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Introduction

The AMD Athlon™ processor is the newest microprocessor in
the AMD K86™ family of microprocessors. The advances in the
AMD Athlon processor take superscalar operation and
out-of-order execution to a new level. The AMD Athlon
processor has been designed to efficiently execute code written
for previous-generation x86 processors. However, to enable the
fastest code execution with the AMD Athlon processor,
programmers should write software that includes specific code
optimization techniques.

About this Document

This document contains information to assist programmers in
creating optimized code for the AMD Athlon processor. In
addition to compiler and assembler designers, this document
has been targeted to C and assembly language programmers
writing execution-sensitive code sequences.

This document assumes that the reader possesses in-depth
knowledge of the x86 instruction set, the x86 architecture
(registers, programming modes, etc.), and the IBM PC-AT
platform.

This guide has been written specifically for the AMD Athlon
processor, but it includes considerations for

Chapter 1

Introduction 1
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previous-generation processors and describes how those
optimizations are applicable to the AMD Athlon processor. This
guide contains the following chapters:

Chapter 1: Introduction. Outlines the material covered in this
document. Summarizes the AMD Athlon microarchitecture.

Chapter 2: Top Optimizations. Provides convenient descriptions of
the most important optimizations a programmer should take
into consideration.

Chapter 3: C Source Level Optimizations. Describes optimizations that
C/C++ programmers can implement.

Chapter 4: Instruction Decoding Optimizations. Describes methods that
will make the most efficient use of the three sophisticated
instruction decoders in the AMD Athlon processor.

Chapter 5: Cache and Memory Optimizations. Describes optimizations
that make efficient use of the large L1 caches and high-
bandwidth buses of the AMD Athlon processor.

Chapter 6: Branch Optimizations. Describes optimizations that
improve branch prediction and minimizes branch penalties.

Chapter 7: Scheduling Optimizations. Describes optimizations that
improve code scheduling for efficient execution resource
utilization.

Chapter 8: Integer Optimizations. Describes optimizations that
improve integer arithmetic and makes efficient use of the
integer execution units in the AMD Athlon processor.

Chapter 9: Floating-Point Optimizations. Describes optimizations that
make maximum use of the superscalar and pipelined floating-
point unit (FPU) of the AMD Athlon processor.

Chapter 10: 3DNow!™ and MMX™ Optimizations. Describes code
optimization guidelines for 3DNow!, MMX, and Enhanced
3DNow!/MMX.

Chapter 11: General x86 Optimizations Guidelines. Lists generic
optimization techniques applicable to x86 processors.

Appendix A: AMD Athlon Processor Microarchitecture. Describes in
detail the microarchitecture of the AMD Athlon processor.

2 Introduction Chapter 1
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Appendix B: Pipeline and Execution Unit Resources Overview. Describes
in detail the execution units and its relation to the instruction
pipeline.

Appendix C: Implementation of Write Combining. Describes the
algorithm used by the AMD Athlon processor to write combine.

Appendix D: Performance-Monitoring Counters. Describes the usage of
the performance counters available in the AMD Athlon
processor.

Appendix E: Programming the MTRR and PAT. Describes the steps
needed to program the Memory Type Range Registers and the
Page Attribute Table.

Appendix F: Instruction Dispatch and Execution Resources/Timing. Lists
the instruction’s execution resource usage and its latency.

Appendix G: DirectPath versus VectorPath Instructions. Lists the x86
instructions that are DirectPath and VectorPath instructions.

AMD Athlon™ Processor Family

The AMD Athlon processor family uses state-of-the-art
decoupled decode/execution design techniques to deliver
next-generation performance with x86 binary software
compatibility. This next-generation processor family advances
x86 code execution by using flexible instruction predecoding,
wide and balanced decoders, aggressive out-of-order execution,
parallel integer execution pipelines, parallel floating-point
execution pipelines, deep pipelined execution for higher
delivered operating frequency, dedicated backside cache
memory, and a new high-performance double-rate 64-bit local
bus. As an x86 binary-compatible processor, the AMD Athlon
processor implements the industry-standard x86 instruction set
by decoding and executing the x86 instructions using a
proprietary microarchitecture. This microarchitecture allows
the delivery of maximum performance when running x86-based
PC software.

Chapter 1
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AMD Athlon™ Processor Microarchitecture Summary

The AMD Athlon processor brings superscalar performance
and high operating frequency to PC systems running
industry-standard x86 software. A brief summary of the
next-generation design features implemented in the
AMD Athlon processor is as follows:

High-speed double-rate local bus interface
Large, split 128-Kbyte level-one (LL1) cache
Dedicated backside level-two (L.2) cache

Instruction predecode and branch detection during cache
line fills

Decoupled decode/execution core

Three-way x86 instruction decoding

Dynamic scheduling and speculative execution
Three-way integer execution

Three-way address generation

Three-way floating-point execution

3DNow!™ technology and MMX™  single-instruction
multiple-data (SIMD) instruction extensions

Super data forwarding
Deep out-of-order integer and floating-point execution

Register renaming

Dynamic branch prediction

The AMD Athlon processor communicates through a
next-generation high-speed local bus that is beyond the current
Socket 7 or Super7™ bus standard. The local bus can transfer
data at twice the rate of the bus operating frequency by using
both the rising and falling edges of the clock (see
“AMD Athlon™ System Bus” on page 189 for more
information).

To reduce on-chip cache miss penalties and to avoid subsequent
data load or instruction fetch stalls, the AMD Athlon processor
has a dedicated high-speed backside L2 cache. The large
128-Kbyte L1 on-chip cache and the backside L2 cache allow the

4 Introduction Chapter 1
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AMD Athlon execution core to achieve and sustain maximum
performance.

As a decoupled decode/execution processor, the AMD Athlon
processor makes use of a proprietary microarchitecture, which
defines the heart of the AMD Athlon processor. With the
inclusion of all these features, the AMD Athlon processor is
capable of decoding, issuing, executing, and retiring multiple
x86 instructions per cycle, resulting in superior scaleable
performance.

The AMD Athlon processor includes both the industry-standard
MMX SIMD integer instructions and the 3DNow! SIMD
floating-point instructions that were first introduced in the
AMD-K6%-2 processor. The design of 3DNow! technology was
based on suggestions from leading graphics and independent
software vendors (ISVs). Using SIMD format, the AMD Athlon
processor can generate up to four 32-bit, single-precision
floating-point results per clock cycle.

The 3DNow! execution units allow for high-performance
floating-point vector operations, which can replace x87
instructions and enhance the performance of 3D graphics and
other floating-point-intensive applications. Because the
3DNow! architecture uses the same registers as the MMX
instructions, switching between MMX and 3DNow! has no
penalty.

The AMD Athlon processor designers took another innovative
step by carefully integrating the traditional x87 floating-point,
MMX, and 3DNow! execution units into one operational engine.
With the introduction of the AMD Athlon processor, the
switching overhead between x87, MMX, and 3DNow!
technology is virtually eliminated. The AMD Athlon processor
combined with 3DNow! technology brings a better multimedia
experience to mainstream PC users while maintaining
backwards compatibility with all existing x86 software.

Although the AMD Athlon processor can extract code
parallelism on-the-fly from off-the-shelf, commercially available
x86 software, specific code optimization for the AMD Athlon
processor can result in even higher delivered performance. This
document describes the proprietary microarchitecture in the
AMD Athlon processor and makes recommendations for
optimizing execution of x86 software on the processor.

Chapter 1
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The coding techniques for achieving peak performance on the
AMD Athlon processor include, but are not limited to, those for
the AMD-K6, AMD-K6-2, Pentium®, Pentium Pro, and Pentium
II processors. However, many of these optimizations are not
necessary for the AMD Athlon processor to achieve maximum
performance. Due to the more flexible pipeline control and
aggressive out-of-order execution, the AMD Athlon processor is
not as sensitive to instruction selection and code scheduling.
This flexibility is one of the distinct advantages of the
AMD Athlon processor.

The AMD Athlon processor uses the latest in processor
microarchitecture design techniques to provide the highest x86
performance for today’s PC. In short, the AMD Athlon
processor offers true next-generation performance with x86
binary software compatibility.

6 Introduction Chapter 1
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Top Optimizations

Group | — Essential
Optimizations

Group Il - Secondary
Optimizations

This chapter contains descriptions of the best optimizations for
improving the performance of the AMD Athlon™ processor.
Subsequent chapters contain more detailed descriptions of
these and other optimizations. The optimizations in this chapter
are divided into two groups and listed in order of importance.

Group I contains essential optimizations. Users should follow
these critical guidelines closely. The optimizations in Group I
are as follows:

m Memory Size and Alignment Issues—Avoid memory size
mismatches—Align data where possible

m Use the 3DNow!™ PREFETCH and PREFETCHW
Instructions

m Select DirectPath Over VectorPath Instructions

Group II contains secondary optimizations that can
significantly improve the performance of the AMD Athlon
processor. The optimizations in Group II are as follows:

m Load-Execute Instruction Usage—Use Load-Execute
instructions—Avoid load-execute floating-point instructions
with integer operands

Take Advantage of Write Combining
Use 3DNow! Instructions
Avoid Branches Dependent on Random Data

Avoid Placing Code and Data in the Same 64-Byte Cache
Line

Chapter 2
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Optimization Star

The top optimizations described in this chapter are flagged
with a star. In addition, the star appears beside the more
detailed descriptions found in subsequent chapters.

Group | Optimizations — Essential Optimizations

Memory Size and Alignment Issues

Avoid Memory Size Mismatches

Avoid memory size mismatches when different instructions
operate on the same data. When an instruction stores and
another instruction reloads the same data, keep their operands
aligned and keep the loads/stores of each operand the same
size. The following code examples result in a
store-to-load-forwarding (STLF) stall:

Example 1 (Avoid):

MOV DWORD PTR [FOO], EAX
MOV DWORD PTR [FOO+4], EDX
FLD  QWORD PTR [FOO]

Avoid large-to-small mismatches, as shown in the following
code:

Example 2 (Avoid):

FST ~ QWORD PTR [F0O]
MOV EAX, DWORD PTR [F00]
MOV EDX, DWORD PTR [FOO+41]

8 Top Optimizations Chapter 2
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Align Data Where Possible

Avoid misaligned data references. All data whose size is a
power of 2 is considered aligned if it is naturally aligned. For
example:

m WORD accesses are aligned if they access an address
divisible by 2.

m DWORD accesses are aligned if they access an address
divisible by 4.

m QWORD accesses are aligned if they access an address
divisible by 8.

m TBYTE accesses are aligned if they access an address
divisible by 8.

A misaligned store or load operation suffers a minimum
one-cycle penalty in the AMD Athlon processor load/store
pipeline. In addition, using misaligned loads and stores
increases the likelihood of encountering a store-to-load
forwarding pitfall. For a more detailed discussion of store-to-
load forwarding issues, see “Store-to-Load Forwarding
Restrictions” on page 66.

Use the 3DNow!™ PREFETCH and PREFETCHW Instructions

For code that can take advantage of prefetching, use the
3DNow! PREFETCH and PREFETCHW instructions to increase
the effective bandwidth to the AMD Athlon processor, which
significantly improves performance. All the prefetch
instructions are essentially integer instructions and can be used
anywhere, in any type of code (integer, x87, 3DNow!, MMX,
etc.). Use the following formula to determine prefetch distance:

Prefetch Length = 200 x (DS/C)
m Round up to the nearest cache line.

m DS is the data stride per loop iteration.

m C is the number of cycles per loop iteration when hitting in
the L1 cache.

See “Use the 3DNow!™ PREFETCH and PREFETCHW
Instructions” on page 59 for more details.

Chapter 2
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Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register«register op
memory’ as well as ‘register < register op register’ forms of
instructions. Up to three DirectPath instructions can be
decoded per cycle. VectorPath instructions block the decoding
of DirectPath instructions.

The AMD Athlon processor implements the majority of
instructions used by a compiler as DirectPath instructions.
Nevertheless, assembly writers must still take into
consideration the usage of DirectPath versus VectorPath
instructions.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing” on page 235 and Appendix G, “DirectPath
versus VectorPath Instructions” on page 277 for tables of
DirectPath and VectorPath instructions.

Group Il Optimizations—Secondary Optimizations

Load-Execute Instruction Usage

Use Load-Execute Instructions

Most load-execute integer instructions are DirectPath
decodable and can be decoded at the rate of three per cycle.
Splitting a load-execute integer instruction into two separate
instructions—a load instruction and a “reg, reg” instruction—
reduces decoding bandwidth and increases register pressure,
which results in lower performance. Use the split-instruction
form to avoid scheduler stalls for longer executing instructions
and to explicitly schedule the load and execute operations.

10 Top Optimizations Chapter 2
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Use Load-Execute Floating-Point Instructions with Floating-Point Operands

When operating on single-precision or double-precision
floating-point data, wherever possible use floating-point
load-execute instructions to increase code density.

Note: This optimization applies only to floating-point instructions
with floating-point operands and not with integer operands,
as described in the immediately following section.

This coding style helps in two ways. First, denser code allows
more work to be held in the instruction cache. Second, the
denser code generates fewer internal OPs and, therefore, the
FPU scheduler holds more work, which increases the chances of
extracting parallelism from the code.

Example 1 (Avoid):

FLD QWORD PTR [TESTL]
FLD QWORD PTR [TESTZ]
FMUL ST, ST(1)

Example 1 (Preferred):

FLD QWORD PTR [TESTIL]
FMUL QWORD PTR L[TESTZ2]

Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands: FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR,
FICOM, and FICOMP. Remember that floating-point
instructions can have integer operands while integer
instruction cannot have floating-point operands.

Use separate FILD and arithmetic instructions for floating-
point computations involving integer-memory operands. This
optimization has the potential to increase decode bandwidth
and OP density in the FPU scheduler. The floating-point load-
execute instructions with integer operands are VectorPath and
generate two OPs in a cycle, while the discrete equivalent
enables a third DirectPath instruction to be decoded in the
same cycle. In some situations this optimizations can also
reduce execution time if the FILD can be scheduled several
instructions ahead of the arithmetic instruction in order to
cover the FILD latency.

Chapter 2
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Example 2 (Avoid):

FLD QWORD PTR [foo]
FIMUL DWORD PTR [bar]
FIADD DWORD PTR [baz]

Example 2 (Preferred):

FILD DWORD PTR [bar]
FILD DWORD PTR [baz]
FLD QWORD PTR [foo]

FMULP ST(2), ST
FADDP ST(1),ST

Take Advantage of Write Combining

This guideline applies only to operating system, device driver,
and BIOS programmers. In order to improve system
performance, the AMD Athlon processor aggressively combines
multiple memory-write cycles of any data size that address
locations within a 64-byte cache line aligned write buffer.

See Appendix C, “Implementation of Write Combining” on
page 205 for more details.

Use 3DNow!™ Instructions

When single precision is required, perform floating-point
computations using the 3DNow! instructions instead of x87
instructions. The SIMD nature of 3DNow! instructions achieves
twice the number of FLOPs that are achieved through x87
instructions. 3DNow! instructions also provide for a flat register
file instead of the stack-based approach of x87 instructions.

See Table 23 on page 274 for a list of 3DNow! instructions. For
information about instruction usage, see the 3DNow!™
Technology Manual, order# 21928.

12
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Avoid Branches Dependent on Random Data

Avoid conditional branches depending on random data, as these
are difficult to predict. For example, a piece of code receives a
random stream of characters “A” through “Z” and branches if
the character is before “M” in the collating sequence.
Data-dependent branches acting upon basically random data
causes the branch prediction logic to mispredict the branch
about 50% of the time.

If possible, design branch-free alternative code sequences,
which results in shorter average execution time. This technique
is especially important if the branch body is small. See “Avoid
Branches Dependent on Random Data” on page 73 for more
details.

Avoid Placing Code and Data in the Same 64-Byte Cache Line

Sharing code and data in the same 64-byte cache line may cause
the L1 caches to thrash (unnecessary castout of code/data) in
order to maintain coherency between the separate instruction
and data caches. The AMD Athlon processor has a cache-line
size of 64 bytes, which is twice the size of previous processors.
Avoid placing code and data together within this larger cache
line, especially if the data becomes modified.

For example, consider that a memory indirect JMP instruction
may have the data for the jump table residing in the same
64-byte cache line as the JMP instruction. This mixing of code
and data in the same cache line would result in lower
performance.

Although rare, do not place critical code at the border between
32-byte aligned code segments and a data segments. Code at
the start or end of a data segment should be as seldom executed
as possible or simply padded with garbage.

In general, avoid the following:
m self-modifying code
m storing data in code segments

Chapter 2
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C Source Level Optimizations

This chapter details C programming practices for optimizing
code for the AMD Athlon™ processor. Guidelines are listed in
order of importance.

Ensure Floating-Point Variables and Expressions are of
Type Float

For compilers that generate 3DNow!™ instructions, make sure
that all floating-point variables and expressions are of type
float. Pay special attention to floating-point constants. These
require a suffix of “F” or “f” (for example: 3.14f) to be of type
float, otherwise they default to type double. To avoid automatic
promotion of float arguments to double, always use function
prototypes for all functions that accept float arguments.

Use 32-Bit Data Types for Integer Code

Use 32-bit data types for integer code. Compiler
implementations vary, but typically the following data types are
included—int, signed, signed int, unsigned, unsigned int, long,
signed long, long int, signed long int, unsigned long, and unsigned
long int.

Chapter 3
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Consider the Sign of Integer Operands

In many cases, the data stored in integer variables determines
whether a signed or an unsigned integer type is appropriate.
For example, to record the weight of a person in pounds, no
negative numbers are required so an unsigned type is
appropriate. However, recording temperatures in degrees
Celsius may require both positive and negative numbers so a
signed type is needed.

Where there is a choice of using either a signed or an unsigned
type, take into consideration that certain operations are faster
with unsigned types while others are faster for signed types.

Integer-to-floating-point conversion using integers larger than
16 bit is faster with signed types, as the x86 architecture
provides instructions for converting signed integers to floating-
point, but has no instructions for converting unsigned integers.
In a typical case, a 32-bit integer is converted by a compiler to
assembly as follows:

Example 1 (Avoid):

double x; ==== MOV [temp+4]1, O
unsigned int 1i; MOV  EAX, i

MOV  [temp]l, EAX
X = 1i; FILD QWORD PTR [temp]

FSTP QWORD PTR [x]

The above code is slow not only because of the number of
instructions, but also because a size mismatch prevents store-to-
load forwarding to the FILD instruction. Instead, use the
following code:

Example 1 (Preferred):

double x; ==== FILD DWORD PTR [1i]
int 1; FSTP QWORD PTR [x]
X = 1i;

16 C Source Level Optimizations Chapter 3
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Computing quotients and remainders in integer division by
constants are faster when performed on unsigned types. The
following typical case is the compiler output for a 32-bit integer
divided by four:

Example 2 (Avoid):

int i; ==== MOV  EAX, i
cDQ

=1/ 4; AND EDX, 3
ADD EAX, EDX
SAR  EAX, 2
MOV i, EAX

Example 2 (Preferred):

unsigned int i; ==== SHR 1, 2

i=1/ 4;

In summary:

Use unsigned types for:

m Division and remainders
m Loop counters

m Array indexing

Use signed types for:

m Integer-to-float conversion

Chapter 3
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Use Array Style Instead of Pointer Style Code

The use of pointers in C makes work difficult for the optimizers
in C compilers. Without detailed and aggressive pointer
analysis, the compiler has to assume that writes through a
pointer can write to any place in memory. This includes storage
allocated to other variables, creating the issue of aliasing, i.e.,
the same block of memory is accessible in more than one way.

To help the C compiler optimizer in its analysis, avoid the use of
pointers where possible. One example where this is trivially
possible is in the access of data organized as arrays. C allows the
use of either the array operator [] or pointers to access the
array. Using array-style code makes the task of the optimizer
easier by reducing possible aliasing.

For example, x[0] and x[2] can not possibly refer to the same
memory location, while *p and *q could. It is highly
recommended to use the array style, as significant performance
advantages can be achieved with most compilers.

Example 1 (Avoid):

typedef struct f{
float x,y,z,w;
} VERTEX;

typedef struct f{
float ml41[4];
} MATRIX;

void XForm (float *res, const float *v, const float *m, int
numverts)
{

float dp;

int i;

const VERTEX* vv = (VERTEX *)v;

for (i = 0; i < numverts; i++) {
dp = vv->Xx * Fmt++;
dp += vv->y * *mt++;
dp += vv->z * *mt++;
*

dp += vv->w * Fmt++;

*res++ = dp; /* write transformed x */

dp = vv->x * Fmtt;
dp += vv->y * *mt+;
dp += vv->z * *m++;
dp += vv->w * *mt++;

18 C Source Level Optimizations Chapter 3
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*res++ = dp; /* write transformed y */

dp = vv->Xx * Fmttg
dp += vv->y * *mt+;
dp += vv->z * *m++;
dp += vv->w * *mt++;

*res++ = dp; /* write transformed z */

dp = Vvv-oX * Fmttg
dp += vv->y * *mt+;
dp += vv->z * *m++;
dp += vv->w * Fmt++;

*res++ = dp; /* write transformed w */

++vv; /* next input vertex */
m -= 16; /* reset to start of transform matrix */

}

Example 1 (Preferred):

typedef struct f{
float x,y,z,w;
} VERTEX;

typedef struct f{
float ml41[4];
} MATRIX;

void XForm (float *res, const float *v, const float *m, int
numverts)
{

int i;

const VERTEX* vv = (VERTEX *)v;

const MATRIX* mm = (MATRIX *)m;

VERTEX* rr = (VERTEX *)res;

for (i = 0; i < numverts; i++) {

re->x = vv->x*mm->m{0J[0] + vv->y*mm->m[0][1] +
vv->zxmm->m[0][2] + vv->w*mm->m[0][3];
rr->y = vv->x*mm->m[1]J[0] + vv->y*mm->m[1][1] +
vv->zxmm->m11[2] + vv->wFmm->m[1]1[3];
rr->z = vv->x*mm->m{2][0] + vv->y*mm->m[2][1] +
vv->zxmm->m[2]102] + vv->wrFmm->m[2]1[3];
re->w = vv->x*mm->m{3][0] + vv->y*mm->m[3][1] +

vv->z*mm->m[3][2] + vv->w*mm->m[3][3];

Chapter 3 C Source Level Optimizations 19
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Reality Check

Note that source code transformations interact with a
compiler’s code generator and that it is difficult to control the
generated machine code from the source level. It is even
possible that source code transformations for improving
performance and compiler optimizations “fight” each other.
Depending on the compiler and the specific source code, it is
therefore possible that pointer style code will be compiled into
machine code that is faster than that generated from equivalent
array style code. It is advisable to check the performance after
any source code transformation to see whether performance
really has improved.

