.1.1, “PowerPC Memory Access Ordering,” for more
information.

See Section 5.2.1, “Software-Directed Prefetch” for more information on usirdsshe
instruction.

Other registers altered:
* None

Simplified mnemonics:
dss STRM equivalent to dss STRMO

dssall equivalent to dss Q1

For more information on thdssinstruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”
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dst dst

Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

31 |T|OO|STRM| A | B | 342 |0|
0 56 7 8 9 10 11 15 16 20 21 30 31

addr g3 « ( rA)

DataStreamPrefetchControl ~ “start” ISTRM ||T ||( rB) |laddr
This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon load from the stream.

The instruction associates the data stream specified by the conteitarair B with the
stream ID specified b§TRM. The instruction defines a data stre8ifRM as starting at

an “Effective Address’r(A) and having “Count” units of “Size” bytes separated by “Stride”
bytes (as specified B). TheT bit of the instruction indicates whether the data stream is
likely to be loaded from fairly frequently in the near futufe=0) or to be transient and
referenced very few time3 (= 1).

[ Memory >
- Stream >
<—>{ Block Size ‘

Block Block Block Block Block Block
0 1 2 8] 4 5
}<—>{ BlockStride f
AL _ BlockAddr, (n=3)
StartingAddress

Thedst instruction does the following:
» Defines the characteristics of a data str&arRM by the contents ofA andrB
» Associates the stream with a specified streanSMRM (Range for STRM is 0-3)

« Indicates that the data in the specified str&aRM starting at the addressiA
may soon be loaded

« Indicates whether memory locations within the stream are likely to be needed over
a longer period of timeT(=0) or be treated as transient datal)

e Terminates prefetching from any stream that was previously associated with the
specified stream IDETRM.
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The specified data stream is encoded for 32-bit as:

» Effective AddresstA, whererA # 0

» Block SizeirrB[3-7] if rB[3-7] # O; otherwise 32

« Block CountrB[8-15] if rB[8-15] # O; otherwise 256

» Block Stride:rB[16-31] if rB[16-31]# O; otherwise 32768

| n | Block Size | Block Count | Block Stride

0 2 3 7 8 15 16 31

Figure 6-1. Format of rB in dst instruction (32-bit)

The specified data stream is encoded for 64-bit as:

» Effective AddresstA, whererA £ 0

* Block Size:rrB[35-39] if rB[35-39] # O; otherwise 32

» Block Count:rB[40-47] if rB[40-47]# O; otherwise 256

» Block Stride:rB[48-63] if rB[48-63] # O; otherwise 32768

| i | Block Size | Block Count | Block Stride

32 3435 39 40 47 48 63

Figure 6-2. Format of rB in dst instruction (64-bit)

Other registers altered:
* None

Simplified mnemonics:
dst rA,rB,STRM equivalent to dst rA,rB,STRMO

dstt rA,rB,STRM equivalent to dst rArB,STRM1

For more information on thdst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”
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dstst dstst

Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

31 |T|OO|STRM| A | B | 374 |0|
0 56 7 8 9 10 11 15 16 20 21 30 31

addr g3 « ( rA)

DataStreamPrefetchControl ~ “start” I T | static |I( rB) |laddr
This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon write to (store into) the stream.

The instruction associates the data stream specified by the conteitarair B with the
stream ID specified b§TRM. The instruction defines a data stre8ifRM as starting at

an “Effective Address’r(A) and having “Count” units of “Size” bytes separated by “Stride”
bytes (as specified B). TheT bit of the instruction indicates whether the data stream is
likely to be stored into fairly frequently in the near futufe< 0) or to be transient and
referenced very few time3 (= 1).

[ Memory >
- Stream >
<—>{ Block Size ‘
| Block‘ ‘ Block ‘ ‘ Block ‘ ‘ Block ‘ ‘ Block ‘ BIock|

0 1 2 3 4 5]
}<—>{ BlockStride f
AL _ BlockAddr, (n=3)

StartingAddress

Thedststinstruction does the following:
» Defines the characteristics of a data str&arRM by the contents ofA andrB
» Associates the stream with a specified streanSTRM (Range for STRM is 0-3)

« Indicates that the data in the specified str&aiRM starting at the addressiA
may soon be stored in to memory

» Indicates whether memory locations within the stream are likely to be stored into
fairly frequently in the near futur@ €0) or be treated as transient ddiaX)

« Terminates prefetching from any stream that was previously associated with the
specified stream IDETRM.
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The specified data stream is encoded for 32-bit as:

» Effective AddresstA, whererA # 0

» Block SizeirrB[3-7] if rB[3-7] # O; otherwise 32

« Block CountrB[8-15] if rB[8-15] # O; otherwise 256

» Block Stride:rB[16-31] if rB[16-31]# O; otherwise 32768

| n | Block Size | Block Count | Block Stride

0 2 3 7 8 15 16 31

Figure 6-3. Format of rB in dst instruction (32-Bit)

The specified data stream is encoded for 64-bit as:

» Effective AddresstA, whererA £ 0

* Block Size:rrB[35-39] if rB[35-39] # O; otherwise 32

» Block Count:rB[40-47] if rB[40-47]# O; otherwise 256

» Block Stride:rB[48-63] if rB[48-63] # O; otherwise 32768

| i | Block Size | Block Count | Block Stride

32 3435 39 40 47 48 63

Figure 6-4. Format of rB in dst instruction (64-Bit)

Other registers altered:
* None

Simplified mnemonics:
dstst rA,rB,STRM equivalent to dstst rA,rB,STRMO

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM1

For more information on theststinstruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”
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lvebx lvebx

Load Vector Element Byte Indexed

Ivebx vD,rA,rB Form X
31 vD A B 7 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=0thenb <0
else b ~(rAp

EA «b+( rB)

eb — EAjgg

vD ~ undefined

if the processor is in big-endian mode

then VDeb*S:(eb*8)+7 - MEM(EA,l)

else  VDio.(etsy127-(eb*8) ~ MEMEAYL)

— EA = (rAJ0)+(rB); m = EA[28-31] (the offset of the byte in its aligned

quadword).
» For 64-bit:
if rA=Othenb 0
else b ~(rA

EA «b+( rB)

eb — EAgpes

vD « undefined

if the processor is in big-endian mode

then VDeb*B:(eb*8)+7 — MEM(EA,].)

else  VDipeney127es ) — MEM(EATL)

— EA = (rAJ0)+(B); m = EA[60-63] (the offset of the byte in its aligned
guadword).

For big-endian mode, the byte addressed by EA is loaded into byteDnlaflittie-endian
mode, it is loaded into byte (15—-m)dd. Remaining bytes imD are undefined.

Other registers altered:
* None
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AltiVec Instruction Set

0x0000_0000 |x X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X |X X X X X X
0x0000_0010  [x x|x X|X X|X X[X X[X X|X X|X X|X X|X X|X X|X X[X X |X X | A |X X
0x0000_0020 |x X X X|X X X X|X X X X|X X X X|X X X X| A X X X X|X|X X X
0x0000_0030 [x X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X[X|X X[X X|X X [X|X X X
0x0000_0040 [x X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X[X|X X[X X|X X [X|X X X
0x0000_0050 [x x x X X X X X| A XXX XXX X X[X XXX X[X XX
0x0000_0060 |x X|X X| X X|X X|X|X|X X|X X|X X|X X|X X|X|X|X X|X X |X X X X X X
0x0000_0070 [x X|X X|X X|X X|X|X|X X|X X|X X|X X|X X|X[X|X X[X X|X X [X|X X X
0x0000_0080 [x X|X X|X X|X X|X[X|X X|X X|X X|X X|X X|X[X|X X[X X|X X [X|X X X
0x0000_0090 [x X|X X|X X|X X|X[X|X X|X X|X X|X X|X X|X[X|X X[X X|X X [X|X X X
0x0000_00A0 | A

0x0000_00B0 xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx
Load or Store:

Byte at x1E |xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘ ‘xxl
Half at x2A |xxxx‘xxxx‘xxxx‘xxxx‘xxxx‘ ‘xxxx‘xxxxl

Word at x54 |x

xxxxxxx‘v ‘xxxxxxxx‘xxxxxxxx

Quad at A0 |

VR

Note: In vector registers, x means boundedly undefined after a load and don’t care after a store. In memory, x means don'’t care
after a load, and leave at current value after a store.

Figure 6-5. Effects of Example Load/Store Instructions
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lvehx lvehx

Load Vector Element Half Word Indexed

Ivehx vD,rA,rB Form X
31 vD A B 39 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=Othenb ~ 0
else b ~(rAp
EA « b+( rB)&(~1)
eb — EAjgar

vD « undefined

if the processor is in big-endian mode

then  VD(epgy(errgyas  — MEM(EA2)
else  VDi1p.(ebg)127-(ebg) ~ MEM(EA.2)

— Let the EA be the result of ANDing the sur@[0)+(rB) with ~1. Let m =
EA[28-30]; m is the half-word offset of the half-word in its aligned quadword in

memory.

* For 64-bit:
if rA=0thenb <0
else b ~(rAp
EA « b+( rB)&(-1)
eb — EAgpe3

vD « undefined

if the processor is in big-endian mode

then  VD(epgy(errgyras  — MEM(EA2)
else  VDi1p.(ebrg)127-(ebg) ~ MEM(EA.2)

— Let the EA be the result of ANDing the sur®[0)+(rB) with ~1. Let m =

EA[60-62]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, the half-word addressed by EA is loaded into half-
word m ofvD. If the processor is in little-endian mode, the half-word addressed by EA is
loaded into half-word (7-m) ofD. The remaining half-word s WD are set to undefined
values. Figure 6-5 shows this instruction.

Other registers altered:
* None
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lvewx lvewx

Load Vector Element Word Indexed

Ivewx vD,rA,rB

Form X
31 vD A B 71 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-hit:
if rA=0thenb <0
else b ~(rAp
EA « b+( TrB)&(=3)
eb — EAjgas

vD ~ undefined

if the processor is in big-endian mode

then  VDypgepgrar  — MEM(EAY)

else  VDyg(etrg)127-eb's ) — MEM(EA4)

— Let the EA be the result of ANDing the sur@[0)+(rB) with ~3. Let m =
EA[28-29]; m is the word offset of the word in its aligned quadword in memory.

» For 64-bit:

if rA=Othenb -0

else b ~(rA

EA « b+( rB)&(-3)

eb — EAgpes

vD ~ undefined

if the processor is in big-endian mode

then  VDuygergar  — MEM(EAA)

else  VDyg(etrg)127eb's ) — MEM(EA4)

— Let the EA be the result of ANDing the suri[0)+(rB) with ~3. Let m =
EA[60-61]; m is the word offset of the word in its aligned quadword in memory.

If the processor is in big-endian mode, the word addressed by EA is loaded into word m of
vD. If the processor is in little-endian mode, the word addressed by EA is loaded into word

(3-m) ofvD. The remaining words D are set to undefined values. Figure 6-5 shows this
instruction.

Other registers altered:
* None
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lvsl lvsl
Load Vector for Shift Left
Ivsl vD,rA,rB Form X
31 vD A B | 0 |
0 5 6 10 11 15 16 20 21 30 31
» For 32-bit:
if rA=0thenb -0
elseb ~(rA
addr 031 « b+( rB)
sh « addr 28-31
if sh = 0x0 then ( vD)g1p7 « 0x000102030405060708090A0BOCODOEOF
if sh =0x1 then ( vD)g107 « 0x0102030405060708090A0BOCODOEOF10
if sh = 0x2 then ( vD)g1p7 « Ox02030405060708090A0BOCODOEOF1011
if sh =0x3 then ( vD)g107 « 0x030405060708090A0BOCODOEOF101112
if sh = 0x4 then ( vD)g1o7 < 0x0405060708090A0BOCODOEOF10111213
if sh = 0x5 then ( vD)g127 « O0x05060708090A0BOCODOEOF1011121314
if sh = 0x6 then ( vD)g107 « 0x060708090A0BOCODOEOF101112131415
if sh = 0x7 then ( vD)g1p7 < Ox0708090A0BOCODOEOF10111213141516
if sh = 0x8 then ( vD)g107 « Ox08090A0BOCODOEOF1011121314151617
if sh = 0x9 then ( vD)g1p7 « Ox090A0OBOCODOEOF101112131415161718
if sh = OxA then ( vD)g127 « OXOAOBOCODOEOF10111213141516171819
if sh = 0xB then ( vD)g1p7 « OxOBOCODOEOF101112131415161718191A
if sh = OxC then ( vD)g1p7 < OxOCODOEOF101112131415161718191A1B
if sh = 0xD then ( vD)g1o7 < OXODOEOF101112131415161718191A1B1C
if sh = OxE then ( vD)g1p7 < OxOEOF101112131415161718191A1B1C1D
if sh = OxF then ( VvD)gq1p7 « OXOF101112131415161718191A1B1C1D1E
— Let the EA be the summ4|0)+(rB). Let sh = EA[28-31].
e For 64-bit:
if rA=0thenb -0
elseb ~(rA
addr 063 b+ ( r B)
sh « addr 60:63
if sh = 0x0 then ( vD)g1p7 « 0x000102030405060708090A0BOCODOEOF
if sh =0x1 then ( vD)g107 « 0x0102030405060708090A0BOCODOEOF10
if sh = 0x2 then ( vD)g1p7 « Ox02030405060708090A0BOCODOEOF1011
if sh =0x3 then ( vD)g107 « 0x030405060708090A0BOCODOEOF101112
if sh = 0x4 then ( vD)g1o7 < 0x0405060708090A0BOCODOEOF10111213
if sh = 0x5 then ( vD)g127 « 0x05060708090A0BOCODOEOF1011121314
if sh = 0x6 then ( vD)g107 « 0x060708090A0BOCODOEOF101112131415
if sh = 0x7 then ( vD)g1p7 <« Ox0708090A0BOCODOEOF10111213141516
if sh = 0x8 then ( vD)g107 « Ox08090A0BOCODOEOF1011121314151617
if sh = 0x9 then ( vD)g1p7 « Ox090A0OBOCODOEOF101112131415161718
if sh = OxA then ( vD)g127 <« OXOAOBOCODOEOF10111213141516171819
if sh = 0xB then ( vD)g1p7 « OxOBOCODOEOF101112131415161718191A
if sh = OxC then ( vD)g1p7 < OxOCODOEOF101112131415161718191A1B
if sh = 0xD then ( vD)g1o7 < OXODOEOF101112131415161718191A1B1C
if sh = OxE then ( vD)g1p7 < OxOEOF101112131415161718191A1B1C1D
if sh = OxF then ( VD)gq127 « OXOF101112131415161718191A1B1C1D1E
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— Let the EA be the sunmt4&|0)+(rB). Let sh = EA[60-63].

Let X be the 32-byte value 0x00 || 0x01 || Ox02 || ... || OX1E || OX1F. Bytes sh:sh+15 of X are
placed intosD. Figure 6-6 shows how this instruction works.

Other registers altered:
* None

00000008 |rA
+
00000004 |rB
Table Lookup 0000000C | Temp

[oc[op[oe[oFJ10]11 1213141516 27]18] 19 1A ]1B]| WD

Figure 6-6. Load Vector for Shift Left

The abovdvsl instruction followed by a Vector Permutepérm) would do a simulated
alignment of a four-element floating-point vector misaligned on quad-word boundary at
address 0x0....C.

[oc]opJoEor]10 11 ]12]13]14 15 16]17]18]19[1a]1B] vC

[o]1T2]3]4]s5]e6]7[8]9]Aa]lB]CID]JE]F]vA

[0 [21 [22 [13 14 [ 15 [16 [17 [18 [19 [1A[1B 1C [1D [1E [1F | vB

I A I S S S b S A

Figure 6-7. Instruction vperm Used in Aligning Data

Refer, also, to the description of tihesr instruction for suggested uses of thsl
instruction.
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lvsr lvsr
Load Vector for Shift Right
Ivsr vD,rA,rB Form X
31 vD A B 38 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=0thenb <0
else b ~(rA

EA «b+( rB)

sh — EAxgar

if sh=0x0 then vD ~ 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ~ 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ~ OxOEOF101112131415161718191A1B1C1D
if sh=0x3 then vD ~ OxXODOEOF101112131415161718191A1B1C
if sh=0x4 then vD ~ OxOCODOEOF101112131415161718191A1B
if sh=0x5 then vD ~ OxOBOCODOEOF101112131415161718191A
if sh=0x6 then vD ~ OXOAOBOCODOEOF10111213141516171819
if sh=0x7 then vD ~ Ox090A0OBOCODOEOF101112131415161718
if sh=0x8 then vD ~ 0x08090A0BOCODOEOF1011121314151617
if sh=0x9 then vD ~ 0x0708090A0BOCODOEOF10111213141516
if sh=0xA then vD ~ 0x060708090A0BOCODOEOF101112131415
if sh=0xB then vD ~ 0x05060708090A0BOCODOEOF1011121314
if sh=0xC then vD ~ 0x0405060708090A0BOCODOEOF10111213
if sh=0xD then vD « 0x030405060708090A0BOCODOEOF101112
if sh=0OxE then vD « 0x02030405060708090A0BOCODOEOF1011
if sh=0xF then vD ~ 0x0102030405060708090A0BOCODOEOF10

— Let the EA be the sumi4|0)+(rB). Let sh = EA[28-31].

* For 64-bit:
if rA=0thenb <0
else b ~(rA

EA - b+( rB)

sh — EAgpe3

if sh=0x0 then vD ~ 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD « 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD «~ OxOEOF101112131415161718191A1B1C1D
if sh=0x3 then vD ~ OxODOEOF101112131415161718191A1B1C
if sh=0x4 then vD ~ OxOCODOEOF101112131415161718191A1B
if sh=0x5 then vD  OxOBOCODOEOF101112131415161718191A
if sh=0x6 then vD ~ OXOAOBOCODOEOF10111213141516171819
if sh=0x7 then vD « Ox090A0BOCODOEOF101112131415161718
if sh=0x8 then vD ~ 0x08090A0BOCODOEOF1011121314151617
if sh=0x9 then vD ~ 0x0708090A0BOCODOEOF10111213141516
if sh=0xA then vD ~ 0x060708090A0BOCODOEOF101112131415
if sh=0xB then vD « 0x05060708090A0BOCODOEOF1011121314
if sh=0xC then vD ~ 0x0405060708090A0BOCODOEOF10111213
if sh=0xD then vD « 0x030405060708090A0BOCODOEOF101112
if sh=0xE then vD « 0x02030405060708090A0BOCODOEOF1011
if sh=0xF then vD ~ 0x0102030405060708090A0BOCODOEOF10

— Let the EA be the sumt&|0)+(rB). Let sh = EA[60-63].

Let X be the 32-byte value 0x00 || Ox01 || Ox02 || ... || OX1E || Ox1F. Bytes (16-sh):(31-sh) of
X are placed inteD.
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Note thatlvsl andlvsr can be used to create the permute control vector to be used by a
subsequentperm instruction. Let X and Y be the contentsvéf andvB specified by the
vperm. The control vector created sl causes theperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes. The control vector
created bysr causes theperm to select the low-order 16 bytes of the result of shifting X
[|'Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register by sh
bytes. For rotating, the vector register to be rotated should be specified a8 lboitvB

for vperm. For shifting left, thevB register forvperm should contain all zeros ané\

should contain the value to be shifted, and vice versa for shifting right. Figure 6-6 shows a
similar instruction only in that figure the shift is to the left

Other registers altered:
* None
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[vx [vx

Load Vector Indexed

Ivx vD,rA,rB (LRU =0) Form X
31 vD | B | 103 | 0 |

0 5 6 10 11 15 16 20 21 30 31

* [For 32-bit and 64-bit:

if rA=Othenb 0

else b ~(rA

EA « b+( rB))&(~0xF)

if the processor is in big-endian mode
then vD — MEM(EA,16)

else  vD — MEM(EA+8,8) || MEM(EAS)

Let the EA be the result of ANDing the sunA[0)+(rB) with ~OxF.

If the processor is in big-endian mode, the quadword in memory addressed by EA is loaded

into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64-127] and the doubleword addressed by EA+8 is loaded/D[@-63]. Note that

normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

Figure 6-5 shows this instruction.

Other registers altered:
* None
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lvxl Ivxl

Load Vector Indexed LRU

IvxI vD,rA,rB (LRU =1) Form X
31 vD A | B | 359 | 0 |

0 5 6 10 11 15 16 20 21 30 31

* [For 32-bit and 64-bit:

if rA=Othenb 0

else b ~(rAp

EA « b+( rB))&(~0xF)

if the processor is in big-endian mode

then vD — MEM(EA,16)

else  vD — MEM(EA+88) | MEM(EA,S8)

Let the EA be the result of ANDing the sunA[0)+(rB) with ~OxF.
If the processor is in big-endian mode, the quadword addressed by EA is loadéal into

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64-127] and the doubleword addressed by EA+8 is loaded/D[@®-63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

Ivxl provides a hint that the quadword addressed by EA will probably not be needed again
by the program in the near future.

Note that on some implementations, the hint provided bylvtkleinstruction and the
corresponding hint provided by the Store Vector Indexed L&WUxI) instruction (see
Section 5.2.1.2, “Transient Streams (dstt)”) are applied to the entire cache block containing
the specified quadword. On such implementations, the effect of the hint may be to cause
that cache block to be considered a likely candidate for reuse when space is needed in the
cache for a new block. Thus, on such implementations, the hint should be used with caution
if the cache block containing the quadword also contains data that may be needed by the
program in the near future. Also, the hint may be used before the last reference in a
sequence of references to the quadword if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quadword is not likely to be displaced
from the cache before the last reference. Figure 6-5 shows this instruction.

Other registers altered:
*« None
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mfvscr mfvscr

Move from Vector Status and Control Register

mfvscr vD Form VX
04 vD 00000 00000 1540 |O|
0 5 6 10 11 15 16 20 21 30 31

vD < %0 || (VSCR)
The contents of the VSCR are placed wiib

Note that the programmer should assumertitascr andmfvscr take substantially longer
to execute than other VX instructions

Other registers altered:
*« None
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mtvscr mtvscr
Move to Vector Status and Control Register
mtvscr vB Form VX
04 00000 00000 vB 1604 |o|
0 5 6 10 11 15 16 20 21 30 31

VSCR « ( VB)gg127
The contents ofB are placed into the VSCR.

Other registers altered:
* None
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stvebx stvebx

Store Vector Element Byte Indexed

stvebx VSrA,rB Form X
31 vS A B 135 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=0thenb ~0
else b ~(rAp

EA «b+( rB)

eb — EAjgg

if the processor is in big-endian mode

then MEM(EAL)  « ( VS)epgebrayr
else MEM(EAL) < ( VS)120(eb8y127-eb'8

— Let the EA be the summA|0)+(rB). Let m = EA[28-31]; m is the byte offset of
the byte in its aligned quadword in memaory.

e For 64-bit:
if rA=0thenb <0
else b ~(rA

EA cb+( rB)
eb — EAgoes

if the processor is in big-endian mode
then MEM(EAL)  « ( VS) e etray7
else MEM(EAL) < ( VS)120(eb8)127-eb'8

— Let the EA be the summA|0)+(rB). Let m = EA[60—63]; m is the byte offset of
the byte in its aligned quadword in memaory.

If the processor is in big-endian mode, byte nv$fis stored into the byte in memory
addressed by EA. If the processor is in little-endian mode, byte (15vB)isfstored into

the byte addressed by EA. Figure 6-5 shows how a store instruction is performed for a
vector register.

Other registers altered:
* None
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stvehx stvehx

Store Vector Element Half Word Indexed

stvehx VSrA,rB Form X
31 vS A B 167 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=0thenb ~0
else b ~(rA

EA « (b+( rB))&(~0x1))
eb — EAjgar

if the processor is in big-endian mode
then MEM(EA2)  « ( VS)epygienre)is
elseMEM(EA2) < ( VS)112etr8:127-(eb'8)

— Let the EA be the result of ANDing the sur@[0)+(rB) with ~Ox1. Let m =
EA[28-30]; m is the half-word offset of the half-word in its aligned quadword in

memory.

» For 64-hit:
if rA=0thenb <0
else b ~(rA
EA — (b+( rB))&(~0x1)
eb — EAgpe3

if the processor is in big-endian mode
then MEM(EA,Z) - ( VS) €b*8:(eb*8)+15
else MEM(EA2) < ( VS)112eb8)127-eb78

— Let the EA be the result of ANDing the sur@[0)+(rB) with ~Ox1. Let m =

EA[60-62]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, half-word nv8fis stored into the half-word
addressed by EA. If the processor is in little-endian mode, half-word (7w8) isfstored

into the half-word addressed by EA. Figure 6-5 shows how a store instruction is performed
for a vector register.