Completely Unroll Small Loops

Take advantage of the AMD Athlon processor’s large, 64-Kbyte
instruction cache and completely unroll small loops. Unrolling
loops can be beneficial to performance, especially if the loop
body is small which makes the loop overhead significant. Many
compilers are not aggressive at unrolling loops. For loops that
have a small fixed loop count and a small loop body, completely
unroll the loops at the source level.

Example 1 (Avoid):

// 3D-transform: multiply vector V by 4x4 transform matrix M
for (i=0; i<4; i++) |
rfi] = 0;
for (j=0; j<4; j++) |
rfi] += MLJILiI*VIJ];
}
}

Example 1 (Preferred):

// 3D-transform: multiply vector V by 4x4 transform matrix M

rf0] = MLOJLOJ*V[O] + MLIILOJ*V[1] + M[2][0]*V[2] +
ME3ILO0I*VI3];

rf1] = MLOJLII*VLO] + MLIICI]*V[1] + M[2][1]*V[2] +

ME3J[1I*V[3];

MLOJL2]*V[O] + M[LI1]JL2]1*V[1] + M[2][2]*V[2] +

ME31L2]*VI3];

MLOJL3]*VLO] + MLIJL3]1*V[1] + ML2][3]1*V[2] +

ML3T[31*v[3];

ri2]

ri3]

20

C Source Level Optimizations Chapter 3



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

Avoid Unnecessary Store-to-Load Dependencies

A store-to-load dependency exists when data is stored to
memory, only to be read back shortly thereafter. See
“Store-to-Load Forwarding Restrictions” on page 66 for more
details. The AMD Athlon processor contains hardware to
accelerate such store-to-load dependencies, allowing the load to
obtain the store data before it has been written to memory.
However, it is still faster to avoid such dependencies altogether
and keep the data in an internal register.

Avoiding store-to-load dependencies is especially important if
they are part of a long dependency chains, as may occur in a
recurrence computation. If the dependency occurs while
operating on arrays, many compilers are unable to optimize the
code in a way that avoids the store-to-load dependency. In some
instances the language definition may prohibit the compiler
from using code transformations that would remove the store-
to-load dependency. It is therefore recommended that the
programmer remove the dependency manually, e.g., by
introducing a temporary variable that can be kept in a register.
This can result in a significant performance increase. The
following is an example of this.

Example 1 (Avoid):

double x[VECLEN], y[VECLEN], z[VECLENT;
unsigned int k;

for (k =1; k < VECLEN; k++) {
x[k] = x[k-11 + y[k]1;
J

for (k =1; k < VECLEN; k++) {
xLk]l = z[k] * (y[k] - xCk-11);
}

Example 1 (Preferred):

double x[VECLEN], y[VECLEN], z[VECLENT;
unsigned int k;

double t;

t = x[0];

for (k = 1; k < VECLEN; k++) {
t =t + yl[k];
x[k] = t;

Chapter 3
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t = x[0];

for (k = 1; k < VECLEN; k++) |
t = z[k]l * (y[k]l - t);
x[k] = t;

}

Always Match the Size of Stores and Loads

The AMD Athlon processor contains a load/store buffer (LS) to
speed up the forwarding of store data to dependent loads.
However, this store-to-load forwarding (STLF) inside the LS
occurs in general only when the addresses and sizes of the store
and the dependent load match, and when both memory
accesses are aligned (see section “Store-to-Load Forwarding
Restrictions” on page 66 for details).

It is impossible to control load and store activity at the source
level as to avoid all cases that violate restrictions placed on
store-to-load-forwarding. In some instances it is possible to spot
such cases in the source code. Size mismatches can easily occur
when different sized data items are joined in a union. Address
mismatches could be the result of pointer manipulation.

The following examples show a situation involving a union of
differently sized data items. The examples show a user defined
unsigned 16.16 fixed point type, and two operations defined on
this type. Function fixed_add() adds two fixed point numbers,
and function fixed_int() extracts the integer portion of a fixed
point number. Example 1 (Avoid) shows an inappropriate
implementation of fixed_int(), which when used on the result of
fixed_add() causes misalignment, address mismatch, or size
mismatch between memory operands, such that no STLF in LS
takes place. Example 1 (Preferred) shows how to properly
implement fixed_int() in order to allow store-to-load-forwarding
in LS.

Example 1 (Avoid):

typedef union {
unsigned int whole;
struct {
unsigned short frac; /* lower 16 bits are fraction */
unsigned short intg; /* upper 16 bits are integer */
} parts;
} FIXED_U_16_16;

22
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__inline FIXED_U_16_16 fixed_add (FIXED_U_16_16 x,
FIXED_U_16_16 y)
{
FIXED_U_16_16 z;
z.whole = x.whole + y.whole;
return (z);

}

__dinline unsigned int fixed_int (FIXED_U_16_16 x)
{

return ((unsigned int)(x.parts.intg));
}

[...]
FIXED_U_16_16 y, z;
unsigned int g;
[...]
lTabell:
y = fixed_add (y, z);
q = fixed_int (y);
label?2:
[...]

The object code generated for the source code between $labell

and $label2 typically follows one of these following two

variants:

;variant 1
MOV EDX, DWORD PTR [z]
MOV EAX, DWORD PTR [yl i+
ADD EAX, EDX .
MOV DWORD PTR [y], EAX .
MOV EAX, DWORD PTR [y+2] ;<+ misaligned/address
; mismatch, no forwarding in LS
AND EAX, OFFFFh
MOV DWORD PTR [qgl, EAX

;variant 2
MOV EDX, DWORD PTR [z]
MOV EAX, DWORD PTR [y] s-+

ADD EAX, EDX .

MOV DWORD PTR [y], EAX .

MOVZX EAX, WORD PTR [y+2] ;<+ size and address mismatch,
; no forwarding in LS

MOV DWORD PTR [qgl, EAX

Chapter 3
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Example 1 (Preferred):
typedef union {

}

unsigned int whole;

struct {

unsigned short frac;
unsigned short intg;

} parts;
FIXED_U_16_16;

22007H/0—June 2000

/* lower 16 bits are fraction */
/* upper 16 bits are integer */

__inline FIXED_U_16_16 fixed_add (FIXED_U_16_16 x,
FIXED_U_16_16 y)

{

}

FIXED_U_l6_16 z;

z.whole = x.whole + y.whole;

return (z);

__inline unsigned int fixed_int (FIXED_U_16_16 x)

{
}
I

return (x.whole >> 16);

]

FIXED_U_16_16 y, z;

unsigned int g;

[..
labell:

.

y = fixed_add (y,

q = fixed_int (y);

label2:

[..

.

The object code generated for the source code between $labell
and $label2 typically looks as follows:

MOV
MOV
ADD
MOV
MOV

SHR
MOV

EDX, DWORD PTR [z]

EAX, DWORD PTR [y]
EAX, EDX
DWORD PTR [yl, EAX
EAX, DWORD PTR [y]
EAX, 16
DWORD PTR [qgl, EAX

-+
;:<+ aligned, size/address match,
; forwarding in LS

24
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Consider Expression Order in Compound Branch
Conditions

Branch conditions in C programs are often compound
conditions consisting of multiple boolean expressions joined by
the boolean operators && and Il. C guarantees a short-circuit
evaluation of these operators. This means that in the case of I,
the first operand to evaluate to TRUE terminates the
evaluation, i.e., following operands are not evaluated at all.
Similarly for &&, the first operand to evaluate to FALSE
terminates the evaluation. Because of this short-circuit
evaluation, it is not always possible to swap the operands of Il
and &&. This is especially the case when the evaluation of one
of the operands causes a side effect. However, in most cases the
exchange of operands is possible.

When used to control conditional branches, expressions
involving Il and && are translated into a series of conditional
branches. The ordering of the conditional branches is a function
of the ordering of the expressions in the compound condition,
and can have a significant impact on performance. It is
unfortunately not possible to give an easy, closed-form formula
on how to order the conditions. Overall performance is a
function of a variety of the following factors:

m probability of a branch mispredict for each of the branches
generated

m additional latency incurred due to a branch mispredict

m cost of evaluating the conditions controlling each of the
branches generated

m amount of parallelism that can be extracted in evaluating
the branch conditions

m data stream consumed by an application (mostly due to the
dependence of mispredict probabilities on the nature of the
incoming data in data dependent branches)

It is therefore recommended to experiment with the ordering of
expressions in compound branch conditions in the most active
areas of a program (so called hot spots) where most of the
execution time is spent. Such hot spots can be found through
the use of profiling. Feed a “typical” data stream to the
program while doing the experiments.

Chapter 3
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Optimize Switch Statements

Switch statements are translated using a variety of algorithms.
The most common of these are jump tables and comparison
chains/trees. It is recommended to sort the cases of a switch
statement according to the probability of occurrences, with the
most probable first. This improves performance when the
switch is translated as a comparison chain. It is further
recommended to make the case labels small, contiguous integer
values, as this allows the switch to be translated as a jump table.
Most compilers allow the switch statement to be translated as a
jump table if the case labels are small and contiguous integer

values.

Example 1 (Avoid):

int days_in_month,

short_months,

switch (days_in_month) {
case 28:
case 29: short_months++; break;
case 30: normal_months++; break;
case 31: long_months++; break;
default: printf ("month has fewer than 28 or

}

days\n");

Example 1 (Preferred):

int days_in_month,

short_months,

switch (days_in_month) {

case 31: long_months++; break;

case 30: normal_months++; break;

case 28:

case 29: short_months++; break;

default: printf ("month has fewer than 28 or

days\n");

normal_months,

normal_months,

lTong_months;

more than 31

lTong_months;

more than 31
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Use Prototypes for All Functions

In general, use prototypes for all functions. Prototypes can
convey additional information to the compiler that might
enable more aggressive optimizations.

Use Const Type Qualifier

Use the “const” type qualifier as much as possible. This
optimization makes code more robust and may enable higher
performance code to be generated due to the additional
information available to the compiler. For example, the C
standard allows compilers to not allocate storage for objects
that are declared “const” if their address is never taken.
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Generic Loop Hoisting

To improve the performance of inner loops, it is beneficial to
reduce redundant constant calculations (i.e., loop invariant
calculations). However, this idea can be extended to invariant
control structures.

The first case is that of a constant if() statement in a for() loop.

Example 1:
forC i ... ) {
if( CONSTANTO ) {
DoWork0( i ); // does not affect CONSTANTO
} else {
DoWorkl( i ); // does not affect CONSTANTO

}
}

Transform the above loop into:

if( CONSTANTO ) {
for(C i ... ) {
DoWork0( 1 );
}
} else {
forC i ... ) {
DoWorkl( i );
}
}

This makes the inner loops tighter by avoiding repetitious
evaluation of a known if() control structure. Although the
branch would be easily predicted, the extra instructions and
decode limitations imposed by branching are saved, which are
usually well worth it.

Generalization for Multiple Constant Control Code

To generalize this further for multiple constant control code,
some more work may have to be done to create the proper outer
loop. Enumeration of the constant cases will reduce this to a
simple switch statement.
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Example 2:
for(i ... ) {
if( CONSTANTO ) {
DoWorkQO( 1 ); //does not affect CONSTANTO
// or CONSTANT1
} else {
DoWorkl( i ); //does not affect CONSTANTO

// or CONSTANT1
}
if( CONSTANT1 ) |
DoWork2( i ); //does not affect CONSTANTO
// or CONSTANT1
} else {
DoWork3( 1 ); //does not affect CONSTANTO
// or CONSTANT1

}

Transform the above loop by using the switch statement into:

fidefine combine( cl, c2 ) (((cl) << 1) + (c2))
switch( combine( CONSTANTO!=0, CONSTANTL1!=0 ) ) {
case combine( 0, 0 ):
forC i ... ) {
DoWork0( i );
DoWork2( i );
}
break;
case combine( 1, 0 ):
forC i ... ) {
DoWorkl( i );
DoWork2( i );
}
break;
case combine( 0, 1 ):
forC i ... ) {
DoWork0( i );
DoWork3( i );
}
break;
case combine( 1, 1 ):
forC i ... ) {
DoWorkl( i );
DoWork3( i );
}
break;
default:
break;
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The trick here is that there is some up-front work involved in
generating all the combinations for the switch constant and the
total amount of code has doubled. However, it is also clear that
the inner loops are “if()-free”. In ideal cases where the
“DoWork*()” functions are inlined, the successive functions
will have greater overlap leading to greater parallelism than
would be possible in the presence of intervening if()
statements.

The same idea can be applied to constant switch() statements,
or combinations of switch() statements and if() statements
inside of for() loops. The method for combining the input
constants gets more complicated but will be worth it for the
performance benefit.

However, the number of inner loops can also substantially
increase. If the number of inner loops is prohibitively high, then
only the most common cases need to be dealt with directly, and
the remaining cases can fall back to the old code in a “default:”
clause for the switch() statement.

This typically comes up when the programmer is considering
runtime generated code. While runtime generated code can
lead to similar levels of performance improvement, it is much
harder to maintain, and the developer must do their own
optimizations for their code generation without the help of an
available compiler.

Declare Local Functions as Static

Functions that are not used outside the file in which they are
defined should always be declared static, which forces internal
linkage. Otherwise, such functions default to external linkage,
which might inhibit certain optimizations with some
compilers—for example, aggressive inlining.
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Dynamic Memory Allocation Consideration

Dynamic memory allocation (‘malloc’ in C language) should
always return a pointer that is suitably aligned for the largest
base type (quadword alignment). Where this aligned pointer
cannot be guaranteed, use the technique shown in the following
code to make the pointer quadword aligned, if needed. This
code assumes the pointer can be cast to a long.

Example 1:

double* p;

double* np;

p = (double *)malloc(sizeof(double)*number_of_doubles+7L);
np = (double *)((((long)(p))+7L) & (-8L));

Then use ‘np’ instead of ‘p’ to access the data. ‘p’ is still needed
in order to deallocate the storage.

Introduce Explicit Parallelism into Code

Where possible, break long dependency chains into several
independent dependency chains which can then be executed in
parallel exploiting the pipeline execution units. This is
especially important for floating-point code, whether it is
mapped to x87 or 3DNow! instructions because of the longer
latency of floating-point operations. Since most languages,
including ANSI C, guarantee that floating-point expressions are
not re-ordered, compilers can not usually perform such
optimizations unless they offer a switch to allow ANSI non-
compliant reordering of floating-point expressions according to
algebraic rules.

Note that re-ordered code that is algebraically identical to the
original code does not necessarily deliver identical
computational results due to the lack of associativity of floating
point operations. There are well-known numerical
considerations in applying these optimizations (consult a book
on numerical analysis). In some cases, these optimizations may
lead to unexpected results. Fortunately, in the vast majority of
cases, the final result will differ only in the least significant
bits.
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Example 1 (Avoid):
double al1001],sum;
int i

sum = 0.0f;
for (i=0; i<100; i++) {
sum += alil]l;

}

Example 1 (Preferred):
double al[l100],suml,sumZ,sum3,sum4,sum;

int i;

suml = 0.0
sum? = 0.0
sum3 = 0.0
sum4 = 0.0

for (i=0; i<100; i+4) |
suml += alil;
sum2 += ali+1l];
sum3 += ali+2];
sum4 += al[i+3];
}
sum = (sum4+sum3)+(suml+sum?);

Notice that the 4-way unrolling was chosen to exploit the 4-stage
fully pipelined floating-point adder. Each stage of the floating-
point adder is occupied on every clock cycle, ensuring maximal
sustained utilization.
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Explicitly Extract Common Subexpressions

In certain situations, C compilers are unable to extract common
subexpressions from floating-point expressions due to the
guarantee against reordering of such expressions in the ANSI
standard. Specifically, the compiler can not re-arrange the
computation according to algebraic equivalencies before
extracting common subexpressions. In such cases, the
programmer should manually extract the common
subexpression. Note that re-arranging the expression may result
in different computational results due to the lack of
associativity of floating-point operations, but the results usually
differ in only the least significant bits.

Example 1 (Avoid):
double a,b,c,d,e,f;

e = b*c/d;
f = b/d*a;

Example 1 (Preferred):
double a,b,c,d,e,f,t;

t = b/d;

e = Cc*t;

f = a*t;

Example 2 (Avoid):
double a,b,c,e,f;
e = a/c;

f =b/c;

Example 2 (Preferred):
double a,b,c,e,f,t;
t =1/c;

e = a*t

f = b*t;
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C Language Structure Component Considerations

Many compilers have options that allow padding of structures
to make their size multiples of words, doublewords, or
quadwords, in order to achieve better alignment for structures.
In addition, to improve the alignment of structure members,
some compilers might allocate structure elements in an order
that differs from the order in which they are declared. However,
some compilers might not offer any of these features, or their
implementation might not work properly in all situations.
Therefore, to achieve the best alignment of structures and
structure members while minimizing the amount of padding
regardless of compiler optimizations, the following methods are
suggested.

Sort by Base Type Sort structure members according to their base type size,
Size declaring members with a larger base type size ahead of
members with a smaller base type size.
Pad by Multiple of Pad the structure to a multiple of the largest base type size of
Largest Base Type any member. In this fashion, if the first member of a structure is
Size naturally aligned, all other members are naturally aligned as
well. The padding of the structure to a multiple of the largest
based type size allows, for example, arrays of structures to be
perfectly aligned.
The following example demonstrates the reordering of
structure member declarations:
Example 1, Original ordering (Avoid):
struct {
char al5];
long k;
double x;
} baz;
Example 1, New ordering with padding (Preferred):
struct {
double x;
long k;
char al5];
char padl7];
} baz;
See “C Language Structure Component Considerations” on
page 71 for a different perspective.
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Sort Local Variables According to Base Type Size

When a compiler allocates local variables in the same order in
which they are declared in the source code, it can be helpful to
declare local variables in such a manner that variables with a
larger base type size are declared ahead of the variables with
smaller base type size. Then, if the first variable is allocated so
that it is naturally aligned, all other variables are allocated
contiguously in the order they are declared, and are naturally
aligned without any padding.

Some compilers do not allocate variables in the order they are
declared. In these cases, the compiler should automatically
allocate variables in such a manner as to make them naturally
aligned with the minimum amount of padding. In addition,
some compilers do not guarantee that the stack is aligned
suitably for the largest base type (that is, they do not guarantee
quadword alignment), so that quadword operands might be
misaligned, even if this technique is used and the compiler does
allocate variables in the order they are declared.

The following example demonstrates the reordering of local
variable declarations:

Example 1, Original ordering (Avoid):
short  ga, gu, gi;

long foo, bar;
double x, vy, z[3]1;
char a, b;

float baz;

Example 1, Improved ordering (Preferred):

double z[3];
double x, y;
long foo, bar;
float baz;

short ga, gu, gi;

See “Sort Variables According to Base Type Size” on page 72 for
more information from a different perspective.
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Accelerating Floating-Point Divides and Square Roots

Divides and square roots have a much longer latency than other
floating-point operations, even though the AMD Athlon
processor provides significant acceleration of these two
operations. In some codes, these operations occur so often as to
seriously impact performance. In these cases, it is
recommended to port the code to 3DNow! inline assembly or to
use a compiler that can generate 3DNow! code. If code has hot
spots that use single-precision arithmetic only (i.e., all
computation involves data of type float) and for some reason
cannot be ported to 3DNow!, the following technique may be
used to improve performance.

The x87 FPU has a precision-control field as part of the FPU
control word. The precision-control setting determines what
precision results get rounded to. It affects the basic arithmetic
operations, including divides and square roots. AMD Athlon
and AMD-K6® family processors implement divide and square
root in such fashion as to only compute the number of bits
necessary for the currently selected precision. This means that
setting precision control to single precision (versus Win32
default of double precision) lowers the latency of those
operations.

The Microsoft® Visual C environment provides functions to
manipulate the FPU control word and thus the precision
control. Note that these functions are not very fast, so insert
changes of precision control where it creates little overhead,
such as outside a computation-intensive loop. Otherwise the
overhead created by the function calls outweighs the benefit
from reducing the latencies of divide and square root
operations.

The following example shows how to set the precision control to
single precision and later restore the original settings in the
Microsoft Visual C environment.
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Example 1:

/* prototype for _controlfp() function */

ffinclude <float.h>

unsigned int orig_cw;

/* Get current FPU control word and save it */

orig_cw = _controlfp (0,0);

/* Set precision control in FPU control word to single
precision. This reduces the latency of divide and square
root operations.

*/

_controlfp (_PC_24, MCW_PC);

/* restore original FPU control word */

_controlfp (orig_cw, Oxfffff);

Fast Floating-Point-to-Integer Conversion

Floating-point-to-integer conversion in C programs is typically a
very slow operation. The semantics of C and C++ demand that
the conversion use truncation. If the floating-point operand is of
type float, and the compiler supports 3DNow! code generation,
the 3DNow! PF2ID instruction, which performs truncating
conversion, can be utilized by the compiler to accomplish rapid
floating-point to integer conversion.

For double-precision operands, the usual way to accomplish
truncating conversion involves the following algorithm:

1. Save the current x87 rounding mode (this is usually
round to nearest or even).

Set the x87 rounding mode to truncation.

3. Load floating-point source operand and store out integer
result.

4. Restore original x87 rounding mode.
This algorithm is typically implemented through a C runtime

library function called ftol(). While the AMD Athlon processor
has special hardware optimizations to speed up the changing of
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x87 rounding modes and therefore ftol(), calls to ftol() may still
tend to be slow.

For situations where very fast floating-point-to-integer
conversion is required, the conversion code in the “Fast”
example below may be helpful. Note that this code uses the
current rounding mode instead of truncation when performing
the conversion. Therefore the result may differ by 1 from the
ftol() result. The replacement code adds the “magic number”
2524251 ¢4 the source operand, then stores the double precision
result to memory and retrieves the lower DWORD of the stored
result. Adding the magic number shifts the original argument
to the right inside the double precision mantissa, placing the
binary point of the sum immediately to the right of the least
significant mantissa bit. Extracting the lower DWORD of the
sum then delivers the integral portion of the original argument.

Note: This conversion code causes a 64-bit store to feed into a
32-bit load. The load is from the lower 32 bits of the 64-bit
store, the one case of size mismatch between a store and a
depending load specifically supported by the store-to-load-
forwarding hardware of the AMD Athlon processor.

Example 1 (Slow):

double x;
int i

i= X;

Example 1 (Fast):

ffdefine DOUBLE2INT(i,d) \
{double t = ((d)+6755399441055744.0); i=*((int *)(&t));}

double x;
int i

DOUBLEZINT(i,x);
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Speeding Up Branches Based on Comparisons Between

Floats

Branches Dependent
on Integer
Comparisions are
Fast

Branches based on floating-point comparisons are often slow.
The AMD Athlon processor supports the FCOMI, FUCOMI,
FCOMIP, and FUCOMIP instructions which allow
implementation of fast branches based on comparisons
between operands of type double or type float. However, many
compilers do not support generating these instructions.
Likewise, floating-point comparisons between operands of type
float can be accomplished quickly by using the 3DNow! PFCMP
instruction if the compiler supports 3DNow! code generation.

With many compilers, the only way they implement branches
based on floating-point comparisons is to use the FCOM or
FCOMP instructions to compare the floating-point operands,
followed by “FSTSW AX” in order to transfer the x87 condition
code flags into EAX. This allows a branch based on the contents
of that register. Although the AMD Athlon processor has
acceleration hardware to speed up the FSTSW instruction, this
process is still fairly slow.

One alternative for branches based on comparisons between
operands of type float is to store the operand(s) into a memory
location and then perform an integer comparison with that
memory location. Branches dependent on integer comparisons
are very fast. It should be noted that the replacement code uses
a load dependent on an immediately prior store. If the store is
not DWORD aligned, no store-to-load-forwarding takes place
and the branch is still slow. Also, if there is a lot of activity in
the load-store queue forwarding of the store data may be
somewhat delayed, thus negating some of the advantages of
using the replacement code. It is recommended to experiment
with the replacement code to test whether it actually provides a
performance increase in the code at hand.

The replacement code works well for comparisons against zero,
including correct behavior when encountering a negative zero
as allowed by IEEE-754. It also works well for comparing to
positive constants. In that case the user must first determine
the integer representation of that floating-point constant. This
can be accomplished with the following C code snippet:
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float x;
scanf ("%g", &x);

printf ("%Z08X\n", (*((int *)(&x))));

The replacement code is IEEE-754 compliant for all classes of
floating-point operands except NaNs. However, NaNs do not
occur in properly working software.

Examples:

ftdefine FLOATZ2INTCAST(f
ftdefine FLOAT2UINTCAST(f)

) (*((int *)(&F)))
(*((unsigned int *)(&f)))

// comparisons against zero
if (f < 0.0f) ==> 1if (FLOAT2UINTCAST(f) > 0x80000000U)
if (f <=0.0f) ==> 1if (FLOATZINCAST(f) <= 0)
if (f > 0.0f) ==> 1f (FLOATZINTCAST(f) > 0)
if (f >=0.0f) ==> if (FLOATZ2UINTCAST(f) <= 0x80000000U)
// comparisons against positive constant
if (f < 3.0f) ==> 1if (FLOATZINTCAST(f) < 0x40400000)
if (f <= 3.0f) ==> if (FLOATZINTCAST(f) <= 0x40400000)
if (f > 3.0f) ==> 1if (FLOATZINTCAST(f) > 0x40400000)
if (f >=3.0f) ==> if (FLOATZINTCAST(f) >= 0x40400000)
// comparisons among two floats
if (f1 < f2) ==> float t = fl1 - f2;

if (FLOATZ2UINTCAST(t) > 0x80000000U)
if (fl <= f2) ==> float t = fl - f2;

if (FLOATZ2INTCAST(t) <= 0)
if (f1 > f2) ==> float t = fl1 - f2;

if (FLOATZ2INTCAST(t) > 0)
if (fl1 >= f2) ==> float t = fl1 - f2;

if (FLOATZ2UINTCAST(f) <= 0x80000000U)
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Avoid Unnecessary Integer Division

Integer division is the slowest of all integer arithmetic
operations and should be avoided wherever possible. One
possibility for reducing the number of integer divisions is
multiple divisions, in which division can be replaced with
multiplication as shown in the following examples. This
replacement is possible only if no overflow occurs during the
computation of the product. This can be determined by
considering the possible ranges of the divisors.

Example 1 (Avoid):

int i,J,k,m;
m=1i/73/ k;
Example 1 (Preferred):
int i,3.k,1;
m=1i/ (j*k);

Copy Frequently De-Referenced Pointer Arguments to

Local Variables

Avoid frequently de-referencing pointer arguments inside a
function. Since the compiler has no knowledge of whether
aliasing exists between the pointers, such de-referencing can
not be optimized away by the compiler. This prevents data from
being kept in registers and significantly increases memory
traffic.

Note that many compilers have an “assume no aliasing”
optimization switch. This allows the compiler to assume that
two different pointers always have disjoint contents and does
not require copying of pointer arguments to local variables.

Otherwise, copy the data pointed to by the pointer arguments
to local variables at the start of the function and if necessary
copy them back at the end of the function.
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Example 1 (Avoid):

//assumes pointers are different and gl=r
void isqrt (unsigned long a,
unsigned long *q,
unsigned long *r)
{
*q:a;
if (a > 0)
{
while (*q > (*r = a / *q))
{
*q = (*q + *r) >> 1;
}

*r\:a_*q**q;

Example 1 (Preferred):

//assumes pointers are different and gl=r

void isqrt (unsigned long a,
unsigned long *q,
unsigned long *r)
{
unsigned long qq, rr;
qq = a;
if (a > 0)
{
while (gqq > (rr =a / qq))
{
qq = (qg + rr) >> 1;
}

—

rr=a - qq * qq;
*q = qq;
*r = rr;

22007H/0—June 2000
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Instruction Decoding
Optimizations

Overview

This chapter describes ways to maximize the number of
instructions decoded by the instruction decoders in the
AMD Athlon™ processor. Guidelines are listed in order of
importance.

The AMD Athlon processor instruction fetcher reads 16-byte
aligned code windows from the instruction cache. The
instruction bytes are then merged into a 24-byte instruction
queue. On each cycle, the in-order front-end engine selects for
decode up to three x86 instructions from the instruction-byte
queue.

All instructions (x86, x87, 3DNow!™_ and MMX™) are
classified into two types of decodes—DirectPath and
VectorPath (see “DirectPath Decoder” and “VectorPath
Decoder” on page 183 for more information). DirectPath
instructions are common instructions that are decoded directly
in hardware. VectorPath instructions are more complex
instructions that require the use of a sequence of multiple
operations issued from an on-chip ROM.

Up to three DirectPath instructions can be selected for decode
per cycle. Only one VectorPath instruction can be selected for
decode per cycle. DirectPath instructions and VectorPath
instructions cannot be simultaneously decoded.
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Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register<«register op
memory’ as well as ‘register < register op register’ forms of
instructions. Up to three DirectPath instructions can be
decoded per cycle. VectorPath instructions block the decoding
of DirectPath instructions.

The AMD Athlon processor implements the majority of
instructions used by a compiler as DirectPath instructions.
However, assembly writers must still take into consideration the
usage of DirectPath versus VectorPath instructions.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing” on page 235 and Appendix G, “DirectPath
versus VectorPath Instructions” on page 277 for tables of
DirectPath and VectorPath instructions.

Load-Execute Instruction Usage

Use Load-Execute Integer Instructions

Most load-execute integer instructions are DirectPath
decodable and can be decoded at the rate of three per cycle.

Splitting a load-execute integer instruction into two separate
instructions—a load instruction and a “reg, reg” instruction—
reduces decoding bandwidth and increases register pressure,
which results in lower performance. Use the split-instruction
form to avoid scheduler stalls for longer executing instructions
and to explicitly schedule the load and execute operations.
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Use Load-Execute Floating-Point Instructions with Floating-Point

Operands

When operating on single-precision or double-precision
floating-point data, use floating-point load-execute instructions
wherever possible to increase code density.

Note: This optimization applies only to floating-point instructions
with floating-point operands and not with integer operands,
as described in the immediately following section.

This coding style helps in two ways. First, denser code allows
more work to be held in the instruction cache. Second, the
denser code generates fewer internal OPs and, therefore, the
FPU scheduler holds more work increasing the chances of
extracting parallelism from the code.

Example 1 (Avoid):

FLD QWORD PTR [TESTIL]
FLD QWORD PTR L[TESTZ2]
FMUL ST, ST(1)

Example 1 (Preferred):

FLD QWORD PTR [TESTL]
FMUL QWORD PTR [TESTZ]

Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands: FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR,
FICOM, and FICOMP. Remember that floating-point
instructions can have integer operands while integer
instructions cannot have floating-point operands.

Floating-point computations involving integer-memory
operands should use separate FILD and arithmetic instructions.
This optimization has the potential to increase decode
bandwidth and OP density in the FPU scheduler. The floating-
point load-execute instructions with integer operands are
VectorPath and generate two OPs in a cycle, while the discrete
equivalent enables a third DirectPath instruction to be decoded
in the same cycle. In some situations this optimizations can also
reduce execution time if the FILD can be scheduled several
instructions ahead of the arithmetic instruction in order to
cover the FILD latency.
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Example 2 (Avoid):

FLD QWORD PTR [foo]
FIMUL DWORD PTR [bar]
FIADD DWORD PTR [baz]

Example 2 (Preferred):

FILD DWORD PTR [bar]
FILD DWORD PTR [baz]
FLD QWORD PTR [foo]

FMULP ST(2), ST
FADDP ST(1),ST

Use Read-Modify-Write Instructions Where Appropriate

The AMD Athlon processor handles read-modify-write (RMW)
instructions such as “ADD [mem], reg32” very efficiently. The
vast majority of RMW instructions are DirectPath instructions.
Use of RMW instructions can provide a performance benefit
over the use of an equivalent combination of load, load-execute
and store instructions. In comparison to the load/load-
execute/store combination, the equivalent RMW instruction
promotes code density (better I-cache utilization), preserves
decode bandwidth, and saves execution resources as it occupies
only one reservation station and requires only one address
computation. It may also reduce register pressure, as
demonstrated in Example 2.

Use of RMW instructions is indicated if an operation is
performed on data that is in memory, and the result of that
operation is not reused soon. Due to the limited number of
integer registers in an x86 processor, it is often the case that
data needs to be kept in memory instead of in registers.
Additionally, it can be the case that the data, once operated
upon, is not reused soon. An example would be an accumulator
inside a loop of unknown trip count, where the accumulator
result is not reused inside the loop. Note that for loops with a
known trip count, the accumulator manipulation can frequently
be hoisted out of the loop.
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Example 1 (C code):
/* C code */

int accu, increment;
while (condition) {
/* accu is not read and increment is not written here */

éééu += increment;
}
Example 1 (Avoid):

MOV EAX, [increment]
ADD EAX, [laccul]
MOV Laccul, EAX

Example 1 (Preferred):

MOV EAX, [increment]
ADD laccu], EAX

Example 2 (C code):
/* C code */

int iterationcount;

iteration_count = 0;
while (condition) {

/* iteration count is not read here */

iteration_count++;

}

Example 2 (Avoid):
MOV EAX, [iteration_count]
INC EAX
MOV [iteration_count], EAX
Example 2 (Preferred):
INC [iteration_count]
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Align Branch Targets in Program Hot Spots

In program hot spots (as determined by either profiling or loop
nesting analysis), place branch targets at or near the beginning
of 16-byte aligned code windows. This guideline improves
performance inside hotspots by maximizing the number of
instructions fills into the instruction-byte queue and preserves
I-cache space in branch intensive code outside such hotspots.

Use 32-Bit LEA Rather than 16-Bit LEA Instruction

The 32-bit Load Effective Address (LEA) instruction is
implemented as a DirectPath operation with an execute latency
of only two cycles. The 16-bit LEA instruction, however, is a
VectorPath instruction, which lowers the decode bandwidth
and has a longer execution latency.

Use Short Instruction Encodings

Assemblers and compilers should generate the shortest
instruction encodings possible to optimize use of the I-cache
and increase average decode rate. Wherever possible, use
instructions with shorter lengths. Using shorter instructions
increases the number of instructions that can fit into the
instruction-byte queue. For example, use 8-bit displacements as
opposed to 32-bit displacements. In addition, use the
single-byte format of simple integer instructions whenever
possible, as opposed to the 2-byte opcode ModR/M format.

Example 1 (Avoid):

81 CO 78 56 34 12 ADD EAX, 12345678h ;uses 2-byte opcode
; form (with ModR/M)

81 C3 FB FF FF FF  ADD EBX, -5 ;uses 32-bit
; immediate
OF 84 05 00 00 00 JZ $labell ;uses 2-byte opcode,

; 32-bit immediate
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Example 1 (Preferred):

05 78 56 34 12 ADD EAX, 12345678h ;uses single byte
; opcode form

83 C3 FB ADD EBX, -5 ;uses 8-bit sign
; extended immediate
74 05 JZ $labell ;uses 1-byte opcode,

; 8-bit immediate

Avoid Partial Register Reads and Writes

In order to handle partial register writes, the AMD Athlon
processor execution core implements a data-merging scheme.

In the execution unit, an instruction writing a partial register
merges the modified portion with the current state of the
remainder of the register. Therefore, the dependency hardware
can potentially force a false dependency on the most recent
instruction that writes to any part of the register.

Example 1 (Avoid):

MOV AL, 10 ;inst 1
MOV AH, 12 ;inst 2 has a false dependency on
inst 1

;inst 2 merges new AH with current
EAX register value forwarded
by inst 1

In addition, an instruction that has a read dependency on any
part of a given architectural register has a read dependency on
the most recent instruction that modifies any part of the same
architectural register.

Example 2 (Avoid):

MOV BX, 12h ;inst 1

MOV BL, DL ;inst 2, false dependency on
completion of inst 1

MOV BH, CL ;inst 3, false dependency on
completion of inst 2

MOV AL, BL ;inst 4, depends on completion of
inst 2
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Use LEAVE Instruction for Function Epilogue Code

A classical approach for referencing function arguments and
local variables inside a function is the use of a so called frame
pointer. In x86 code, the EBP register is customarily used as a
frame pointer. In function prologue code, the frame pointer is
set up as follows:

PUSH EBP ;save old frame pointer
MOV EBP, ESP ;new frame pointer
SUB ESP, nnnnnnnn ;allocate local variables

Function arguments on the stack can now be accessed at
positive offsets relative to EBP, and local variables are
accessible at negative offsets relative to EBP. In the function
epilogue code, the following work is performed:

MOV ESP, EBP ;deallocate Tocal variables
POP EBP ;restore old frame pointer

The functionality of these two instructions is identical to that of
the LEAVE instruction. The LEAVE instruction is a single-byte
instruction and thus saves two bytes of code space over the
MOV/POP epilogue sequence. Replacing the MOV/POP
sequence with LEAVE also preserves decode bandwidth.

Therefore, use the LEAVE instruction in function epilogue code
for both specific AMD Athlon optimized and blended code
(code that performs well on both AMD-K6 and AMD Athlon
processors).

Note that for functions that do not allocate local variables, the
prologue and epilogue code can be simplified to the following:

PUSH EBP ;save old frame pointer
MOV EBP, ESP ;new frame pointer

[...]

POP EBP ;restore old frame pointer

This is optimal in cases where the use of a frame pointer is
desired. For highest performance code, do not use a frame
pointer at all. Function arguments and local variables should be
accessed directly via ESP, thus freeing up EBP for use as a
general purpose register and reducing register pressure.

50 Instruction Decoding Optimizations Chapter 4



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

Replace Certain SHLD Instructions with Alternative Code

Certain instances of the SHLD instruction can be replaced by
alternative code sequences using ADD and ADC or SHR and
LEA. The alternative code has lower latency and requires less
execution resources. ADD, ADC, SHR and LEA (32-bit version)
are DirectPath instructions, while SHLD is a VectorPath
instruction. Use of the replacement code optimizes decode
bandwidth as it potentially enables the decoding of a third
DirectPath instruction. The replacement code may increase
register pressure since it destroys the contents of REG2,
whereas REG2 is preserved by SHLD. In situations where
register pressure is high, use of the replacement sequences may
therefore not be indicated.

Example 1 (Avoid):
SHLD REGL, REG2, 1

Example 1 (Preferred):

ADD REGZ2, REGZ
ADC REGL, REGI

Example 2 (Avoid):
SHLD REGL, REG2, 2

Example 2 (Preferred):

SHR REG2, 30
LEA REG1, [REG1*4 + REGZ]

Example 3 (Avoid):
SHLD REGL, REG2, 3

Example 3 (Preferred):

SHR REG2, 29
LEA REG1, [REG1*8 + REGZ]

Use 8-Bit Sign-Extended Immediates

Using 8-bit sign-extended immediates improves code density
with no negative effects on the AMD Athlon processor. For
example, encode ADD BX, -5 as “83 C3 FB” and not as “81 C3
FF FB”.
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Use 8-Bit Sign-Extended Displacements

Use 8-bit sign-extended displacements for conditional
branches. Using short, 8-bit sign-extended displacements for
conditional branches improves code density with no negative
effects on the AMD Athlon processor.

Code Padding Using Neutral Code Fillers

Occasionally a need arises to insert neutral code fillers into the
code stream, e.g., for code alignment purposes or to space out
branches. Since this filler code can be executed, it should take
up as few execution resources as possible, not diminish decode
density, and not modify any processor state other than
advancing EIP. A one byte padding can easily be achieved using
the NOP instructions (XCHG EAX, EAX; opcode 0x90). In the
x86 architecture, there are several multi-byte “NOP”
instructions available that do not change processor state other
than EIP:

MOV REG, REG

XCHG REG, REG

CMOVcc REG, REG

SHR REG, 0

SAR REG,0

SHL REG, 0

SHRD REG, REG, 0

SHLD REG, REG, 0

LEA REG, [REG]

LEA REG, [REG+00]

LEA REG, [REG*1+00]
LEA REG, [REG+00000000]
LEA REG, [REG*1+00000000]

Not all of these instructions are equally suitable for purposes of
code padding. For example, SHLD/SHRD are microcoded which
reduces decode bandwidth and takes up execution resources.
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Recommendations for AMD-K6® Family and AMD Athlon™ Processor

Blended Code
The instructions and instructions sequences presented below
are recommended for code padding on both AMD-K6 family
processors and the AMD Athlon processor.
Note that each of the instructions and instruction sequences
below utilizes an x86 register. To avoid performance
degradation, the register used in the padding should be
selected so as to not lengthen existing dependency chains, i.e.,
select a register that is not used by instructions in the vicinity
of the neutral code filler. Note that certain instructions use
registers implicitly. For example, PUSH, POP, CALL, and RET
all make implicit use of the ESP register. The 5-byte filler
sequence below consists of two instructions. If flag changes
across the code padding are acceptable, the following
instructions may be used as single instruction, 5-byte code
fillers:
m TEST EAX, OFFFF0000h
m CMP EAX, OFFFF0000h
The following assembly language macros show the
recommended neutral code fillers for code optimized for the
AMD Athlon processor that also has to run well on other x86
processors. Note for some padding lengths, versions using ESP
or EBP are missing due to the lack of fully generalized
addressing modes.
NOP2_EAX TEXTEQU <DB 08Bh,0COh> ;MOV EAX, EAX
NOP2_EBX TEXTEQU <DB 08Bh,0DBh> ;MOV EBX, EBX
NOP2_ECX TEXTEQU <DB 08Bh,0C9h> ;MOV ECX, ECX
NOP2_EDX TEXTEQU <DB 08Bh,0D2h> ;MOV EDX, EDX
NOP2_ESI TEXTEQU <DB 08Bh,0F6h> ;MOV ESI, ESI
NOP2_EDI TEXTEQU <DB 08Bh,0FFh> ;MOV EDI, EDI
NOP2_ESP TEXTEQU <DB 08Bh,0E4h> ;MOV ESP, ESP
NOP2_EBP TEXTEQU <DB 08Bh,0EDh> ;MOV EBP, EBP
NOP3_EAX TEXTEQU <DB 08Dh,004h,020h> ;LEA EAX, [EAX]
NOP3_EBX TEXTEQU <DB 08Dh,01Ch,023h> ;LEA EBX, [EBX]
NOP3_ECX TEXTEQU <DB 08Dh,00Ch,021h> ;LEA ECX, [ECX]
NOP3_EDX TEXTEQU <DB 08Dh,014h,022h> ;LEA EDX, [EDX]
NOP3_ESI TEXTEQU <DB 08Dh,024h,024h> ;LEA ESI, [ESI]
NOP3_EDI TEXTEQU <DB 08Dh,034h,026h> ;LEA EDI, [EDI]
NOP3_ESP TEXTEQU <DB 08Dh,03Ch,027h> ;LEA ESP, [ESP]
NOP3_EBP TEXTEQU <DB 08Dh,06Dh,000h> ;LEA EBP, [EBP]

Chapter 4 Instruction Decoding Optimizations 53



AMDZU

AMD Athlon™ Processor x86 Code Optimization

22007H/0—June 2000

NOP4_EAX TEXTEQU <DB 08Dh,044h,020h,000h> ;LEA EAX, [EAX+00]
NOP4_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h> ;LEA EBX, [EBX+00]
NOP4_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h> ;LEA ECX, [ECX+00]
NOP4_EDX TEXTEQU <DB 08Dh,054h,022h,000h> ;LEA EDX, [EDX+00]
NOP4_ESI TEXTEQU <DB 08Dh,064h,024h,000h> ;LEA ESI, [ESI+00]
NOP4_EDI TEXTEQU <DB 08Dh,074h,026h,000h> ;LEA EDI, [EDI+00]
NOP4_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h> ;LEA ESP, [ESP+00]
:LEA EAX, [EAX+00];NOP
NOP5_EAX TEXTEQU <DB 08Dh,044h,020h,000h,090h>
;LEA EBX, [EBX+001;NOP
NOP5_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h,090h>
;LEA ECX, [ECX+007;NOP
NOP5_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h,090h>
;LEA EDX, [EDX+001;NOP
NOP5_EDX TEXTEQU <DB 08Dh,054h,022h,000h,090h>
;LEA EST, [ESI+007;NOP
NOP5_ESI TEXTEQU <DB 08Dh,064h,024h,000h,090h>
;LEA EDI, [EDI+001;NOP
NOP5_EDI TEXTEQU <DB 08Dh,074h,026h,000h,090h>
;LEA ESP, [ESP+007;NOP
NOP5_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h,090h>
;LEA EAX, [EAX+00000000]
NOP6_EAX TEXTEQU <DB 08Dh,080h,0,0,0,0>
;LEA EBX, [EBX+00000000]
NOP6_EBX TEXTEQU <DB 08Dh,09Bh,0,0,0,0>
;LEA ECX, [ECX+00000000]
NOP6_ECX TEXTEQU <DB 08Dh,089h,0,0,0,0>
;LEA EDX, [EDX+00000000]
NOP6_EDX TEXTEQU <DB 08Dh,092h,0,0,0,0>
;LEA ESI, [ESI+00000000]
NOP6_ESI TEXTEQU <DB 08Dh,0B6h,0,0,0,0>
;LEA EDI, [EDI+00000000]
NOP6_EDI TEXTEQU <DB 08Dh,0BFh,0,0,0,0>
;LEA EBP, [EBP+00000000]
NOP6_EBP TEXTEQU <DB 08Dh,0ADh,0,0,0,0>
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;LEA EAX, [EAX*1+00000000]
NOP7_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0>

;LEA EBX, [EBX*1+00000000]
NOP7_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0>

;LEA ECX, [ECX*1+00000000]
NOP7_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0>

;LEA EDX, [EDX*1+00000000]
NOP7_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0>

;LEA ESI, [ESI*I+00000000]
NOP7_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0>

;LEA EDI, [EDI*I+00000000]
NOP7_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0>

;LEA EBP, [EBP*1+00000000]
NOP7_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0>

;LEA EAX, [EAX*1+00000000] ;NOP
NOP8_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0,90h>

;LEA EBX, [EBX*1+00000000] ;NOP
NOP8_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0,90h>

;LEA ECX, [ECX*1+00000000] ;NOP
NOP8_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0,90h>

;LEA EDX, [EDX*1+00000000] ;NOP
NOP8_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0,90h>

;LEA EST, [ESI*1+00000000] ;NOP
NOP8_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0,90h>

;LEA EDI, [EDI*1+00000000] ;NOP
NOP8_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0,90h>

;LEA EBP, [EBP*1+00000000] ;NOP
NOP8_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0,90h>

; JMP
NOP9 TEXTEQU <DB 0EBh,007h,90h,90h,90h,90h,90h,90h,90h>
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Cache and Memory
Optimizations

This chapter describes code optimization techniques that take
advantage of the large L1 caches and high-bandwidth buses of
the AMD Athlon™ processor. Guidelines are listed in order of
importance.