Other registers altered:
* None
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stvewx stvewx
Store Vector Element Word Indexed
stvewx VSrA,rB Form X
31 vS A B 199 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit:
if rA=0thenb <0
else b ~(rA

EA — (b+( rB))&OXFFFF_FFFC
eb — EAjgar

if the processor is in big-endian mode
then MEM(EA4)  — ( VS) epygienrg)+at
else MEM(EA4)  « ( VS) gseng:127-(eb'g)

— Let the EA be the result of ANDing the suri\[0)+(rB) with OXFFFF_FFFC.
Let m = EA[28-29]; m is the word offset of the word in its aligned quadword in
memory.
» For 64-bit:

if rA=Othenb 0O
else b ~(rA
EA — (b+( rB))&OXFFFF_FFFF_FFFF_FFFC

if the processor is in big-endian mode
then MEM(EA,4) - ( VS) €b*8:(eb*8)+31
else MEM(EA4) < ( VS)gp.erg127-eb's)

— Let the EA be the result of ANDing the suni\[0)+(rB) with
OxFFFF_FFFF_FFFF_FFFC. Let m = EA[60-61]; m is the word offset of the
word in its aligned quadword in memory.

If the processor is in big-endian mode, word nv$fis stored into the word addressed by
EA. If the processor is in little-endian mode, word (3-my8fis stored into the word

addressed by EA. Figure 6-5 shows how a store instruction is performed for a vector
register.

Other registers altered:
* None
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StvX Stvx

Store Vector Indexed

stvx VSrA,rB (LRU =0) Form X
31 vS A | B | 231 | 0 |
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit:
if rA=Othenb -0
elseb  ~(rA)

EA — (b+( rB))&OXFFFF_FFFO

if the processor is in big-endian mode

then MEM(EA,16) ~(VvS)

else MEMEA16)  — ( VS)ea127 II( VS)oss

— Let the EA be the result of ANDing the suni[0)+(rB) with OXFFFF_FFFO.
* For 64-bit:

if rA=Othenb -0

elseb <~ (rA)

EA — (b+( rB))&OxFFFF_FFFF_FFFF_FFFO
if the processor is in big-endian mode

then MEM(EA, 16) ~(vS)

else MEMEA16)  — (vS)ea127 II( VS)os3

— Let the EA be the result of ANDing the suri\[0)+(rB) with
OXFFFF_FFFF_FFFF_FFFO.

If the processor is in big-endian mode, the contentsSoére stored into the quadword
addressed by EA. If the processor is in little-endian mode, the conter8f6df-127] are
stored into the doubleword addressed by EA, and the contev&0sf63] are stored into
the doubleword addressed by EA+8.

stvxl andstvxIt provide a hint that the quadword addressed by EA will probably not be
needed again by the program in the near future.

Figure 6-5 shows how a store instruction is performed for a vector register.

Other registers altered:
* None
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stvxl stvxl
Store Vector Indexed LRU
stvxl VvSrArB (LRU =1) Form X
31 Vs A | B | 487 | 0 |
0 5 6 10 11 15 16 20 21 30 31
* For 32-bit;

if rA=Othenb 0

elseb <~ (rA)

EA — (b+( rB))&OXFFFF_FFFO

if the processor is in big-endian mode

then MEM(EA,16) ~(VvS)

else MEMEA16)  — (vS)ea127 lI( VS)oss3

— Let the EA be the result of ANDing the sunA[0)+(rB) with OXFFFF_FFFO.

* [For 64-bit:

if rA=Othenb -0

elseb <~ (rA

EA — (b+( rB))&OxFFFF_FFFF_FFFF_FFFO

if the processor is in big-endian mode

then MEM(EA,16) < ( vS)

else MEMEA16)  — (vS)ea127 II( VS)os3

— Let the EA be the result of ANDing the suni\[0)+(rB) with

OXFFFF_FFFF_FFFF_FFFO.

Let the EA be the result of ANDing the surA[0)+(r B) with OxFFFF_FFFF_FFFF_FFFO.

If the processor is in big-endian mode, the contentsSoére stored into the quadword
addressed by EA. If the processor is in little-endian mode, the conter8f6df-127] are
stored into the doubleword addressed by EA, and the contev®$0s63] are stored into

the doubleword addressed by EA+8. Htex| andstvxlt instructions provide a hint that

the quad word addressed by EA will probably not be needed again by the program in the
near future.

Note that on some implementations, the hint provided bystiel instruction (see
Section 5.2.2, “Prioritizing Cache Block Replacement”) is applied to the entire cache block
containing the specified quadword. On such implementations, the effect of the hint may be
to cause that cache block to be considered a likely candidate for reuse when space is needed
in the cache for a new block. Thus, on such implementations, the hint should be used with
caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last reference in a
sequence of references to the quadword if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quadword is not likely to be displaced
from the cache before the last reference. Figure 6-5 shows how a store instruction is
performed on the vector registers.

Other registers altered:
* None
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vaddcuw vaddcuw

Vector Add Carryout Unsigned Word

vaddcuw vD,vA,vB Form VX

04 vD VA vB 384

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
aopggy « ZeroExtend((  VA)juz 133)
bopgzy « ZeroExtend((  VB)ijz1 ,33)

tempgay — a0p g3 *int bOP g2
VD431 « ZeroExtend(temp  ,32)

end

Each unsigned-integer word elemenviis added to the corresponding unsigned-integer
word element ivB. The carry out of bit O of the 32-bit sum is zero-extended to 32 bits and
placed into the corresponding word element[f

Other registers altered:
*« None

Figure 6-8 shows the usage of treldcuw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

I | | | | va

[ K K s | 33-bit Intermedediate

I Ny v y v

Figure 6-8. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)
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vaddfp vaddfp

Vector Add Floating Point

vaddfp vD,vA,vB Form VX
04 vD VA vB 10
0 5 6 10 11 15 16 20 21 31
doi=0,127,32
(vD)ij+ar  — RndToNearFP32(( VA)jjrar  + ( VB)ijjrar )
end

The four 32-bit floating-point values WA are added to the four 32-bit floating-point values
in vB. The four intermediate results are rounded and placed in VD.

If VSCRINJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:
*« None

Figure 6-9 shows the usage of teddfp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

Y N
+ + + +
v y y Y

I \ \ \ | vD

Figure 6-9. vaddfp—Add Four Floating-Point Elements (32-Bit)
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vaddsbs vaddsbs

Vector Add Signed Byte Saturate

vaddsbs \D,vA,vB Form VX

04 vD VA vB 768

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopgg -~ SignExtend(  VA)iu7 9)
bopgg -~ SignExtend((  VB)ij7 .9)
tempog «— a0p g *ine POP o
vDj7  « SltoSlsat(temp )

end

Each element ofaddsbsis a byte.

Each signed-integer elementA is added to the corresponding signed-integer element
in vB.

If the sum is greater than’(2) it saturates to {21) and if it is less than 22 saturates to -
27, If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding elemént of

Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-10 shows the usage of Mlaeldsbscommand. Each of the sixteen elements in the
vectorsVvA, vB, andvD, is 8 bits in length.

NN A I I I I I T O R T P R T 7
Lo L T T T T T T T T T T Ty T v
Y YY YV YV VY Y AR YY VY
+ 0+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+t
Y Y Y Y Y Y Y Y Y Y ¥V ¥V Y ¥ ¥ ¥
L I T T T T [T T Jw

Figure 6-10. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)
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vaddshs vaddshs

Vector Add Signed Half Word Saturate

vaddshs \D,vA,vB Form VX
04 vD VA vB 832

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopoe « SignExtend((  VA)jiis ,16)
bopo:le - SlgnExtend(( VB) ii+15 ,16)

tempg.16 — @0P p16 *int DOP 016
VDis15 « SltoSlsat(temp 016 +16)

end

Each element ofaddshsis a half word.

Each signed-integer elementA is added to the corresponding signed-integer element
in vB.

If the sum is greater thanf2l) it saturates to (21) and if it is less than 12it saturates to
-2'5, If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding elemént of
Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of tteeldshscommand. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

I | | | | | | | | vA

N ¢ Y N ¢
+ + + + + + + +
¥ Y ¥ v ¥ ¥ v ¥

I \ \ \ \ \ \ \ | vo

Figure 6-11. vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)

6-34 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

vaddsws vaddsws

Vector Add Signed Word Saturate

vaddsws \D,VA,vB Form VX

04 vD VA vB 896

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
aopogzy « SignExtend((  VA)jiiz1 133)
bopgzy « SignExtend((  VB)jj+z1 ,33)

tempgay — a0p g3 *int bOP g3
VD431 « SltoSlsat(temp 032 32)

end

Each element ofaddswsis a word.

Each signed-integer elementA is added to the corresponding signed-integer element
in vB.

If the sum is greater than3{2l) it saturates to ¢21) and if it is less than (32it saturates
to (-2Y). If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding elemént of

Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-12 shows the usage of tleldswscommand. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

I \ \ \ | vA
| | \ | \ | \ | | vB
Yy (Al v Yy
+ + + +
v Y Y
I \ \ \ | vD

Figure 6-12. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)
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vaddubm vaddubm

Vector Add Unsigned Byte Modulo

vaddubm vD,vA,vB Form VX
04 vD VA vB 0

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
VD7 <« (VA7 *int ( VB)ii7
end

Each element ofaddubm is a byte.

Each integer element WA is modulo added to the corresponding integer elemeviBin
The integer result is placed into the corresponding elemex.of

Note that thevaddubm instruction can be used for unsigned or signed integers.

Other registers altered:
* None

Figure 6-13 shows theaddubm command usage. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

RN I A A N N N D N N P T P T P R

ininin |
UBARA v

| vB

<
-
<
-<—
<

-<—
-

-
<

-
-

v v
o4+ R+ 4 4+ e+
RN
LT T T T T TP TP P T T ]w

Figure 6-13. vaddubm—Add Sixteen Integer Elements (8-Bit)
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vaddubs vaddubs

Vector Add Unsigned Byte Saturate

vaddubs \D,vA,vB Form VX

04 vD VA vB 512

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopgg « ZeroExtend((  VA)ju7 9)
bopgg ~ ZeroExtend((  VB)ij7 9)
tempog — aop g +int bOP og
vDj7  « UltoUlsat(temp 08 8)

end

Each element ofaddubsis a byte.

Each unsigned-integer element VA is added to the corresponding unsigned-integer
element invB.

If the sum is greater than®2) it saturates to £21) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding elemdht of

Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-14 shows the usage of Waeldubscommand. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

N N A A A D N T N A

Ininin
Y YY VY

-
-
-
-
-
-
<
-
-
<

y y
oo+ 0+ o+ o+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ o+t
Y ¥V ¥V ¥ ¥V ¥V ¥V ¥V ¥V ¥ ¥V ¥V ¥V ¥V VY

LI T T [T [T [T [ T [ T Jw

Figure 6-14. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)
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vadduhm vadduhm

Vector Add Unsigned Half Word Modulo

vadduhm vD,vA,vB Form VX
04 vD VA vB 64

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
VD15 < ( VA)jirs  +ine ( VB)jjras
end

Each element ofadduhm is a half word.

Each integer element A\ is added to the corresponding integer elemewvBirThe integer
result is placed into the corresponding elemenof

Note that thevadduhm instruction can be used for unsigned or signed integers.

Other registers altered:
* None

Figure 6-15 shows the usage of taelduhm command. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

I | | | | | | | | vA
[ 1y ]

N ¢ Y N ¢
+ + + + + + + +
y Y y 4 y y 4 y

I \ \ \ \ \ \ \ | vo

Figure 6-15. vadduhm—Add Eight Integer Elements (16-Bit)
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vadduhs vadduhs

Vector Add Unsigned Half Word Saturate

vadduhs \D,vA,vB Form VX

04 vD VA vB 576

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopge « ZeroExtend((  VA)jiugs ,17)
bOpo:le - ZeI’OEXtend(( VB) ii+15 ,17)

tempg.16 — @0P g16 *int DOP 016
VD5 « UltoUlsat(temp .16 ,16)

end

Each element ofadduhsis a half word.

Each unsigned-integer element VA is added to the corresponding unsigned-integer
element invB.

If the sum is greater than’1) it saturates to #-1) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding elemdht of

Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of ttaelduhscommand. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.

A iy ABERA
+ + + + + + + +
¥ ¥ ¥ v ¥ ¥ v ¥

Figure 6-16. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)
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vadduwm vadduwm

Vector Add Unsigned Word Modulo

vadduwm vD,vA,vB Form: VX
04 vD VA vB 128

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VDirar < ( VA)jrar  +imt ( VB)ija1
end

Each element ofadduwm is a word.

Each integer element WA is modulo added to the corresponding integer elemevBin
The integer result is placed into the corresponding elemex.of

Note that thevadduwm instruction can be used for unsigned or signed integers.

Other registers altered:

* None
Form:
¢ VX

Figure 6-17 shows the usage of te@lduwm command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

Y N
+ + + +
v y y Y

I \ \ \ | vD

Figure 6-17. vadduwm—Add Four Integer Elements (32-Bit)
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vadduws vadduws

Vector Add Unsigned Word Saturate

vadduws \D,vA,vB Form: VX

04 vD VA vB 640

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 3
aopggy « ZeroExtend((  VA)juz 133)
bopgsy ~ ZeroExtend((  VB)jji31 ,33)
tempog; — a0p g3z +int bOP 032
VD31 « UltoUlsattemp .32 ,32)
end

Each element ofadduwsis a word.

Each unsigned-integer element VA is added to the corresponding unsigned-integer
element invB.

If the sum is greater than¥21) it saturates to £2-1) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding elemdht of

Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-18 shows the usage of ttaelduws command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

Y N
+ + + +
v ¥ ¥ Y

I \ \ \ | vo

Figure 6-18. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)
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vand vand

Vector Logical AND

vand vD,VA,vB Form: VX
04 vD VA vB 1028

0 5 6 10 11 15 16 20 21 31

vD « ( VA)&( vB)

The contents ofA are bitwise ANDed with the contents\d and the result is placed into

vD.

Other registers altered:
* None

Figure 6-19 shows usage of tvend command.

[ ol

Figure 6-19. vand—Logical Bitwise AND
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vandc vandc

Vector Logical AND with Complement

vandc vD,VA,vB Form: VX

04 vD VA vB 1092

0 5 6 10 11 15 16 20 21 31

vD « ( VA)& =(VvB)

The contents ofA are ANDed with the one’s complement of the contentgBoind the
result is placed intgD.

Other registers altered:
* None

Figure 6-19 shows usage of tvendc command.

[ |vB

[ \ |intermediate

I \ |vA

[ |vD

Figure 6-20 . vand—Logical Bitwise AND with Complement
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vavgsb vavgshb

Vector Average Signed Byte

vavgsbvD,vA,vB Form: VX
04 vD VA vB 1282

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopgg « SignExtend((  VA)ju7 9)
bopgg < SignExtend((  VB)jj7 .9)
tempgg — aop gg +iny DOP gg *int 1
VD7  ~temp g7

end

Each element ofavgsbis a byte.
Each signed-integer byte elemen¥i is added to the corresponding signed-integer byte

element invB, producing an 9-Bit signed-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding elemdt of

Other registers altered:
* None

Figure 6-21 shows the usage of ttevgsbcommand. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

L L Iy I Iy I T Iy Ty Jva
INININININININININININININE RN L
\ V+ Yyvy V+ V+ \ V+ \ V+ V+ \ V+ \J V+ V+ A l
l)/l/l/l/l/l/l/#l%l; l\ l\l\l\l\?l -
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Tem
Ty YT Ny vy i T
+1  +1 41 41 +1 +1 41 41 41 +1 41 41 41 41 41 +1
IR A A T A A A A AR A A
l \I‘ \I{ \‘I \l \l \\I \\ \l IL \l \l Ij I/ 'l/ I/ ’I/ 'I/ \] Temp
L[ ] [ [ ]

Figure 6-21. vavgsh— Average Sixteen Signed Integer Elements (8-Bit)
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vavgsh vavgsh

Vector Average Signed Half Word

vavgsh \D,VA,vB Form: VX

04 vD VA vB 1346

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopoe « SignExtend((  VA)jiis 17)
bopgae ~ SignExtend((  VB)jjigs ,17)
tempogs — @0P 015 +int bOP a5 tint 1
VD5 ~ temp g15

end

Each element ofavgshis a half word.

Each signed-integer elementiA is added to the corresponding signed-integer element in
vB, producing an 17-bit signed-integer sum. The sum is incremented by 1. The high-order
16 bits of the result are placed into the corresponding elemebt of

Other registers altered:
* None

Figure 6-22 shows the usage of tlrgshcommand. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

l l I I l l l l | vA

A A O O O R £
+v '+v VJ "‘v ‘LV "+v +v *’v /\/\-@
l /l/l/ I¢ l\ l\ l\ l\ lebns
I | I | [ [ I | | | I | I | emp
Y v v Y v v Y Y
+1 +1 +1 +1 +1 +1 +1 +1
S R S S L
l \ \[ \[ | \I \ \[ / \I / \[ \I ‘]Temp

Figure 6-22. vavgsh—Average Eight Signed Integer Elements (16-bits)
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vavgsw vavgsw

Vector Average Signed Word

vavgsw \D,VA,vB Form: VX
04 vD VA vB 1410

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
aopogy « SignExtend((  VA)jiiz 133)
bopgsy ~ SignExtend((  VB)ij3; ,33)
tempggy — aop g3 *int bOP gz2 tint 1
VD31~ temp g3

end

Each element ofavgswis a word.
Each signed-integer elementiA is added to the corresponding signed-integer element in

vB, producing an 33-bit signed-integer sum. The sum is incremented by 1. The high-order
32 bits of the result are placed into the corresponding elemeb of

Other registers altered:
* None

Figure 6-23 shows the usage of ttevgswcommand. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

l I I l | vA

l ' \* [ ¢ [ ¢ [ ' *\ | v8 3hs,
’/+ / +\ \ 32 bits
L N i ‘ il ‘ | Temp
Y Y Y Y
+1 +1 +1 +1
! ! ! !
l I l I l / I l L l Temp

Figure 6-23. vavgsw— Average Four Signed Integer Elements (32-Bit)
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vavgub vavgub

Vector Average Unsigned Byte

vavgub vD,vA,vB Form: VX

04 vD VA vB 1026

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopgg « ZeroExtend((  VA)ju7 9)
bopgy, « ZeroExtend((  VB)in71 ,9)
tempg, —aop gg +iny bOP gg *+int 1
VD7  ~temp g7

end

Each element ofavgub is a byte.

Each unsigned-integer elementvA is added to the corresponding unsigned-integer
element invB, producing an 9-bit unsigned-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding elemdt of

Other registers altered:
* None

Figure 6-24 shows the usage of #ta¥gub command. Each of the sixteen elements in the
vectorsVvA, vB, andvD, is 8 bits in length.

T T T T T T T T TR T TR AR
I L I e 8bis,
ARSI R R R TR U AR TR IR Y ey
lﬁﬂﬁﬁﬂ/ﬁﬁﬁﬁﬁﬁFFFFI -
‘ | | | | | | | | | | | | | | | | Tem
N B e e 2 e
+1 +1 41 +1 +1 +1 +1 +1 +1  +1 +1 41 41 +1  +1  +1
TN
l&{QvixwlIVV}yyylm
LT T C T

Figure 6-24. vavgub—Average Sixteen Unsigned Integer Elements (8-bits)
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vavguh vavguh

Vector Average Unsigned Half Word

vavguh vD,vA,vB Form: VX
04 vD VA vB 1090

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopge « ZeroExtend((  VA)jius ,17)
bopge ~ ZeroExtend((  VB)jjigs ,17)
tempg.16 < @0P 16 *int POP 016 tint 1
VD15~ temp g1s5

end

Each element ofavguhis a half word.

Each unsigned-integer elementvA is added to the corresponding unsigned-integer
element invB, producing a 17-bit unsigned-integer. The sum is incremented by 1. The high-
order 16 bits of the result are placed into the corresponding elemdnt of

Other registers altered:
* None

Figure 6-22 shows the usage of trevygshcommand. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

l l | | l l l l | vA
L T T T T T T T w 40
"+v '+v ‘+V +v +V '+v "+v +v A/ E
l l , l g I J l : I\ l\ I\ | ™ o
¢ 1 ¢ ! \* ! ¢ 1 ¢ ! \+ 1 ¢ | ¢ | p
+1 +1 +1 +1 +1 +1 +1 +1
S S S S L
l \[ \[ | \I \ \[ / \I \[ \I ‘]Temp

Figure 6-25. vavgsh— Average Eight Signed Integer Elements (16-Bit)
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vavguw vavguw

Vector Average Unsigned Word

vavguw vD,vA,vB Form: VX

04 vD VA vB 1154

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
aopggy «~ ZeroExtend((  VA)juz 33)
bopgsy ~ ZeroExtend((  VB)jji31 ,33)
tempggy — aop g3 *int bOP g3z tint 1
VD31~ temp g3

end

Each element ofavguw is a word.

Each unsigned-integer element VA is added to the corresponding unsigned-integer
element invB, producing an 33-bit unsigned-integer sum. The sum is incremented by 1.
The high-order 32 bits of the result are placed into the corresponding elenabnt of

Other registers altered:
* None

Figure 6-26 shows the usage of treyguw command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

l [ | [ | va
B . B e
'/+ / +\ \ 32 bits
[ 1 ll ‘ ] ‘ | Temp
Y Y Y Y
+1 +1 +1 +1
v . v v
l I I I I / I I I l Temp

Figure 6-26. vavguw—Average Four Unsigned Integer Elements (32-Bit)
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vcfsx vcfsx

Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX
04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VD1« CMSI32TOFP32(( VB)ijg ) *pp 2 UMV
end

Each signed fixed-point integer word elemenviis converted to the nearest single-
precision floating-point value. The result is divided by"2 (UIMM = Unsigned
immediate value) and placed into the corresponding word elemebt of

Other registers altered:
* None

Figure 6-26 shows the usage of thefsx command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

Scale Factor from Opcode (ZU'MM)
K J/ : / ‘ N\ : N w
\l ‘ \l ‘ \l ‘ \l

Figure 6-27. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point
Elements (32-Bit)

|vB

|vD
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vcfux vcfux

Vector Convert from Unsigned Fixed-Point Word

vecfux vD,vB,UIMM Form: VX

04 vD UMM vB 778

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VD1« CVtUIB2TOFP32((  VB)ijg ) *pp 2 UMM
end

Each unsigned fixed-point integer word elementBnis converted to the nearest single-
precision floating-point value. The result is divided bBy"?2 and placed into the
corresponding word element aD.

Other registers altered:
* None

Figure 6-28 shows the usage of thfux command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

Scale Factor from Opcode (2U'MM)
K J/ : / ‘ N\ : N w
\l ‘ \l ‘ \l ‘ \l

Figure 6-28. vcfux—Convert Four Unsigned Integer Elements to Four Floating-
Point Elements (32-Bit)

|vB

|vD
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vcempbfp x vcempbfp x

Vector Compare Bounds Floating Point

vempbfp vD,vA,vB (Rc=0) Form: VXR
vempbfp. vD,vA,vB (Rc=1)
04 vD VA | vB |Rc| 966
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
le —(( VA3 <p ( VB)ijar )
ge < (( VA3 2p ( VB)ijsar )
VDiar < e || ge || *0

end

if Rc=1 then do

b ~(vD= 120
CRyp7 « 0000 [lib |00

end

Each single-precision word elemenvii is compared to the corresponding elemerBn
A 2-bit value is formed that indicates whether the elementAins within the bounds
specified by the element wB, as follows.

Bit 0 of the 2-bit value is zero if the elementvix is less than or equal to the element in
vB, and is one otherwise. Bit 1 of the 2-bit value is zero if the elemgAtimgreater than
or equal to the negative of the elementi) and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element
(bits 0-1 for word element 0, bits 32—33 for word element 1, bits 64—65 for word element
2, bits 96-97 for word element 3) D and the remaining bits of the element are cleared.

If Rc=1, CR Field 6 is set to indicate whether all four elementé iare within the bounds
specified by the corresponding elemenik as follows.
. CR6 = 0b00 || all_within_bounds || 0

Note that if any single-precision floating-point word elementvlh is negative; the
corresponding element rA is out of bounds. Note that if\e or avB element is a NaN,
the two high order bits of the corresponding result will both have the value 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Other registers altered:
» Condition register (CR6):

Affected: Bit 2 (ifRc=1)
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Figure 6-29 shows the usage of tleenpbfp command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

I \ \ \ | vA

| | v8

-

| |
‘sv ) wsv ) Y EV ZV Sv \ZV
L] [ 1] [1] [ 1] | v
01 3233 64 65 96 97

Figure 6-29. vempbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)
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vcmpedfp x vcmpedgfp x
Vector Compare Equal-to-Floating Point
vcmpeqfp vD,vA,vB Form: VXR
vempeqfp. vD,vVA,vB

04 vD VA vB |Rc| 198
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
T VAiar =g (VB
then vDi;3  ~ OXFFFF_FFFF
else VDj3; 0x0000_0000

end
if Rc=1 then do
t < (vD= )
f —(vD= 12
CRuz7 «t 060 |[If [[0bO

end

Each single-precision floating-point word elemeniAnis compared to the corresponding
single-precision floating-point word elemenwi. The corresponding word elemenvin

is set to all 1s if the element WA is equal to the element B, and is cleared to all Os
otherwise.

If Rc = 1. CR6 filed is set according to all, some, or none of the elements pairs compare
equal.

 CR6 =all_equal || 0bO || none_equal || 0b0
Note that if avA or vB element is a NaN, the corresponding result will be 0x0000_0000.
Other registers altered:
« Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-29 shows the usage of tleenpeqfp command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

I | | | | vA

>N

< 1<
-<
<—

e n gl

|- ||

I \ \ \ | vo

Figure 6-30. vcmpeqgfp—Compare Equal of Four Floating-Point Elements (32-Bit)
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vcmpequb x vcmpequb x
Vector Compare Equal-to Unsigned Byte
vcmpequb \D,VA,vB Form: VXR
vcmpequb. \D,vA,vB
04 vD VA vB |Rc| 6
0 5 6 10 11 15 16 20 21 22 31
doi=0to 127 by 8
ifC VA7 =it ( VB)ija7
then vDu7; « %1
else vDg; < °0
end
if Re=1 then do
t ~(vD= 1%y
f —(vD= 1280
CR[2427] «—t |00 |If [ObO
end

Each element ofcmpequbis a byte.

Each integer element WA is compared to the corresponding integer elemenBinThe
corresponding element WD is set to all 1s if the elementvr is equal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

CR6 = all_equal || 0bO0 || none_equal || 0b0
Note thatvcmpequby.] can be used for unsigned or signed integers.

Other registers altered:
Condition register (CR®6):

Affected: Bits 0-3 (if Rc=1)

Figure 6-31 shows the usage of tleenpequb command. Each of the sixteen elements in
the vectorsyA, vB, andvD, is 8 bits in length.
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Figure 6-31. vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)
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vcmpequh x vcmpequh x

Vector Compare Equal-to Unsigned Half Word

vcmpequh \D,VA,vB Form: VXR
vcmpequbh. \D,vA,vB

04 vD VA vB |Rc| 70
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 16
if( VA)iws =it ( VB)ijs
then VDjs < 01
else VDjs « %0
end
if Re=1 then do
t —(vD= 128y
f —(vD= 1280
CR[24:27] ~t |ObO [[f | ObO
end

Each element ofcmpequhis a half word.

Each integer element WA is compared to the corresponding integer elemenBinThe
corresponding element WD is set to all 1s if the elementvr is equal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

e CR6 =all_equal || Ob0 || none_equal || ObO.
Note thatvcmpequh.] can be used for unsigned or signed integers.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-32 shows the usage of Wleenpequhcommand. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.
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Figure 6-32. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)

6-56 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

vempequw X vempequw X
Vector Compare Equal-to Unsigned Word
vcmpequw \D,VA,vB Form: VXR
vcmpequw. \D,VA,vB
04 vD VA vB |Rc| 134
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
(. VA)iwanr it ( VB)jwa1
then  VvDuyn < M1
else VD1 < "0
end
if Rc=1 then do
t —(vD= %)
f —(vD= 1%8Q)
CR[24:27] ~t |ObO [[f | ObO
end

Each element ofcmpequwis a word.

Each integer element WA is compared to the corresponding integer elemenBinThe
corresponding element WD is set to all 1s if the elementvr is equal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

e CR6 =all_equal || Ob0 || none_equal || Ob0
Note thatvcmpequwf.] can be used for unsigned or signed integers.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-33 shows the usage of otenpequwcommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-33. vempequw—Compare Equal of Four Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-57



AltiVec Instruction Set

vcmpgefp x vcmpgefp x
Vector Compare Greater-Than-or-Equal-to Floating Point
vcmpgefp \D,vA,vB (Rc=0) Form: VXR
vempgefp. \D,vA,vB (Rc=1)

04 vD VA | vB |Rc| 454
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32

fC VA)ia  2p (VBia
then vDj;31  — OXFFFF_FFFF
else vDj3;  ~ 0x0000_0000

end
if Rc=1 then do

t < (vD= )

f < (vD= 12

CRygp7 ~t [|O0O |If |ObO
end

Each single-precision floating-point word elemeniAnis compared to the corresponding
single-precision floating-point word elemenwi. The corresponding word elemenvin

is set to all 1s if the element WA is greater than or equal to the elementvi) and is
cleared to all Os otherwise.

If Rc = 1, CR6 is set according to all_greater_or_equal || some_greater_or_equal ||
none_great_or_equal.

CR6 = all_greater_or_equal || ObO || none greater_or_equal || 0bO.
Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-17 shows the usage of tlienpgefpcommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-34. vempgefp—Compare Greater-Than-or-Equal of Four Floating-Point
Elements (32-Bit)
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vcempgtfpx vcempgtfpx

Vector Compare Greater-Than Floating-Point

vempgtfp vD,vA,vB Form: VXR
vempgtfp. vD,vA,vB

04 vD VA vB |Rc| 710
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
(. VA)iisar > (VB)iisa1
then VD31« OXFFFF_FFFF
else  VDjg  — OXO00O_0000

end
if Rc=1 then do
t < (vD= )
f «(vD= 2
CR[24:27] ~t ||ObO ||f |ObO

end

Each single-precision floating-point word elemenitAnis compared to the corresponding
single-precision floating-point word elemenwi. The corresponding word elemenvin

is set to all 1s if the elementv is greater than the elementB, and is cleared to all Os
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than ||
none_greater_than.

CR6 = all_greater_than || ObO || none greater_than || 0bO.
Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

JFigure 6-17 shows the usage of trenpgtfp command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-35. vempgtfp—Compare Greater-Than of Four Floating-Point Elements
(32-Bit)
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vempgtsb x vcempgtsb x
Vector Compare Greater-Than Signed Byte
vcmpgtsb \D,VA,vB Form: VXR
vempgtsb. \D,vA,vB

04 vD VA vB |Rc| 774
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 8
(. VA7 >s (VB)jur
then VD7 < %1
else  vDy7 < %0

end
if Rc=1 then do

t ~(vD= 1%y

f —(vD= %0
CRygp7 ~t [IO0O |If |ObO
end

Each element ofcmpgtshbis a byte.

Each signed-integer element ¥ is compared to the corresponding signed-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.

If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.

Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-36 shows the usage of tleenpgtsb command. Each of the sixteen elements in
the vectorsyA, vB, andvD, is 8 bits in length.

N N A A A N AT N A
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Y YY YY YY YY YY YY VY VY Y VY YV VY YY
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Figure 6-36. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer
Elements (8-Bit)
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vcmpgtsh x vcmpgtsh x

Vector Compare Greater-Than Condition Register Signed Half Word

vcmpgtsh \D,VA,vB Form: VXR
vcmpgtsh. \D,vA,vB

04 vD VA vB |Rc| 838
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 16
if( VA)iis > ( VB)ijus
then  VDjys < °1
else VD5 - %0
end
if Re=1 then do
t (vD= 138y

f —(vD= 1280
CRygp7 ~t [IO0O |If |ObO

end

Each element ofcmpgtshis a half word.

Each signed-integer element ¥A is compared to the corresponding signed-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.

If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.
Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.
Other registers altered:
« Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-16 shows the usage of ttenpgtshcommand. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.
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Figure 6-37. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements
(16-Bit)
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vempgtsw x vempgtsw x
Vector Compare Greater-Than Signed Word
vcmpgtsw \D,VA,vB Form: VXR
vcmpgtsw. \D,VA,vB

04 vD VA vB |Rc| 902
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
f( VA1 >si ( VB)jjar

then  vDgg < 21
else VDia < 20
end

if Rc=1 then do
t ~(vD= 1%y

f —(vD= 1%8Q)
CRygp7 ~t [IO0O |If |ObO

end

Each element ofcmpgtswis a word.

Each signed-integer element ¥ is compared to the corresponding signed-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.

If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.

Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-38 shows the usage of tleenpgtswcommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

Y N
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Figure 6-38. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements
(32-Bit)
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vempgtub x vempgtub x

Vector Compare Greater-Than Unsigned Byte

vcmpgtub vD,vA,vB Form: VXR
vempgtub. vD,vA,vB

04 vD VA vB |Rc| 518
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 8
ifC VA7 >y (VB)ji7
then VD7 < %1
else  vDy7 < %0
end
if Re=1 then do
t ~(vD= 1%y

f —(vD= 1%8Q)
CR[24-27] —t ||ObO |If |0ObO

end

Each element ofcmpgtub is a byte.

Each unsigned-integer elementvid is compared to the corresponding unsigned-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.

If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.

Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-14 shows the usage of tleenpgtub command. Each of the sixteen elements in
the vectorsyA, vB, andvD, is 8 bits in length.
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Figure 6-39. vempgtub—Compare Greater-Than of Sixteen Unsigned Integer
Elements (8-Bit)
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vcmpgtuh x vcmpgtuh x

Vector Compare Greater-Than Unsigned Half Word

vcmpgtuh vD,vA,vB Form: VXR
vempgtuh. vD,vA,vB

04 vD VA vB |Rc| 582
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 16
if( VA)jwst > u ( VB)ijs
then  VDjys < °1
else VD5 - %0
end
if Re=1 then do

t ~(vD= 1%y

f —(vD= 1%8Q)

CR[24-27] —t ||ObO ||f |/ObO

end

Each element ofcmpgtuh is a half word.
Each unsigned-integer elementvid is compared to the corresponding unsigned-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.
If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || ObO || none greater_than || ObO.
Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-16 shows the usage of #oenpgtuh command. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.

Vi V¥ V¥ V¥ Vv v V¥ Vv
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Figure 6-40. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer
Elements (16-Bit)
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vempgtuw x vempgtuw x

Vector Compare Greater-Than Unsigned Word

vempgtuw vD,vA,vB Form: VXR
vcmpgtuw. vD,vA,vB

04 vD VA vB |Rc| 646
0 5 6 10 11 15 16 20 21 22 31

doi=0to 127 by 32
if( VA)iwar > ui ( VB)iqrar
then  VDjg « 1
else VD1 - %0
end
if Re=1 then do

t ~(vD= 1%y

f —(vD= 1%8Q)

CR[24-27] —t ||ObO ||f |/ObO

end

Each element ofcmpgtuw is a word.
Each unsigned-integer elementvid is compared to the corresponding unsigned-integer
element invB. The corresponding elementvi is set to all 1s if the element WA is
greater than the elementuB, and is cleared to all Os otherwise.
If Rc =1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || ObO || none_greater_than || ObO.
Note that if avA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (ifRc=1)

Figure 6-41 shows the usage of tenpgtuw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-41. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer
Elements (32-Bit)
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VCISXS VCISXS
Vector Convert to Signed Fixed-Point Word Saturate
VCtsxs \D,vB,UIMM Form: VX
04 vD UIMM vB 970
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VB)isivg =255|( VB)isg +UIMM <254then
VDia1  — CVFP32ToSI32Sat(  VB)ija * p 2 UMM)
else

do
if( vB)j=Othen VvDj3 OX7FFF_FFFF
else vDi+3;1 < 0x8000_0000
VSCR  gar « 1
end

end

Each single-precision word elementid is multiplied by 2, The product is converted
to a signed integer using the rounding mode, Round toward Zero.

If the intermediate result is greater thati-@© it saturates to ¢21); if it is less than 2t
saturates to 32 A signed-integer result is placed into the corresponding word element of
vD.

Fixed-point integers used by the vector convert instructions can be interpreted as consisting
of 32-UIMM integer bits followed by UIMM fraction bits. The vector convert to fixed-
point word instructions support only the rounding mode, Round toward Zero. A single-
precision number can be converted to a fixed-point integer using any of the other three
rounding modes by executing the appropriate vector round to floating-point integer
instruction before the vector convert to fixed-point word instruction.

Other registers altered:

* \ector status and control register (VSCR):
Affected: SAT

Figure 6-42 shows the usage of thesxscommand. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

Scale Factor from Opcode (2U"MM)
(VV i e N\@
\ ‘ \ ‘ \ ‘ \

Figure 6-42. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer
Elements (32-Bit)
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VCluxs VCluXxs

Vector Convert to Unsigned Fixed-Point Word Saturate

VCtuxs vD,vB,UIMM Form: VX

04 vD UMM vB 906

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VB)usivg =255|( VB)ipsg +UIMM <254 then
VDia1  — CVFP32ToUIB2Sat((  VB)ijar  * 1 2 UM)
else
do
if ( vB);=Othen VD3 - OXFFFF_FFFF
else vDi+31  « 0x0000_0000
VSCR gt < 1

end
end

Each single-precision floating-point word elemeniBnis multiplied by 2™. The product
is converted to an unsigned fixed-point integer using the rounding mode Round toward
Zero.

If the intermediate result is greater that-@ it saturates to ¢21) and if it is less than 0
it saturates to 0.

The unsigned-integer result is placed into the corresponding word elenvént of

Other registers altered:

* \ector status and control register (VSCR):
Affected: SAT

Figure 6-43 shows the usage of theuxs command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.
Scale Factor from Opcode (2U"MM)
I ‘ I ‘ I ‘ I
Figure 6-43. vctuxs—Convert Four Floating-Point Elements to Four Unsigned
Integer Elements (32-Bit)
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vexptefp vexptefp

Vector 2 Raised to the Exponent Estimate Floating Point

vexptefp vD,vB Form: VX

04 vD 00000 vB 394

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
X < ( VB)ijua
Vq:i+31 2%

end

The single-precision floating-point estimate of 2 raised to the power of each single-
precision floating-point element uB is placed into the corresponding elemeni@f

The estimate has a relative error in precision no greater than one part in 16, that is,

estimate — 2X

2

~ 16

wherex is the value of the element wiB. The most significant 12 bits of the estimate's
significant are monotonic. Note that the value placed into the elemeilt ofay vary
between implementations, and between different executions on the same implementation.

If an operation has an integral value and the resulting value is notd) iretresult is exact.

Operation with various special values of the elemewnBiis summarized below.

Value of
Element in Result
vB
-00 +0
-0 +1
+0 +1
+o00 +o00
NaN QNaN

If VSCRI[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:
* None
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Figure 6-44 shows the usage of tlexptefp command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

¢|\X)¢><
N
|
N

Figure 6-44. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four
Floating-Point Elements (32-Bit)
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vliogefp vliogefp
Vector Log, Estimate Floating Point

viogefp vD,vB Form: VX

04 vD 00000 vB 458

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
X« ( VB)jua1
VD31 < log 2(X)
end

The single-precision floating-point estimate of the base 2 logarithm of each single-
precision floating-point element ¥B is placed into the corresponding elemenidf

The estimate has an absolute error in precision (absolute value of the difference between
the estimate and the infinitely precise value) no greater tharh2 estimate has a relative
error in precision no greater than one part in 8, as described below:

. l[| 1
- < — — < =
%estlmate |OS(X)‘ < 321 unless ‘X 1‘ =3

wherex is the value of the elementwB, except whemx}1| < 1 + 8. The most significant

12 bits of the estimate's significant are monotonic. Note that the value placed into the
element oD may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the elemenBiis summarized below.

Value Result
-00 QNaN
less than O QNaN
+0 -00
+00 +00
NaN QNaN

If VSCRI[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:
*« None
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Figure 6-44 shows the usage of tlexptefp command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

I : \ >9v \ >¢ \ &v | vB
|092‘(X) |092‘(X) |092‘(X) |092‘(X)
| ] \ ] \ ] \ Y | vD

Figure 6-45. vexptefp—Log 5 Estimate Floating-Point for Four Floating-Point
Elements (32-Bit)
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vmaddfp vmaddfp

Vector Multiply Add Floating Point

vmaddfp vD,vA,vCVvB Form: VA

04 vD VA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

doi=0to 127 by 32
VD31~ RndToNearFP32((( VA)jiua1  * fp ( VOiwar )+ fp ( VB)jiwar )
end

Each single-precision floating-point word elementAris multiplied by the corresponding
single-precision floating-point word elementvi@@. The corresponding single-precision
floating-point word element imB is added to the product. The result is rounded to the
nearest single-precision floating-point number and placed into the corresponding word
element ofvD.

Note that avector multiply floating-point instruction is not provided. The effect of such an
instruction can be obtained by usimgnaddfp with vB containing the value -0.0
(Ox8000_0000) in each of its four single-precision floating-point word elements. (The value
must be -0.0, not +0.0, in order to obtain the IEEE-conforming result of -0.0 when the result
of the multiplication is -0.)

Other registers altered:

* None

If VSCRI[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Figure 6-46 shows the usage of tmeaddfp command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

| I | va

Figure 6-46. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

6-72 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

vmaxfp vmaxfp

Vector Maximum Floating Point

vmaxfp vD,vA,vB Form: VX

04 vD VA vB 1034

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA1 2p ((VB)jan
then  VDug < ( VA)iqar
else  VDuazr  ~ ( VB)ina1
end
Each single-precision floating-point word elemeniAnis compared to the corresponding
single-precision floating-point word elementvid. The larger of the two single-precision
floating-point values is placed into the corresponding word element. of

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

Other registers altered:
* None

Figure 6-47 shows the usage of thmaxfp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

|vA

|vB
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Zfp =i Zip Zip
v ¥ ¥ ¥

I \ \ \ | vo

Figure 6-47. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)
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vmaxsb vmaxsb

Vector Maximum Signed Byte

vmaxsb \D,VA,vB Form: VX
04 vD | VA vB 258

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
it VA7 24 (VB)igy
then VD7 < ( VA7
else Vhi7 < (VB)iq7
end

Each element ofmaxsbis a byte.

Each signed-integer element ¥A is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-48 shows the usage of theaxsb command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

LD e I O I I I I Iy Ty [y fva

InnnnnnninnnnininmnG

YY YV VYV VYV VY VYV YV VYV YV YV VY YV YV VYV VV VY

25 25 25 2§ 25 25 g 25 25 25 25 25 25 25 25 2

**\*\*\*\*\*\*\*\ \*\*\*\*\ \*I
vD

Figure 6-48. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)
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vmaxsh vmaxsh

Vector Maximum Signed Half Word

vmaxsh \D,VA,vB Form: VX

04 vD VA vB 322

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
if( VA7 25 ( VB)ijr1s
then  VDjs < ( VA)jjs
else VD5« ( VB)ijwis
end

Each element ofmaxshis a half word.

Each signed-integer element ¥A is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-49 shows the usage of theaxshcommand. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

e T T AR A 2 7 A 1 . 1
25 25 5 5 2 2 > 2
T T A T T A

Figure 6-49. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)
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Vimaxsw Vimaxsw

Vector Maximum Signed Word

vmaxsw \D,VA,vB Form: VX
04 vD VA vB 386

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA)ii+a1 25 ( VB)jjrar
then  VDjsr < ( VA)ja1
else VDia1 < ( VB)ijsa1
end

Each element ofmaxswis a word.

Each signed-integer element ¥A is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-50 shows the usage of theaxswcommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

| \ \ \ | vA
| | \ | \ | \ | | vB
Y \A] Y Y Y
Zgi B g 2
Y Y Y Y
| \ \ \ | v

Figure 6-50. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

6-76 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

vmaxub vmaxub

Vector Maximum Signed Byte

vmaxub vD,vA,vB Form: VX

04 vD | VA vB 2

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
it VA7 24 (VB)igy
then VD7 < ( VA7
else Vhi7 < (VB)iq7
end

Each element ofmaxub is a byte.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the
corresponding element @D.

Other registers altered:
* None

Figure 6-48 shows the usage of theaxub command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

LD e I O I I I I Iy Ty [y fva
InnnnnnninnnnininmnG
YV YV VV VV VY YV YV YV VYV VYV YV YV YV VYV VYV VV
2y 24 2 a2 2u 2u 2 2 2ui 20 26 2u 2u 2u 2ui
Y Y ¥V Y ¥V VY ¥ Y Y Y Y ¥V Y ¥V ¥
Lt [T T [ Jw

Figure 6-51. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)
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vmaxuh vmaxuh

Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX
04 vD VA vB 66

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16

if( VA5 2 ( VB)jjs
then  VDjs < ( VA)jis
else VD5« ( VB)ijwis
end

Each element ofmaxuh is a half word.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the

corresponding element @D.

Other registers altered:
* None

Figure 6-52 shows the usage of teaxuh command. Each of the eight elements in the

vectors VA, vB, andvD, are 16 bits in length.

I \ \ \ \ \ \ | vA
L T T Pt T | |vB
Yy Y Al y Y Yy y Al
2 2 2y 2 2 2 2 2
A Y Y Y Y Y
I \ \ \ \ \ \ | v

Figure 6-52. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)
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vmaxuw vmaxuw

Vector Maximum Unsigned Word

vmaxuw vD,VA,vB Form: VX

04 vD VA vB 130

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA)ii+a1 2 ( VB)jjrar
then  VDjsr < ( VA)ja1
else VDjrar < ( VB)jia1
end

Each element ofmaxuw is a word.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the
corresponding element @D.

Other registers altered:
* None

Figure 6-50 shows the usage of theaxuw command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

Y y $ Y Y Y
2 2ji 2 2
Y Y Y Y

Figure 6-53. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)
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vmhaddshs vmhaddshs

Vector Multiply High and Add Signed Half Word Saturate

vmhaddshs \D,vA,vB,vC Form: VA
04 vD VA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 16
prod gz « ( VA)ias  * s ( VB)iiss
temp g1 < Prod g1 *int SignExtend((  vO)jivs ,17)
VD15 « SltoSlsattemp 0:16 +16)

end

Each signed-integer half word elementviih is multiplied by the corresponding signed-
integer half word element B, producing a 32-bit signed-integer product. Bits 0-16 of the
intermediate product are added to the corresponding signed-integer half-word element in
vC after they have been sign extended to 17-bits. The 16-bit saturated result from each of
the eight 17-bit sums is placed in registBr

If the intermediate result is greater tha#-@ it saturates to (1) and if it is less than (-
219) jt saturates to (9.

The signed-integer result is placed into the corresponding half-word elenwént of
Other registers altered:
* \ector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of thehaddshscommand. Each of the eight elements in
the vectorsyA, vB, vC, andvD, are 16 bits in length.

IEN PRV A RN ENE
T \qx&
Y v v v v v vy
| I ‘ I ‘ I ‘ I l ‘ I ‘ I ‘ l |Pmd
EJE]EIE] B0 B 61 Elw
A S AR A
Y ¥ 16> ¥ <
(S g N N BN Temp
Sat
TETE T T T Fw
Figure 6-54. vymhaddshs—Multiply-High and Add Eight Signed Integer Elements
(16-Bit)
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vmhraddshs vmhraddshs

Vector Multiply High Round and Add Signed Half Word Saturate

vmhraddshs \D,vA,vB,vC Form: VA

04 vD VA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 16
prod g3 < ( VA)jiris * s ( VB)ijwas
prod o33 < prod g3; + it 0x0000_4000
tempgis « prod o6 +in SignExtend((  VO)iins ,17)
(vD)ij+15 < SltoSlsat(temp 0:16 +16)
end

Each signed integer halfword element in registeris multiplied by the corresponding
signed integer halfword element in registBr, producing a 32-bit signed integer product.

The value 0x0000_4000 is added to the product, producing a 32-bit signed integer sum. Bits
0—16 of the sum are added to the corresponding signed integer halfword element in
registervD.

If the intermediate result is greater tha#-@ it saturates to (21) and if it is less than (-
219) it saturates to (9.

The signed integer result is and placed into the corresponding halfword element of register
vD.