Memory Size and Alignment Issues

Avoid Memory Size Mismatches

Avoid memory size mismatches when different instructions
operate on the same data. When an instruction stores and
another instruction reloads the same data, keep their operands
aligned and keep the loads/stores of each operand the same
size. The following code examples result in a
store-to-load-forwarding (STLF) stall:

Example 1 (Avoid):

MOV DWORD PTR [FOO1, EAX
MOV DWORD PTR [FOO+47, EDX
FLD  QWORD PTR [F0O0]

Example 2 (Avoid):

MOV [FOO], EAX
MOV [FOO+4], EDX
MOVQ MMO, [F00]
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Example 2 (Preferred):

MOV [FOO], EAX
MOV [FOO+4]1, EDX

MOVD MMO, L[F0OO]
PUNPCKLDQ MMO, [F00+4]

Example 2 (Preferred if stores are close to the load):
MOVD MMO, EAX

MOV [FOO+4], EDX

PUNPCKLDQ MMO, [FO0+4]

Avoid large-to-small mismatches, as shown in the following
code:

Example 3 (Avoid):

FST ~ QWORD PTR [F00]
MOV EAX, DWORD PTR [F00]
MOV EDX, DWORD PTR [FOO+41]

Example 4 (Avoid):

MOVQ [foo]l, MMO
MOV EAX, [f00]
MOV EDX, [foo+4]
Example 4 (Preferred):
MOVD [fool, MMO
PSWAPD MMO, MMO
MOVD [foo+4], MMO
PSWAPD MMO, MMO

MOV EAX, [foo]
MOV EDX, [foo+4]

Example 4 (Preferred if the contents of MMO is no longer needed):

MOVD [foo]l, MMO
PUNPCKHDQ MMO, MMO
MOVD [foo+4], MMO
MOV EAX, [foo]
MOV EDX, [foo+4]

Example 4 (Preferred if the stores and loads are close together, Option 1):

MOVD EAX, MMO
PSWAPD MMO, MMO
MOVD EDX, MMO

PSWAPD MMO, MMO
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Example 4 (Preferred if the stores and loads are close together, Option 2):

MOVD EAX, MMO
PUNPCKHDQ MMO, MMO
MOVD EDX, MMO

Align Data Where Possible

In general, avoid misaligned data references. All data whose
size is a power of 2 is considered aligned if it is naturally
aligned. For example:

m WORD accesses are aligned if they access an address
divisible by 2.

m DWORD accesses are aligned if they access an address
divisible by 4.

m QWORD accesses are aligned if they access an address
divisible by 8.

m TBYTE accesses are aligned if they access an address
divisible by 8.

A misaligned store or load operation suffers a minimum
one-cycle penalty in the AMD Athlon processor load/store
pipeline. In addition, using misaligned loads and stores
increases the likelihood of encountering a store-to-load
forwarding pitfall. For a more detailed discussion of store-to-
load forwarding issues, see “Store-to-Load Forwarding
Restrictions” on page 66.

Use the 3DNow!™ PREFETCH and PREFETCHW Instructions

For code that can take advantage of prefetching, use the
3DNow! PREFETCH and PREFETCHW instructions to
increase the effective bandwidth to the AMD Athlon processor.

The PREFETCH and PREFETCHW instructions take
advantage of the AMD Athlon processor’s high bus bandwidth
to hide long latencies when fetching data from system memory.

The prefetch instructions are essentially integer instructions
and can be used anywhere, in any type of code (integer, x87,
3DNow!, MMX, etc.).
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Prefetching versus
Preloading

Unit-Stride Access

PREFETCH/W versus
PREFETCHNTA/T0/T1
/T2

PREFETCHW Usage

Though load instructions may be able to mimic the
functionality of prefetch instructions, they do not offer the
same performance advantage. Prefetch instructions only
updates the cache line in the L1/L2 cache and do not update an
architectural register. This saves a register compared to a load
instruction. Prefetch instructions also do not cause normal
instruction retirement to stall.

Another benefit of prefetching versus preloading is that the
prefetching instructions can retire even if the load data has not
arrived yet. A regular load used for preloading will stall the
machine if it gets to the bottom of the fixed-issue reorder buffer
(part of the Instruction Control Unit) and the load data has not
arrived yet. The load is "blocking" whereas the prefetch is
"non-blocking".

Large data sets typically require unit-stride access to ensure
that all data pulled in by PREFETCH or PREFETCHW is
actually used. If necessary, reorganize algorithms or data
structures to allow unit-stride access. See page 63 for a
definition of unit-stride access.

The PREFETCHNTA/TO0/T1/T2 instructions in the MMX
extensions are processor implementation dependent. If the
developer needs to maintain compatibility with the 25 million
AMD-K6%®-2 and AMD-K6-III processors already sold, use the
3DNow! PREFETCH/W instructions instead of the various
prefetch instructions that are new MMX extensions.

Code that intends to modify the cache line brought in through
prefetching should use the PREFETCHW instruction. While
PREFETCHW works the same as a PREFETCH on the
AMD-K6-2 and AMD-K6-III processors, PREFETCHW gives a
hint to the AMD Athlon processor of an intent to modify the
cache line. The AMD Athlon processor marks the cache line
being brought in by PREFETCHW as modified. Using
PREFETCHW can save an additional 15-25 cycles compared to
a PREFETCH and the subsequent cache state change caused by
a write to the prefetched cache line. Only use PREFETCHW if
there will be a write to the same cache line soon afterwards.
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Programmers can initiate multiple outstanding prefetches on
the AMD Athlon processor. While the AMD-K6-2 and
AMD-KG6-III processors can have only one outstanding prefetch,
the AMD Athlon processor can have up to six outstanding
prefetches. When all six buffers are filled by various memory
read requests, the processor will simply ignore any new
prefetch requests until a buffer frees up. Multiple prefetch
requests are essentially handled in-order. Prefetch data in the
order that it is needed.

The following example shows how to initiate multiple
prefetches when traversing more than one array.

Example 1, Multiple Prefetches Code:

.CODE
.K3D
.686

; original C code

; f#define LARGE_NUM 65536
; ffdefine ARR_SIZE (LARGE_NUM*8)

; double array_alLARGE_NUMT;

; double array b[LARGE_NUMJ;

; double array c[LARGE_NUMJ;
int i;

C for (i = 0: i < LARGE_NUM: i++) |
ali] = b[i] * c[i]
)

MOV ECX, (-LARGE_NUM) ;used biased index

MOV EAX, OFFSET array_a ;get address of array_a
MOV EDX, OFFSET array_b ;get address of array_b
MOV ECX, OFFSET array_c ;get address of array_c

$1oop:

PREFETCHW [EAX+128] ;two cachelines ahead

PREFETCH [EDX+128] ;two cachelines ahead

PREFETCH [ECX+128] ;two cachelines ahead

FLD QWORD PTR [EDX+ECX*8+ARR_SIZE] ;b[i]

FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE] ;bli1*c[i]

FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE] ;alil = blil*cli]

FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+8] ;bli+1]

FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+8] ;b[i+1]*c[i+1]

FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+8] ;ali+l] =
bli+1]*c[i+1]
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FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+16] ;b[i+2]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+16] sbli+2]*cli+2]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+16] ;ali+2] =
[i+2]*c[i+2]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+24] ;b[1+3]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+24] ;bLi+31*cli+3]
FSTP  QWORD PTR [EAX+ECX*8+ARR_SIZE+24] ;ali+3] =
s bLi+31*cli+3]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+32] ;b[i+4]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+32] sbli+4]1*c[i+4]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+32] ;ali+4] =
bLi+4]1*c[i+4]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+40] ;b[1+5]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+40] ;bLi+b]*cli+5]
FSTP  QWORD PTR [EAX+ECX*8+ARR_SIZE+40] ;ali+b] =
; bLi+5]*c[i+5]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+48] ;b[1+6]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+48] ;bLi+6]*cli+6]
FSTP  QWORD PTR [EAX+ECX*8+ARR_SIZE+48] ;ali+6] =
; bli+6]*c[i+6]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+56] ;b[i1+7]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+56] ;bLi+71*cli+7]
FSTP  QWORD PTR [EAX+ECX*8+ARR_SIZE+56] ;ali+7] =
bli+71*c[i+7]
ADD ECX, 8 ;next 8 products
JNZ $1oop ;until none left
END

The following optimization rules were applied to this example:

m Partially unroll loops to ensure that the data stride per loop

iteration is equal to the length of a cache line. This avoids
overlapping PREFETCH instructions and thus makes
optimal use of the available number of outstanding
PREFETCHes.

Since the array "array_a" is written rather than read, use
PREFETCHW instead of PREFETCH to avoid overhead for
switching cache lines to the correct MESI state. The
PREFETCH lookahead is optimized such that each loop
iteration is working on three cache lines while six active
PREFETCHes bring in the next six cache lines.

Reduce index arithmetic to a minimum by use of complex
addressing modes and biasing of the array base addresses in
order to cut down on loop overhead.
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Determining Prefetch Distance

Formula

Definitions

When determining how far ahead to prefetch, the basic
guideline is to initiate the prefetch early enough so that the
data is in the cache by the time it is needed, under the
constraint that there can’t be more than six PREFETCHes in
flight at any given time. As processors achieve speeds of 1 GHz
and faster, the second constraint starts to limit how far ahead a
programmer can PREFETCH.

Given the latency of a typical AMD Athlon processor system
and expected processor speeds, use the following formula to
determine the prefetch distance in bytes for a single array:

Prefetch Distance = 200 x (Ds/C) bytes

m Round up to the nearest 64-byte cache line.

m The number 200 is a constant based upon expected
AMD Athlon processor clock frequencies and typical system
memory latencies.

m DS is the data stride in bytes per loop iteration.

m C is the number of cycles for one loop to execute entirely
from the L1 cache.

Programmers should isolate the loop and have the loop work on
a data set that fits in L1 and determine the L1 loop time.

L1_loop_time = execution time in cycles / # loop iterations

Where multiple arrays are being prefetched, the prefetch
distance usually needs to be increased over what the above
formula suggests, as prefetches for one array are delayed by
prefetches to a different array.

Unit-stride access refers to a memory access pattern where
consecutive memory accesses are to consecutive array
elements, in ascending or descending order. If the arrays are
made of elemental types, then it implies adjacent memory
locations as well. For example:

char j, k[MAX];
for (i=0; T<MAX; i++) |

S 4= K[

i..
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Exception to Unit
Stride

Data Stride per Loop
Iteration

Prefetch at Least 64
Bytes Away from
Surrounding Stores

double x, y[MAX];
for (i=0; i<MAX; i++) {

X 4= yLils

}

The unit-stride concept works well when stepping through
arrays of elementary data types. In some instances, unit stride
alone may not be sufficient to determine how to use
PREFETCH properly. For example, assume a vertex structure
of 256 bytes and the code steps through the vertices in unit
stride, but using only the x, y, z, w components, each being of
type float (e.g., the first 16 bytes of each vertex). In this case,

the prefetch distance obviously should be some function of the
data size structure (for a properly chosen "n"

PREFETCH [EAX+n*STRUCTURE_SIZE]

ADD EAX, STRUCTURE_SIZE

Programmers may need to experiment to find the optimal
prefetch distance; there is no formula that works for all
situations.

Assuming unit-stride access to a single array, the data stride of
a loop refers to the number of bytes accessed in the array per
loop iteration. For example:

FLDZ

$add_Toop:

FADD QWORD PTR [EBX*8+base_address]
DEC EBX

JNZ $add_Toop

The data stride of the above loop is 8 bytes. In general, for
optimal use of prefetch, the data stride per iteration is the
length of a cache line (64 bytes in the AMD Athlon processor).
If the "loop stride" is smaller, unroll the loop. Note that this can
be unfeasible if the original loop stride is very small, e.g., 2
bytes.

The PREFETCH and PREFETCHW instructions can be
affected by false dependencies on stores. If there is a store to an
address that matches a request, that request (the PREFETCH
or PREFETCHW instruction) may be blocked until the store is
written to the cache. Therefore, code should prefetch data that
is located at least 64 bytes away from any surrounding store’s
data address.
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Take Advantage of Write Combining

Operating system and device driver programmers should take
advantage of the write-combining capabilities of the
AMD Athlon processor. The AMD Athlon processor has a very
aggressive write-combining algorithm that improves
performance significantly.

See Appendix C, “Implementation of Write Combining” on
page 205 for more details.

Avoid Placing Code and Data in the Same 64-Byte Cache

Sharing code and data in the same 64-byte cache line may cause
the L1 caches to thrash (unnecessary castout of code/data) in
order to maintain coherency between the separate instruction
and data caches. The AMD Athlon processor has a cache-line
size of 64-bytes, which is twice the size of previous processors.
Programmers must be aware that code and data should not be
shared within this larger cache line, especially if the data
becomes modified.

For example, programmers should consider that a memory
indirect JMP instruction may have the data for the jump table
residing in the same 64-byte cache line as the JMP instruction,
which would result in lower performance.

Although unlikely, do not place critical code at the border
between 32-byte aligned code segments and data segments. The
code at the start or end of your data segment should be
executed as infrequently as possible or simply padded with
garbage.

In general, avoid the following:
m self-modifying code
m storing data in code segments
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Store-to-Load Forwarding Restrictions

Store-to-load forwarding refers to the process of a load reading
(forwarding) data from the store buffer (LS2). There are
instances in the AMD Athlon processor load/store architecture
when either a load operation is not allowed to read needed data
from a store in the store buffer, or a load OP detects a false data
dependency on a store in the store buffer

In either case, the load cannot complete (load the needed data
into a register) until the store has retired out of the store buffer
and written to the data cache. A store-buffer entry cannot retire
and write to the data cache until every instruction before the
store has completed and retired from the reorder buffer.

The implication of this restriction is that all instructions in the
reorder buffer, up to and including the store, must complete
and retire out of the reorder buffer before the load can
complete. Effectively, the load has a false dependency on every
instruction up to the store.

Due to the significant depth of the AMD Athlon processor’s LS
buffer, any load dependent on a store that can not bypass data
through LS can experience significant delays of up to tens of
clock cycles, where the exact delay is a function of pipeline
conditions.

The following sections describe store-to-load forwarding
examples that are acceptable and those to avoid.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is allowed to read data from the store-buffer entry only if
all of the following conditions are satisfied:

m The start address of the load matches the start address of
the store.

m The load operand size is equal to or smaller than the store
operand size.

m Neither the load or store is misaligned.

m The store data is not from a high-byte register (AH, BH, CH,
or DH).
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Narrow-to-Wide
Store-Buffer Data
Forwarding
Restriction

Wide-to-Narrow
Store-Buffer Data
Forwarding
Restriction

AMD Athlon™ Processor x86 Code Optimization

The following sections describe common-case scenarios to avoid
whereby a load has a true dependency on a LS2-buffered store,
but cannot read (forward) data from a store-buffer entry.

If the following conditions are present, there is a
narrow-to-wide store-buffer data forwarding restriction:

m The operand size of the store data is smaller than the
operand size of the load data.

m The range of addresses spanned by the store data covers
some sub-region of range of addresses spanned by the load
data.

Avoid the type of code shown in the following two examples.

Example 1 (Avoid):

MOV EAX, 10h
MOV WORD PTR [EAX]1, BX ;word store

MOV ECX, DWORD PTR [EAX] ;doubleword 1oad
;cannot forward upper
; byte from store buffer

Example 2 (Avoid):

MOV EAX, 10h
MOV BYTE PTR [EAX + 3], BL ;byte store

MOV ECX, DWORD PTR [EAX] ;doubleword 1oad
;cannot forward upper byte
; from store buffer

If the following conditions are present, there is a
wide-to-narrow store-buffer data forwarding restriction:

m The operand size of the store data is greater than the
operand size of the load data.

m The start address of the store data does not match the start
address of the load.

Example 3 (Avoid):
MOV EAX, 10h
ADD DWORD PTR [EAX], EBX ;doubleword store

MOV CX, WORD PTR [EAX + 2] ;word load-cannot forward high
; word from store buffer
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Misaligned
Store-Buffer Data
Forwarding
Restriction

Example 4 (Avoid):
MOVQ [foo], MM1

ADD EAX, [fool
ADD EDX, [foo+4]

Example 4 (Preferred):

MOVD [foo]l, MMI1
PUNPCKHDQ MMI1, MM1
MOVD [foo+4], MMI

ADD EAX, [fool]
ADD EDX, [foo+4]

22007H/0—June 2000

;store upper and lower half

;:fine
;not good!

;store Tower half
;get upper half into lower half
;store Tower half

;fine
;fine

If the following condition is present, there is a misaligned
store-buffer data forwarding restriction:

m The store or load address is misaligned. For example, a
quadword store is not aligned to a quadword boundary, a
doubleword store is not aligned to doubleword boundary,

etc.

A common case of misaligned store-data forwarding involves
the passing of misaligned quadword floating-point data on the
doubleword-aligned integer stack. Avoid the type of code shown
in the following example.

Example 5 (Avoid):

MOV ESP, 24h
FSTP  QWORD PTR [ESP]

FLD  QWORD PTRLESP]

;esp=24
;store occurs to quadword
; misaligned address

;quadword load cannot forward
; from quadword misaligned

‘fstplesp]’ store 0P
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High-Byte If the following condition is present, there is a high-byte
Store-Buffer Data store-data buffer forwarding restriction:
Forwarding . . :

e m The store data is from a high-byte register (AH, BH, CH,
Restriction

DH).

Avoid the type of code shown in the following example.

Example 6 (Avoid):

MOV EAX, 10h

MOV [EAX], BH ;high-byte store

MOV DL, [EAX] ;:load cannot forward from

; high-byte store

One Supported Store- There is one case of a mismatched store-to-load forwarding that

to-Load Forwarding is supported by the AMD Athlon processor. The lower 32 bits

Case from an aligned QWORD write feeding into a DWORD read is
allowed.

Example 7 (Allowed):
MOVQ [AlignedQword]l, mmO

MOV EAX, [AlignedQword]

Summary of Store-to-Load Forwarding Pitfalls to Avoid

To avoid store-to-load forwarding pitfalls, conform code to the
following guidelines:

m Maintain consistent use of operand size across all loads and
stores. Preferably, use doubleword or quadword operand
sizes.

m Avoid misaligned data references.
m Avoid narrow-to-wide and wide-to-narrow forwarding cases.

m When using word or byte stores, avoid loading data from
anywhere in the same doubleword of memory other than the
identical start addresses of the stores.
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Stack Alignment Considerations

Extend to 32 Bits
Before Pushing onto
Stack

Make sure the stack is suitably aligned for the local variable
with the largest base type. Then, using the technique described
in “C Language Structure Component Considerations” on page
71, all variables can be properly aligned with no padding.

Function arguments smaller than 32 bits should be extended to
32 bits before being pushed onto the stack, which ensures that
the stack is always doubleword aligned on entry to a function.

If a function has no local variables with a base type larger than
doubleword, no further work is necessary. If the function does
have local variables whose base type is larger than a
doubleword, insert additional code to ensure proper alignment
of the stack. For example, the following code achieves
quadword alignment:

Example 1 (Preferred):

Prologue:

PUSH EBP

MOV EBP, ESP

SUB ESP, SIZE_OF_LOCALS ;size of Tocal variables

AND ESP, -8
;push registers that need to be preserved

Epilogue: ;pop register that needed to be preserved
LEAVE
RET

With this technique, function arguments can be accessed via
EBP, and local variables can be accessed via ESP. In order to
free EBP for general use, it needs to be saved and restored
between the prologue and the epilogue.

Align TBYTE Variables on Quadword Aligned Addresses

Align variables of type TBYTE on quadword aligned addresses.
In order to make an array of TBYTE variables that are aligned,
array elements are 16-bytes apart. In general, TBYTE variables
should be avoided. Use double-precision variables instead.
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C Language Structure Component Considerations

Structures (‘struct’ in C language) should be made the size of a
multiple of the largest base type of any of their components. To
meet this requirement, use padding where necessary. This
ensures that all elements of an array of structures are properly
aligned provided the array itself is properly aligned.