Figure 6-16 shows the usage of tmhraddshscommand. Each of the eight elements in
the vectorsyA, vB, vC, andvD, are 16 bits in length.

VA R NN
L 1 DA SN s
* * *A/'/ \ir * *
Y y y Y y Y y
| | ‘ | ‘ | ‘ | | | ‘ | ‘ | | PrOd
- - 16 ] | l= |17 18 —
sl Bl kLl Bl B _ BL[ve
lo,JJo1] [o4llo1] [o,lJod] [0.]]o1] [o.lloa] [o,l]ox] [o.llog] [o,lloa] const
vy Yy Yy Yy yy yy ey vy
Y Y Y 16>y =~ ¥ ¥ v
NS N S N O VI I 20N o D (5 D
Sat /
BT DT T 7T T Aw

Figure 6-55. vmhraddshs—Multiply-High Round and Add Eight Signed Integer
Elements (16-Bit)
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vminfp vminfp

Vector Minimum Floating Point

vminfp vD,vA,vB Form: VX
04 vD VA vB 1098

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA)isar < ( VB)jjsan
then  VDjuar < ( VA)iqar
else VDjrar < ( VB)jia1
end

Each single-precision floating-point word element in registeris compared to the
corresponding single-precision floating-point word element in regiBtefhe smaller of

the two single-precision floating-point values is placed into the corresponding word
element of registerD.

The minimum of + 0.0 and - 0.0 is - 0.0. The minimum of any value and a NaN is a QNaN.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Figure 6-56 shows the usage of thminfp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

-
-
-
-
-
-

< < <
v v 7 v

Figure 6-56. vminfp—Minimum of Four Floating-Point Elements (32-Bit)
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vminsb vminsb

Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX

04 vD VA vB 770

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
if( VA7 <s (VB)juz
then VD7 < ( VA7
else Vhi7 < (VB)iq7
end

Each element ofminsb is a byte.

Each signed-integer element ¥ is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-48 shows the usage of theinsb command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

LoD D e e e e e T I I I I I Iy Iy v
INInImnnIninnninnnnnnne:
y Y YV vy y Y YV YY YV VY YV \

Ssi Ssi Ssi Ssi Ssi S<si <si Ssi <si <si Ssi <si <si <si <si Ssi
””\Hv\v\v\*\*\v\v\v\*\*\*\v\vl

vD

Figure 6-57. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)
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vminsh vminsh

Vector Minimum Signed Half Word

vminsh vD,vA,vB Form: VX
04 vD VA vB 834

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
if( VA)ii+1s <si ( VB)ijris
then  VDjs < ( VA)jis
else VD15 < ( VB)jj1s
end

Each element ofminsh is a half word.

Each signed-integer element ¥ is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-49 shows the usage of thminsh command. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.

| \ \ \ \ \ \ \ | va
N I I T I P B P A T T
Al [Al Al Al vy Yy Yv vy
si <si <si <si <gi Si <si <si
Y Y Y Y
| \ \ \ \ \ \ \ | v

Figure 6-58. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)
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vminsw vminsw

Vector Minimum Signed Word

vminsw vD,vA,vB Form: VX

04 vD VA vB 898

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA)iisa1 <si (VB)jjar
then  VDjsr < ( VA)ja1
else VDjrar < ( VB)jia1
end

Each element ofminsw is a word.

Each signed-integer element ¥A is compared to the corresponding signed-integer
element irvB. The larger of the two signed-integer values is placed into the corresponding
element ofvD.

Other registers altered:
* None

Figure 6-50 shows the usage of thminsw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-59. vminsw—Minimum of Four Signed Integer Elements (32-Bit)
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vminub vminub
Vector Minimum Unsigned Byte
vminub vD,vA,vB Form: VX
04 vD VA vB 514
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
it VA7 <ui ( VB)jz
then VD7 < ( VA7
else Vhi7 < (VB)iq7
end

Each element ofminub is a byte.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the
corresponding element @D.

Other registers altered:
* None

Figure 6-60 shows the usage of theinub command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

LoD D e e e e e T I I I I I Iy Iy v
INInImnnIninnninnnnnnne:
Y YV VY VY VY VY Y YY) y Yv VY
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Figure 6-60. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)
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vminuh vminuh

Vector Minimum Unsigned Half Word

vminuh vD,vA,vB Form: VX

04 vD VA vB 578

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
if( VA)iivs  <ui ( VB)jjsas
then  VDjs < ( VA)jis
else VD15 < ( VB)jj1s
end

Each element ofminuh is a half word.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the
corresponding element @D.

Other registers altered:
* None

Figure 6-49 shows the usage of theinuh command. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

| \ \ \ \ \ \ \ | vA

N I I T I P B P A T T
Al [Al Al Al vy Yy Yv vy
<ui <ui <ui <ui <ui <ui <ui <ui
y Y y Y y y

| \ \ \ \ \ \ \ | vD

Figure 6-61. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)
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vminuw vminuw

Vector Minimum Unsigned Word

vminuw vD,vA,vB Form: VX
04 vD VA vB 642

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
if( VA)iisa1  <ui ( VB)jjar
then  VDjsr < ( VA)ja1
else VDjrar < ( VB)jia1
end

Each element ofminuw is a word.

Each unsigned-integer elementviA is compared to the corresponding unsigned-integer
element invB. The larger of the two unsigned-integer values is placed into the
corresponding element @D.

Other registers altered:
* None

Figure 6-50 shows the usage of tminuw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.
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Figure 6-62. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)
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vmladduhm vmladduhm

Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

04 vD VA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 16
prod g1 « ( VA)jiras  * ui ( VB)jjsis
VDjs < Prod o3 +int ( VO)iius
end
Each integer half-word elementwA is multiplied by the corresponding integer half-word
element invB, producing a 32-bit integer product. The product is added to the
corresponding integer half-word elementu@. The integer result is placed into the
corresponding half-word elementwiD.

Note thatvmladduhm can be used for unsigned or signed integers.

Other registers altered:
* None

Figure 6-16 shows the usage of tteladduhm command. Each of the eight elements in
the vectorsyA, vB, vC, andvD, are 16 bits in length.

IEEPE A VRN ENENENZ
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Figure 6-63. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)
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vmrghb vmrghb

Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

04 vD VA vB 12

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VDo, 2)+15 (VA7 ICVB) 7
end

Each element ofmrghb is a byte.
The elements in the high-order half\ok are placed, in the same order, into the even-
numbered elements @D. The elements in the high-order hali/&f are placed, in the same
order, into the odd-numbered elementsDf
Other registers altered:

* None

Figure 6-64 shows the usage of tilerghb command. Each of the sixteen elements in the
vectorsVvA, vB, andvD, is 8 bits in length.

L NI S [ T [ T [ T [ |w

S A N s S N N B N

LA A o N - S i = i AT

Figure 6-64. vmrghb—Merge Eight High-Order Elements (8-Bit)
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vmrghh vmrghh

Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

04 vD VA vB 76

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16
VDo (2)+31 < (VA5 I VB)ijs
end

Each element ofmrghh is a half word.

The elements in the high-order half\ok are placed, in the same order, into the even-
numbered elements @D. The elements in the high-order hali/&f are placed, in the same
order, into the odd-numbered elementsDf

Other registers altered:
* None

Figure 6-65 shows the usage of tmrghh command. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

I | | | | | | | | vA

I I ) S I D N I | v

I [ 1T = 7% =01 = 1w

Figure 6-65. vmrghh—Merge Four High-Order Elements (16-Bit)
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vmrghw vmrghw

Vector Merge High Word

vmrghw vD,vA,vB Form: VX
04 vD VA vB 140

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 32
VD (#2)+63 < (VA)iar  I1( VB)jjua1
end

Each element ofmrghw is a word.

The elements in the high-order half\ok are placed, in the same order, into the even-
numbered elements @D. The elements in the high-order hali/&f are placed, in the same
order, into the odd-numbered elementsDf

Other registers altered:
* None

Figure 6-66 shows the usage of threrghw command. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

I | | | | vA

I I AN I | v

I = - = | v

Figure 6-66. vmrghw—Merge Four High-Order Elements (32-Bit)
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vmrglb vmrglb

Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX

04 vD VA vB 268

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD2 p2)15 < (VA ieain71 11 VB)ivsaier1
end

Each element offermrglb is a byte.

The elements in the low-order half wh are placed, in the same order, into the even-
numbered elements wD. The elements in the low-order halfuld are placed, in the same
order, into the odd-numbered elementyDf

Other registers altered:
* None

Figure 6-67 shows the usage of timerglb command. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

N N N N N = = = 2 D2 72 728 P T2

N I s g s = 2 V0 =y, 2 A R A
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Figure 6-67. vmrglb—Merge Eight Low-Order Elements (8-Bit)
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vmrglh vmrglh

Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX
04 vD VA vB 332

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16
VD231 < (VA iregisre I ( VB)ispainrg
end

Each element ofmrglh is a half word.

The elements in the low-order half wh are placed, in the same order, into the even-
numbered elements wD. The elements in the low-order halfuld are placed, in the same
order, into the odd-numbered elementyDf

Other registers altered:
* None

Figure 6-65 shows the usage of thrglh command. Each of the eight elements in the
vectors VA, vB, andvD, are 16 bits in length.

I | | | | | | | | vA
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Figure 6-68. vmrglh—Merge Four Low-Order Elements (16-Bit)
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vmrglw vmrglw

Vector Merge Low Word

vmrglw vD,vA,vB Form: VX

04 vD VA vB 396

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 32
VD2 2)+63 < (VA)iregiros I ( VB)ispaivos
end

Each element ofmrglw is a word.

The elements in the low-order half wh are placed, in the same order, into the even-
numbered elements wD. The elements in the low-order halfuld are placed, in the same
order, into the odd-numbered elementyDf

Other registers altered:
* None

Figure 6-69 shows the usage of therglw command. Each of the eight elements in the
vectorsVvA, vB, andvD, are 16 bits in length.

I | | | | vA
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Figure 6-69. vmrglw—Merge Four Low-Order Elements (32-Bit)
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vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo
vmsummbm vD,vA,vB,vC Form: VA
04 vD VA vB vC 37
0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32
tempgar  ~ ( VO)ijar
doj=0to31by8
prod g5 « ( VA) 7T s ( vB) i+
tempog; —temp gz + iy SignExtend(prod 45 ,32)
end

VD31 < temp g3;
end

For each word element irC the following operations are performed in the order shown.

» Each of the four signed-integer byte elements contained in the corresponding word
element ofvA is multiplied by the corresponding unsigned-integer byte element in
vB, producing a signed-integer 16-bit product.

e The signed-integer modulo sum of these four products is added to the signed-integer
word element irvC.

» The signed-integer result is placed into the corresponding word elemdt of

Other registers altered:
* None
Figure 6-70 shows the usage of ttesummbm command. Each of the sixteen elements

in the vectorsyA, andvB, are 8 bits in length. Each of the four elements in the veeiors,
andvD are 32 bits in length.

LG LG LD Ll L] va
L v
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Figure 6-70. vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit)
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vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo
vmsumshm \D,vA,vB,vC Form: VA
04 vD VA vB vC 40
0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32
tempog;  — ( VO)iua
doj=0to31lby16
prod ga1 < ( VA)ujisirets  * i ( VB)iujinjras
tempga;  «—temp 31 +in Prod oz
VD31~ temp g31
end
end

For each word element irC the following operations are performed in the order shown.

» Each of the two signed-integer half-word elements contained in the corresponding
word element of’A is multiplied by the corresponding signed-integer half-word

element invB, producing a signed-integer 32-bit product.

« The signed-integer modulo sum of these two products is added to the signed-integer

word element irvC.

» The signed-integer result is placed into the corresponding word elemat of

Other registers altered:
* None

Figure 6-71 shows the usage of t,esumshmcommand. Each of the eight elements in
the vectorsyA, andvB, arel6 bits in length. Each of the four elements in the vesiors,

andvD are 32 bits in length.

Figure 6-71. vmsumshm—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)
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vmsumshs vmsumshs

Vector Multiply Sum Signed Half Word Saturate

vmsumshs \D,vA,vB,vC Form: VA

04 vD VA vB vC 41

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32
tempgaz ~ SignExtend((  vC)jjuzy 134)
doj=0to31lby16
prod g31 < ( VA)ijirs1s s ( VB)isjisjras
tempogs —temp gg3 + iy SignExtend(prod o3 ,34)
vDi31 < SlhoSlsatttemp 0:33 132)

end
end

For each word element irC the following operations are performed in the order shown.

« Each of the two signed-integer half-word elements in the corresponding word
element oA is multiplied by the corresponding signed-integer half-word element
in vB, producing a signed-integer 32-bit product.

» The signed-integer sum of these two products is added to the signed-integer word
element invC.

« Ifthis intermediate result is greater thaA2) it saturates to £-1) and if it is less
than -21 it saturates to .

* The signed-integer result is placed into the corresponding word elemdt of

Other registers altered:

e SAT
Figure 6-72 shows the usage of #tmesumshscommand. Each of the eight elements in the
vectors A, andvB, arel6 bits in length. Each of the four elements in the veettrand
vD are 32 bits in length.

Figure 6-72. vmsumshs—Multiply-Sum of Signed Integer Elements (16-Bit to 32-Bit)
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vmsumubm

Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC

AltiVec Instruction Set

vmsumubm

Form: VA

04 vD | VA

vB vC 36

5 6 10 11 15 16

doi=0to 127 by 32
tempga; < ( VC)jjrar
doj=0to31by8
prod g5 < ( VA)ugivie7 ¥ i ( VB)ijijs7
tempgg, < temp g3 + iy ZeroExtend(prod
VDjg1r  ~temp g3
end
end

20 21 25 26 31

0:15 +32)

For each word element irC the following operations are performed in the order shown.

Each of the four unsigned-integer byte elements contained in the corresponding

word element o¥A is multiplied by the corresponding unsigned-integer byte
element invB, producing an unsigned-integer 16-bit product.

integer word element mC.

Other registers altered:

None

The unsigned-integer modulo sum of these four products is added to the unsigned-

The unsigned-integer result is placed into the corresponding word elenvént of

Figure 6-73 shows the usage of tihesumubm command. Each of the sixteen elements in
the vectorsyA, andvB, are 8 bits in length. Each of the four elements in the vestOrs,

andvD are 32 bits in length.

Prod

Figure 6-73. vmsumubm—Multiply-Sum of Unsigned Integer Elements

(8-Bit to 32-

Bit)
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vmsumuhm vmsumuhm

Vector Multiply Sum Unsigned Half Word Modulo

vmsumuhm vD,vA,vB,vC Form: VA

04 vD A vB vC 38

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32

tempog;  — ( VO)iua
doj=0to31lby16
prod ga1 < ( VA)ugisirts ¥ ui ( VB)iujijras
tempga; « temp gaz; +iy Prod gaz;
VDjiz1  —temp 233
end
end

For each word element irC the following operations are performed in the order shown.

» Each of the two unsigned-integer half-word elements contained in the corresponding
word element o¥A is multiplied by the corresponding unsigned-integer half-word
element invB, producing a unsigned-integer 32-bit product.

e The unsigned-integer sum of these two products is added to the unsigned-integer
word element irvC.

» The unsigned-integer result is placed into the corresponding word elenvént of
Other registers altered:
* None

Figure 6-74 shows the usage of th,esumuhm command. Each of the eight elements in
the vectorsyA, andvB, arel6 bits in length. Each of the four elements in the vesiOrs,
andvD are 32 bits in length.

Figure 6-74. vmsumuhm—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)
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AltiVec Instruction Set

vmsumuhs vmsumuhs

Vector Multiply Sum Unsigned Half Word Saturate

vmsumuhs \D,vA,vB,vC Form: VA

04 vD VA vB vC 39

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32
tempggy — ZeroExtend((  vC)ija; .34)
doj=0to31lby16
prod ga1 < ( VA)ugisiets ¥ ui ( VB)iujiiras
tempogg €M gg3 +jy ZeroExtend(prod g3 ,34)
vDi31  « UltoUlsat(temp 0:33 32)

end
end

For each word element irC the following operations are performed in the order shown.

» Each of the two unsigned-integer half-word elements contained in the corresponding
word element o¥A is multiplied by the corresponding unsigned-integer half-word
element invB, producing an unsigned-integer 32-bit product.

* The unsigned-integer sum of these two products is saturate-added to the unsigned-
integer word element nC.

» The unsigned-integer result is placed into the corresponding word elenvént of
Other registers altered:
» SAT

Figure 6-75 shows the usage of tnesumuhscommand. Each of the eight elements in the
vectors A, andvB, arel6 bits in length. Each of the four elements in the veettrand
vD are 32 bits in length.

Figure 6-75. vmsumuhs—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)
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AltiVec Instruction Set

vmulesb vmulesb
Vector Multiply Even Signed Byte
vmulesb \D,VA,vB Form: VX
04 vD VA vB 776
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
prod g15 « ( VA)iiw7z  * 5 ( VB)i7
Vs~ prod o35
end
Each even-numbered signed-integer byte elemer in multiplied by the corresponding
signed-integer byte elementvB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-wordvDf

Other registers altered:
* None

Figure 6-76 shows the usage of #meulesbcommand. Each of the sixteen elements in the
vectors VA, andvB, is 8 bits in length. Each of the eight elements in the ve@oprs 16
bits in length.

el  [e] ol (o] (o] o] o] [a]vw

Lo [T el e[ Jel[ (el e[, [a[[ [a]w

Al 1] 17 Yy 1] Al Yy y

* * * * * * * *

I\ \\ \\ \\ \\ \\ \\ \\ |
vD

Figure 6-76. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)
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vmulesh vmulesh

Vector Multiply Even Signed Half Word

vmulesh \D,VA,vB Form: VX

04 vD VA vB 840

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
prod g3; < ( VA)ijr1s * s ( VB)ijs1s
VD31~ prod g31

end

Each even-numbered signed-integer half-word elementAinis multiplied by the
corresponding signed-integer half-word elemenvih The four 32-bit signed-integer
products are placed, in the same order, into the four wond3. of

Other registers altered:
* None
Figure 6-77 shows the usage of threulesh command. Each of the eight elements in the

vectors VA, andvB, is 16 bits in length. Each of the four elements in the ve@ois 32
bits in length.

| | o ] | o ] o ] | & |vA

L1 [ & |
Al

*

T T S S
| \ \ \ | vo

Figure 6-77. vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)
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vmuleub vmuleub

Vector Multiply Even Unsigned Byte

vmuleub vD,vA,vB Form: VX
04 vD VA vB 520

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
prod g15 < ( VA7 * ui ( VB)iis7
(VD)jjszs < prod g5

end

Each even-numbered unsigned-integer byte element in registey multiplied by the
corresponding unsigned-integer byte element in regi@efhe eight 16-bit unsigned-
integer products are placed, in the same order, into the eight halfwords of rdgister

Other registers altered:
* None

Figure 6-78 shows the usage of meuleub command. Each of the sixteen elements in the
vectors VA, andvB, is 8 bits in length. Each of the eight elements in the ve€oprs 16

bits in length.
L el lely 1ol le], [e]  [e] [a] [o]vA
Lo [T el e[ Jel[ (el e[, [a[[ [a]w
Al 1] 17 Yy 1] Al Yy y
* * * * * * * *
I\ \\ \\ \\ \\ \\ \\ \\ |
vD

Figure 6-78. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)
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vmuleuh vmuleuh

Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA,vB Form: VX

04 vD VA vB 584

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
prod g3 < ( VA)jiras  * ui ( VB)ijsis
(VD)jjaz1 < prod g3

end

Each even-numbered unsigned-integer halfword element in regdsiemultiplied by the
corresponding unsigned-integer halfword element in regiBtefhe four 32-bit unsigned-
integer products are placed, in the same order, into the four words of reDister

Other registers altered:

* None

Figure 6-79 shows the usage of tmeuleuh command. Each of the eight elements in the
vectors VA, andvB, is 16 bits in length. Each of the four elements in the ve@ois 32
bits in length.

| | o ] | o ] o ] | & |vA

L1 [ & |
Al

*

T T S S
| \ \ \ | vo

Figure 6-79. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)
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vmulosb vmulosb
Vector Multiply Odd Signed Byte
vmulosb vD,vA,vB Form: VX
04 vD VA vB 264
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
prod g15 < ( VA)irgists  * si ( VB)isginis
VDj5 < prod o5
end
Each odd-numbered signed-integer byte elemevAiis multiplied by the corresponding
signed-integer byte elementvB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-wordvDf

Other registers altered:
* None

Figure 6-80 shows the usage of tineulosb command. Each of the sixteen elements in the
vectors VA, andvB, is 8 bits in length. Each of the eight elements in the ve€oprs 16
bits in length.

el 1o, o] o] [o] (o] [a] [a] |v
e ([ [e [ [l (el [el[ o[\ [e[[,[o][] ]
Y Y YY Y Yy Y Y A

* * * * * * * *

| /\ /\ /\ /\ /\ /\ /\ /I
vD

Figure 6-80. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)
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AltiVec Instruction Set

vmulosh vmulosh

Vector Multiply Odd Signed Half Word

vmulosh vD,vVA,vB Form: VX

04 vD VA vB 328

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
prod g31 < ( VA)ireirsr  * si ( VB)ir16ina1
VD31~ prod g31

end

Each odd-numbered signed-integer half-word elemenwAnis multiplied by the
corresponding signed-integer half-word elemenvih The four 32-bit signed-integer
products are placed, in the same order, into the four wond3. of

Other registers altered:
* None
Figure 6-81 shows the usage of tmeuleuh command. Each of the eight elements in the

vectors VA, andvB, is 16 bits in length. Each of the four elements in the ve@ois 32
bits in length.

[ 2 | | 2 | | o] . o] | vA
[ & | L 1 8 ] L 1 8 ] L1 8 ] L |8
Y Y Y A
* * * *

Figure 6-81. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)
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vmuloub vmuloub

Vector Multiply Odd Unsigned Byte

vmuloub vD,vA,vB Form: VX
04 vD VA vB 8

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
prod g.15 « ( VA)irgi+1s  * ui ( VB)isni+15
VDi+15 « prod o315

end

Each odd-numbered unsigned-integer byte elementvAn is multiplied by the
corresponding unsigned-integer byte elemenvBn The eight 16-bit unsigned-integer
products are placed, in the same order, into the eight half-word3 of

Other registers altered:
* None
Figure 6-76 shows the usage of #neuloub command. Each of the sixteen elements in the

vectors VA, andvB, is 8 bits in length. Each of the eight elements in the ve€pis 16
bits in length.

el 1o, o] o] [o] (o] [a] [a] |v
e ([ [e [ [l (el [el[ o[\ [e[[,[o][] ]
Y Y YY Y Yy Y Y A

* * * * * * * *

| /\ /\ /\ /\ /\ /\ /\ /I
vD

Figure 6-82. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)
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vmulouh vmulouh

Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX

04 vD VA vB 72

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
prod 931 < ( VA)ir16i+31  * ui ( VB)isniea1s
VD31 < prod 31

end

Each odd-numbered unsigned-integer half-word elementAinis multiplied by the
corresponding unsigned-integer half-word elemerBinThe four 32-bit unsigned-integer
products are placed, in the same order, into the four wond3. of

Other registers altered:
* None
Figure 6-79 shows the usage of tlreulouh command. Each of the eight elements in the

vectors VA, andvB, is 16 bits in length. Each of the four elements in the ve@ois 32
bits in length.

[ 2 | | 2 | | o] . o] | vA
[ & | L 1 8 ] L 1 8 ] L1 8 ] L |8
Y Y Y A
* * * *

Figure 6-83. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)
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vhmsubfp vnmsubfp

Vector Negative Multiply-Subtract Floating Point

vhmsubfp vD,vA,vC vB Form: VA
04 vD VA vB vC 47

0 5 6 10 11 15 16 20 21 25 26 31

doi=0to 127 by 32
VDi;+31 < -RndToNearFP32((( VA)ijs31  * fp ( VO)iisar )= 1p ( VB)ijear )

end
Each single-precision floating-point word elementAris multiplied by the corresponding
single-precision floating-point word elementvi@@. The corresponding single-precision
floating-point word element ivB is subtracted from the product. The sign of the difference
is inverted. The result is rounded to the nearest single-precision floating-point number and
placed into the corresponding word elementof

Note that only one rounding occurs in this operation. Also note that a QNaN result is not
negated.

Other registers altered:
* None

Figure 6-84 shows the usage of tlensubfp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

Figure 6-84. vnmsubfp—Negative Multiply-Subtract of Four Floating-Point
Elements (32-Bit)
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vnor vnor

Vector Logical NOR

vhor vD,vA,vB Form: VX

04 vD VA vB 1284

0 5 6 10 11 15 16 20 21 31

vD « =~((vA)|( VvB)

The contents ofA are bitwise ORed with the contentsvif and the complemented result
is placed intorD.

Other registers altered:
* None

Simplified mnemonics:
vhot vD,VvS equivalent to vhor vD,VvS,vS

Figure 6-85 shows the usage of tim®r command.

| | va

[ | v8
¥

-—

Intermediate

le— 1 <

vD

Figure 6-85. vnor—Bitwise NOR of 128-bit Vector
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Vvor VvOor

Vector Logical OR

vor vD,vA,vB Form: VX
04 vD VA vB 1156

0 5 6 10 11 15 16 20 21 31

vD « ( VA)|( vB)

The contents ofA are ORed with the contents B and the result is placed ini®.

Other registers altered:
* None

Simplified mnemonics:
vmr vD, vS

Figure 6-85 shows the usage of tloe command.

Figure 6-86. vor—Bitwise OR of 128-bit Vector

equivalent twor vD, vS, VS
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vperm vperm

Vector Permute

vperm vD,vA,vB,vC Form: VA

04 vD VA vB vC 43

0 5 6 10 11 15 16 20 21 25 26 31

tempgoss  — ((VA) |[( vB)
doi=0to 127 by 8

b« (vQiszirz  [/0b00O
Vq:i+7 ~temp ppe7
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB. For each integer i in the range 0-15, the contents of the byte element in the source
vector specified in bits 3—7 of byte elementv@hare placed into byte element iv.

Other registers altered:
* None

Programming note: See the programming notes with the Load Vector for Shift Left and
Load Vector for Shift Right instructions for examples of usage omghan instruction.

Figure 6-87 shows the usage of thperm command. Each of the sixteen elements in the
vectors VA, vB, vC, andvD, is 8 bits in length.

[o1]1a]18]10]16]15]19]1al1c]1c]1c]13] 081D [1B]0E] vC

[o]2J2]3]4a]s5]e6]7][8]o]Aa]B]C][DJ[EJF]va

[0 ]11 [12 [23 [14 15 [16 [ 17 [18 [19 [1A[1B [1C 1D 1E IF | vB

T = AT A A« A= TR |w

Figure 6-87. vperm—Concatenate Sixteen Integer Elements (8-Bit)
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VpKpXx VpKpXx

Vector Pack Pixel32

vpkpx vD,vA,vB Form: VX

04 vD VA vB 782

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 16
vhQ < (VA) 247
VDi1iies < (VA #2)s8:(i*2)+12
VDigii+10 < ( VA) (#2)+16:(+2)+20
VDi11:015 < ( VA (#2)+24:(*2)+28
VDigs < ( VB) ()7
VDig5iv60  « ( VB) (2)+8:(*2)+12
VD470:474 < ( VB) (#2)+16:(*2)+20
VD4755479 < ( VB) (x2)+24:(*2)+28
end

The source vector is the concatenation of the contenta &bllowed by the contents of
vB. Each word element in the source vector is packed to produce a 16-bit value as described
below and placed into the corresponding half-word elemeriDof word is packed to 16
bits by concatenating, in order, the following bits.
» bit 7 of the first byte (bit 7 of the word)
e bits 0—4 of the second byte (bits 8-12 of the word)
« bits 0—4 of the third byte (bits 16—20 of the word)
 bits 0—4 of the fourth byte (bits 24—28 of the word)
Other registers altered:

* None

Programming note: Each source word can be considered to be a 32-bit pixel consisting of
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel consisting

of one 1-bit channel and three 5-bit channels. A channel can be used to specify the intensity
of a particular color, such as red, green, or blue, or to provide other information needed by

the application.

Figure 6-88 shows the usage of tfEkpx command. Each of the four elements in the
vectorsvA, vB, andvD, is 32 bits in length.

M

Figure 6-88. vpkpx—Pack Eight Elements (32-Bit) to Eight
Elements (16-Bit)
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vpkshss vpkshss

Vector Pack Signed Half Word Signed Saturate

vpkshss \D,VA,vB Form: VX

04 vD VA vB 398

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD;+7 < ShoSlsat(( VAo s2)r15  8)
VDipa:471  « ShtoSlsat(( VB)jppyeg)r1s  8)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit signed
integer. If the value of the element is greater than {2 the result saturates to'(4) and

if the value is less than -2he result saturates to’-2The result is placed into the
corresponding byte elementwi.

Other registers altered:
e SAT
Figure 6-89 shows the usage of thkshsscommand. Each of the eight elements in the

vectors,vA, andvB, is 16 bits in length. Each of the sixteen elements in the wDtds
8 bits in length.

VA vB
|

\4\\{\{\4\%\‘\‘\\”\‘\‘/‘/l/‘/‘/‘/l

5SS IMMULLEE AL

Figure 6-89. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Signed Integer Elements (8-Bit)
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vpkshus vpkshus

Vector Pack Signed Half Word Unsigned Saturate

vpkshus \D,VA,vB Form: VX
04 vD VA vB 270

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD7  «~ SloUlsat(( VA)pouiprr  B)
VDipai471 < ShoUlsat((  VB)ppegpe7  8)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit unsigned
integer. If the value of the element is greater thénI}Zthe result saturates t?(21) and

if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
byte element o¥D.

Other registers altered:
e SAT
Figure 6-90 shows the usage of thpkshus command. Each of the eight elements in the

vectors,vA, andvB, is 16 bits in length. Each of the sixteen elements in the wDtids
8 bits in length.

VA vB
|

\4\\{\{\4\%\‘\‘\\”\‘\‘/‘/l/‘/‘/‘/l

5SS IMMULLEE AL

Figure 6-90. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)
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Vpkswss VpKswss

Vector Pack Signed Word Signed Saturate

vpkswss \D,VA,vB Form: VX

04 vD VA vB 462

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 16
VD5 « ShoSlsat(( VA)po 31 16)
VDipa:470 « ShtoSlsat(( VB)pp:oe3r  116)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit signed
integer half word. If the value of the element is greater th&an (3 the result saturates to

(2'5- 1) and if the value is less thari>the result saturates to'*2The result is placed into

the corresponding half-word elementvid.

Other registers altered:
» SAT
Figure 6-91 shows the usage of tlpkswsscommand. Each of the four elements in the

vectorsvA, andvB, is 32 bits in length. Each of the eight elements in the veEtpis 16
bits in length.

VA vB

|\\1 ‘ ‘\\” ‘\‘\‘/l

F*“"‘ﬂ/

Figure 6-91. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed
Integer Elements (16-Bit)
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vpkswus vpkswus

Vector Pack Signed Word Unsigned Saturate

vpkswus \D,VA,vB Form: VX
04 vD VA vB 334

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 16
VD5 « ShoUlsat((  VA)pope31  16)
VDipa:470  « ShoUlsat((  VB)pp:oye3r  116)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater thé (@ the result saturates td421) and

if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
half-word element o¥D.

Other registers altered:
» SAT
Figure 6-92 shows the usage of thpkswus command. Each of the four elements in the

vectorsvA, andvB, is 32 bits in length. Each of the eight elements in the veEtpis 16
bits in length.

VA vB

|\\‘ ‘ ‘\\” ‘\‘\‘/l

F*“"”T‘K

Figure 6-92. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)
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vpkuhum vpkuhum

Vector Pack Unsigned Half Word Unsigned Modulo

vpkuhum vD,vA,vB Form: VX

04 vD VA vB 14

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VDi+7 < ( VA) (x2)+8:(i*2)+15
VDi6a:ie71 < ( VB) (#2)+8:(*2)+15
end
Let the source vector be the concatenation of the contewss followed by the contents
of vB.

The low-order byte of each half-word element in the source vector is placed into the
corresponding byte elementvi.

Other registers altered:
* None

Figure 6-93 shows the usage of #puhum command. Each of the eight elements in the
vectors,vA, andvB, is 16 bits in length. Each of the sixteen elements in the wDids
8 bits in length.

VA vB

|\\1\\\L\\L\\[\Q\‘\‘\\”\‘\‘/‘/l/‘/‘/‘/l

5SS IMMULLEE AL

Figure 6-93. vpkuhum—~Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)
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vpkuhus vpkuhus

Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

04 vD VA vB 142

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD7« UloUlsat((  VA)poo)e1s  8)
VDipaia71 < UltoUlsat(( VB)jupyeg)r1s  8)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each unsigned integer half-word element in the source vector is converted to an 8-bit
unsigned integer. If the value of the element is greater thard)2he result saturates t¢ (2
- 1). The result is placed into the corresponding byte elemer.of

Other registers altered:
» SAT
Figure 6-94 shows the usage of thpkuhus command. Each of the eight elements in the

vectors,vA, andvB, is 16 bits in length. Each of the sixteen elements in the wDids
8 bits in length.

VA vB
|

\4\\{\{\4\%\‘\‘\\”\‘\‘/‘/l/‘/‘/‘/l

5SS IMMULLEE AL

Figure 6-94. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)
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vpkuwum vpkuwum

Vector Pack Unsigned Word Unsigned Modulo

vpkuwum vD,vA,vB Form: VX
04 vD VA vB 78

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 16
VDir1s < (VA (r2)+16:(#2)+31
VDi6a:i+79 < ( VB) (#2)+16:(*2)+31
end

Let the source vector be the concatenation of the conteuss foflowed by the contents

of vB.

The low-order half-word of each word element in the source vector is placed into the

corresponding half-word elementwiD.

Other registers altered:
* None

Figure 6-95 shows the usage of tipkuwum command. Each of the four elements in the
vectorsvA, andvB, is 32 bits in length. Each of the eight elements in the veEtpis 16

bits in length.

VA

vB

N | [

=

F*“"”T‘K

Figure 6-95. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions

6-121



AltiVec Instruction Set

vpkuwus vpkuwus

Vector Pack Unsigned Word Unsigned Saturate

vpkuwus vD,vA,vB Form: VX
04 vD VA vB 206

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 16
VD5 < UltoUlsat((  VA)jpope31  116)
VDipai470 < UltoUlsat(( VB)jpp:oye31  116)
end

Let the source vector be the concatenation of the conteuss foflowed by the contents
of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than-(2) the result saturates ta'{2 1).
The result is placed into the corresponding half-word elemerid of

Other registers altered:
o SAT

Figure 6-96 shows the usage of thikuwus command. Each of the four elements in the
vectorsvA, andvB, is 32 bits in length. Each of the eight elements in the veEtpis 16
bits in length.

VA vB

|\\‘ ‘ ‘\\” ‘\‘\‘/l

F*“"”T‘K

Figure 6-96. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)
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vrefp vrefp

Vector Reciprocal Estimate Floating Point

vrefp vD,vB Form: VX

04 vD 00000 vB 266

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
X < ( VB)jua1
VDjzr  ~ W

end

The single-precision floating-point estimate of the reciprocal of each single-precision
floating-point element inB is placed into the corresponding elemeniDf

For results that are not a +0, -Gp,+0, or QNaN, the estimate has a relative error in
precision no greater than one part in 4096, that is:

estimate —1/x | . _1
1/x ~ 4096

wherex is the value of the elementvB. Note that the value placed into the elemenf
may vary between implementations, and between different executions on the same
implementation.

Operation with various special values of the elemenBiis summarized below.

Value Result
-0 -0
-0 -00
+0 +00
+00 +0

NaN QNaN

If VSCRINJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:
* None

Figure 6-97 shows the usage of tirefp command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.
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[ X \ X \ X \ X vB
1¢/x 1¢/x 1 ‘/ X 1* X
[ v \ Y [ Y [ \J | vo

Figure 6-97. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)
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vrfim vrfim

Vector Round to Floating-Point Integer toward Minus Infinity

vrfim vD,vB Form: VX

04 vD 00000 vB 714

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
vD.i+31 < RndToFPInt32Floor(( VB)ii+31 )
end

Each single-precision floating-point word elemenvihis rounded to a single-precision
floating-point integer, using the rounding mode Round toward -Infinity, and placed into the
corresponding word elementab.

Other registers altered:
* None

Figure 6-98 shows the usage of thém command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

| | \ | \ | \ | | vB

RndToFPInt32Floor RndToFPInt32Floor RndToFPInt32Floor RndToFPInt32Floor

I | | | | vo

Figure 6-98. vrfim— Round to Minus Infinity of Four Floating-Point Integer
Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-125



AltiVec Instruction Set

vrfin vrfin
Vector Round to Floating-Point Integer Nearest
vrfin vD,vB Form: VX
04 vD 00000 vB 522
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VD.+31 < RndToFPInt32Near((  VB)jis31 )
end

Each single-precision floating-point word elemenvihis rounded to a single-precision
floating-point integer, using the rounding mode Round to Nearest, and placed into the
corresponding word elementab.

Note the result is independent of VSCR[NJ].

Other registers altered:
* None

Figure 6-99 shows the usage of #nén command. Each of the four elements in the vectors
vB andvD is 32 bits in length.

| | \ | \ | \ | | vB

y \ y y
RndToFPInt32Near  RndToFPInt32Nea RndToFPInt32Near RndToFPInt32Near

I \ \ \ | vo

Figure 6-99. vrfin—Nearest Round to Nearest of Four Floating-Point Integer
Elements (32-Bit)

6-126 AltiVec Technology Programming Environments Manual MOTOROLA



AltiVec Instruction Set

vrfip vrfip

Vector Round to Floating-Point Integer toward Plus Infinity

vrfip vD,vB Form: VX

04 vD 00000 vB 650

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VD1  « RndToFPInt32Ceil(( VB)iis31 )
end

Each single-precision floating-point word elemenvihis rounded to a single-precision
floating-point integer, using the rounding mode Round toward +Infinity, and placed into the
corresponding word elementab.

If VSCR[NJ] = 1, every denormalized operand element is truncated to O before the
comparison is made.

Other registers altered:
*« None

Figure 6-100 shows the usage of thép command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

| | \ | \ | \ | | vB

RndToFPInt32Ceil RndToFPInt32Ceil RndToFPInt32Ceil RndToFPInt32Ceil

v ¥ ¥ ¥
| \ \ \ | vo

Figure 6-100. vrfip—Round to Plus Infinity of Four Floating-Point Integer Elements
(32-Bit)
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vrfiz vrfiz
Vector Round to Floating-Point Integer toward Zero
vrfiz vD,vB Form: VX
04 vD 00000 vB 586
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VDi+31 < RndToFPINt32Trunc(( VB)ii+31 )
end

Each single-precision floating-point word elemenvihis rounded to a single-precision
floating-point integer, using the rounding mode Round toward Zero, and placed into the
corresponding word elementab.

Note, the result is independent of VSCR[NJ].

Other registers altered:
* None

Figure 6-101 shows the usage of thiz command. Each of the four elements in the
vectorsvB andvD is 32 bits in length.

| | \ | \ | \ | | vB

RndToFPInt32Trunc RndToFPInt32Trunc RndToFPInt32Trunc RndToFPInt32Trunc

I \ \ \ | vo

Figure 6-101. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)
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vrib vrib

Vector Rotate Left Integer Byte

vrib vD,vA,vB Form: VX

04 vD VA vB 4

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8

sh « ( VB)issiv7

VDjs7  — ROTL(( VA)jju7 SH)
end

Each element is a byte. Each elementAris rotated left by the number of bits specified
in the low-order 3 bits of the corresponding elementBn The result is placed into the
corresponding element @D.
Other registers altered:

* None

Figure 6-102 shows the usage of tlilh command. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

|vA
v

B

[
lslolvivieIcloIvIvIvICIvIVIIe
N

| vo

Figure 6-102. vrib—Left Rotate of Sixteen Integer Elements (8-Bit)
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vrih vrih

Vector Rotate Left Integer Half Word

vrlh vD,vA,vB Form: VX
04 vD VA vB 68

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16

sh « ( VB)i+12:i+15

VDZi+l5 — ROTL« VA)i:i+15 ,Sh)
end

Each element is a half word

Each element imA is rotated left by the number of bits specified in the low-order 4 bits of
the corresponding elementiB. The result is placed into the corresponding elemerid of

Other registers altered:
* None

Figure 6-103 shows the usage of thh command. Each of the eight elements in the
vectorsVvA, vB, andvD, is 16 bits in length.

|vA
v

B

T T T T T T ]
OSDHDHDHDHDODDD
[T T T T T T ]

| vD

Figure 6-103. vrih—Left Rotate of Eight Integer Elements (16-Bit)
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vriw vriw

Vector Rotate Left Integer Word

vriw vD,vA,vB Form: VX
04 vD VA vB 132

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32

sh « ( VB)jr27:i+31
VDi+31  — ROTL(( VA)jj+31 Sh)

end

Each element is a word. Each elementAnis rotated left by the number of bits specified
in the low-order 5 bits of the corresponding elementBn The result is placed into the
corresponding element @D.
Other registers altered:

* None

Figure 6-104 shows the usage of thkev command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

I \ \ \ | va
Tt Y Y P o

I | | | | vo

Figure 6-104. vriw—Left Rotate of Four Integer Elements (32-Bit)
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vrsqrtefp vrsqrtefp

Vector Reciprocal Square Root Estimate Floating Point

vrsqrtefp vD,vB Form: VX

04 vD 00000 vB 330

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32

X < ( VB)ijua

Vhjar < L5 (Vip(X)
end

The single-precision estimate of the reciprocal of the square root of each single-precision
element invB is placed into the corresponding word element®f The estimate has a
relative error in precision no greater than one part in 4096, as explained below:

estimate — 1/ J/x
1/ ./x

<L
= 4096

wherex is the value of the elementyiB. Note that the value placed into the elememf
may vary between implementations and between different executions on the same

implementation. Operation with various special values of the elemeBtisisummarized
below.

Value Result
-00 QNaN
less than 0 QNaN

-0 -0

+0 +00

+00 +0
NaN QNaN

Other registers altered:
* None

Figure 6-105 shows the usage of ¥inggrtefp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.
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| | \ | \ | \ | | vB

Figure 6-105. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point
Elements (32-Bit)
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vsel vsel
Vector Conditional Select
vsel \D,vA,vB,vC Form: VA
04 vD VA vB vC 42
0 5 6 10 11 15 16 20 21 25 26 31
do i=0to 127

if( vC)j=Othen vDO « ( VA);
else vhQ « (VvB);
end

For each bit irvC that contains the value 0, the corresponding hifdins placed into the
corresponding bit ofD. For each bit ivC that contains the value 1, the corresponding bit
in vB is placed into the corresponding bitvad.

Other registers altered:
* None

Figure 6-106 shows the usage of #isel command. Each of the vectov#, vB, vC, and
vD, is 128 bits in length.

........... |VA

[TTT T [ eveveeeees | v8

qo[1]2fofofs e eveerenn | ve

1

Wl Jccco0000000 | vo

Figure 6-106. vsel—Bitwise Conditional Select of Vector Contents(128-hit)
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vsl vsl

Vector Shift Left

vsl vD,vA,vB Form: VX

04 vD VA vB 452

0 5 6 10 11 15 16 20 21 31

sh « ( vB) 125127
t <1
doi=0t0127 by 8

t ~t&( vB)i+5i+7=sh)

ift=1then vD « ( VA) << i sh
else vD « undefined
end

The contents o¥A are shifted left by the number of bits specified/B{125-127]. Bits
shifted out of bit O are lost. Zeros are supplied to the vacated bits on the right. The result is
placed intovD.

The contents of the low-order three bits of all byte elemem®imust be identical to
vB[125-127]; otherwise the value placed inD is undefined.

Other registers altered:
* None

Figure 6-107 shows the usage of ¥isecommand.

125 — —127
Yy

| 6% vB

*6 = sh = Shift Count

L] | v

/ ........ . %Shin

[ J000000] vD
—»{ shzeros fe—

Figure 6-107. vsl—Shift Bits Left in Vector (128-Bit)
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vsib vsib

Vector Shift Left Integer Byte

vslb vD,vA,vB Form: VX
04 vD VA vB 260

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8

sh — ( VB)jisyiv7

V7 < (VA)ju7 <<y sh
end

Each element is a byte. Each elementAris shifted left by the number of bits specified

in the low-order 3 bits of the corresponding elememBnBits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding elementwiD.

Other registers altered:
* None

Figure 6-102 shows the usage of tteth command. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

125 — 127

[ 6] 6| 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ 6[ *6| vB

////////////////«*e —

L bbb ol ] o ol b b 9 o

ZEI’OS

Figure 6-108. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)
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vsldoi vsldoi

Vector Shift Left Double by Octet Immediate

vsldoi vD, VA, vB, SHB Form: VA

04 vD VA vB |0| SH 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vD «(( vA) [I( vB))<< ;i (SHB || 0b000)

Let the source vector be the concatenation of the contenfs foflowed by the contents
of vB. Bytes SHB:SHB+15 of the source vector are placedvito

Other registers altered:
* None

Figure 6-14 shows the usage of trebdoi command. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

[T T [ T T T T T T [T T Jw
<— SHB
I N Y R I s O s i )

Figure 6-109. vsldoi—Shift Left by Bytes Specified
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vslh vslh

Vector Shift Left Integer Half Word

vslh vD,vA,vB Form: VX
04 vD VA vB 324

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
sh — ( VB)jr12:+15
VDirs < ( VA)jirs <<y sh
end
Each element is a half word. Each elementAnis shifted left by the number of bits
specified in the low-order 4 bits of the corresponding elemar.iBits shifted out of bit
0 of the element are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into the corresponding elemenvf

Other registers altered:
* None

Figure 6-16 shows the usage of tfeth command. Each of the eight elements in the
vectorsVvA, vB, andvD, is 16 bits in length.

124 —127
e Te[ Tl Te] \e\ \61 \*e ®
S N N N
| /1 /1 /1 /1 /1 '/1 '/1 '/,HS e

Figure 6-110. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)
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vslo vslo

Vector Shift Left by Octet

vslo vD,VA,vB Form: VX

04 vD VA vB 1036

0 5 6 10 11 15 16 20 21 31

shb — ( vB)121:104
VD« ( VA)<< 4 (shb || 0bO0O)

The contents ofA are shifted left by the number of bytes specifiedBfiL21-124]. Bytes
shifted out of byte 0 are lost. Zeros are supplied to the vacated bytes on the right. The result
is placed inta/D.

Other registers altered:
* None

Figure 6-111 shows the usage of ¥iséo command.

121— —124

| Don't Care RE

N 2 5 o v oy =

......... ~<— *4 = shb = Shift Count

AT [#oofoojoojoo]w

Figure 6-111. vslo—Left Byte Shift of Vector (128-Bit)
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vslw vslw

Vector Shift Left Integer Word

vsiw vD,VA,vB Form: VX
04 vD VA vB 388

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
sh « ( VB)jr27:i+31
Vhivar < (VA)isar  <<yi sh
end
Each element is a word. Each elementAnis shifted left by the number of bits specified
in the low-order 5 bits of the corresponding elememBnBits shifted out of bit O of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding elementwiD.

Other registers altered:
* None

Figure 6-112 shows the usage of trebw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

123 127
v
[ 6 [ 6 [ 6 [ 6 ] vB
/ / / / ~—*G = sh = Shift Count
‘ 000000 | ‘ 000000 | ‘ 000000 ‘ 000000‘ vD

ZEI‘OS

Figure 6-112. vslw—Shift Bits Left in Four Integer Elements (32-Bit)
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vspltb vspltb

Vector Splat Byte

vspltb vD,vB,UIMM Form: VX

04 vD UMM vB 524

0 5 6 10 11 15 16 20 21 31

b ~ UMM*8
doi=0to 127 by 8

VD7« (VB)pipar
end

Each element ofspltb is a byte.
The contents of element UIMM WB are replicated into each element/bf.
Other registers altered:

* None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-113 shows the usage of #spltb command. Each of the sixteen elements in the
vectorsvB andvD is 8 bits in length.

LI T [T T [ ] N N N 7

e R A L B 0

Figure 6-113. vspltb—Copy Contents to Sixteen Elements (8-Bit)
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vsplth vsplth

Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

04 vD UMM vB 588

0 5 6 10 11 15 16 20 21 31

b ~ UMM*16
doi=0to 127 by 16

VD15 < ( VB)ppe1s
end

Each element ofsplth is a half word.
The contents of element UIMM WB are replicated into each element/bf.
Other registers altered:

* None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-16 shows the usage of trsplth command. Each of the eight elements in the
vectorsvB andvD is 16 bits in length.