To minimize padding, sort and allocate structure components
(language definitions permitting) such that the components
with a larger base type are allocated ahead of those with a
smaller base type. For example, consider the following code:

Example 1:
struct {
char alb];
long K;
double Xx;
I baz;

Allocate the structure components (lowest to highest address)
as follows:

x, k, al4], al3], al2], all], al0], padbyte6, ..., padbyteO

See “C Language Structure Component Considerations” on
page 34 for more information from a C source code perspective.
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Sort Variables According to Base Type Size

Sort local variables according to their base type size and
allocate variables with larger base type size ahead of those with
smaller base type size. Assuming the first variable allocated is
naturally aligned, all other variables are naturally aligned
without any padding. The following example is a declaration of
local variables in a C function:

Example 1:

short ga, gu, gi;
long foo, bar;
double X, y, z[3]1;
char a, b;

float baz;

Allocate variables in the following order from left to right (from
higher to lower addresses):

X, vy, z[2], z[1]1, z[0O], foo, bar, baz, ga, gu, gi, a, b;

See “Sort Local Variables According to Base Type Size” on page
35 for more information from a C source code perspective.
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Branch Optimizations

While the AMD Athlon™ processor contains a very
sophisticated branch unit, certain optimizations increase the
effectiveness of the branch prediction unit. This chapter
discusses rules that improve branch prediction and minimize
branch penalties. Guidelines are listed in order of importance.

Avoid Branches Dependent on Random Data

Avoid conditional branches depending on random data, as these
are difficult to predict. For example, a piece of code receives a
random stream of characters “A” through “Z” and branches if
the character is before “M” in the collating sequence.
Data-dependent branches acting upon basically random data
causes the branch prediction logic to mispredict the branch
about 50% of the time.

If possible, design branch-free alternative code sequences,
which results in shorter average execution time. This technique
is especially important if the branch body is small. Examples 1
and 2 illustrate this concept using the CMOYV instruction. Note
that the AMD-K6® processor does not support the CMOV
instruction. Therefore, blended AMD-K6 and AMD Athlon
processor code should use Examples 3 and 4.
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AMD Athlon™ Processor Specific Code

Example 1 — Signed integer ABS function (X = labs(X)):

MOV ECX, [X] ;load value

MOV EBX, ECX ;save value

NEG ECX ;-value

CMOVS ECX, EBX ;if -value is negative, select value
MOV [X], ECX ;save labs result

Example 2 — Unsigned integer min function (z=x<y?x:y):

MOV EAX, [X] ;load X value

MOV EBX, L[VY] ;load Y value

CMP EAX, EBX ; EBX<K=EAX ? CF=0 : CF=1
CMOVNC EAX, EBX ; EAX=(EBX<=EAX) ? EBX:EAX
MOV [Z], EAX ;save min (X,Y)

Blended AMD-K6® and AMD Athlon™ Processor Code
Example 3 — Signed integer ABS function (X = labs(X)):

MOV ECX, [X] ;load value

MOV EBX, ECX ;save value

SAR ECX, 31 ix <0 7 Oxffffffff : 0
XOR EBX, ECX X <0 7 ~x @ X

SUB EBX, ECX x <0 7?7 (~x)+1 : x

MOV [X], EBX x <07 -x : X

Example 4 — Unsigned integer min function (z=x<y?x:y):

MOV EAX, [x] ;load X

MOV EBX, L[y] ;load vy

SUB EAX, EBX i x <y 7 CF : NC ; x -y
SBB ECX, ECX i x <y 7 Oxffffffff 0
AND ECX, EAX x <y ?x -y 0

ADD ECX, EBX X <y 727X -y +y oy
MOV [z], ECX x <y 7T x oy

Example 5 — Hexadecimal to ASCII conversion
(y=x<10? x + 0x30: x + 0x41):

MOV AL, [X] ;load X value

CMP AL, 10 ;if x is less than 10, set carry flag
SBB AL, 69h :0..9 -> 96h, Ah..Fh -> Alh...A6h

DAS ;:0..9: subtract 66h, Ah..Fh: Sub. 60h
MOV [Y], AL ;save conversion in y
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Example 6 — Increment Ring Buffer Offset:

//C Code
char buf[BUFSIZE];
int a;

if (a < (BUFSIZE-1)) {
at++;

} else {
a = 0;

;Assembly Code

MOV EAX, [al] ; old offset

CMP EAX, (BUFSIZE-1) ; a < (BUFSIZE-1) ? CF : NC

INC EAX ;o att

SBB EDX, EDX ; a < (BUFSIZE-1) 7?7 Oxffffffff :0
AND EAX, EDX ; a < (BUFSIZE-1) ? a++ : 0

MOV [a], EAX ; store new offset

Example 7 — Integer Signum Function:

//C Code
int a, s;

if (la) |
s =0;

} else if (a < 0) {
s = -1;

} else {

;Assembly Code

MOV EAX, [al] load a

cbhQ it =a <0 7 Oxffffffff : 0
CMP EDX, EAX ;a > 07 CF @ NC

ADC EDX, O ;a > 0 7 t+l 0t

MOV [s1, EDX signum(x)
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Example 8 — Conditional Write:
//C Code

int a, b, i, dummy, c[BUFSIZE];

if (a < b) {
cli++] = a;

; Assembly code

LEA ESI, [dummy] ;&dummy
XOR ECX, ECX ;1 =0
LEA EDI, [c+ECX*4] ;&c[i]
LEA EDX, [ECX+1] J1++

CMP EAX, EBX ;a < b7
CMOVGE EDI, ESI ;ptr = (
CMOVL ECX, EDX ;a < b7
MOV [EDI], EAX ;*ptr = a

Always Pair CALL and RETURN

22007H/0—June 2000

: &cli]

When the 12 entry return-address stack gets out of
synchronization, the latency of returns increase. The return-

address stack becomes out of sync when:

m calls and returns do not match

m the depth of the return-address stack is exceeded because

of too many levels of nested functions calls
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Replace Branches with Computation in 3DNow!™ Code

Muxing Constructs

Branches negatively impact the performance of 3DNow! code.
Branches can operate only on one data item at a time, i.e., they
are inherently scalar and inhibit the SIMD processing that
makes 3DNow! code superior. Also, branches based on 3DNow!
comparisons require data to be passed to the integer units,
which requires either transport through memory, or the use of
“MOVD reg, MMreg” instructions. If the body of the branch is
small, one can achieve higher performance by replacing the
branch with computation. The computation simulates
predicated execution or conditional moves. The principal tools
for this are the following instructions: PCMPGT, PFCMPGT,
PFCMPGE, PFMIN, PFMAX, PAND, PANDN, POR, PXOR.

The most important construct to avoiding branches in 3DNow!
and MMX™ code is a 2-way muxing construct that is equivalent
to the ternary operator “?:” in C and C++. It is implemented
using the PCMP/PFCMP, PAND, PANDN, and POR instructions.
To maximize performance, it is important to apply the PAND
and PANDN instructions in the proper order.

Example 1 (Avoid):
i r=(x<y)?2az:b

: in: mmO

a
mml Db
mm2 X

: mm3 y

; out: mml r

PCMPGTD MM3, MM2 Dy > x 2 Oxffffffff : 0

MOVQ MM4, MM3 ; duplicate mask

PANDN MM3, MMO Yy > x 70 a

PAND MM1, MM4 Yy > x?7h 0

POR MM1, MM3 ;s r=y > x?7b:a

Because the use of PANDN destroys the mask created by PCMP,
the mask needs to be saved, which requires an additional
register. This adds an instruction, lengthens the dependency
chain, and increases register pressure. Therefore, write 2-way
muxing constructs as follows.
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Sample Code Translated into 3DNow!™ Code

Example 1 (Preferred):

r=(x <y
in: mm0 a
mml b

mmZ X

: mm3 y
; out: mml r
PCMPGTD MM3,
PAND MM1,
PANDN MM3,
POR MM1,

? a

MM2
MM3
MMO
MM3

SK K <
I v Vv Vv

< X X X

OXFFFFFFFF

b : 0
0 : a

X ? b :

a

0
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The following examples use scalar code translated into 3DNow!
code. Note that it is not recommended to use 3DNow! SIMD
instructions for scalar code, because the advantage of 3DNow!
instructions lies in their “SIMDness”. These examples are
meant to demonstrate general techniques for translating source
code with branches into branchless 3DNow! code. Scalar source
code was chosen to keep the examples simple. These techniques

work in an identical fashion for vector code.

Each example shows the C code and the resulting 3DNow! code.

Example 2 C code:
float x,y,z;
if (x < y) |
z += 1.0;
}
else |
z = 1.0;
}
3DNow! code:
;in: MMO = x
; MMI1 =y
; MM2 = Z
;out: MMO = z
MOVQ MM3, MMO ;sav
MOVQ MM4, one ;1.0
PFCMPGE MMO, MM1 X <y 70 ¢ Oxffffffff
PSLLD MMO, 31 ix <y 70 : 0x80000000
PXOR MMO, MM4 ix <y ?21.0: -1.0
PFADD MMO, MM2 i x <y ?z+1.0 ¢ z-1.0
78 Branch Optimizations Chapter 6



AMDZ1

22007H/0—June 2000

Example 3

Example 4

AMD Athlon™ Processor x86 Code Optimization

C code:

float x,z;

z = abs(x);
if (z >= 1) {
z =1/z;

}

3DNow! code:

;in: MMO = x

;out: MMO = 2z

MOVQ MM5, mabs ;Ox7fffffff

PAND MMO, MM5 ;z=abs(x)

PFRCP MM2, MMO ;1/z approx

MOVQ MM1, MMO ;save z

PFRCPIT1 MMO, MMZ2 ;1/z step

PFRCPIT2 MMO, MMZ2 ;1/z final

PFMIN MMO, MM1 iz =2<17?22z:1/z

C code:

float x,z,r,res;
z = fabs(x)
if (z < 0.575) {
res = r;
}
else {
res = PI/2 - 2*r;
}

3DNow! code:
:in: MMO = x
MM1 = r

;out: MMO = res

MOVQ MM7, mabs ;mask for absolute value
PAND MMO, MM7 ;z = abs(x)

MOVQ MMZ2, bnd ;0.575

PCMPGTD MM2, MMO ;z < 0.575 7 Oxffffffff : 0
MOVQ MM3, pio2 ;pi/2

MOVQ MMO, MM1 ;save r

PFADD MM1, MM1 ;2*r

PFSUBR MM1, MM3 ;pi/2 - 2*r

PAND MMO, MM2 ;z < 0.575 ? r : 0

PANDN MM2, MM1 ;z < 0.575 ? Q0 : pi/2 - 2*r
POR MMO, MM2 ;z < 0.575 ? r : pi/2 - 2 * r
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Example 5 C code:
Jfdefine PI 3.14159265358979323
float x,z,r,res;
/* 0 <= r <= PI/4 */
z = abs(x)
if (z < 1) {
res = r;
}
else {
res = PI/2-r;
}
3DNow! code:
:in: MMO = x
MM1 = r
;out: MM1 = res
MOVQ MM5, mabs ; mask to clear sign bit
MOVQ MM6, one ;1.0
PAND MMO, MM5 ; z=abs(x)
PCMPGTD MM6, MMO 00z <1 72 Oxffffffff : O
MOVQ MM4, pio2 ; pi/2
PFSUB MM4, MM1 ; pi/2-r
PANDN MM6, MM4 ; 2z <1720 ¢ pi/2-r
PFMAX MM1, MM6 s res =z<17?2r :pi/2-r
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Example 6 C code:
ffdefine PI 3.14159265358979323
float x,y,xa,ya,r,res;
int xs,df;
xs =x < 07?1 :0;
xa = fabs(x);
ya = fabs(y);
df = (xa < ya);
if (xs && df) {
res = PI/2 + r;
}
else if (xs)
res = PI - r;
}
else if (df)
res = PI/2 - r;
}
else {
res = r;
}
3DNow! code:
:in: MMO =
MM1 =
; MM2 =
;out: MMO = res
MOVQ MM7, sgn ;mask to extract sign bit
MOVQ MM6, sgn ;mask to extract sign bit
MOVQ MM5, mabs ;mask to clear sign bit
PAND MM7, MM2 ;XS = sign(x)
PAND MM1, MM5 ;ya = abs(y)
PAND MM2, MM5 ;Xa = abs(x)
MOVQ MM6, MM1 1y
PCMPGTD MM6, MM?2 ;df = (xa < ya) 7 Oxffffffff : 0
PSLLD MM6, 31 ;df = bit<31>
MOVQ MM5, MM7 1 XS
PXOR MM7, MM6 ;xsAdf 7?7 0x80000000 : O
MOVQ MM3, npio2 ;-pi/2
PXOR MM5, MM3 ixs ? pi/2 ¢ -pil/?
PSRAD MM6, 31 ;df 2 OxfFffffff : 0
PANDN MM6, MM5 ;xs ? (df 20 : pi/2) (df 2 0 : -pi/2)
PFSUB MM6, MM3 ;pr = pi/2 + (xs 72 (df 2 0 : pi/2)
(df 2 0 : -pi/2))
POR MMO, MM7 ;ar = xs™df ? o-r :or
PFADD MMO, MM6 ;res = ar + pr
Chapter 6 Branch Optimizations 81



AMDZ\
AMD Athlon™ Processor x86 Code Optimization 22007H/0—June 2000

Avoid the Loop Instruction

The LOOP instruction in the AMD Athlon processor requires
eight cycles to execute. Use the preferred code shown below:

Example 1 (Avoid):
LOOP LABEL

Example 1 (Preferred):

DEC ECX
JNZ LABEL

Avoid Far Control Transfer Instructions

Avoid using far control transfer instructions. Far control
transfer branches can not be predicted by the branch target
buffer.
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Avoid Recursive Functions

Avoid recursive functions due to the danger of overflowing the
return address stack. Convert end-recursive functions to
iterative code. A recursive function is called end-recursive
when the function call to itself is at the end of the code.

Example 1 (Avoid):

long fac(long a)
{
if (a==0) {
return (1);
} else {
return (a*fac(a-1));
}
return (t);
}

Example 1 (Preferred):

long fac(long a)
{
long t=1;
while (a > 0) f{
t *= a;
a--;
}
return (t);
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Scheduling Optimizations

This chapter describes how to code instructions for efficient
scheduling. Guidelines are listed in order of importance.

Schedule Instructions According to their Latency

The AMD Athlon™ processor can execute up to three x86
instructions per cycle, with each x86 instruction possibly having
a different latency. The AMD Athlon processor has flexible
scheduling, but for absolute maximum performance, schedule
instructions, especially FPU and 3DNow!™ instructions,
according to their latency. Dependent instructions will then not
have to wait on instructions with longer latencies.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing” on page 235 for a list of latency numbers.
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Unrolling Loops

Complete Loop Unrolling

Make use of the large AMD Athlon processor 64-Kbyte
instruction cache and unroll loops to get more parallelism and
reduce loop overhead, even with branch prediction. Complete
unrolling reduces register pressure by removing the loop
counter. To completely unroll a loop, remove the loop control
and replicate the loop body N times. In addition, completely
unrolling a loop increases scheduling opportunities.

Only unrolling very large code loops can result in the inefficient
use of the L1 instruction cache. Loops can be unrolled
completely, if all of the following conditions are true:

m The loop is in a frequently executed piece of code.
m The loop count is known at compile time.

m The loop body, once unrolled, is less than 100 instructions,
which is approximately 400 bytes of code.

Partial Loop Unrolling

Partial loop unrolling can increase register pressure, which can
make it inefficient due to the small number of registers in the
x86 architecture. However, in certain situations, partial
unrolling can be efficient due to the performance gains
possible. Consider partial loop unrolling if the following
conditions are met:

m Spare registers are available
m Loop body is small, so that loop overhead is significant
m  Number of loop iterations is likely > 10

Consider the following piece of C code:
double a[MAX_LENGTHI, b[MAX_LENGTHI;
for (i=0; i< MAX_LENGTH; i++) {

alil = alil + blil;
}
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Without loop unrolling, the code looks like the following:

Example 1 (Without Loop Unrolling):

MOV ECX,
MOV EAX,
MOV EBX,

MAX_LENGTH
OFFSET A
OFFSET B

$add_Tloop:

FLD
FADD
FSTP
ADD
ADD
DEC
JINZ

QWORD PTR [EAX]
QWORD PTR [EBX]
QWORD PTR [EAX]
EAX, 8

EBX, 8

ECX

$add_Tloop

The loop consists of seven instructions. The AMD Athlon
processor can decode/retire three instructions per cycle, so it
cannot execute faster than three iterations in seven cycles, or
3/7 floating-point adds per cycle. However, the pipelined
floating-point adder allows one add every cycle. In the following
code, the loop is partially unrolled by a factor of two, which
creates potential endcases that must be handled outside the

loop:

Example 1 (With Partial Loop Unrolling):

MOV
MOV
MOV
SHR
JNC
FLD
FADD
FSTP
ADD
ADD

ECX, MAX_LENGTH
EAX, offset A
EBX, offset B
ECX, 1
$add_Toop

QWORD PTR [EAX]
QWORD PTR [EBX]
QWORD PTR [EAX]
EAX, 8

EBX, 8

$add_Toop:

FLD
FADD
FSTP
FLD
FADD
FSTP
ADD
ADD
DEC
JNZ

QWORD PTRLEAX]
QWORD PTRLEBX]
QWORD PTRLEAX]
QWORD PTRLEAX+8]
QWORD PTRLEBX+81]
QWORD PTRLEAX+8]
EAX, 16

EBX, 16

ECX

$add_Toop
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Deriving Loop

Now the loop consists of 10 instructions. Based on the
decode/retire bandwidth of three OPs per cycle, this loop goes
no faster than three iterations in 10 cycles, or 6/10
floating-point adds per cycle, or 1.4 times as fast as the original
loop.

A frequently used loop construct is a counting loop. In a typical

Control For Partially case, the loop count starts at some lower bound 1o, increases by
Unrolled Loops some fixed, positive increment inc for each iteration of the
loop, and may not exceed some upper bound hi. The following
example shows how to partially unroll such a loop by an
unrolling factor of fac, and how to derive the loop control for
the partially unrolled version of the loop.
Example 2 (Rolled Loop):
for (k = To; k <= hi; k += 1inc) {
x[k]l =
}
Example 2 (Partially Unrolled Loop):
for (k = lo; k <= (hi - (fac-1)*inc); k += fac*inc) {
x[k] =
%tk+inc] =
%tk+(fac—1)*1nc] =
}
/* handle end cases */
for (k = k; k <= hi; k += inc) {
x[k] =
Co
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Use Function Inlining

Overview

Make use of the AMD Athlon processor’s large 64-Kbyte
instruction cache by inlining small routines to avoid
procedure-call overhead. Consider the cost of possible
increased register usage, which can increase load/store
instructions for register spilling.

Function inlining has the advantage of eliminating function call
overhead and allowing better register allocation and
instruction scheduling at the site of the function call. The
disadvantage is decreasing code locality, which can increase
execution time due to instruction cache misses. Therefore,
function inlining is an optimization that has to be used
judiciously.

In general, due to its very large instruction cache, the
AMD Athlon processor is less susceptible than other processors
to the negative side effect of function inlining. Function call
overhead on the AMD Athlon processor can be low because
calls and returns are executed at high speed due to the use of
prediction mechanisms. However, there is still overhead due to
passing function arguments through memory, which creates
STLF (store-to-load forwarding) dependencies. Some compilers
allow for a reduction of this overhead by allowing arguments to
be passed in registers in one of their calling conventions, which
has the drawback of constraining register allocation in the
function and at the site of the function call.

In general, function inlining works best if the compiler can
utilize feedback from a profiler to identify the function call
sites most frequently executed. If such data is not available, a
reasonable heuristic is to concentrate on function calls inside
loops. Functions that are directly recursive should not be
considered candidates for inlining. However, if they are
end-recursive, the compiler should convert them to an iterative
equivalent to avoid potential overflow of the AMD Athlon
processor return prediction mechanism (return stack) during
deep recursion. For best results, a compiler should support
function inlining across multiple source files. In addition, a
compiler should provide inline templates for commonly used
library functions, such as sin(), strcmp(), or memcpy().
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Always Inline Functions if Called from One Site

Always inline a function if it can be established that this
function is called from just one site in the code. For the C
language, determination of this characteristic is made easier if
functions are explicitly declared static unless they require
external linkage. This case occurs quite frequently, as
functionality that could be concentrated in a single large
function is split across multiple small functions for improved
maintainability and readability.

Always Inline Functions with Fewer than 25 Machine Instructions

In addition, functions that create fewer than 25 machine
instructions once inlined should always be inlined because it is
likely that the function call overhead is close to or more than
the time spent executing the function body. For large functions,
the benefits of reduced function call overhead gives
diminishing returns. Therefore, a function that results in the
insertion of more than 500 machine instructions at the call site
should probably not be inlined. Some larger functions might
consist of multiple, relatively short paths that are negatively
affected by function overhead. In such a case, it can be
advantageous to inline larger functions. Profiling information is
the best guide in determining whether to inline such large
functions.
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Avoid Address Generation Interlocks

Loads and stores are scheduled by the AMD Athlon processor to
access the data cache in program order. Newer loads and stores
with their addresses calculated can be blocked by older loads
and stores whose addresses are not yet calculated - this is
known as an address generation interlock. Therefore, it is
advantageous to schedule loads and stores that can calculate
their addresses quickly, ahead of loads and stores that require
the resolution of a long dependency chain in order to generate
their addresses. Consider the following code examples.

Example 1 (Avoid):

ADD EBX, ECX ;inst 1

MOV EAX, DWORD PTR [10h] ;inst 2 (fast address calc.)
MOV ECX, DWORD PTR [EAX+EBX] ;inst 3 (slow address calc.)
MOV EDX, DWORD PTR [24h] ;this load is stalled from

; accessing data cache due
; to long latency for
; generating address for

inst 3
Example 1 (Preferred):
ADD EBX, ECX ;inst 1
MOV EAX, DWORD PTR [10h] ;inst 2
MOV EDX, DWORD PTR [24h] ;place load above inst 3

; to avoid address
;: generation interlock stall
MOV ECX, DWORD PTR [EAX+EBX] ;inst 3

Use MOVZX and MOVSX

Use the MOVZX and MOVSX instructions to zero-extend and
sign-extend byte-size and word-size operands to doubleword
length. Typical code for zero extension that replaces MOVZX,
as shown in Example 1 (Avoid), uses more decode and execution
resources than MOVZX. It also has higher latency due to the
superset dependency between the XOR and the MOV which
requires a merge operation.

Example 1 (Avoid):

XOR EAX, EAX
MOV AL, [MEM]

Example 1 (Preferred):
MOV ZX EAX, BYTE PTR [MEM]
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Minimize Pointer Arithmetic in Loops

Minimize pointer arithmetic in loops, especially if the loop
body is small. In this case, the pointer arithmetic would cause
significant overhead. Instead, take advantage of the complex
addressing modes to utilize the loop counter to index into
memory arrays. Using complex addressing modes does not have
any negative impact on execution speed, but the reduced
number of instructions preserves decode bandwidth.

Example 1 (Avoid):
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) |
c [i] =alil + blil;
}

MOV ECX, MAXSIZE ;initialize loop counter

XOR EST, ESI ;initialize offset into array a
XOR EDI, EDI ;initialize offset into array b
XOR EBX, EBX ;initialize offset into array c
$add_Toop:

MOV EAX, [ESI + al ;get element a
MOV EDX, [EDI + b] ;get element b

ADD EAX, EDX ;alil + bli]

MOV [EBX + c], EAX ;write result to ¢

ADD ESI, 4 ;increment offset into a
ADD EDI, 4 ;increment offset into b
ADD EBX, 4 ;increment offset into c
DEC ECX ;decrement loop count
JNZ $add_Toop ;until Toop count 0O

Example 1 (Preferred):
int alMAXSIZE], b[MAXSIZE], c[MAXSIZE], i;
for (i=0; i < MAXSIZE; i++) |{

c [i] = alil + blil;
}

MOV ECX, MAXSIZE-1 ;initialize loop counter

$add_Tloop:
MOV EAX, [ECX*4 + al ;get element a
MOV EDX, [ECX*4 + bl ;get element b

ADD EAX, EDX ;alil + blil

MOV [ECX*4 + c], EAX ;write result to c
DEC ECX ;decrement index

JNS $add_Tloop ;until index negative
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Note that the code in the preferred example traverses the
arrays in a downward direction (i.e., from higher addresses to
lower addresses), whereas the original code to avoid traverses
the arrays in an upward direction. Such a change in the
direction of the traversal is possible if each loop iteration is
completely independent of all other loop iterations, as is the
case here.

In code where the direction of the array traversal can’t be
switched, it is still possible to minimize pointer arithmetic by
appropriately biasing base addresses and using an index
variable that starts with a negative value and reaches zero when
the loop expires. Note that if the base addresses are held in
registers (e.g., when the base addresses are passed as
arguments of a function) biasing the base addresses requires
additional instructions to perform the biasing at run time and a
small amount of additional overhead is incurred. In the
examples shown here, the base addresses are used in the
displacement portion of the address and biasing is
accomplished at compile time by simply modifying the
displacement.

Example 2 (Preferred):
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
c [i1] = alil + blil;
}

MOV ECX, (-MAXSIZE) ;initialize index
$add_Toop:

MOV EAX, [ECX*4 + a + MAXSIZE*4] ;get a element
MOV EDX, [ECX*4 + b + MAXSIZE*4] ;get b element

ADD EAX, EDX ;ali]l + bli]
MOV [ECX*4 + ¢ + MAXSIZE*4], EAX ;write result to c
INC ECX ;increment index
JNZ $add_Toop ;until index==0
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Push Memory Data Carefully

Carefully choose the best method for pushing memory data. To
reduce register pressure and code dependencies, follow
Example 2 below.

Example 1 (Avoid):
MOV EAX, [MEM]
PUSH EAX

Example 1 (Preferred):
PUSH  [MEM]
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Integer Optimizations

This chapter describes ways to improve integer performance
through optimized programming techniques. The guidelines are
listed in order of importance.

Replace Divides with Multiplies

Replace integer division by constants with multiplication by
the reciprocal. Because the AMD Athlon™ processor has a very
fast integer multiply (5-9 cycles signed, 4-8 cycles unsigned)
and the integer division delivers only one bit of quotient per
cycle (22-47 cycles signed, 17-41 cycles unsigned), the
equivalent code is much faster. The user can follow the
examples in this chapter that illustrate the use of integer
division by constants, or access the executables in the
opt_utilities directory in the AMD documentation CD-ROM
(order# 21860) to find alternative code for dividing by a
constant.

Multiplication by Reciprocal (Division) Utility

The code for the utilities can be found at “Derivation of
Multiplier Used for Integer Division by Constants™ on page 123.
All utilities were compiled for the Microsoft Windows® 95,
Windows 98, and Windows NT® environments. All utilities are
provided ‘as is’ and are not supported by AMD.
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Signed Division
Utility

Unsigned Division
Utility

In the opt_utilities directory of the AMD documentation
CDROM, run sdiv.exe in a DOS window to find the fastest code
for signed division by a constant. The utility displays the code
after the user enters a signed constant divisor. Type “sdiv >
example.out” to output the code to a file.

In the opt_utilities directory of the AMD documentation
CDROM, run udiv.exe in a DOS window to find the fastest code
for unsigned division by a constant. The utility displays the code
after the user enters an unsigned constant divisor. Type “udiv >
example.out” to output the code to a file.

Unsigned Division by Multiplication of Constant

Algorithm: Divisors
1<=d<2%, 0dd d

Determination of a,
m,s

Algorithm: Divisors
2 <=d <232

The following code shows an unsigned division using a constant
value multiplier.
;a2 = algorithm

; m=multiplier
;S shift factor

;A ==
MOV EAX, m

MUL dividend

SHR EDX, s ;EDX=quotient

A ==
MOV EAX, m

MUL dividend
ADD EAX, m
ADC EDX, O

SHR EDX, s ;EDX=quotient

How to determine the algorithm (a), multiplier (m), and shift
factor (s) from the divisor (d) is found in the section “Derivation
of Algorithm, Multiplier, and Shift Factor for Unsigned Integer
Division” on page 123.

231 232

For divisors <=d< , the possible quotient values are
either 0 or 1. This makes it easy to establish the quotient by
simple comparison of the dividend and divisor. In cases where
the dividend needs to be preserved, Example 1 is
recommended.
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Example 1:

;In: EAX = dividend
;0ut: EDX quotient
XOR EDX, EDX;

0
CMP EAX, d ;CF = (dividend < divisor) ? 1 : 0
SBB EDX, -1 ;quotient = 0+1-CF = (dividend < divisor) ? 0 : 1

In cases where the dividend does not need to be preserved, the
division can be accomplished without the use of an additional
register, thus reducing register pressure. This is shown in
Example 2 below:

Example 2:

;In:  EAX = dividend

;0ut: EDX = quotient

CMP EDX, d ;CF = (dividend < divisor) ? 1 : 0

MOV EAX, 0 ;0

SBB EAX, -1 ;quotient = 0+1-CF = (dividend < divisor) ? 0 : 1

Integer division by a constant can be made faster if the range of
the dividend is limited, which removes a shift associated with
most divisors. For example, for a divide by 10 operation, use the
following code if the dividend is less than 40000005h:

MOV EAX, dividend
MOV EDX, 01999999Ah
MUL EDX

MOV quotient, EDX

Signed Division by Multiplication of Constant

Algorithm: Divisors

These algorithms work if the divisor is positive. If the divisor is

2<=d<2¥ negative, use abs(d) instead of d, and append a ‘NEG EDX’ to
the code. These changes make use of the fact that n/-d = —(n/d).
;a2 = algorithm
; = multiplier
;s = shift count
;a ==
MOV EAX, m
IMUL dividend
MOV EAX, dividend
SHR EAX, 31
SAR EDX, s
ADD EDX, EAX ;quotient in EDX
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Determination for a,
m,s

Signed Division By 2

Signed Division By 2"

Signed Division By -2

Signed Division By
-(2")

Remainder of Signed
Division by 2 or -2

; d ==

MOV EAX, m

IMUL dividend

MOV EAX, dividend
ADD EDX, EAX

SHR EAX, 31

SAR EDX, s

ADD EDX, EAX

22007H/0—June 2000

;quotient in EDX

How to determine the algorithm (a), multiplier (m), and shift
factor (s) is found in the section “Derivation of Algorithm,
Multiplier, and Shift Factor for Signed Integer Division” on

page 127.

;IN: EAX = dividend
;0UT:EAX = quotient
CMP EAX, 800000000h
SBB EAX, -1

SAR EAX, 1

; IN:EAX = dividend

;OUT:EAX = quotient
CbQ

AND EDX, (2”n-1)

ADD EAX, EDX

SAR EAX, (n)

; IN:EAX = dividend
;OUT:EAX = quotient
CMP EAX, 800000000h
SBB EAX, -1

SAR EAX, 1

NEG EAX

;IN:EAX = dividend

;OUT:EAX = quotient
CDQ

AND EDX, (2”n-1)

ADD EAX, EDX

SAR EAX, (n)

NEG EAX

;IN:EAX = dividend
;OUT:EAX = remainder
CcDQ

AND EDX, 1

XOR EAX, EDX

SUB EAX, EDX

;:CY =1, if dividend >=0
;Increment dividend if it is < 0
;Perform a right shift

;Sign extend into EDX

;Mask correction (use divisor -1)
;Apply correction if necessary
;Perform right shift by

log2 (divisor)

;CY =1, if dividend >= 0
;Increment dividend if it is < O
;Perform right shift

;Use (x/-2) == -(x/2)

;:Sign extend into EDX

;Mask correction (-divisor -1)
;Apply correction if necessary
;Right shift by log2(-divisor)
;Use (x/-(27n)) == (-(x/2"n))

;Sign extend into EDX
;Compute remainder
;:Negate remainder if
;Dividend was < 0
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Remainder of Signed ;IN:EAX = dividend
Division 2" or -(2") ;0UT:EAX = remainder
CDQ :Sign extend into EDX
AND EDX, (2”n-1) ;Mask correction (abs(divison)-1)
ADD EAX, EDX ;Apply pre-correction
AND EAX, (2”n-1) ;Mask out remainder (abs(divison)-1)
SUB EAX, EDX ;Apply pre-correction, if necessary

Consider Alternative Code When Multiplying by a Constant

A 32-bit integer multiplied by a constant has a latency of five
cycles. For certain constant multipliers, instruction sequences
can be devised which accomplish the multiplication with lower
latency. Since the AMD Athlon processor contains only one
integer multiplier, but three integer execution units the
throughput of the replacement code may provide better
throughput as well.

Note that most replacement sequences require the use of an
additional temporary register, thus increasing register pressure.
If register pressure in a piece of code using an integer multiply
with a constant is already high, it might still be better for
overall performance of that code to use the IMUL instruction
instead of the replacement code. Similarly, replacement
sequences with low latency but containing many instructions
may negatively influence decode bandwidth as compared to the
IMUL instruction. In general, replacement sequences
containing more than four instructions are not recommended.

The following code samples are designed such that the original
source also receives the final result. Other sequences are
possible if the result is in a different register. Sequences
requiring no temporary register have been favored over ones
requiring a temporary register even if the latency is higher.
ALU operations have preferred over shifts to keep code size
small. Similarly, both ALU operations and shifts have been
favored over the LEA instruction.

Replacement sequences for other multipliers are found in the
file multiply_by_constants.txt located in the same directory
where this document is located in the SDK. The user may also
use the program “FINDMUL” to find the appropriate sequence
for other multipliers. FINDMUL is located in the opt_utilities
directory of the AMD Documentation CDROM.
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5
REGZ

REGI
5
REGZ

5

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycles

cycle
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Use MMX™ Instructions for Integer-Only Work

In many programs it can be advantageous to use MMX
instructions to do integer-only work, especially if the function
already uses 3DNow!™ or MMX code. Using MMX instructions
relieves register pressure on the integer registers. As long as
data is simply loaded/stored, added, shifted, etc., MMX
instructions are good substitutes for integer instructions.
Integer registers are freed up with the following results:

m May be able to reduce the number of integer registers to
saved/restored on function entry/edit.

m Free up integer registers for pointers, loop counters, etc., so
that they do not have to be spilled to memory, which
reduces memory traffic and latency in dependency chains.

Be careful with regards to passing data between MMX and
integer registers and of creating mismatched store-to-load
forwarding cases. See “Unrolling Loops” on page 86.

In addition, using MMX instructions increases the available
parallelism. The AMD Athlon processor can issue three integer
OPs and two MMX OPs per cycle.

Repeated String Instruction Usage

Latency of Repeated String Instructions

Table 1 shows the latency for repeated string instructions on the
AMD Athlon processor.

Table 1. Latency of Repeated String Instructions

Instruction ECX=0 (cycles) DF = 0 (cycles) DF =1 (cycles)
REP MOVS 1 15 + (4/3*c) 25 + (4/3*¢)
REP STOS 11 14 + (1*¢) 24 + (1%c)
REP LODS 1 15 + (2%¢) 15 + (2*c)
REP SCAS 11 15 + (5/2*c) 15 + (5/2*¢)
REP CMPS 1 16 + (10/3*c) 16 + (10/3*¢)
Note:

¢ =value of ECX, (ECX>0)
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Table 1 lists the latencies with the direction flag (DF) =0
(increment) and DF = 1. In addition, these latencies are
assumed for aligned memory operands. Note that for
MOVS/STOS, when DF =1 (DOWN), the overhead portion of the
latency increases significantly. However, these types are less
commonly found. The user should use the formula and round up
to the nearest integer value to determine the latency.

Guidelines for Repeated String Instructions

Use the Largest
Possible Operand
Size

Ensure DF=0 (UP)

Align Source and
Destination with
Operand Size

Inline REP String
with Low Counts

Use Loop for REP
String with Low
Variable Counts

To help achieve good performance, this section contains
guidelines for the careful scheduling of VectorPath repeated
string instructions.

Always move data using the largest operand size possible. For
example, use REP MOVSD rather than REP MOVSW and REP
MOVSW rather than REP MOVSB. Use REP STOSD rather than
REP STOSW and REP STOSW rather than REP MOVSB.

Always make sure that DF = 0 (UP) (after execution of CLD) for
REP MOVS and REP STOS. DF =1 (DOWN) is only needed for
certain cases of overlapping REP MOVS (for example, source
and destination overlap).

While string instructions with DF =1 (DOWN) are slower, only
the overhead part of the cycle equation is larger and not the
throughput part. See Table 1, “Latency of Repeated String
Instructions,” on page 102 for additional latency numbers.

For REP MOVS, make sure that both source and destination are
aligned with regard to the operand size. Handle the end case
separately, if necessary. If either source or destination cannot
be aligned, make the destination aligned and the source
misaligned. For REP STOS, make the destination aligned.

Expand REP string instructions into equivalent sequences of
simple x86 instructions, if the repeat count is constant and less
than eight. Use an inline sequence of loads and stores to
accomplish the move. Use a sequence of stores to emulate REP
STOS. This technique eliminates the setup overhead of REP
instructions and increases instruction throughput.

If the repeated count is variable, but is likely less than eight,
use a simple loop to move/store the data. This technique avoids
the overhead of REP MOVS and REP STOS.
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Using MOVQ and To fill or copy blocks of data that are larger than 512 bytes, or
MOVNTQ for Block where the destination is in uncacheable memory, use the MMX
Copy/Fill instructions MOVQ/MOVNTQ instead of REP STOS and REP

MOYVS in order to achieve maximum performance. (See the
guideline, “Use MMX™ Instructions for Block Copies and Block
Fills” on page 154.)

Use XOR Instruction to Clear Integer Registers

To clear an integer register to all Os, use “XOR reg, reg”. The
AMD Athlon processor is able to avoid the false read
dependency on the XOR instruction.

Example 1 (Acceptable):
MOV REG, 0

Example 1 (Preferred):
XOR REG, REG

Efficient 64-Bit Integer Arithmetic

This section contains a collection of code snippets and
subroutines showing the efficient implementation of 64-bit
arithmetic. Addition, subtraction, negation, and shifts are best
handled by inline code. Multiplies, divides, and remainders are
less common operations and should usually be implemented as
subroutines. If these subroutines are used often, the
programmer should consider inlining them. Except for division
and remainder, the code presented works for both signed and
unsigned integers. The division and remainder code shown
works for unsigned integers, but can easily be extended to
handle signed integers.

Example 1 (Addition):

;add operand in ECX:EBX to operand EDX:EAX, result in
; EDX:EAX

ADD EAX, EBX

ADC EDX, ECX
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Example 2 (Subtraction):
;subtract operand in ECX:EBX from operand EDX:EAX, result in

; EDX:EAX

SUB EAX, EBX

SBB EDX, ECX

Example 3 (Negation):

;negate operand in EDX:EAX

NOT EDX

NEG EAX

SBB EDX, -1 ;fixup: increment hi-word if low-word was 0
Example 4 (Left shift):

;shift operand in EDX:EAX Teft, shift count in ECX (count
applied modulo 64)

SHLD EDX, EAX, CL ;first apply shift count

SHL EAX, CL ; mod 32 to EDX:EAX

TEST ECX, 32 ;need to shift by another 327
Jz $1shift_done ;no, done

MOV EDX, EAX ;left shift EDX:EAX

XOR EAX, EAX ; by 32 bits

$1shift_done:

Example 5 (Right shift):

SHRD EAX, EDX, CL ;first apply shift count

SHR EDX, CL ; mod 32 to EDX:EAX

TEST ECX, 32 ;need to shift by another 327
Jz $rshift_done ;no, done

MOV EAX, EDX ;left shift EDX:EAX

XOR EDX, EDX ; by 32 bits

$rshift_done:

Example 6 (Multiplication):

;_11mul computes the Tow-order half of the product of its
arguments, two 64-bit integers

;INPUT: [ESP+8]1:[ESP+4] multiplicand
; LESP+16]:[ESP+12] multiplier

;OUTPUT: EDX:EAX (multiplicand * multiplier) % 2764

;DESTROYS: EAX,ECX,EDX,EFTags
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_11mul PROC

MOV EDX, [ESP+8]
MOV ECX, [ESP+16]
OR EDX, ECX

MOV EDX, [ESP+12]
MOV EAX, [ESP+4]
JNZ $twomul

MUL EDX

RET

$twomul:

IMUL EDX, [ESP+8]
IMUL ECX, EAX

:p3_1lo
;p2_lo = multiplier_hi*multiplicand_lo

22007H/0—June 2000

;multiplicand_hi

smultiplier_hi

;one operand >= 27327
;smultiplier_To

;multiplicand_lo

;yes, need two multiplies
smultiplicand_lo * multiplier_lo
;done, return to caller

= multiplicand_hi*multiplier_1lo

ADD ECX, EDX p2_lo + p3_To

MU L DWORD PTR [ESP+12] ;pl=multiplicand_lo*multiplier_lo
ADD EDX, ECX ;pl+p2lo+p3_To = result in EDX:EAX

RET ;done, return to caller

_1Tmul ENDP

Example 7 (Unsigned Division):

;_ulldiv divides two unsigned 64-bit integers, and returns

the quotient.