I L~ \ \ \ \ \ | v

L~ ] [ [ ™= T= ] | | vo

Figure 6-114. vsplth—Copy Contents to Eight Elements (16-Bit)
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vspltisb vspltisb

Vector Splat Immediate Signed Byte
vspltisb vD,SIMM Form: VX

04 vD SIMM 00000 780

0 5 6 10 11 15 16 20 21 31

doi=0t0 127 by 8
VD7  « SignExtend(SIMM,8)
end

Each element ofspltisb is a byte.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element ofD.

Other registers altered:
* None

Figure 6-115 shows the usage of¥ipltisb command. Each of the sixteen elements in the
vector,vD, is 8 bits in length.

| | sivm

e LA A B 3 s o o

Figure 6-115. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)
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vspltish

Vector Splat Immediate Signed Half Word

vspltish vD,SIMM

vspltish

Form: VX

04 vD SIMM 00000

844

0 5 6 10 11 15 16 20 21

do i=0 to 127 by 16
VD5 < SignExtend(SIMM,16)
end

Each element ofspltish is a half word.

31

The value of the SIMM field, sign-extended to the length of the element, is replicated into

each element ofD.

Other registers altered:
* None

Figure 6-16 shows the usage of thspltish command. Each of the eight elements in the

vectors VA, vB, andvD, is 16 bits in length.

| o]

| siMm

[ <1 <] #] [ Y [* [*

| vO

Figure 6-116. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)
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vspltisw vspltisw

Vector Splat Immediate Signed Word

vspltisw vD,SIMM Form: VX

04 vD SIMM 00000 908

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD31 < SignExtend(SIMM,32)
end

Each element ofspltisw is a word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element ofD.

Other registers altered:

* None

Figure 6-117 shows the usage of tispltisw command. Each of the four elements in the
vector, and/D, is 32 bits in length.

| | | | sivm

| | z \ A = | vo

Figure 6-117. vspltisw—Copy Value to Four Signed Elements (32-Bit)
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vspltw vspltw
Vector Splat Word
vspltw vD,vB,UIMM Form: VX
04 vD UIMM vB 652
0 5 6 10 11 15 16 20 21 31
b — UMM*32

doi=0to 127 by 32
VD31 < ( VB)pipean
end

Each element ofspltw is a word.
The contents of element UIMM WB are replicated into each element/bf.
Other registers altered:

* None

Programming note: The Vector Splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a Vector Register by a constant).

Figure 6-118 shows the usage of tspltw command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

| | | | umm

I <] F [ 3 [ = | vo

Figure 6-118. vspltw—Copy contents to Four Elements (32-Bit)
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VSTI VSr

Vector Shift Right

VSr vD,vA,vB Form: VX

04 vD VA vB 708

0 5 6 10 11 15 16 20 21 31

sh « ( vB) 125127
t <1
doi=0t0127 by 8

t —t&( VB)us7 =sh)

ift=1then vD < ( VA)>> ; sh
else vD < undefined
end

Let sh =vB[125-127]; sh is the shift count in bit<&7). The contents ofA are shifted
right by sh bits. Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated bits on
the left. The result is placed ini®.

The contents of the low-order three bits of all byte elements in registaust be identical
to vB[125-127]; otherwise the value placed into registelis undefined.

Other registers altered:
* None

Programming notes:

A pair ofvslo andvsl orvsro andvsr instructions, specifying the same shift count register,
can be used to shift the contents of a vector register left or right by the number of bits
(0-127) specified in the shift count register. The following example shifts the contents of
vX left by the number of bits specifiedwlY and places the result int.

vslo VZVXVY
vsl  VZVZVY

A double-register shift by a dynamically specified number of bits (0-127) can be performed
in six instructions. The following example shiftd/() || ¢X) left by the number of bits
specified invY and places the high-order 128 bits of the resultvito

vslo t1,VW,VY #shift high-order reg left

vsl Lt VY

vsububm t3,VO,VY #adjust shift count ((V0)=0)
vsro  12,VXt3 #shift low-order reg right

vsr t2,t2,t3

vor VZ{t1t2 #merge to get final result
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Figure 6-119 shows the usage of tlee command. Each of the sixteen elements in the
vectors VA, vB, andvD, is 8 bits in length.

125 — —127
AR

| 6 vB

I A

% *6 = sh = Shift Count

[0..0] | vD
—{ sh |=

Zeros

Figure 6-119. vsr—Shift Bits Right for Vectors (128-Bit)
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vsrab vsrab

Vector Shift Right Algebraic Byte

vsrab vD,VA,vB Form: VX

04 vD VA vB 772

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
sh « ( VB)i+2iis7
VD7 < (VA7 >>4 sh
end
Each element is a byte. Each elementAns shifted right by the number of bits specified
in the low-order 3 bits of the corresponding elemerBinBits shifted out of bit n-1 of the
element are lost. Bit O of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding elemenof

Other registers altered:
* None

Figure 6-120 shows the usage of #seab command. Each of the sixteen elements in the
vectors A, andvD, is 8 bits in length.

125 — 127
j y

[ 6[ 6] 6[ 6[ 6[ 6[ 6] 6] 6[ 6[ 6[ 6[ 6[ 6[ 6[ *6] vB

\\\\\\\\\\\\\\\\% —

(ool Bl o ol ol Pl bl o ol ol ol o o el o e
sh‘«

*hitx it x = bit 0 of each element

Figure 6-120. vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)
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vsrah vsrah

Vector Shift Right Algebraic Half Word

vsrah vD,VA,vB Form: VX
04 vD VA vB 836

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16

sh « ( VB)i+12:i+15

VD15 < ( VA)jirs  >> sh
end

Each element is a half word. Each elementAnis shifted right by the number of bits
specified in the low-order 4 bits of the corresponding elemar.iBits shifted out of bit

15 of the element are lost. Bit O of the element is replicated to fill the vacated bits on the
left. The result is placed into the corresponding elemeviDof

Other registers altered:
* None

Figure 6-121 shows the usage of tleeah command. Each of the eight elements in the
vectorsVvA, andvD, is 16 bits in length.

124 —127

[ Te] Te[ e[ Te[ Te[ e[ T[6[ T[]

T T T T T T T Ju
ey

*X

*x = bit 0 of each element

Figure 6-121. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)
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VSraw vVSraw

Vector Shift Right Algebraic Word

vsraw vD,vA,vB Form: VX
04 vD VA vB 900

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
sh « ( VB)jr27:i+31
VD31 < ( VA)iirs1 >> i sh
end
Each element is a word. Each elementAris shifted right by the number of bits specified
in the low-order 5 bits of the corresponding elemenBnBits shifted out of bit 31 of the
element are lost. Bit O of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding elemenof

Other registers altered:
* None

Figure 6-122 shows the usage of tteeaw command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

123 j' r127
l [ 6 ] [ 6 ] [ 6 ] | s |
l l l l | v
\ \ \ \ —>*6 = sh = Shift Count
[ox | [ox | [ | o | |\o
—> §>r<1 -

*x = hit 0 of each element

Figure 6-122. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)
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vsrb vsrb
Vector Shift Right Byte
vsrb vD,vA,vB Form: VX
04 vD VA vB 516
0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8

sh « ( VB)isiv7

VOi+s7z < (VA)juz  >>y sh
end

Each element is a byte. Each elementAns shifted right by the number of bits specified

in the low-order 3 bits of the corresponding elememBnBits shifted out of bit 7 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding elementwiD.

Other registers altered:
* None

Figure 6-120 shows the usage of #se¢b command. Each of the sixteen elements in the
vectors VA, andvD, is 8 bits in length.

125 — 127
j y

[ 6[ 6] 6[ 6[ 6[ 6[ 6] 6] 6[ 6[ 6[ 6[ 6[ 6[ 6[ *6] vB

\\\\\\\\\\\\\\\\% -

[0.0] Joo] Jo-of Jo.o[ [o-of Jo.o] o.o] Jo-o] o.o] Jo.o[ o-of Jo-o[ Jo-of [o.of fo-o] o
sh‘«

Zeros

Figure 6-123. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)
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vsrh vsrh

Vector Shift Right Half Word

vsrh vD,vA,vB Form: VX

04 vD VA vB 580

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16

sh « ( VB)i+12:i+15
VD15« ( VA)jirgs  >> i sh
end

Each element is a half word. Each elemeniAnis shifted right by the number of bits
specified in the low-order 4 bits of the corresponding elemar.iBits shifted out of bit

15 of the element are lost. Zeros are supplied to the vacated bits on the left. The result is
placed into the corresponding elemenvf

Other registers altered:
* None

Figure 6-124 shows the usage of tteh command. Each of the eight elements in the
vectors VA, andvD, is 16 bits in length.

124 —127

l ‘61 ‘5| ‘GI \GI \61 ‘GﬁG‘—‘*G vB

\\\\\\\\Mmm

[00[ [00‘ [00‘ 00‘ [oo‘ [00‘ [00‘ 00‘ VD

zeros

Figure 6-124. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)
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VSIO VSIO

Vector Shift Right by Octet

VSro vD,VA,vB Form: VX
04 vD VA vB 1100

0 5 6 10 11 15 16 20 21 31

shb — ( vB)121:104
VD« ( VA)>> 4 (shb || 0b00O)

The contents ofA are shifted right by the number of bytes specifiaddf121-124]. Bytes
shifted out ofvA are lost. Zeros are supplied to the vacated bytes on the left. The result is
placed intovD.

Other registers altered:

« None
121— —124
[ Don't Care 5] | vB
S N A 7
---------- — *5 = Shift Count
[oofoofoofoofoo ™ ] T ]w
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VSI'w VSIw

Vector Shift Right Word

VSIrw vD,vA,vB Form: VX
04 vD VA vB 644

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
sh « ( VB)ir(27yi+a1
VBisar < (VA)iisar  >> i sh
end
Each element is a word. Each elementAris shifted right by the number of bits specified
in the low-order 5 bits of the corresponding elemenBnBits shifted out of bit 31 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding elementwiD.

Other registers altered:
* None

Figure 6-122 shows the usage of treew command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

123j' r127
l [ 6 ] [ 6 | [ 6 | ICHRL
l l l l | v
\ \ \ \ —>*6 = sh = Shift Count
‘ 0.0 | | 0.0 \ | 0.0 \ 0.0 \ |vD
> sh j=

Figure 6-125. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)
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vsubcuw vsubcuw

Vector Subtract Carryout Unsigned Word

vsubcuw \D,vA,vB Form: VX
04 vD VA vB 1408

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
aopq:zy « ZeroExtend((  VA)jjiz1 133)
bopg.z2 ~ ZeroExtend((  VB)jji31 ,33)
tempg.32 — aop g:32 *tint POPo32 tint 1
vD.+31 « ZeroExtend(temp  (,32)

end

Each unsigned-integer word elemenviis subtracted from the corresponding unsigned-
integer word element inA. The complement of the borrow out of bit O of the 32-bit
difference is zero-extended to 32 bits and placed into the corresponding word element of
vD.

Other registers altered:
* None

Figure 6-126 shows the usage of isebcuwcommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

I | | | | v

| vA

Y v Y v Y v 17 #
e /4 \ N
| \ \ \ | Zero-Ext

¥ ¥ ¥ ¥

I | | | | v

Figure 6-126. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements
(32-Bit)
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vsubfp vsubfp

Vector Subtract Floating Point

vsubfp vD,vA,vB Form: VX

04 vD VA vB 74

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32

VDi;+31  — RndToNearFP32(( VA)ji31 - fp ( VB)jisa1 )

end
Each single-precision floating-point word element VB is subtracted from the
corresponding single-precision floating-point word elemewmAinThe result is rounded to

the nearest single-precision floating-point number and placed into the corresponding word
element ofvD.

If VSCRINJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:
*« None

Figure 6-17 shows the usage of trsibfp command. Each of the four elements in the
vectors VA, vB, andvD, is 32 bits in length.

I \ \ \ | vA

| | \ | \ | \ | | vB

Y Yy Yy Y
“fp fp fp fp
v Y Y Y

I | | | | vo

Figure 6-127. vsubfp—Subtract Four Floating Point Elements (32-Bit)
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vsubsbs vsubsbs

Vector Subtract Signed Byte Saturate

vsubsbs \D,VA,vB Form: VX
04 vD VA vB 1792

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopg:g — SignExtend((  VA)i7 .9)
bopg:g - SignExtend((  VB)ij7 9)
tempg.g — aop gg +int ~HOPo:g Fine 1
vD.+7 « SltoSlsat(temp 0:8 +9)

end

Each element is a byte. Each signed-integer elemenBirns subtracted from the
corresponding signed-integer elemengAn

If the intermediate result is greater thait{it saturates to {21) and if it is less than 22
it saturates to 22where 8 is the length of the element.

The signed-integer result is placed into the corresponding elemédt of

Other registers altered:
o SAT

Figure 6-128 shows the usage of¥sabsbscommand. Each of the sixteen elements in the
vectorsVvA, vB, andvD, is 8 bits in length.

Lo e e e e e e e e Iy [y Iy Jva
ininnnnnnninninnnnnng:
Y VY YV YY YY YV YV VY YY YY YV YY VYV YV YV VY
Y Y Y Y Y Y Y Y Y Y ¥ ¥ ¥ Y Y ¥
L [ T [ [ T Jw

Figure 6-128. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)
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vsubshs vsubshs

Vector Subtract Signed Half Word Saturate

vsubshs \D,VA,vB Form: VX

04 vD VA vB 1856

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopo:16 — SignExtend((  VA)iiv1s 17)
bopg:.16 « SignExtend((  VB)ijvs 17)
tempo.16 « @0P o:16 +int -bOP 016 tint 1
vD.+15 « SltoSlsattemp 016 +16)

end

Each element is a half word. Each signed-integer elemerB iis subtracted from the
corresponding signed-integer elementAn

If the intermediate result is greater tha#-@ it saturates to (21) and if it is less than -
251t saturates to %2 where 16 is the length of the element.

The signed-integer result is placed into the corresponding elemédt of

Other registers altered:
o SAT

Figure 6-129 shows the usage of #sebshscommand. Each of the eight elements in the
vectorsVvA, vB, andvD, is 16 bits in length.

I \ \ \ \ \ \ \ | vA
L T P P P Pl Ty Ty ]
vy Yy 1Al YV Yv (Al YV 121
Y Y Y v Y Y v Y
I \ \ \ \ \ \ \ | vD

Figure 6-129. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)
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vsubsws vsubsws

Vector Subtract Signed Word Saturate

vsubsws \D,VA,vB Form: VX
04 vD VA vB 1920

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
a0pg:3p « SignExtend((  VA)jirz1 33)
bopg:3z « SignExtend((  VB)jiszr 33)
tempg.32 — aop g:32 *tint POPo32 tint 1
vD.+31 « SltoSlsattemp 0:32 +32)

end

Each element is a word. Each signed-integer elemenBins subtracted from the
corresponding signed-integer elementAn

If the intermediate result is greater thafi-@© it saturates to #21) and if it is less than -
231 jt saturates to 32 where 32 is the length of the element.

The signed-integer result is placed into the corresponding elemédt of

Other registers altered:
o SAT

Figure 6-130 shows the usage of #sebswscommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

Figure 6-130. vsubsws—Subtract Four Signed Integer Elements (32-Bit)
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vsububm vsububm

Vector Subtract Unsigned Byte Modulo

vsububm vD,VA,vB Form: VX

04 vD | VA vB 1024

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
VD7 < (VA)is7  +ine (VB)iis7
end

Each element ofsububmis a byte.

Each integer element B is subtracted from the corresponding integer eleme.ifhe
integer result is placed into the corresponding elemeviD of

Other registers altered:
* None

Note thevsububm instruction can be used for unsigned or signed integers.

Figure 6-128 shows the usage of #sebubm command. Each of the sixteen elements in
the vectorsyA, vB, andvD, is 8 bits in length.

RN I N N N N N N N P P I T P P P R

I L I \
%vw‘d ¢ ¢ ‘VVV\V‘ ¢ ¢ %vw‘N

Y Y v v ¥V ¥V ¥V ¥V ¥V ¥ ¥V ¥V V¥V VY
N N N N N N A 2

‘|VB

Figure 6-131. vsububm—Subtract Sixteen Integer Elements (8-Bit)
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vsububs vsububs

Vector Subtract Unsigned Byte Saturate

vsububs \D,vA,vB Form: VX
04 vD | VA vB 1536

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 8
aopgg — ZeroBxtend((  VA)ij7 9)
bopg.g « ZeroExtend((  VvB)ji+7 .9)
tempg.g — aop ;g +int ~DOPo:g *int 1
vD+7 « SltoUlsat{temp 0:8 )

end

Each element is a byte. Each unsigned-integer elemewiB irs subtracted from the
corresponding unsigned-integer elementAn

If the intermediate result is less than 0 it saturates to 0, where 8 is the length of the element.
The unsigned-integer result is placed into the corresponding elemdnt of

Other registers altered:
o SAT

Figure 6-128 shows the usage of #setbubscommand. Each of the sixteen elements in
the vectorsyA, vB, andvD, is 8 bits in length.

O L e e e e b Iy I I Iy e
Lo L T T T T T T T I T T T T ] ve
Y YY VY YY YY YY YV YV YV YY YY YY YV YV YV VY
Y Y Y Y Y Y Y Y ¥ Y ¥V ¥ ¥V Y ¥ ¥
T N A O N R

Figure 6-132. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)
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vsubuhm vsubuhm

Vector Subtract Signed Half Word Modulo

vsubuhm vD,VA,vB Form: VX

04 vD VA vB 1088

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
VDi+1s < (VA)iir1s  tint ~(VB)ijs1s
end

Each element is a half word. Each integer elemenvBnis subtracted from the
corresponding integer elementvA. The integer result is placed into the corresponding
element ofvD.

Other registers altered:
* None

Note thevsubuhm instruction can be used for unsigned or signed integers.

Figure 6-133 shows the usage of tsebuhmcommand. Each of the eight elements in the
vectors VA, vB, andvD, is 16 bits in length.

Figure 6-133. vsubuhm—Subtract Eight Integer Elements (16-Bit)
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vsubuhs vsubuhs

Vector Subtract Signed Half Word Saturate

vsubuhs \D,vA,vB Form: VX
04 vD VA vB 1600

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 16
aopo:16 — ZeroExtend((  VA)iir1s .17)
bopg.16 ~ ZeroExtend((  VB)jjsny  17)
tempg.16 ~ 80P gn +int DOP:e *int 1
tii+l5 ~ SltoUlsat(temp 0:16 ,16)

end

Each element is a half word. Each unsigned-integer elemeBk iim subtracted from the
corresponding unsigned-integer elementAn

If the intermediate result is less than 0 it saturates to 0, where 16 is the length of the element.
The unsigned-integer result is placed into the corresponding elemdnt of

Other registers altered:
o SAT

Figure 6-134 shows the usage of isebuhscommand. Each of the eight elements in the
vectors VA, vB, andvD, is 16 bits in length.

Figure 6-134. vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)
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vsubuwm vsubuwm

Vector Subtract Unsigned Word Modulo

vsubuwm vD,VA,vB Form: VX

04 vD VA vB 1152

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
VDir31 < (VA)iirar  tint (VB)jjsa1
end

Each element ofsubuwmis a word.

Each integer element B is subtracted from the corresponding integer eleme.ifhe
integer result is placed into the corresponding elemeviD of

Other registers altered:
* None

Note thevsubuwm instruction can be used for unsigned or signed integers.

Figure 6-135 shows the usage of lsebuwm command. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

| | \ | \ | \ | | vB

\ \ \ | v

Figure 6-135. vsubuwm—Subtract Four Integer Elements (32-Bit)
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Vector Subtract Unsigned Word Saturate
vsubuws \D,vA,vB Form: VX
04 vD VA vB 1664
0 5 6 10 11 15 16 20 21 31
doi=0to 127 by 32
aopq:zy — ZeroExtend((  VA)iir31 .33)
bopg.3p ~ ZeroExtend((  VB)ji+31 ,33)
tempg.32 ~a0p 32 +int “DOPe:3z tint 1
tii+3l - SItOUISat(temp 0:32 ,32)
end

Each element is a word. Each unsigned-integer elemew iis subtracted from the

corresponding unsigned-integer elementAn

If the intermediate result is less than 0 it saturates to 0, where 32 is the length of the element.
The unsigned-integer result is placed into the corresponding elemdnt of

Other registers altered:
o SAT

Figure 6-135 shows the usage of #sebuwscommand. Each of the four elements in the

vectorsVvA, vB, andvD, is 32 bits in length.

Figure 6-136. vsubuws—Subtract Four Signed Integer Elements (32-Bit)
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VSUMSWS VSUMSWS

Vector Sum Across Signed Word Saturate

VSUMSsws \D,VA,vB Form: VX

04 vD VA vB 1928

0 5 6 10 11 15 16 20 21 31

tempg.gs ~ SignExtend((  VB)gg:127 +35)

doi=0to 127 by 32
tempoas —temp o34 +in SignExtend((  VA)iji31 39)
vD < %0 | SltoSIsat(temp (.34 ,32)

end

The signed-integer sum of the four signed-integer word element& i added to the
signed-integer word element in bitsui§[96-127]. If the intermediate result is greater than
(22-1) it saturates to ¢21) and if it is less than 22it saturates to 32 The signed-integer
result is placed into bitgD[96—127]. BitsvD[0-95] are cleared.

Other registers altered:
s SAT

Figure 6-137 shows the usage of Yseamswscommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

I | | | | vA

I I | v

I = | vo

Figure 6-137. vsumsws—Sum Four Signed Integer Elements (32-Bit)
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VSUM2sws VSUM2sSws

Vector Sum Across Partial (1/2) Signed Word Saturate

vsSum2sws »,VA,vB Form: VX
04 vD | VA vB 1672

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 64
tempg.33  ~ SignExtend((v  B) 32463 :34)
doj=0to 63 by 32
tempgaz —temp g33 +in SignExtend((v A sjisjezr 34)
end
VDirez < 220 | ShoSlsatttemp .33 ,32)
end

The signed-integer sum of the first two signed-integer word elements in regisgtexdded

to the signed-integer word elemenwviB[32—63]. If the intermediate result is greater than
(23-1) it saturates to {21) and if it is less than 32it saturates to <2 The signed-integer
result is placed inteD[32—63]. The signed-integer sum of the last two signed-integer word
elements in registerA is added to the signed-integer word elemenB{B96-127]. If the
intermediate result is greater thad'(P) it saturates to {21) and if it is less than 32it
saturates to 32 The signed-integer result is placed intB[96-127]. The register
vD[0-31,64-95] are cleared to 0.

Other registers altered:
e SAT

Figure 6-138 shows the usage of tisem2swscommand. Each of the four elements in the
vectorsVvA, vB, andvD, is 32 bits in length.

[ooooo000( x J[oooo0o000( x | vD

Figure 6-138. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)
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vsum4shbs vsum4sbs

Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs D,VA,vB Form: VX

04 vD | VA vB 1800

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
tempg.3;  ~ SignExtend((  VB)iji31 1393
doj=0to31by8
tempo3y —temp g:3p +in SignExtend((  VA)iijisjr  33)
end
vD.+31 < SltoSlsat(temp 0:32 +32)
end

For each word element B the following operations are performed in the order shown.

« The signed-integer sum of the four signed-integer byte elements contained in the

corresponding word element of registéris added to the signed-integer word
element in registerB.

« If the intermediate result is greater that-@ it saturates to ¢21) and if it is less
than -21it saturates to 32

« The signed-integer result is placed into the corresponding word elemdht of

Other registers altered:
e SAT

Figure 6-139 shows the usage of lsem4sbscommand. Each of the sixteen elements in

the vectowvA, is 8 bits in length. Each of the four elements in the vee®randvD is 32
bits in length.

Figure 6-139. vsum4sbs—Four Sums in the Integer Elements (32-Bit)
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vsum4shs vsum4shs

Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs »,VA,vB Form: VX
04 vD | VA vB 1608

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
tempg.z;  ~ SignExtend((  VB)ijr3; 33)
do j=0to 31 by 16
tempgay —temp g3p +in SignExtend((  VA)jsjisje1s  33)
end
vD.+31 < SltoSlsat(temp 0:32 +32)
end

For each word element in registd the following operations are performed, in the order
shown.

« The signed-integer sum of the two signed-integer halfword elements contained in
the corresponding word element of regist@ris added to the signed-integer word
element invB.

« If the intermediate result is greater thati-@ it saturates to ¢21) and if it is less
than -2'it saturates to 2
» The signed-integer result is placed into the corresponding word elemdht of

Other registers altered:
e SAT

Figure 6-140 shows the usage of¥esam4shscommand. Each of the eight elements in the
vectorvA, is 16 bits in length. Each of the four elements in the vee®endvD is 32 bits
in length.

Figure 6-140. vsum4shs—Four Sums in the Integer Elements (32-Bit)
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vsum4ubs vsum4ubs

Vector Sum Across Partial (1/4) Unsigned Byte Saturate

vsum4ubs \D,VA,vB Form: VX

04 vD | VA vB 1544

0 5 6 10 11 15 16 20 21 31

doi=0to 127 by 32
tempg.3p — ZeroExtend((  VvB)jj+31 .33)
doj=0to31 by 8
tempgg; « temp g.3p *ine ZeroExtend((  VA)iyjisjsz  39)
end
VD431 < UltoUlsatitemp .32 ,32)
end

For each word element B the following operations are performed in the order shown.

e The unsigned-integer sum of the four unsigned-integer byte elements contained in
the corresponding word element of registaris added to the unsigned-integer
word element in registesB.

« If the intermediate result is greater that-@ it saturates to {21).
« The unsigned-integer result is placed into the corresponding word elenvént of

Other registers altered:
o SAT

Figure 6-141 shows the usage of tsem4ubscommand. Each of the four elements in the
vectorvA, is 8 bits in length. Each of the four elements in the veg®m@ndvD is 32 bits
in length.

Figure 6-141. vsum4ubs—Four Sums in the Integer Elements (32-Bit)
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AltiVec Instruction Set

vupkhpx vupkhpx

Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

04 vD 00000 vB 846

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16

VD2, (52)+7 ~ SignExtend((  vB); ,8)

ti*2)+8:(i*2)+15 - ZeroExtend(( VB) i+1:i+5 ,8)

VD2)+16:(*2)+23 ~ ZeroExtend((  VB)irgir10 -8)

VDyix0)+24:(i#2)+31 « ZeroExtend(( VB)i+11:+15 8)
end

Each halfword element in the high-order half of regigiis unpacked to produce a 32-
bit value as described below and placed, in the same order, into the four wabds of

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

« sign-extend bit O of the halfword to 8 bits

e zero-extend bits 1-5 of the halfword to 8 bits

e zero-extend bits 6-10 of the halfword to 8 bits

e zero-extend bits 11-15 of the halfword to 8 bits

Other registers altered:
* None

The source and target elements can be considered to be 16-bit and 32-bit "pixels"
respectively, having the formats described in the programming note for the Vector Pack
Pixel instruction.

Figure 6-142 shows the usage of thpkhpx command. Each of the eight elements in the
vectors,vB, is 16 bits in length. Each of the four elements in the veatbrsis 32 bits in
length.

[\ l\\L \k\l\\l\\\@\\l\

Lo‘ kM\ﬁr |

Figure 6-142. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)
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AltiVec Instruction Set

vupkhsb vupkhsb

Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

04 vD 00000 vB 526

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD2, (#2)+15 ~ SignExtend((  vB)jj+7 ,16)
end

Each signed integer byte element in the high-order half of regBter sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
registervD.

Other registers altered:
* None
Figure 6-143 shows the usage of tlupkhsb command. Each of the sixteen elements in

the vectorsyB, is 8 bits in length. Each of the eight elements in the veatDrds 16 bits
in length.

RN N N O N A

[ss V' ss N Jss ™ Jss ™ Jss ™ Jss ™ [ss™ [sS™> |w

Figure 6-143. vupkhsb—Unpack Hlgh-Order Signed Integer Elements (8-Bit) to
Signed Integer Elements (16-Bit)
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vupkhsh vupkhsh
Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

04 vD 00000 vB 590

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16
VD2, (i2)+31 « SignExtend((  VB)jis15 32
end
Each signed integer halfword element in the high-order half of regBtisrsign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
registervD.

Other registers altered:
* None

Figure 6-143 shows the usage of ¥iupkhsh command. Each of the eight elements in the
vectorsvB andvD is 16 bits in length.

I | | [ | | v

[ssss | N Jssss | ™ [ssss , ™~ [ssss > |w

Figure 6-144. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer
Elements (32-Bit)
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vupklpx vupklpX
Vector Unpack Low Pixel16

vupklpx vD,vB Form: VX

04 vD 00000 vB 974

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16

VD (r2)+7  « SignExtend((  VB)j.e4 .8)

VD) +8:(*2)+15 ~ ZeroExtend((  VB)iie5:+69 3)

VD2)+16:(*2)+23 « ZeroExtend(( VB)is70:i474 18)

VDyix0)+24:(i#2)+31 « ZeroExtend((  VB)i475:479  8)
end

Each halfword element in the low-order half of registiis unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words ofvBgister

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

« sign-extend bit O of the halfword to 8 bits

e zero-extend bits 1-5 of the halfword to 8 bits

e zero-extend bits 6-10 of the halfword to 8 bits

e zero-extend bits 11-15 of the halfword to 8 bits

Other registers altered:
* None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions
does not reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a 16-
bit pixel is unpacked to a 32-bit pixel which is then packed to a 16-bit pixel, the resulting
16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for each
channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack Pixel
discards low-order bhits).

Figure 6-142 shows the usage of Yupklpx command. Each of the eight elements in the
vectors,vB, is 16 bits in length. Each of the four elements in the veatbrsis 32 bits in
length.

‘ ‘ ‘ /I/%/V//I/A/X/I/V\/I/H\

vB

B 40 %, 4o, 2o %o, oo Yo 1] v

Figure 6-145. vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit)
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vupklisb vupklisb

Vector Unpack Low Signed Byte

vupklisb vD,vB Form: VX

04 vD 00000 vB 654

0 5 6 10 11 15 16 20 21 31

doi=0to 63 by 8
VD2, (#2)+15 — SignExtend((  VB)i+eai+71  +16)
end

Each signed integer byte element in the low-order half of regiBtés sign-extended to

produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of

registervD.

Other registers altered:
* None

Figure 6-14 shows the usage of tlaeldubscommand. Each of the sixteen elements in the

vectorsvB andvD is 8 bits in length.

N N N N N = =y D 2 728 V2 I

[ss, #fss, “fss, #fss, #[ss, #]ss, ”[ss "[ss, " ]w

Figure 6-146. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)
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vupklish vupklish

Vector Unpack Low Signed Half Word

vupkish vD,vB Form: VX

04 vD 00000 vB 718

0 5 6 10 11 15 16 20 21 31

do i=0to 63 by 16
VD2 (%2)+31 — SignExtend((  VB)i+eai+79  :32)
end

Each signed integer half word element in the low-order half of regBtersign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
registervD.

Other registers altered:
* None

Figure 6-147 shows the usage of Yupklpx command. Each of the eight elements in the
vectorsVvA, vB, andvD, is 16 bits in length.

I | | | | | | | v

[ssss | 4T ssss ,  #* [ssss | % ] 5ssss | | vD

Figure 6-147. vupkilsh—Unpack Low-Order Signed Integer Elements (16-Bit) to
Signed Integer Elements (32-Bit)
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VXOr VXOr

Vector Logical XOR

vxor vD,vA,vB Form: VX
04 vD VA vB 1220

0 5 6 10 11 15 16 20 21 31

vD ~ ( vA) O( vB)

The contents ofA are XORed with the contents of regist& and the result is placed into
registervD.

Other registers altered:
* None

» Figure 6-148 shows the usage of #txer command.

Figure 6-148. vxor—Bitwise XOR (128-Bit)
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Appendix A
AltiVec Instruction Set Listings

This appendix lists the instruction set for the AltiVec™ technology. Instructions are sorted
by mnemonic, opcode, and form. Also included in this appendix is a quick reference table
that contains general information, such as the architecture level, privilege level, and form,
and indicates if the instruction is 64-bit and/or optional.

Notethat split fields, which represent the concatenation of sequences from left to right, are
shown in lowercase.

A.1 Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the AltiVec architecture in alphabetical
order by mnemonic.

Key:
I:I Reserved bits

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dss 31 Al 00 |STRM| 00000 00000 822 0
dssall 31 Al 00 |STRM| 00000 00000 822 0
dst 31 T| 00 [STRM A B 342 0
dstst 31 T| 00 [STRM A B 374 0
dststt 31 11 00 | tag A B 11 22 0
dstt 31 1| 00 | tag A B 0 0
Ivebx 31 vD A B 7 0
Ivehx 31 vD A B 39 0
Ivewx 31 vD A B 71 0
lvsl 31 vD A B 6 0
Ivsr 31 vD A B 38 0
Ivx 31 vD A B 103 0
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Instructions Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
IvxI 31 vD A B 359 0
mfvscr 04 vD 00000 00000 1540 0
mtvscr 04 n 00000 vD 1604 0
stvebx 31 S A B 135 0
stvehx 31 S A B 167 0
stvewx 31 S A B 199 0
stvx 31 S A B 231 0
stvxl 31 S A B 487 0
vaddcuw 04 vD VA vB 384 0
vaddfp 04 vD VA vB 10 0
vaddsbs 04 vD VA vB 768 0
vaddshs 04 vD VA vB 832 0
vaddsws 04 vD VA vB 896 0
vaddubm 04 vD VA vB 0 0
vaddubs 04 vD VA vB 512 0
vadduhm 04 vD VA vB 64 0
vadduhs 04 vD VA vB 576 0
vadduwm 04 vD VA vB 128 0
vadduws 04 vD VA vB 640 0
vand 04 vD VA vB 1028 0
vandc 04 vD VA vB 1092 0
vavgsb 04 vD VA vB 1282 0
vavgsh 04 vD VA vB 1346 0
vavgsw 04 vD VA vB 1410 0
vavgub 04 vD VA vB 1026 0
vavguh 04 vD VA vB 1090 0
vavguw 04 vD VA vB 1154 0
vefsx 04 vD UMM vB 842
vefux 04 vD UIMM vB 778 0
vempbfp x 04 vD VA vB Rc 966
vempeqf x 04 vD VA vB Rc 198
vcmpequb x 04 vD VA vB Rc| 6
vcmpequh x 04 vD VA vB Rc 70
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Instructions Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vempequw X 04 vD VA vB Rc 134
vempgefp x 04 vD VA vB Rc 454
vempgtfp x 04 vD VA vB Rc 710
vempgtsb x 04 vD VA vB Rc 774
vempgtsh x 04 vD VA vB Rc| 838
vempgtsw x 04 vD VA vB Rc 902
vempgtub x 04 vD VA vB Rc 518
vempgtuh x 04 vD VA vB Rc 582
vempgtuw x 04 vD VA vB Rc 646
vctsxs 04 vD UIMM vB 970
VCtuxs 04 vD UIMM vB 906
vexptefp 04 vD 00000 vB 394
vlogefp 04 vD 00000 vB 458
vmaddfp 04 vD VA vB vC 46
vmaxfp 04 vD VA vB 1034
vmaxsb 04 vD VA vB 258
vmaxsh 04 vD VA vB 322
vmaxsw 04 vD VA vB 386
vmaxub 04 vD VA vB 2
vmaxuh 04 vD VA vB 66
vmaxuw 04 vD VA vB 130
vmhaddshs 04 vD VA vB vC 32
vmhraddshs 04 vD VA vB vC 33
vminfp 04 vD VA vB 1098
vminsb 04 vD VA vB 770
vminsh 04 vD VA vB 834
vminsw 04 vD VA vB 898
vminub 04 vD VA vB 514
vminuh 04 vD VA vB 578
vminuw 04 vD VA vB 642
vmladduhm 04 vD VA vB vC 34
vmrghb 04 vD VA vB 12
vmrghh 04 vD VA vB 76
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Instructions Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vmrghw 04 vD VA vB 140
vmrglb 04 vD VA vB 268
vmrglh 04 vD VA vB 332
vmrglw 04 vD VA vB 396
vmsummbm 04 vD VA vB vC 37
vmsumshm 04 vD VA vB vC 40
vmsumshs 04 vD VA vB vC 41
vmsumubm 04 vD VA vB vC 36
vmsumuhm 04 vD VA vB vC 38
vmsumuhs 04 vD VA vB vC 39
vmulesb 04 vD VA vB 776
vmulesh 04 vD VA vB 840
vmuleub 04 vD VA vB 520
vmuleuh 04 vD VA vB 584
vmulosb 04 vD VA vB 264
vmulosh 04 vD VA vB 328
vmuloub 04 vD VA vB 8
vmulouh 04 vD VA vB 72
vnmsubfp 04 vD VA vB vC | 47
vnor 04 vD VA vB 1284
vor 04 vD VA vB 1156
vperm 04 vD VA vB vC | 43
vpkpx 04 vD VA vB 782
vpkshss 04 vD VA vB 398
vpkshus 04 vD VA vB 270
vpkswss 04 vD VA vB 462
vpkuhum 04 vD VA vB 14
vpkuhus 04 vD VA vB 142
vpkuwum 04 vD VA vB 78
vpkuwus 04 vD VA vB 206
vrefp 04 vD 00000 vB 266
vrfim 04 vD 00000 vB 714
vrfin 04 vD 00000 vB 522
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Instructions Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vrfip 04 vD 00000 vB 650
vrfiz 04 vD 00000 vB 586
vrib 04 vD VA vB 4

vrih 04 vD VA vB 68
vriw 04 vD VA vB 132

vrsqrtefp 04 vD 00000 vB 330

vsel 04 vD VA vB vC | 42
vsl 04 vD VA vB 452
vslb 04 vD VA vB 260

vsldoi 04 vD VA vB 0| SH | 44
vslh 04 vD VA vB 324
vslo 04 vD VA vB 1036
vslw 04 vD VA vB 388
vspltb 04 vD UMM vB 524
vsplth 04 vD UIMM vB 588
vspltisb 04 vD SIMM vB 780
vspltish 04 vD SIMM 00000 844
vspltisw 04 vD SIMM 00000 908
vspltw 04 vD UiMM vB 652
vsr 04 vD VA vB 708
vsrab 04 vD VA vB 772
vsrah 04 vD VA vB 836
vsraw 04 vD VA vB 900
vsrb 04 vD VA vB 516
vsrh 04 vD VA vB 580
VSro 04 vD VA vB 1100
VSrw 04 vD VA vB 644
vsubcuw 04 vD VA vB 1408
vsubfp 04 vD VA vB 74
vsubsbs 04 vD VA vB 1792
vsubshs 04 vD VA vB 1856
vsubsws 04 vD VA vB 1920
vsububm 04 vD VA vB 1024
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Instructions Sorted by Mnemonic

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vsububs 04 vD VA vB 1536
vsubuhm 04 vD VA vB 1088
vsubuhs 04 vD VA vB 1600
vsubuwm 04 vD VA vB 1152
vsubuws 04 vD VA vB 1664
VsSumsws 04 vD VA vB 1928
vsum2sws 04 D A B 1672
vsum4sbs 04 D A B 1800
vsum4shs 04 D A B 1608
vsum4ubs 04 D A B 1544
vupkhpx 04 D 00000 B 846
vupkhsb 04 D 00000 B 526
vupkhsh 04 D 00000 B 590
vupklpx 04 D 00000 B 974
vupklsb 04 D 00000 B 654
vupkish 04 D 00000 B 718
vxor 04 D A B 1220
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Instructions Sorted by Opcode

A.2 Instructions Sorted by Opcode

Table A-2 lists the Altivec instructions grouped by opcode.

Key:
I:I Reserved bits

Table A-2. Instructions Sorted by Opcode

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vmhaddshs 000100 vD VA vB vC 10 0000
vmhraddshs 000100 vD VA vB vC 10 0001
vmladduhm 000100 vD VA vB vC 10 0010
vmsumubm 000100 vD VA vB vC 10 0100
vmsummbm 000100 vD VA vB vC 10 0101
vmsumuhm 000100 vD A vB vC 10 0110
vmsumuhs 000100 vD VA vB vC 100111
vmsumshm 000100 vD VA vB vC 10 1000
vmsumshs 000100 vD VA vB vC 10 1001
vsel 000100 vD VA vB vC 10 1010
vperm 000100 vD VA vB vC 10 1011
vsldoi 000100 vD VA vB 0 SH 10 1100
vmaddfp 000100 vD VA vB 000 0010 1110
vnmsubfp 000100 vD VA vB vC 101111
vaddubm 000100 vD VA vB 000 0000 0000
vadduhm 000100 vD VA vB 000 0100 0000
vadduwm 000100 vD VA vB 000 1000 0000
vaddcuw 000100 vD VA vB 001 1000 0000
vaddubs 000100 vD VA vB 010 0000 0000
vadduhs 000100 vD VA vB 010 0100 0000
vadduws 000100 vD VA vB 010 1000 0000
vaddsbs 000100 vD VA vB 011 0000 0000
vaddshs 000100 vD VA vB 011 0100 0000
vaddsws 000100 vD VA vB 011 1000 0000
vsububm 000100 vD VA vB 100 0000 0000
vsubuhm 000100 vD VA vB 100 0100 0000
vsubuwm 000100 vD VA vB 100 1000 0000
vsubcuw 000100 vD VA vB 101 1000 0000
vsububs 000100 vD VA vB 110 0000 0000
vsubuhs 000100 vD VA vB 110 0100 0000
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Instructions Sorted by Opcode

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vsubuws 000100 vD VA vB 110 1000 0000
vsubsbs 000100 vD VA vB 111 0000 0000
vsubshs 000100 vD VA vB 111 0100 0000
vsubsws 000100 vD VA vB 111 1000 0000
vmaxub 000100 vD VA vB 000 0000 0010
vmaxuh 000100 vD VA vB 000 0100 0010
vmaxuw 000100 vD VA vB 000 1000 0010
vmaxsb 000100 vD VA vB 001 0000 0010
vmaxsh 000100 vD VA vB 001 0100 0010
vmaxsw 000100 vD VA vB 001 1000 0010
vminub 000100 vD VA vB 010 0000 0010
vminuh 000100 vD VA vB 010 0100 0010
vminuw 000100 vD VA vB 010 1000 0010
vminsbh 000100 vD VA vB 011 0000 0010
vminsh 000100 vD VA vB 011 0100 0010
vminsw 000100 vD VA vB 011 1000 0010
vavgub 000100 vD VA vB 100 0000 0010
vavguh 000100 vD VA vB 100 0100 0010
vavguw 000100 vD VA vB 100 1000 0010
vavgsb 000100 vD VA vB 101 0000 0010
vavgsh 000100 vD VA vB 101 0100 0010
vavgsw 000100 vD VA vB 101 1000 0010
vrlb 000100 vD VA vB 000 0000 0100
vrlh 000100 vD VA vB 000 0100 0100
vriw 000100 vD VA vB 000 1000 0100
vslb 000100 vD VA vB 001 0000 0100
vslh 000100 vD VA vB 001 0100 0100
vslw 000100 vD VA vB 001 1000 0100
vsl 000100 vD VA vB 001 1100 0100
vsrb 000100 vD VA vB 010 0000 0100
vsrh 000100 vD VA vB 010 0100 0100
vSIw 000100 vD VA vB 010 1000 0100
vsr 000100 vD VA vB 010 1100 0100
vsrab 000100 vD VA vB 011 0000 0100
vsrah 000100 vD VA vB 011 0100 0100
vsraw 000100 vD VA vB 011 1000 0100
vand 000100 vD VA vB 100 0000 0100
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Instructions Sorted by Opcode

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vandc 000100 vD VA vB 100 0100 0100
vor 000100 vD VA vB 100 1000 0100
vxor 000100 vD VA vB 100 1100 0100
vnor 000100 vD VA vB 101 0000 0100
mfvscr 000100 vD 00000 00000 11 0000 0010 0
mtvscr 000100 00000 00000 vB 11 0010 0010 0
vempequb x| 000100 vD VA vB Rc 00 0000 0110
vcmpequh x| 000100 vD VA vB Rc 00 0100 0110
vcmpequw x| 000100 vD VA vB Rc 00 1000 0110
vempeqfp x| 000100 vD VA vB Rc 00 1100 0110
vcmpgefp x| 000100 vD VA vB Rc 01 1100 0110
vecmpgtub x| 000100 vD VA vB Rc 10 0000 0110
vempgtuh x| 000100 vD VA vB Rc 10 0100 0110
vempgtuw x| 000100 vD VA vB Rc 10 1000 0110
vempgtfp x| 000100 vD VA vB Rc 10 1100 0110
vempgtsb x| 000100 vD VA vB Rc 11 0000 0110
vcmpgtsh x| 000100 vD VA vB Rc 11 0100 0110
vempgtsw x| 000100 vD VA vB Rc 111000 0110
vempbfp x| 000100 vD VA vB Rc 111100 0110
vmuloub 000100 vD VA vB 000 0000 1000
vmulouh 000100 vD VA vB 000 0100 1000
vmulosb 000100 vD VA vB 001 0000 1000
vmulosh 000100 vD VA vB 001 0100 1000
vmuleub 000100 vD VA vB 010 0000 1000
vmuleuh 000100 vD VA vB 010 0100 1000
vmulesb 000100 vD VA vB 011 0000 1000
vmulesh 000100 vD VA vB 011 0100 1000
vsum4ubs 000100 vD VA vB 110 0000 1000
vsum4sbs 000100 vD VA vB 111 0000 1000
vsum4shs 000100 vD VA vB 110 0100 1000
vsSum2sws 000100 vD VA vB 110 1000 1000
VsSumsws 000100 vD VA vB 111 1000 1000
vaddfp 000100 vD VA vB 000 0000 1010
vsubfp 000100 vD VA vB 000 0100 1010
vrefp 000100 vD 00000 vB 001 0000 1010
vrsqrtefp 000100 vD 00000 vB 001 0100 1010
vexptefp 000100 vD 00000 vB 001 1000 1010
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Instructions Sorted by Opcode

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vlogefp 000100 vD 00000 vB 001 1100 1010
vrfin 000100 vD 00000 vB 010 0000 1010
vrfiz 000100 vD 00000 vB 010 0100 1010
vrfip 000100 vD 00000 vB 010 1000 1010
vrfim 000100 vD 00000 vB 010 1100 1010
vefux 000100 vD UMM vB 011 0000 1010
vcfsx 000100 vD UIMM vB 011 0100 1010
VCtuxs 000100 vD UIMM vB 011 1000 1010
VCtSXS 000100 vD UIMM vB 011 1100 1010
vmaxfp 000100 vD VA vB 100 0000 1010
vminfp 000100 vD VA vB 100 0100 1010
vmrghb 000100 vD VA vB 000 0000 1100
vmrghh 000100 vD VA vB 000 0100 1100
vmrghw 000100 vD VA vB 000 1000 1100
vmrglb 000100 vD VA vB 001 0000 1100
vmrglh 000100 vD VA vB 001 0100 1100
vmrglw 000100 vD VA vB 001 1000 1100
vspltb 000100 vD UIMM vB 010 0000 1100
vsplth 000100 vD UIMM vB 010 0100 1100
vspltw 000100 vD UIMM vB 010 1000 1100
vspltisb 000100 vD SIMM 00000 011 0000 1100
vspltish 000100 vD SIMM 00000 011 0100 1100
vspltisw 000100 vD SIMM 00000 011 1000 1100
vslo 000100 vD VA vB 100 0000 1100
Vsro 000100 vD VA vB 100 0100 1100
vpkuhum 000100 vD VA vB 000 0000 1110
vpkuwum 000100 vD VA vB 000 0100 1110
vpkuhus 000100 vD VA vB 000 1000 1110
vpkuwus 000100 vD VA vB 000 1100 1110
vpkshus 000100 vD VA vB 001 0000 1110
vpkswus 000100 vD VA vB 001 0100 1110
vpkshss 000100 vD VA vB 001 1000 1110
vpkswss 000100 vD VA vB 001 1100 1110
vupkhsb 000100 vD 00000 vB 010 0000 1110
vupkhsh 000100 vD 00000 vB 010 0100 1110
vupkisb 000100 vD 00000 vB 010 1000 1110
vupkish 000100 vD 00000 vB 010 1100 1110
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Instructions Sorted by Opcode

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vpkpx 000100 vD VA vB 011 0000 1110
vupkhpx 000100 vD 00000 vB 011 0100 1110
vupklpx 000100 vD 00000 vB 011 1100 1110
Ivsl 011111 vD A B 00 0000 0110 0
Ivsr 011111 vD A B 00 0010 0110 0
dst 011111 |T| 00 | STRM A B 01 0101 0110 0
dstt 011111 1| 000 | tag A B 00 0000 0000 0
dstst 011111 |T| 00 | STRM A B 01 0111 0110 0
dststt 011111 1| 000 | tag A B 1011 10110 0
dss 011111 |A]| 00 |STRM 00000 00000 110011 0110 0
dssall 011111 |A]| 00 |STRM 00000 00000 11 0011 0110 0
Ivebx 011111 vD A B 00 0000 0111 0
Ivehx 011111 vD A B 00 0010 0111 0
Ivewx 011111 vD A B 00 0100 0111 0
Ivx 011111 vD A B 00 0110 0111 0
Ivx| 011111 vD A B 0101100111 0
stvebx 011111 vS A B 00 1000 0111 0
stvehx 011111 vS A B 00 1010 0111 0
stvewx 011111 vS A B 00 1100 0111 0
stvx 011111 vS A B 001110 0111 0
stvxl 011111 vS A B 0111100111 0
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Instructions Sorted by Form

A.3 Instructions Sorted by Form
Table A-3 through Table A-6 list the AltiVec instructions grouped by form.