LINPUT:

;OUTPUT: EDX:EAX

[ESP+8]:[ESP+4]
LESP+16]:[ESP+12] divisor

dividend

quotient of division

;DESTROYS: EAX,ECX,EDX,EFTags

ulldiv PROC

PUSH EBX ;save EBX as per calling convention

MOV ECX, [ESP+201] ;divisor_hi

MOV EBX, [ESP+161] ;divisor_lo

MOV EDX, [ESP+12] ;dividend_hi

MOV EAX, [ESP+8] ;dividend_1lo

TEST ECX, ECX ;divisor > 2732-17

JNZ $big_divisor ;yes, divisor > 327232-1

CMP EDX, EBX ;only one division needed? (ECX = 0)

JAE $two_divs ;need two divisions

DIV EBX ;EAX = quotient_To

MOV EDX, ECX ;EDX = quotient_hi = 0 (quotient in
EDX:EAX)

POP EBX ;restore EBX as per calling convention

RET ;done, return to caller
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$two_divs:
MOV ECX, EAX ;save dividend_lo in ECX
MOV EAX, EDX ;get dividend_hi
XOR EDX, EDX ;zero extend it into EDX:EAX
DIV EBX ;quotient_hi in EAX
XCHG EAX, ECX ;ECX = quotient_hi, EAX = dividend_lo
DIV EBX ;EAX = quotient_To
MOV EDX, ECX ;EDX = quotient_hi (quotient in EDX:EAX)
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller
$big_divisor:
PUSH EDI ;save EDI as per calling convention
MOV EDI, ECX ;save divisor_hi
SHR EDX, 1 ;shift both divisor and dividend right
RCR EAX, 1 ; by 1 bit
ROR EDI, 1
RCR EBX, 1
BSR ECX, ECX ;ECX = number of remaining shifts
SHRD EBX, EDI, CL ;scale down divisor and dividend
SHRD EAX, EDX, CL such that divisor is
SHR EDX, CL less than 2732 (i.e. fits in EBX)
ROL EDI, 1 ;restore original divisor_hi
DIV EBX ;compute quotient
MOV EBX, [ESP+12] ;dividend_1lo
MOV ECX, EAX ;save quotient
IMUL EDI, EAX ;quotient * divisor hi-word

; (low only)
MUL DWORD PTR [ESP+20];quotient * divisor lo-word
ADD EDX, EDI ;EDX:EAX = quotient * divisor
SUB EBX, EAX ;dividend_lo - (quot.*divisor)_1lo
MOV EAX, ECX ;get quotient
MOV ECX, [ESP+16] ;dividend_hi
SBB ECX, EDX ;subtract divisor * quot. from dividend
SBB EAX, O ;adjust quotient if remainder negative
XOR EDX, EDX ;clear hi-word of quot(EAX<=FFFFFFFFh)
POP EDI ;restore EDI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

_ulldiv ENDP
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Example 8 (Signed Division):
; _11div divides two signed 64-bit numbers and delivers the

quotient

INPUT: [ESP+8]1:[ESP+4] dividend

[ESP+161:[ESP+12] divisor

; OUTPUT: EDX:EAX quotient of division

DESTROYS: EAX,ECX,EDX,EFTags
_11div PROC
PUSH EBX ;save EBX as per calling convention
PUSH ESI ;save ESI as per calling convention
PUSH EDI ;save EDI as per calling convention
MOV ECX, [ESP+28] ;divisor-hi
MOV EBX, [ESP+24] ;divisor-lo
MOV EDX, [ESP+20] ;dividend-hi
MOV EAX, [ESP+16] ;dividend-1o
MOV EST, ECX ;divisor-hi
XOR EST, EDX ;divisor-hi ~ dividend-hi
SAR EST, 31 ; (quotient < 0) ? -1 : 0
MOV EDI, EDX ;dividend-hi
SAR EDI, 31 ;(dividend < 0) ? -1 : 0
XOR EAX, EDI ;1T (dividend < 0)
XOR EDX, EDI ;compute 1’s complement of dividend
SUB EAX, EDI ;1T (dividend < 0)
SBB EDX, EDI ;compute 2’s complement of dividend
MOV EDI, ECX ;divisor-hi
SAR EDI, 31 ;(divisor < 0) 2 -1 : 0
XOR EBX, EDI ;1T (divisor < 0)
XOR ECX, EDI ;compute 1’s complement of divisor
SUB EBX, EDI ;1T (divisor < 0)
SBB ECX, EDI ; compute 2’s complement of divisor
JNZ $big_divisor ; divisor > 2732-1
CMP EDX, EBX ;only one division needed ? (ECX = 0)
JAE $two_divs ;need two divisions
DIV EBX ;EAX = quotient-To
MOV EDX, ECX ;EDX = quotient-hi =0

; (quotient in EDX:EAX)

XOR EAX, ESI ;1f (quotient < 0)
XOR EDX, ESI ;compute 1’s complement of result
SUB EAX, ESI ;1f (quotient < 0)
SBB EDX, ESI ;compute 2’s complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller
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;save dividend-lo in ECX

;get dividend-hi

;zero extend it into EDX:EAX
;quotient-hi in EAX

;ECX = quotient-hi, EAX = dividend-1lo
;EAX = quotient-Tlo

;EDX

quotient-hi
(quotient in EDX:EAX)

;make quotient signed

;create three local variables
;dividend-To

;divisor-1o
; dividend-hi

;save divisor-hi

;shift both

;divisor and

;and dividend

:right by 1 bit

;ECX = number of remaining shifts

;scale down divisor and
;dividend such that divisor

;less than 2732 (i.e. fits in EBX)
;restore original divisor-hi

;compute quotient

;dividend-To

;save quotient

;quotient * divisor hi-word (low only)

DWORD PTR [ESP+4] ;quotient * divisor lo-word

$two_divs:

MOV ECX, EAX

MOV EAX, EDX

XOR EDX, EDX

DIV EBX

XCHG EAX, ECX

DIV EBX

MOV EDX, ECX

JMP $make_sign
$big_divisor:

SUB ESP, 12

MOV [ESP], EAX
MOV [ESP+47, EBX
MOV [ESP+8], EDX
MOV EDI, ECX

SHR EDX, 1

RCR EAX, 1

ROR EDI, 1

RCR EBX, 1

BSR ECX, ECX
SHRD EBX, EDI, CL
SHRD EAX, EDX, CL
SHR EDX, CL

ROL EDI, 1

DIV EBX

MOV EBX, [ESP]
MOV ECX, EAX
IMUL EDI, EAX

MUL

ADD EDX, EDI

SUB EBX, EAX

MOV EAX, ECX

MOV ECX, [ESP+8]
SBB ECX, EDX

SBB EAX, O

XOR EDX, EDX

ADD ESP, 12
$make_sign:

XOR EAX, ESI

XOR EDX, ESI

SUB EAX, ESI

SBB EDX, ESI

POP EDI

POP ESI

POP EBX

RET

_11div ENDP

;EDX:EAX = quotient * divisor
;dividend-To - (quot.*divisor)-To
;get quotient

;dividend-hi

;subtract divisor * quot. from dividend
;adjust quotient if remainder negative
;clear hi-word of quotient

;remove local variables

;1f (quotient < 0)

;compute 1°s complement of result

;1f (quotient < 0)

;compute 2°s complement of result
;restore EDI as per calling convention
;restore ESI as per calling convention
;restore EBX as per calling convention
;done, return to caller
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Example 9 (Unsigned Remainder):

_ullrem divides two unsigned 64-bit integers, and returns
the remainder.

s INPUT: LESP+8]1:[ESP+4] dividend
; LESP+16]1:[ESP+12] divisor

;OUTPUT: EDX:EAX remainder of division
;DESTROYS: EAX,ECX,EDX,EFlags

_ullrem PROC

PUSH EBX ;save EBX as per calling convention
MOV ECX, [ESP+20] ;divisor_hi

MOV EBX, [ESP+16] ;divisor_1o

MOV EDX, [ESP+12] ;dividend_hi

MOV EAX, [ESP+8] ;dividend_To

TEST ECX, ECX ;divisor > 27232-17

JNZ $r_big_divisor ;yes, divisor > 32732-1

CMP EDX, EBX ;only one division needed? (ECX = 0)
JAE $r_two_divs ;need two divisions

DIV EBX ;EAX = quotient_To

MOV EAX, EDX ;EAX = remainder_lo

MOV EDX, ECX ;EDX = remainder_hi = 0

POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$r_two_divs:

MOV ECX, EAX ;save dividend_To in ECX

MOV EAX, EDX ;get dividend_hi

XOR EDX, EDX ;zero extend it into EDX:EAX

DIV EBX ;EAX = quotient_hi, EDX = intermediate
remainder

MOV EAX, ECX ;EAX = dividend_lo

DIV EBX ;EAX = quotient_To

MOV EAX, EDX ;EAX = remainder_To

XOR EDX, EDX ;EDX = remainder_hi = 0

POP EBX ;restore EBX as per calling convention

RET ;done, return to caller
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$r_big_divisor:

PUSH
MOV
SHR
RCR
ROR
RCR
BSR
SHRD
SHRD
SHR
ROL
DIV
MOV
MOV
IMUL
MUL
ADD
SUB
MOV
MOV
SBB

SBB
AND
AND
ADD
ADC
POP
POP
RET

EDI

EDI,
EDX,
EAX,
EDI,
EBX,
ECX,
EBX,
EAX,
EDX,
EDI,

EBX

EBX,
ECX,

EDI

DWORD PTR [ESP+
EDX,
EBX,
ECX,
EAX,
ECX,

EDX,
EAX,
EDX,
EAX,
EDX,

EDI
EBX

ECX

CL

EAX
EAX

EDI

EAX

EDX

EDX
EDX

EBX
ECX

_ullrem ENDP

, CL
, CL

[ESP+12]

[ESP+16]
[ESP+201]

[ESP+24]
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;save EDI as per calling convention
;save divisor_hi
;shift both divisor and dividend right

by 1 bit

;ECX = number of remaining shifts
;scale down divisor and dividend such
; that divisor is less than 2732

(i.e. fits in EBX)

;restore original divisor (EDI:ESI)
;compute quotient

;dividend lo-word

;save quotient

;quotient * divisor hi-word (low only)
201 ;quotient * divisor lo-word
;EDX:EAX = quotient * divisor
;dividend_lo - (quot.*divisor)-To
;dividend_hi

;divisor_lo

;subtract divisor * quot. from

dividend

;(remainder < 0)? OxFFFFFFFF : 0
;(remainder < 0)? divisor_lo : 0
;(remainder < 0)? divisor_hi : 0
;remainder += (remainder < 0)7?

; divisor : 0

;restore EDI as per calling convention
;restore EBX as per calling convention
;done, return to caller

Example 10 (Signed Remainder):

_llrem divides two signed 64-bit numbers and returns the
remainder

INPUT:

. OUTPUT:

DESTROYS:

[ESP+8]1:[ESP+4] dividend
LESP+16]:[ESP+12] divisor

EDX:EAX

remainder of division

EAX,ECX,EDX,EFTags
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PUSH EBX ;save EBX as per calling convention
PUSH ESI ;save EST as per calling convention
PUSH EDI ;save EDI as per calling convention
MOV ECX, [ESP+28] ;divisor-hi
MOV EBX, [ESP+24] ;divisor-1o
MOV EDX, [ESP+20] ;dividend-hi
MOV EAX, [ESP+16] ;dividend-1o
MOV EST, EDX ;sign(remainder) == sign(dividend)
SAR EST, 31 ;(remainder < 0) 72 -1 : 0
MOV EDI, EDX ;dividend-hi
SAR EDI, 31 ;(dividend < 0) 2 -1 : 0
XOR EAX, EDI ;1T (dividend < 0)
XOR EDX, EDI ;compute 1’s complement of dividend
SUB EAX, EDI ;if (dividend < 0)
SBB EDX, EDI ;compute 2’s complement of dividend
MOV EDI, ECX ;divisor-hi
SAR EDI, 31 ;(divisor < 0) 2 -1 : 0
XOR EBX, EDI ;1f (divisor < 0)
XOR ECX, EDI ;compute 1’s complement of divisor
SUB EBX, EDI ;1f (divisor < 0)
SBB ECX, EDI ;compute 2’s complement of divisor
JNZ $sr_big_divisor ;divisor > 2732-1
CMP EDX, EBX ;only one division needed ? (ECX = 0)
JAE $sr_two_divs ;nope, need two divisions
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;EAX = remainder_1o
MOV EDX, ECX ;EDX = remainder_lo =0
XOR EAX, ESI ;1T (remainder < 0)
XOR EDX, ESI ;compute 1’s complement of result
SUB EAX, ESI ;1T (remainder < 0)
SBB EDX, ESI ;compute 2’s complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$sr_two_divs:

MOV ECX, EAX ;save dividend_lo in ECX
MOV EAX, EDX ;get_dividend_hi
XOR EDX, EDX ;zero extend it into EDX:EAX
DIV EBX ;EAX = quotient_hi,
;EDX = intermediate remainder
MOV EAX, ECX ;EAX = dividend_lo
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;remainder_To
XOR EDX, EDX ;remainder_hi = 0
JMP $sr_makesign ;:make remainder signed
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$sr_big_divisor:

SUB
MOV
MOV
MOV
MOV
MOV
SHR
RCR
ROR
RCR
BSR
SHRD
SHRD
SHR
ROL
DIV
MOV
MOV
IMUL
MUL
ADD
SUB
MOV
SBB
SBB
MOV
AND
AND
ADD
ADD
ADD

ESP, 16 ;create three local variables
[ESP], EAX ;dividend_1lo

LESP+4], EBX ;divisor_lo

[ESP+8], EDX ;dividend_hi

[ESP+12], ECX ;divisor_hi

EDI, ECX ;save divisor_hi

EDX, 1 ;shift both

EAX, 1 ;divisor and

EDI, 1 ;and dividend

EBX, 1 ;right by 1 bit

ECX, ECX ;ECX = number of remaining shifts
EBX, EDI, CL ;scale down divisor and

EAX, EDX, CL ;dividend such that divisor
EDX, CL ;less than 2732 (i.e. fits in EBX)
EDI, 1 ;restore original divisor_hi

EBX ;compute quotient

EBX, [ESP] ;dividend_lo

ECX, EAX ;save quotient

EDI, EAX ;quotient * divisor hi-word (low only)
DWORD PTR [ESP+4] ;quotient * divisor lo-word
EDX, EDI ;EDX:EAX = quotient * divisor

EBX, EAX ;dividend_lo - (quot.*divisor)-lo
ECX, [ESP+8] ;dividend_hi

ECX, EDX ;subtract divisor * quot. from dividend
EAX, EAX ;remainder < 0 7 Oxffffffff : O
EDX, [ESP+12] ;divisor_hi

EDX, EAX ; remainder < 0 ? divisor_hi : 0
EAX, [ESP+4] ;remainder < 0 ? divisor_lo : O
EAX, EBX ;remainder_To

EDX, ECX ;remainder_hi

ESP, 16 ;remove local variables

$sr_makesign:

XOR
XOR
SUB
SBB
POP
POP
POP
RET

EAX, ESI ;1T (remainder < 0)

EDX, ESI ;compute 1’s complement of result

EAX, ESI ;1T (remainder < 0)

EDX, ESI ;compute 2’s complement of result

EDI ;restore EDI as per calling convention
ESI ;restore ESI as per calling convention
EBX ;restore EBX as per calling convention

;done, return to caller
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Efficient Implementation of Population Count Function

Step 1

Step 2

Population count is an operation that determines the number of
set bits in a bit string. For example, this can be used to
determine the cardinality of a set. The following example code
shows how to efficiently implement a population count
operation for 32-bit operands. The example is written for the
inline assembler of Microsoft Visual C.

For an efficient population count function operating on 64-bit
integers, see “Efficient 64-Bit Population Count Using MMX™
Instructions” on page 161.

Function popcount() implements a branchless computation of
the population count. It is based on a O(log(n)) algorithm that
successively groups the bits into groups of 2, 4, 8, 16, and 32,
while maintaining a count of the set bits in each group. The
algorithms consist of the following steps:

Partition the integer into groups of two bits. Compute the
population count for each 2-bit group and store the result in the
2-bit group. This calls for the following transformation to be
performed for each 2-bit group:

00b -> 00b
0lb -> 01b
10b -> 01b
11b -> 10b

If the original value of a 2-bit group is v, then the new value will
be v - (v>>1).In order to handle all 2-bit groups simultaneously,
it is necessary to mask appropriately to prevent spilling from
one bit group to the next lower bit group. Thus:

w=v - ((v > 1) & 0x55555555)

Add the population count of adjacent 2-bit group and store the
sum to the 4-bit group resulting from merging these adjacent
2-bit groups. To do this simultaneously to all groups, mask out
the odd numbered groups, mask out the even numbered groups,
and then add the odd numbered groups to the even numbered
groups:

x = (w & 0x33333333) + ((w >> 2) & 0x33333333)

Each 4-bit field now has value 0000b, 0001b, 0010b, 0011b, or
0100b.

114

Integer Optimizations Chapter 8



AMDZ1

22007H/0—June 2000

Step 3

Step 4

AMD Athlon™ Processor x86 Code Optimization

For the first time, the value in each k-bit field is small enough
that adding two k-bit fields results in a value that still fits in the
k-bit field. Thus the following computation is performed:

y = (x+ (x> 4)) & OxOFOFOFOF

The result is four 8-bit fields whose lower half has the desired
sum and whose upper half contains "junk" that has to be
masked out. In a symbolic form:

X = 0aaaObbb0OcccO0dddOeeeOfff0gggOhhh

X >> 4 00000aaa0bbb0cccOdddOeee0fff0ggg
sum OaaaWWWWiiiiXXXXjjjjYYYYkkkkZZZZ

The WWWW, XXXX, YYYY, and ZZZZ values are the
interesting sums with each at most 1000b, or 8 decimal.

The four 4-bit sums can now be rapidly accumulated by means
of a multiply with a "magic" multiplier. This can be derived
from looking at the following chart of partial products:

Op0qOr0s * 01010101 =

:0p0q0r0s
Op:0q0r0s
Op0qg:0r0s
Op0qOr:0s
000pxxww:vvuuttOs

Here p, q, 1, and s are the 4-bit sums from the previous step, and
vv is the final result in which we are interested. Thus, the final
result:

z = (y * 0x01010101) >> 24
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Example 1 (Integer Version):
unsigned int popcount(unsigned int v)

{

unsigned int retVal;

__asm
MOV
MOV
SHR
AND
SUB
MOV
SHR
AND
AND
ADD

MOV
SHR
ADD
AND
IMUL
SHR

MOV
}

{

EAX,
EDX,
EAX,
EAX,
EDX,
EAX,
EDX,
EAX,
EDX,
EAX,

EDX,
EAX,
EAX,
EAX,
EAX,
EAX,

Lv]

EAX

1
055555555h
EAX

EDX

2
033333333h
033333333h
EDX

EAX

4

EDX
OOFOFOFOFh
001010101h
24

retVal, EAX

return (retVal);

X ~=¥2 =2 2z ~< <<

< < X X X

>

>
v oD

o
v

(w >

; 0x3

>>
+

*

; 0x0
;stor

1
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> 1) & 0x55555555
v - ((v >> 1) & 0x55555555)

2
0x33333333

> 2) & 0x33333333
(w & 0x33333333) + ((w >> 2) &

3333333)

4
(x > 4)

(x + (x >> 4) & OxOFOFOFOF)

0x01010101

;population count
1010101) >> 24

e result

(y *
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The following code sample is an MMX version of popcount()
that works on 64 bits at a time. This MMX code can do
popcounts about twice as fast as the integer version (for an
identical number of bits). Notice that the source was loaded
using two instructions instead of a simple MOVQ to avoid a bad
STLF case (size mismatch from two DWORDs feeding into a
QWORD).

Example 1 (MMX version):
##include "amd3d.h"

__declspec (naked) unsigned int __stdcall popcount64_1
(unsigned __int64 v)

{

static const __int64 C55 = 0x5555555555555555;

static const __int64 C33 = 0x3333333333333333;

static const __int64 COF = OxOFOFOFOFOFOFOFOF;
_asm {
MOVD MMO, [ESP+471;v_Tlow
PUNPCKLDQMMO, [ESP+81;v
MOVQ MM1, MMO Y
PSRLD MMO, 1 ivoo> 1
PAND MMO, [C55]1 ;(v >> 1) & 0x55555555
PSUBD MM1, MMO iw=v - ((v > 1) & 0x55555555)
MOVQ MMO, MM1 TW
PSRLD MM1, 2 WY 2
PAND MMO, [C33] ;w & 0x33333333
PAND MM1, [C33]1 ;(w >> 2) & 0x33333333
PADDD MMO, MM1 ;X = (w & 0x33333333) +
((w >> 2) & 0x33333333)
MOVQ MM1, MMO i X
PSRLD MMO, 4 X >> 4
PADDD MMO, MM1 X+ (x >> 4)
PAND MMO, [COF] ;y = (x + (x >> 4) & OxOFOFOFOF)
PXOR MM1, MM1 ;0
PSADBW (MMO, MM1) ;sum across all 8 bytes
MOVD EAX, MMO ;result in EAX per calling
; convention
EMMS ;clear MMX state
RET 8 ;pop 8-byte argument off stack

: and return
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Efficient Binary-to-ASCII Decimal Conversion

Fast binary-to-ASCII decimal conversion can be important to
the performance of software working with text oriented
protocols like HTML, such as web servers. The following
examples show two optimized functions for fast conversion of
unsigned integers-to-ASCII decimal strings on AMD Athlon
processors. The code is written for the Microsoft Visual C
compiler.

Function uint_to_ascii_lz() converts like sprintf (sptr, " %010u",
x), i.e., leading zeros are retained, whereas function
uint_to_ascii_nlz() converts like sprintf (sptr, "%u", x), i.e.,
leading zeros are suppressed.

This code can easily be extended to convert signed integers by
isolating the sign information and computing the absolute
value as shown in Example 3 in “Avoid Branches Dependent on
Random Data” on page 73 before starting the conversion
process. For restricted argument range, more efficient
conversion routines can be constructed using the same
algorithm as is used for the general case presented here.

The algorithm first splits the input argument into suitably sized
chunks by dividing the input by an appropriate power of ten,
and working separately on the quotient and remainder of that
division. The DIV instruction is avoided as described in
“Replace Divides with Multiplies” on page 95. Each chunk is
then converted into a fixed-point format that consists of one
(decimal) integer digit and a binary fraction. This allows
generation of additional decimal digits by repeated
multiplication of the fraction by 10. For efficiency reasons the
algorithm implements this multiplication by multiplying by five
and moving the binary point to the right by one bit for each step
of the algorithm. To avoid loop overhead and branch
mispredicts, the digit generation loop is completely unrolled. In
order to maximize parallelism, the code in uint_to_ascii_lz()
splits the input into two equally sized chunks each of which
yields five decimal digits for the result.
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Example 1 (Binary-to-ASCII decimal conversion retaining leading zeros):

__declspec(naked) void __stdcall uint_to_ascii_lz (char *sptr,

{

_asm {
PUSH
PUSH
PUSH
MOV
MOV
MOV
MOV
MUL
ADD
ADC
SHR
MOV
IMUL
SUB
MOV
MUL
SHR
LEA
MOV
MOV
MUL
SHR
LEA
MOV
SHR
AND
OR
MOV
LEA
LEA
SHR
AND
OR
MOV
LEA
LEA
SHR
AND
OR
MOV
LEA
LEA
SHR
AND
OR
MOV
LEA

EDI

ESI

EBX

EAX,
EDI,
EST,
EDX,
EDX

EAX,
EDX,
EDX,
ECX,
EDX,
ESI,
EAX,
ECX

EAX,
EBX,
ECX,
EAX,
ESI

EAX,
ESI,
EDX,
ECX,
EBX,
ECX

[esp+20]
[esp+16]
EAX
OxA7CHAC47

OxA7C5AC47
0

16

EDX

100000

EDX
0xD1B71759

30
[EAX+EDX*4+1]
EBX
0xD1B71759

30
[EAX+EDX*4+1]
ESI

15

0x00007fff
0

[EDI+0], C L

ECX,
EBX,
EDX,
ESI,
EDX

[EBX+EBX*4]
[EBX+EBX*4]
15
0x00007fff
0

[EDI+5], DL

EDX,
ESI,
ECX,
EBX,
ECX,

[EDI+17,

ECX,
EBX,
EDX,
ESI,
EDX,

[ESI+ESI*4]
[ESI+ESI*4]
14
0x00003fff
0

CL
[EBX+EBX*4]
[EBX+EBX*4]
14
0x00003fff
0

[EDI+6], DL

EDX,

[ESI+ESI*4]

unsigned int x)

;save as per calling conventions
;save as per calling conventions
;save as per calling conventions
;X

;sptr

;X

;divide x by

10000 using

; multiplication
; with reciprocal
syl =
syl
;(x / leb) * leb
(y2 = x % leb
;2715/1e4%2730
;divide yl by led

x / 1leb

converting it into
17.15 fixed point format
such that 1.0 = 2715

L2715/ 1e4%2730
‘divide y2 by led

converting it into
17.15 fixed point format
such that 1.0 = 2715

;1st digit
;fraction part
;convert 1st digit to ASCII

;store 1st digit out to memory

;5*fraction, new digit ECX<31:14>
;5*fraction,
;6th digit
;fraction part

;convert 6th digit to ASCII
;store 6th digit out to memory
;5*fraction, new digit EDX<31:14>
;5*fraction,
;2nd digit
;fraction part