Key:

I:I Reserved bits

Table A-3. VA-Form

OPCD vD VA vB vC X0
OPCD vD VA vB 0 SH XO
Specific Instructions
Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vmhaddshs 04 vD VA vB vC 32
vmhraddshs 04 vD VA vB vC 33
vmladduhm 04 vD VA vB vC 34
vmsumubm 04 vD VA vB vC 36
vmsummbm 04 vD VA vB vC 37
vmsumuhm 04 vD A vB vC 38
vmsumuhs 04 vD VA vB vC 39
vmsumshm 04 vD VA vB vC 40
vmsumshs 04 vD VA vB vC 41
vsel 04 vD VA vB vC 42
vperm 04 vD VA vB vC 43
vsldoi 04 vD VA vB 0 SH 44
vmaddfp 04 vD VA vB vC 46
vnmsubfp 04 vD VA vB vC a7
Table A-4. VX-Eorm
OPCD vD VA vB X0
OPCD vD 00000 00000 X0
OPCD 00000 00000 vB X0
OPCD vD 00000 vB X0
OPCD vD UiMM vB XO
OPCD vD SIMM 00000 XO
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Instructions Sorted by Form

Specific Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vaddubm 04 vD VA vB 0
vadduhm 04 vD VA vB 64
vadduwm 04 vD VA vB 128
vaddcuw 04 vD VA vB 384
vaddubs 04 vD VA vB 512
vadduhs 04 vD VA vB 576
vadduws 04 vD VA vB 640
vaddsbs 04 vD VA vB 768
vaddshs 04 vD VA vB 832
vaddsws 04 vD VA vB 896
vsububm 04 vD VA vB 1024
vsubuhm 04 vD VA vB 1088
vsubuwm 04 vD VA vB 1152
vsubcuw 04 vD VA vB 1408
vsububs 04 vD VA vB 1536
vsubuhs 04 vD VA vB 1600
vsubuws 04 vD VA vB 1664
vsubsbs 04 vD VA vB 1792
vsubshs 04 vD VA vB 1856
vsubsws 04 vD VA vB 1920
vmaxub 04 vD VA vB 2
vmaxuh 04 vD VA vB 66
vmaxuw 04 vD VA vB 130
vmaxsb 04 vD VA vB 258
vmaxsh 04 vD VA vB 322
vmaxsw 04 vD VA vB 386
vminub 04 vD VA vB 514
vminuh 04 vD VA vB 578
vminuw 04 vD VA vB 642
vminsb 04 vD VA vB 770
vminsh 04 vD VA vB 834
vminsw 04 vD VA vB 898
vavgub 04 vD VA vB 1026
vavguh 04 vD VA vB 1090
vavguw 04 vD VA vB 1154
vavgsb 04 vD VA vB 1282
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Instructions Sorted by Form

Specific Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vavgsh 04 vD VA vB 1346
vavgsw 04 vD VA vB 1410

vrib 04 vD VA vB 4
vrlh 04 vD VA vB 68
vrlw 04 vD VA vB 132
vslb 04 vD VA vB 260
vslh 04 vD VA vB 324
vslw 04 vD VA vB 388
vsl 04 vD VA vB 452
vsrb 04 vD VA vB 516
vsrh 04 vD VA vB 580
VsSrw 04 vD VA vB 644
vsr 04 vD VA vB 708
vsrab 04 vD VA vB 772
vsrah 04 vD VA vB 836
vsraw 04 vD VA vB 900
vand 04 vD VA vB 1028
vandc 04 vD VA vB 1092
vor 04 vD VA vB 1156
vnor 04 vD VA vB 1284
mfvscr 04 vD 00000 00000 1540 0
mtvscr 04 00000 00000 vB 1604 0

vmuloub 04 vD VA vB 8

vmulouh 04 vD VA vB 72

vmulosb 04 vD VA vB 264

vmulosh 04 vD VA vB 328

vmuleub 04 vD VA vB 520

vmuleuh 04 vD VA vB 584

vmulesb 04 vD VA vB 776

vmulesh 04 vD VA vB 840

vsum4ubs 04 vD VA vB 1544
vsum4sbs 04 vD VA vB 1800
vsum4shs 04 vD VA vB 1608
VsSum2sws 04 vD VA vB 1672

VsSumsws 04 vD VA vB 1928

vaddfp 04 vD VA vB 10
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Instructions Sorted by Form

Specific Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vsubfp 04 vD VA vB 74
vrefp 04 vD 00000 vB 266
vrsqrtefp 04 vD 00000 vB 330
vexptefp 04 vD 00000 vB 394
viogefp 04 vD 00000 vB 458
vrfin 04 vD 00000 vB 522
vrfiz 04 vD 00000 vB 586
vrfip 04 vD 00000 vB 650
vrfim 04 vD 00000 vB 714
vefux 04 vD UIMM vB 778
vcfsx 04 vD UIMM vB 842
vCtuxs 04 vD UIMM vB 906
VCtsxs 04 vD UIMM vB 970
vmaxfp 04 vD VA vB 1034
vminfp 04 vD VA vB 1098
vmrghb 04 vD VA vB 12
vmrghh 04 vD VA vB 76
vmrghw 04 vD VA vB 140
vmrglb 04 vD VA vB 268
vmrglh 04 vD VA vB 332
vmrglw 04 vD VA vB 396
vspltb 04 vD UIMM vB 524
vsplth 04 vD UMM vB 588
vspltw 04 vD UIMM vB 652
vspltisb 04 vD SIMM 00000 780
vspltish 04 vD SIMM 00000 844
vspltisw 04 vD SIMM 00000 908
vslo 04 vD VA vB 1036
Vsro 04 vD VA vB 1100
vpkuhum 04 vD VA vB 14
vpkuwum 04 vD VA vB 78
vpkuhus 04 vD VA vB 142
vpkuwus 04 vD VA vB 206
vpkshus 04 vD VA vB 270
vpkswus 04 vD VA vB 334
vpkshss 04 vD VA vB 398
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Instructions Sorted by Form

Specific Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vpkswss 04 vD VA vB 462
vupkhsb 04 vD 00000 vB 526
vupkhsh 04 vD 00000 vB 590
vupkisb 04 vD 00000 vB 654
vupklsh 04 vD 00000 vB 718
vpkpx 04 vD VA vB 12 782
vupkhpx 04 vD 00000 vB 846
vupklpx 04 vD 00000 vB 974
vxor 04 vD VA vB 1220
Table A-5. X-Eorm
OPCD vD VA vB XO 0
OPCD vS VA vB X0
OPCD 7| 00| sTRM A B X0 0
Specific Instructions
Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dst 31 T 00 | STRM A B 342 0
dstt 31 1| ooo | tag A B 0 0
dstst 31 T 00 | STRM A B 374 0
dststt 31 1| ooo | tag A B 11 22 0
dss 31 Al 00 [ STRM 00000 00000 822 0
dssall 31 Al 00 [ STRM 00000 00000 822 0
Ivebx 31 vD VA vB 7 0
Ivehx 31 vD A B 39 0
Ivewx 31 vD A B 71 0
Ivsl 31 vD A B 6 0
Ivsr 31 vD A B 38 0
Ivx 31 vD A B 103 0
IvxI 31 vD A B 359 0
stvebx 31 vS A B 135 0
stvehx 31 vS A B 167 0
stvewx 31 vS A B 199 0
stvx 31 vS A B 231 0
stvxl 31 vS A B 487 0
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Instructions Sorted by Form

Table A-6. VXR-Form

oPCD vD vA vB | Rc | X0
Specific Instructions
Name 05 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vempbfp x 04 vD VA vB Rc 966
vempegfp x 04 vD VA vB Rc 198
vecmpequb x 04 vD VA vB Rc 6
vempequh x 04 vD VA vB Rc 70
vempequw x 04 vD VA vB Rc 134
vempgefp x 04 vD VA vB Rc 454
vempgtfp x 04 vD VA vB Rc 710
vempgtsb x 04 vD VA vB Rc 774
vempgtsh x 04 vD VA vB Rc 838
vempgtsw x 04 vD VA vB Rc 902
vempgtub x 04 vD VA vB Rc 518
vempgtuh x 04 vD VA vB Rc 582
vempgtuw x 04 vD VA vB Rc 646
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Instruction Set Legend

A.4 Instruction Set Legend

Table A-7 provides general information on the AltiVec instruction set such as the
architectural level, privilege level, and form.

Table A-7. AltiVec Instruction Set Legend

UISA VEA OEA Supervisor Optional Form
Level
dss v VX
dssall v VX
dst v VX
dstst v VX
dststt v VX
dstt v VX
Ivebx v X
Ivehx v X
Ivewx v X
lvsl v X
Ivsr v X
Ivx v X
Ivx v X
mfvscr v VX
mtvscr v VX
stvebx v X
stvehx v X
stvewx v X
Stvx v X
stvxl v X
vaddcuw v VX
vaddfp v VX
vaddsbs v VX
vaddshs v VX
vaddsws v VX
vaddubm v VX
vaddubs v VX
vadduhm v VX
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Instruction Set Legend

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Optional Form
Level
vadduhs v VX
vadduwm v VX
vadduws v VX
vand v VX
vandc v VX
vavgsb v VX
vavgsh v VX
vavgsw v VX
vavgub v VX
vavguh v VX
vavguw v VX
vefux v VX
vcfsx v VX
vempbfp x v VXR
vempedf x v VXR
vcmpequb x v VXR
vempequh x v VXR
vempequw x v VXR
vcmpgefp x v VXR
vempgtfp x v VXR
vempgtsb x v VXR
vempgtsh x v VXR
vempgtsw x v VXR
vempgtub x v VXR
vempgtuh x v VXR
vempgtuw x v VXR
VCtsXs v VX
vctuxs v VX
vexptefp v VX
vlogefp v VX
vmaddfp v VA
vmaxfp v VX
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Instruction Set Legend

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Optional Form
Level
vmaxsh v VX
vmaxsh v VX
vmaxsw v VX
vmaxub v VX
vmaxuh v VX
vmaxuw v VX
vmhaddshs v VA
vmhraddshs v VA
vminfp v VX
vminsb v VX
vminsh v VX
vminsw v VX
vminub v VX
vminuh v VX
vminuw v VX
vmladduhm v VA
vmrghb v VX
vmrghh v VX
vmrghw v VX
vmrglb v VX
vmrglh v VX
vmrglw v VX
vmsummbm v VA
vmsumshm v VA
vmsumshs v VA
vmsumubm v VA
vmsumuhm v VA
vmsumuhs v VA
vmulesb v VX
vmulesh v VX
vmuleub v VX
vmuleuh v VX
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Instruction Set Legend

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Optional Form
Level

vmulosb v VX

vmulosh v VX

vmuloub v VX

vmulouh v VX

vnmsubfp v VA

vnor v VX

vor v VX

vperm v VA

vpkpx v VX

vpkshss v VX

vpkshus v VX

vpkswss v VX

vpkuhum v VX

vpkuhus v VX

vpkswus v VX

vpkuwum v VX

vpkuwus v VX

vrefp v VX

vrfim v VX

vrfin v VX

vrfip v VX

vrfiz v VX

vrlb v VX

vrih v VX

vriw v VX

vrsqrtefp v VX

vsel v VA

vsl v VX

vslb v VX

vsldoi v VA

vslh v VX

vslo v VX
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Instruction Set Legend

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Optional Form
Level
vslw v VX
vspltb v VX
vsplth v VX
vspltish v VX
vspltish v VX
vspltisw v VX
vspltw v VX
vsr v VX
vsrab v VX
vsrah v VX
vsraw v VX
vsrb v VX
vsrh v VX
Vsro v VX
vSrw v VX
vsubcuw v VX
vsubfp v VX
vsubsbs v VX
vsubshs v VX
vsubsws v VX
vsububm v VX
vsubuhm v VX
vsububs v VX
vsubuhs v VX
vsubuwm v VX
vsubuws v VX
VSUMSWS v VX
VSUM2SWS v VX
vsumd4sbs v VX
vsum4shs v VX
vsum4ubs v VX
vupkhpx v VX
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Instruction Set Legend

Table A-7. AltiVec Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Optional Form
Level
vupkhsh v VX
vupkish v VX
vupkhpx v VX
vupkisb v VX
vupkish v VX
vxor v VX
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Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprintd@ EEm

Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetipyright ©1985 by

the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatiblenplementations

Asynchronous exception Exceptionghat are caused by events external to
the processor’s execution. In this document, the term ‘asynchronous
exception’ is used interchangeably with the woterrupt

Atomic accessA bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
Iwarx/stwcx. instruction pair.

B BAT (block address translation) mechanismA software-controlled array
that stores the available block address translations on-chip.

Biased exponentAn exponentvhose range of values is shifted by a constant
(bias). Typically a bias is provided to allow a range of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to theost-significant byteln an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with O
being the most-significant byt8eel ittle-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte, whose
size, translation, and protection attributes are controlled bBAfe
mechanism.
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Boundedly undefined A characteristic of results of certain operations that

are not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations, and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Cache

Cache

High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

block A small region of contiguous memory that is copied from
memory into acache The size of a cache block may vary among
processors; the maximum block size is qrage In PowerPC
processorsgache coherencis maintained on a cache-block basis.
Note that the term ‘cache block’ is often used interchangeably with
‘cache line’.

Cache coherencyAn attribute wherein an accurate and common view of

Cache

memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

flush An operation that removes from a cache any data from a

specified address range. This operation ensures that any modified
data within the specified address range is written back to main

memory. This operation is generated typically by a Data Cache

Block Flush ¢lcbf) instruction.

Caching-inhibited. A memory update policy in which tleacheis bypassed

and the load or store is performed to or from main memory.

Cast-outs Cache blockshat must be written to memory when a cache miss

causes a cache block to be replaced.

Changed bit One of twopage history bit§ound in eacltpage table entry

(PTE). The processor sets the changed bit if any store is performed
into thepage See alsdage access history bits and Referenced bit.
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Clear. To cause a bit or bit field to register a value of z8em alset.

Context synchronization An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
arefetchedand executed in the new context. Context synchronization
may result from executing specific instructions (sucisyasc or rfi)
or when certain events occur (such as an exception).

Copy-back An operation in which modified data ircache blocks copied
back to memory.

Denormalized number. A nonzero floating-point number whosgponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store. Interface available on PowerPC processors only to support
direct-store devices from the POWER architecture. When the T bit
of asegment descriptas set, the descriptor defines the region of
memory that is to be used as a direct-store segment. Note that this
facility is being phased out of the architecture and will not likely be
supported in future devices. Therefore, software should not depend
on it and new software should not use it.

Double-word swap AltiVec processors implement a double-word swap
when moving quad words between vector registers and memory. The
double word swap performs an additional swap to keep vector
registers and memory consistent in little-endian mode. Double-word
swap is referred to as ‘swizzling’ in the AltiVec technology
architecture specification. This feature is not supported by the
PowerPC architecture.

Effective address (EA) The 32- or 64-bit address specified for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to eitherphysical memorgddress or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.
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Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.

Extended opcodeA secondary opcode field generally located in instruction
bits 21-30, that further defines the instruction type. All PowerPC
instructions are one word in length. The most significant 6 bits of the
instruction are theprimary opcode identifying the type of
instruction.See alsd’rimary opcode.

Execution synchronization A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented numbe3ee als@®iased exponent.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store floating-
point values in double-precision format.

Fraction. In the binary representation of a floating-point number, the field of
thesignificandthat lies to the right of its implied binary point.

Fully-associative Addressing scheme where every cache location (every
byte) can have any possible address.

General-purpose register(GPR). Any of the 32 registers in the general-
purpose register file. These registers provide the source operands and
destination results for all integer data manipulation instructions.
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Integer load instructions move data from memory to GPRs and store
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

Harvard architecture . An architectural model featuring separate caches for
instruction and data.

Hashing. An algorithm used in theage tablesearch process.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point arithmetic.

lllegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. These include instructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation obptionalfeatures. The PowerPC architecture has
many different implementations.

Implementation-dependent An aspect of a feature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.

Implementation-specific An aspect of a feature in a processor’s design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Imprecise exception A type ofsynchronous exceptidhat is allowed not to
adhere to the precise exception modelefrecise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.
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Inexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model.SeeOut-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows
instructions to be processed in parallel.

Interrupt . An asynchronous exceptio®n PowerPC processors, interrupts
are a special case of exceptigBee als@synchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of a cache block from memory.

K Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can accegsagewithin thatsegmenor block

Kill . An operation that causegache blocko be invalidated.

L L2 cache SeeSecondary cache.

Least-significant bit (Isb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-significant byte (LSB) The byte of least value in an address, register,
data element, or instruction encoding.

Little-endian. A byte-ordering method in memory where the addneska
word corresponds to thkeast-significant byteln an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being themost-significant byteSeeBig-endian.

Loop unrolling. Loop unrolling provides a way of increasing performance
by allowing more instructions to be issued in a clock cycle. The
compiler replicates the loop body to increase the number of
instructions executed between a loop branch.
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MESI (modified/exclusive/shared/invalid) Cache coherencgrotocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accessed\ccesses whose addresses use the page or block
address translation mechanisms provided by the MMU and that
occur externally with the bus protocol defined for memory.

Memory coherency An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable of
translating aneffective (logical) addressto a physical address,
providing protection mechanisms, and defining caching methods.

Microarchitecture . The hardware details of a microprocessor’s design. Such
details are not defined by the PowerPC architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. When a cache block is in the modified state, it has been
modified by the processor since it was copied from men&eg.
MESI.

Munging. A modification performed on agffective addresthat allows it to
appear to the processor that individual aligned scalars are stored as
little-endianvalues, when in fact it is storedling-endianorder, but
at different byte addresses within double words. Note that munging
affects only the effective address and not the byte order. Note also
that this term is not used by the PowerPC architecture.

Multiprocessing. The capability of software, especially operating systems,
to support execution on more than one processor at the same time.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

MOTOROLA
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Most-significant byte (MSB) The highest-order byte in an address,
registers, data element, or instruction encoding.

NaN. An abbreviation for ‘Not a Number’; a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
(SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor-
level registers, synchronization requirements, and the exception
model. It also defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution mofeé
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not
be representable in 32 bits.
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Page A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bitsThechangedandreferencecbits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed bit is set when the page is storedsego.
Changed bit and Referenced bit.

Page fault A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident irphysical memoryOn PowerPC
processors, a page fault exception condition occurs when a
matching, validpage table entryPTE[V] = 1) cannot be located.

Page table A table in memory is comprised page table entriesor PTES.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDR1 register).

Page table entry (PTE) Data structures containing information used to
translateeffective addresso physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Persistentdata stream A data stream is considered to be persistent when it
is expected to be loaded from frequently.

Physical memory The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptionsA category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be flushed and
redispatched after exception handling has compl&edmprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction
encoding that identifies the type of instructioreeSsecondary
opcode.
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Protection boundary. A boundary betweeprotection domains

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invetide
Signaling NaN.

rA. TherA instruction field is used to specify a GPR to be used as a source
or destination.

rB. TherB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination.

rS. TherS instruction field is used to specify a GPR to be used as a source.

Real address mode An MMU mode when no address translation is
performed and theffective addresspecified is the same as the
physical address. The processor's MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit One of twopage history bitfound in eachpage table entry
(PTE). The processor sets tieferenced bitvhenever the page is
accessed for a read or wrifgee alsd?age access history bits.

Register indirect addressing A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressingA form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Glossary-10

AltiVec Technology Programming Environments Manual MOTOROLA



Register indirect with index addressingA form of addressing that specifies
that the contents of two GPRs be added together to yield the target
address for the load or store.

Reservation The processor establishes a reservation oache blockof
memory space when it executes lararx instruction to read a
memory semaphore into a GPR.

Reserved field.In a register, a reserved field is one that is not assigned a
function. A reserved field may be a single bit. The handling of
reserved bits ismplementation-dependergoftware is permitted to
write any value to such a bit. A subsequent reading of the bit returns
0 if the value last written to the bit was 0 and returns an undefined
value (0 or 1) otherwise.

RISC (reduced instruction set computing) An architecturecharacterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Scalability. The capability of an architecture to generatglementations
specific for a wide range of purposes, and in particular
implementations of significantly greater performance and/or
functionality than at present, while maintaining compatibility with
current implementations.

Secondary cacheA cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Segment A 256-Mbyte area ofirtual memorthat is the most basic memory
space defined by the PowerPC architecture. Each segment is
configured through a unigeegment descriptor

Segment descriptors Information used to generate the interintual
address The segment descriptors reside in 16 on-chip segment
registers for 32-bit implementations. For 64-bit implementations, the
segment descriptors reside segment table entriem a hashed
segment table in memory.

Set(v). To write a nonzero value to a bit or bit field; the oppositdeair. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.
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Set (n). A subdivision of acache Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the
same location, cached data is typically placed in the set whoke
block corresponding to that address was used least receedyet-
associative.

Set-associative Aspect of cache organization in which the cache space is
divided into sections, callesets The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Signaling NaN A type ofNaNthat generates an invalid operation program
exception when it is specified as arithmetic operaSggQuiet
NaN.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

SIMD. Single instruction stream, multiple data streams. A vector instruction
can operate on several data elements within a single instruction in a
single functional unit. SIMD is a way to work with all the data at
once (in parallel), which can make execution faster.

Simplified mnemonics Assembler mnemonics that represent a more
complex form of a common operation.

Splat. A splat instruction will take one element and replicates (splats) that
value into a vector register. The purpose being to have all elements
have the same value so they can be used as a constant to multiply
other vector registers.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction a branch is likely to take.

Sticky bit. A bit that whersetmust be cleared explicitly.

Strong ordering. A memory access model that requires exclusive access to
an address before making an update, to prevent another device from
using stale data.

Superscalar machine A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.
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Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization.A process to ensure that operations occur strictbyrder.
SeeContext synchronization and Execution synchronization.

Synchronous exceptionAn exceptiorthat is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptionsreciseandimprecise

System memory.The physical memory available to a processor.

TLB (translation lookaside buffer) A cache that holds recently-uspdge
table entries

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Tiny. A floating-point value that is too small to be represented for a particular
precision format, includinglenormalizednumbers; they do not
include 0.

Transient stream.A data stream is considered to be transient when it is likely
to be referenced from infrequently.

UISA (user instruction set architecture) The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smadigponentand/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

Unified cache Combined data and instruction cache.

User mode The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.
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VA. TheVA instruction field is used to specify a vector register to be used as
a source or destination.

vB. ThevB instruction field is used to specify a vector register to be used as
a source.

vC. ThevC instruction field is used to specify a vector register to be used as
a source.

vD. ThevD instruction field is used to specify a vector register to be used as
a destination.

vS. Thevs instruction field is used to specify a vector register to be used as a
source.

VEA (virtual environment architecture) . The level of therchitecturethat
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspectivenplementationghat conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Vector. The spatial parallel processing of short, fixed-length one-dimensional
matrices performed by an execution unit.

Vector Register (VR). Any of the 32 registers in the vector register file. Each
vector register is 128 bits wide. These registers can provide the
source operands and destination results for AltiVec instructions.

Virtual address. An intermediate address used in the translation of an
effective addres® a physical address.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides wigthysical memory

Weak ordering. A memory access model that allows bus operations to be
reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word. A 32-bit data element.
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Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache blodast out
to make room for newer data.

Write-through . A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

MOTOROLA
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