;convert 2nd digit to ASCII

new fraction EBX<13:0>

new fraction ESIK13:0>

;store 2nd digit out to memory

;5*fraction, new digit ECX<31:13>
;5*fraction,
;7th digit
;fraction part

;convert 7th digit to ASCII
;store 7th digit out to memory
;5*fraction, new digit EDX<31:13>

new fraction EBX<12:0>
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}

Example 2 (Binary to ASCII decimal conversion suppressing leading zeros):
__declspec(naked) void __stdcall uint_to_ascii_nlz (char *sptr,

{

LEA
SHR
AND
OR

MOV
LEA
LEA
SHR
AND
OR

MOV
LEA
LEA
SHR
AND
OR

MOV
LEA
SHR
AND
OR

MOV
LEA
SHR
OR

MOV
SHR
OR

MOV
POP
POP
POP
RET

_asm {

PUSH
PUSH
MOV
MOV
MOV
MOV
MUL
ADD
ADC
SHR
MOV

ESI, [ESI+ESI*4]
ECX, 13

EBX, Ox00001fff
ECX, ’0°
[EDI+2], C L
ECX, [EBX+EBX*4]
EBX, [EBX+EBX*4]
EDX, 13

EST, Ox00001fff
EDX, 0’
[EDI+7], DL

EDX, [ESI+ESI*4]
ESI, [ESI+ESI*4]
ECX, 12

EBX, 0x00000fff
ECX, ’0°
[EDI+3], C L
ECX, [EBX+EBX*4]
EDX, 12

EST, 0x00000fff
EDX, ’0°
[EDI+8], DL

EDX, [ESI+ESI*4]
ECX, 11

ECX, ’0°
[EDI+4], C L
EDX, 11

EDX, °0°
[EDI+9], dx
EBX

ESI

EDI

8

EDI

EBX

EDI, [esp+12]
EAX, [esptl6]
ECX, EAX

EDX, 89705F41h
EDX

EAX, EAX

EDX, O

EDX, 29

EAX, EDX

;save as per calling conventions
;save as per calling conventions
;sptr
;X
;save original argument
;1le-9*27261 rounded
;divide by 1e9 by multplying with reciprocal
;round division result

;EDX<31:29> = argument / 1le9

;leading decimal digit,
;leading digit

22007H/0—June 2000

;b*fraction, new fraction ESIK12:0>
;:3rd digit
;fraction part
;convert 3rd digit to ASCII

;store 3rd digit out to memory
;5*fraction, new digit ECX<31:12>
;b*fraction, new fraction EBX<11:0>
;8th digit
;fraction part
;convert 8th digit to ASCII

;store 8th digit out to memory
;5*fraction, new digit EDX<31:12>
;5*fraction, new fraction ESIK11:0>
;4th digit
;fraction part
;convert 4th digit to ASCII
;store 4th digit out to memory
;5*fraction, new digit ECX<31:11>
;9th digit
;fraction part
;convert 9th digit to ASCII
;store 9th digit out to memory
;5*fraction, new digit EDX<31:11>
;5th digit
;convert bth digit to ASCII
;store 5th digit out to memory
;10th digit
;convert 10th digit to ASCII
;store 10th digit and end marker
;restore register as per calling
;restore register as per calling
;restore register as per calling
;POP two DWORD arguments and return

to memory
convention
convention
convention

unsigned int x)
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MOV
IMUL
SUB
OR
MOV
CMP
SBB
MOV
MOV
MUL
SHR
LEA
MOV
SHR
AND
OR
OR
MOV
LEA
LEA
CMP
SBB
SHR
AND
OR
OR
MOV
LEA
LEA
CMP
SBB
SHR
AND
OR
OR
MOV
LEA
LEA
CMP
SBB
SHR
AND
OR
OR
MOV
LEA
LEA
CMP
SBB
SHR
AND

EBX,
EAX,
ECX,
DL,

EDX
1000000000
EAX

0

[(EDIT, DL

EBX,
EDI,
EAX,
EDX,
EDX

EAX,
EDX,
EAX,
EAX,
EDX,
EBX,
EAX

1

-1

ECX
Oabcc/7712h

30

LEAX+4*EDX+1]

EDX

28
Offfffffh
EAX

0

[EDIT, AL

EAX,
EDX,
EBX,
EDI,
EAX,
EDX,
EBX,
EAX

[EDX*4+EDX]
[EDX*4+EDX]
1

-1

27
O7ffffffh
EAX

0

[EDIT, AL

EAX,
EDX,
EBX,
EDI,
EAX,
EDX,
EBX,
EAX

[EDX*4+EDX]
[EDX*4+EDX]
1

-1

26
03ffffffh
EAX

0

[EDIT, AL

EAX,
EDX,
EBX,
EDI,
EAX,
EDX,
EBX,
EAX

[EDX*4+EDX]
[EDX*4+EDX]
1

-1

25
OLffffffh
EAX

0

[EDI], AL

EAX,
EDX,
EBX,
EDI,
EAX,
EDX,

[EDX*4+EDX]
[EDX*4+EDX]
1

-1

24
00ffffffh

AMD Athlon™ Processor x86 Code Optimization

;init digit accumulator with leading digit
;leading digit * 1e9

;subtract (leading digit * 1e9) from argument
;convert leading digit to ASCII

;store leading digit

;any non-zero digit yet ?

;yes->increment ptr, no->keep old ptr

;get reduced argument < 1e9

;27°28/1e8 * 2230 rounded up

; divide reduced

argument < 1e9 by 1e8
converting it into 4.28 fixed

; point format such that 1.0 = 2728
;next digit

;fraction part

;accumulate next digit

;convert digit to ASCII

;store digit out to memory
;5*fraction, new digit EAX<31:27>
;5*fraction,
;any non-zero digit yet ?
;yes->increment ptr, no->keep old ptr
;next digit

;fraction part

;accumulate next digit

;convert digit to ASCII

;store digit out to memory
;5*fraction, new digit EAX<31:26>
;5*fraction,
;any non-zero digit yet ?
;yes->increment ptr, no->keep old ptr
;next digit

;fraction part

;accumulate next digit

;convert digit to ASCII

;store digit out to memory
;5*fraction, new digit EAX<31:25>
;5*fraction,
;any non-zero digit yet ?
;yes->increment ptr, no->keep old ptr
;next digit

;fraction part

;accumulate next digit

;convert digit to ASCII

;store digit out to memory
;5*fraction, new digit EAX<31:24>
;5*fraction,
;any non-zero digit yet ?
;yes->increment ptr, no->keep old ptr
;next digit

;fraction part

new fraction EDX<26:0>

new fraction EDX<25:0>

new fraction EDX<24:0>

new fraction EDX<23:0>
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OR EBX, EAX ;accumulate next digit
OR EAX, 0’ ;convert digit to ASCII
MOV [EDI], AL ;store digit out to memory
LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:23>
LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<31:23>
CMP EBX, 1 ;any non-zero digit yet ?
SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
SHR EAX, 23 ;next digit
AND EDX, 007fffffh ;fraction part
OR EBX, EAX ;accumulate next digit
OR EAX, ’0° ;convert digit to ASCII
MOV [EDI], AL ;store digit out to memory
LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:22>
LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<22:0>
CMP EBX, 1 ;any non-zero digit yet ?
SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
SHR EAX, 22 ;next digit
AND EDX, 003fffffh ;fraction part
OR EBX, EAX ;accumulate next digit
OR EAX, ’0° ;convert digit to ASCII
MOV [EDIT, AL ;store digit out to memory
LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:21>
LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<21:0>
CMP EBX, 1 ;any non-zero digit yet ?
SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
SHR EAX, 21 ;next digit
AND EDX, Q0Llfffffh ;fraction part
OR EBX, EAX ;accumulate next digit
OR EAX, ’0° ;convert digit to ASCII
MOV [EDIT, AL ;store digit out to memory
LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:20>
CMP EBX, 1 ;any-non-zero digit yet ?
SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
SHR EAX, 20 ;next digit
OR EAX, ’0° ;convert digit to ASCII
MOV [EDI], AX ;store Tast digit and end marker out to memory
POP EBX ;restore register as per calling convention
POP EDI ;restore register as per calling convention
RET 8 ;POP two DWORD arguments and return
}
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Derivation of Multiplier Used for Integer Division by
Constants

Derivation of Algorithm, Multiplier, and Shift Factor for Unsigned Integer
Division

The utility udiv.exe was compiled using the code shown in this
section. The executable and source code are located in the
opt_utilities directory of the AMD Documentation CDROM and
the SDK. The program is provided “as is”.

The following code derives the multiplier value used when
performing integer division by constants. The code works for
unsigned integer division and for odd divisors between 1 and
2311, inclusive. For divisors of the form d = d'*2", the multiplier
is the same as for d’ and the shift factor is s + n.

Example Code

/* Program to determine algorithm, multiplier, and shift factor to be
used to accomplish unsigned division by a constant divisor. Compile
with MSVC.

*/

#include <stdio.h>

typedef unsigned __inté64 U64d;
typedef unsigned Tong U3z;

U32 log2 (U32 1)
{
Uz2 t = 0;
i=1 > 1;
while (i) |
i=1 > 1;
t++;
}
return (t);
}

U32 resl, res?;

uz2 d, 1, s, m, a, r, n, t;
U64 m_low, m_high, j, k;
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int main (void)

{
fprintf (stderr, "\n");
fprintf (stderr, "Unsigned division by constant\n");
fprintf (stderr, " \n\n");

fprintf (stderr, "enter divisor: ");
scanf ("%Tu", &d);
printf ("\n");

if (d == 0) goto printed_code;

if (d >= 0x80000000UL) {
printf ("; dividend: register or memory location\n");

printf ("\n");

printf ("CMP dividend, 0%081Xh\n", d);
printf ("MOV EDX, 0\n");

printf ("SBB EDX, -1\n");

printf ("\n");

printf ("; quotient now in EDX\n");
goto printed_code;
}

/* Reduce divisor until it becomes odd */

}

goto printed_code;

n=20;
t =d;
while (I(t & 1)) |
t O>>=1;
n++;
}
if (t==1) {
if (n==0) {
printf ("; dividend: register or memory location\n");
printf ("\n");
printf ("MOV EDX, dividend\n", n);
printf ("\n");
printf ("; quotient now in EDX\n");
}
else {
printf ("; dividend: register or memory location\n");
printf ("\n");
printf ("SHR dividend, %d\n", n);
printf ("\n");
printf ("; quotient replaced dividend\n");

22007H/0—June 2000
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/* Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,

P.L.: "Division by Invariant Integers using Multiplication".
SIGPLAN Notices, Vol. 29, June 1994, page 61.
*/
1 = log2(t) + 1;
J = (((UB4) (OxFfffffff)) % ((U6A)(t)));
k = (((U64)(1)) <L (32+1)) / ((U64) (Oxffffffff-3));
m_Tow = (((UB4)(1)) << (32+1)) / t;
m_high (CCUB4) (1)) <L (32+1)) + k) / t;
while (((m_lTow >> 1) < (m_high >> 1)) && (1 > 0)) {
m_low = m_low >> 1;
m_high = m_high >> 1;
1 =1 -1;

}

if ((m_high >> 32) == 0) {
m = ((U32)(m_high));
s =1;
a = 0;

}

/* Generate m, s for algorithm 1. Based on: Magenheimer, D.J.; et al:
"Integer Multiplication and Division on the HP Precision Architecture".
IEEE Transactions on Computers, Vol 37, No. 8, August 1988, page 980.

*/

else {
s = log2(t)
m_Tow = (((U64)(1)) << (32+s)) / ((U64)(t));
r = ((U32)((CUB4) (1)) << (32+s)) % ((UB4)(t))));
m (r < ((E>>1)+1)) 7 ((U32)(m_low)) ((U32)(m_Tow))+1;
a =1;

/* Reduce multiplier for either algorithm to smallest possible */

while (I'(m&1)) |
m=m> 1;
SEA
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/* Adjust multiplier for reduction of even divisors */

S+=ﬂ;
if (a) {
printf ("; dividend: register other than EAX or memory location\n");
printf ("\n");
printf ("MOV EAX, 0%081Xh\n", m);
printf ("MUL dividend\n");
printf ("ADD EAX, 0%081Xh\n", m);
printf ("ADC EDX, 0\n");

if (s) printf ("SHR EDX, %d\n", s);
printf ("\n");
printf ("; quotient now in EDX\n");

}

else f{
printf ("; dividend: register other than EAX or memory location\n");
printf ("\n");
printf ("MOV EAX, 0%081Xh\n", m);

printf ("MUL dividend\n");
if (s) printf ("SHR EDX, %d\n", s);
printf ("\n");
printf ("; quotient now in EDX\n");
}

printed_code:

fprintf(stderr, "\n");
exit(0);

return(0);
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Derivation of Algorithm, Multiplier, and Shift Factor for Signed Integer
Division
The utility sdiv.exe was compiled using the following code. The
executable and source code are located in the opt_utilities

directory of the AMD Documentation CDROM and the SDK.
The program is provided “as is”.

Example Code

/* Program to determine algorithm, multiplier, and shift factor to be
used to accomplish signed division by a constant divisor. Compile
with MSVC.

*/

#include <stdio.h>

typedef unsigned __int64 U64d;
typedef unsigned Tong U3z;

U32 log2 (U32 1)
{
Uz2 t = 0;
i=1 > 1;
while (i) |
i=1 > 1;
t++;
}
return (t);

long e;

U32 resl, res?;

U3?2 oa, os, om;

uz2z d, 1, s, m, a, r, t;
U64 m_low, m_high, j, k;

int main (void)
{
fprintf (stderr, "\n");

fprintf (stderr, "Signed division by constant\n");
fprintf (stderr, " An\n");

fprintf (stderr, "enter divisor: ");
scanf ("%1d", &d);
fprintf (stderr, "\n");
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e = d;
d = Tabs(d);
if (d==0) goto printed_code;
if (e==(-1)) {
printf ("; dividend: register or memory location\n");
printf ("\n");
printf ("NEG dividend\n");
printf ("\n");

if

/*

printf ("; quotient replaced dividend\n");
goto printed_code;

(d==2) |

printf ("; dividend expected in EAX\n");
printf ("\n");

printf ("CMP EAX, 080000000h\n");
printf ("SBB EAX, -1\n");

printf ("SAR EAX, 1\n");

if (e < 0) printf ("NEG EAXAn");
printf ("\n");
printf ("; quotient now in EAX\n");

goto printed_code;

(1(d & (d-1))) |

printf (‘~ dividend expected in EAX\n");
printf ("\n");

printf ("CDQ\n");

printf ("AND EDX, 0%081Xh\n", (d-1));

printf ("ADD EAX, EDX\n");

if (log2(d)) printf ("SAR EAX, %d\n", log2(d));
if (e < 0) printf ("NEG EAX\n");

printf ("\n");

printf ("; quotient now in EAX\n");

goto printed_code;

Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
"Division by Invariant Integers using Multiplication". SIGPLAN Notices,
Vol. 29, June 1994, page 61.

*/
] = log2(d);
J = (((U64)(0x80000000)) % ((U64)(d)));
k = (((U64) (1)) <L (32+1)) / ((U64)(0x80000000-j));
m_low = (((U64)(1)) <L (32+1)) / d;
m_high = ((((U64)(1)) << (32+41)) + k) / d;
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while (((m_Tow >> 1) < (m_high >> 1)) && (1 > 0))

m_low = m_low >> 1;
m_high = m_high >> 1;
1 -1 - 1;
}
m = ((U32)(m_high));
s =1;
a = (m_high >> 31) 21 : 0;
if (a) |
printf (";
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
printf ("ADD EDX, EAX\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");
if (e < 0) printf ("NEG EDX\n");
printf ("\n");
printf ("; quotient now in EDX\n");
}
else {
printf ("
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");

if (e < 0) printf ("NEG EDX\n");
printf ("\n");

printf ("; quotient now in EDX\n");

printed_code:

fprintf (stderr, "\n");
exit(0);

; dividend: memory location or register other than EAX or EDX\n");

; dividend: memory location of register other than EAX or EDX\n");
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Floating-Point Optimizations

This chapter details the methods used to optimize
floating-point code to the pipelined floating-point unit (FPU).
Guidelines are listed in order of importance.

Ensure All FPU Data is Aligned

As described in “Memory Size and Alignment Issues” on page
57, align floating-point data naturally. That is, align words on
word boundaries, doublewords on doubleword boundaries, and
quadwords on quadword boundaries. Misaligned memory
accesses reduce the available memory bandwidth.

Use Multiplies Rather than Divides

If accuracy requirements allow, convert floating-point division
by a constant to a multiply by the reciprocal. Divisors that are
powers of two and their reciprocals are exactly representable,
and therefore do not cause an accuracy issue, except for the
rare cases in which the reciprocal overflows or underflows.
Unless such an overflow or underflow occurs, always convert a
division by a power of two to a multiply. Although the
AMD Athlon™ processor has high-performance division,
multiplies are significantly faster than divides.
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Use FFREEP Macro to Pop One Register from the FPU Stack

In FPU intensive code, frequently accessed data is often
pre-loaded at the bottom of the FPU stack before processing
floating-point data. After completion of processing, it is
desirable to remove the pre-loaded data from the FPU stack as
quickly as possible. The classical way to clean up the FPU stack
is to use either of the following instructions:

FSTP ST(0) ;removes one register from stack

FCOMPP ;removes two registers from stack

On the AMD Athlon processor, a faster alternative is to use the
FFREEP instruction below. Note that the FFREEP instruction,
although insufficiently documented in the past, is supported by
all 32-bit x86 processors. The opcode bytes for FFREEP ST(i)
are listed in Table 22 on page 268.

FFREEP ST(0) ;removes one register from stack

FFREEP ST(i) works like FFREE ST(i) except that it
increments the FPU top-of-stack after doing the FFREE work.
In other words, FFREEP ST(i) marks ST(i) as empty, then
increments the x87 stack pointer. On the AMD Athlon
processor, the FFREEP instruction converts to an internal NOP,
which can go down any pipe with no dependencies.

Many assemblers do not support the FFREEP instruction. In
these cases, a simple text macro can be created to facilitate use
of the FFREEP ST(0).

FFREEP_STO TEXTEQU <DB 0DFh, 0COh>

To free up all remaining occupied FPU stack register and set
the x87 stack pointer to zero, use the FEMMS or EMMS
instruction instead of a series of FFREEP ST(0) instructions.
This promotes code density and preserves decode and
execution bandwidth. Note that use of FEMMS/EMMS in this
fashion is not recommended for AMD-K6 family processors.
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Floating-Point Compare Instructions

For branches that are dependent on floating-point comparisons,
use the following instructions:

m FCOMI

m FCOMIP

s FUCOMI
m FUCOMIP

These instructions are much faster than the classical approach
using FSTSW, because FSTSW is essentially a serializing
instruction on the AMD Athlon processor. When FSTSW cannot
be avoided (for example, backward compatibility of code with
older processors), no FPU instruction should occur between an
FCOM[P], FICOM[P], FUCOM][P], or FTST and a dependent
FSTSW. This optimization allows the use of a fast forwarding
mechanism for the FPU condition codes internal to the
AMD Athlon processor FPU and increases performance.

Use the FXCH Instruction Rather than FST/FLD Pairs

Increase parallelism by breaking up dependency chains or by
evaluating multiple dependency chains simultaneously by
explicitly switching execution between them. Although the
AMD Athlon processor FPU has a deep scheduler, which in
most cases can extract sufficient parallelism from existing code,
long dependency chains can stall the scheduler while issue slots
are still available. The maximum dependency chain length that
the scheduler can absorb is about six 4-cycle instructions.

To switch execution between dependency chains, use of the
FXCH instruction is recommended because it has an apparent
latency of zero cycles and generates only one OP. The
AMD Athlon processor FPU contains special hardware to
handle up to three FXCH instructions per cycle. Using FXCH is
preferred over the use of FST/FLD pairs, even if the FST/FLD
pair works on a register. An FST/FLD pair adds two cycles of
latency and consists of two OPs.
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Avoid Using Extended-Precision Data

Store data as either single-precision or double-precision
quantities. Loading and storing extended-precision data is
comparatively slower.

Minimize Floating-Point-to-Integer Conversions

C++, C, and Fortran define floating-point-to-integer conversions
as truncating. This creates a problem because the active
rounding mode in an application is typically round-to-nearest
even. The classical way to do a double-to-int conversion
therefore works as follows:

Example 1 (Fast):

FLD QWORD PTR [X] ;:load double to be converted
FSTCW [SAVE_CW] ;save current FPU control word
MOVZX EAX, WORD PTRLSAVE_CW];retrieve control word

OR EAX, 0COOh ;rounding control field = truncate
MOV WORD PTR [NEW_CWI], AX ;new FPU control word

FLDCW [NEW_CW] ;load new FPU control word
FISTP DWORD PTR [I] ;do double->int conversion
FLDCW [SAVE_CW] ;restore original control word

The AMD Athlon processor contains special acceleration
hardware to execute such code as quickly as possible. In most
situations, the above code is therefore the fastest way to
perform floating-point-to-integer conversion and the conversion
is compliant both with programming language standards and
the IEEE-754 standard.

According to the recommendations for inlining (see “Always
Inline Functions with Fewer than 25 Machine Instructions” on
page 90), the above code should not be put into a separate
subroutine (e.g., ftol). It should rather be inlined into the main
code.

In some codes, floating-point numbers are converted to an
integer and the result is immediately converted back to
floating-point. In such cases, use the FRNDINT instruction for
maximum performance instead of FISTP in the code above.
FRNDINT delivers the integral result directly to a FPU register
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in floating-point form, which is faster than first using FISTP to
store the integer result and then converting it back to floating-
point with FILD.

If there are multiple, consecutive floating-point-to-integer
conversions, the cost of FLDCW operations should be
minimized by saving the current FPU control word, forcing the
FPU into truncating mode, and performing all of the
conversions before restoring the original control word.

The speed of the above code is somewhat dependent on the
nature of the code surrounding it. For applications in which the
speed of floating-point-to-integer conversions is extremely
critical for application performance, experiment with either of
the following substitutions, which may or may not be faster than
the code above.

The first substitution simulates a truncating floating-point to
integer conversion provided that there are no NaNs, infinities,
and overflows. This conversion is therefore not IEEE-754
compliant. This code works properly only if the current FPU
rounding mode is round-to-nearest even, which is usually the
case.

Example 2 (Potentially faster)

FLD QWORD PTR [X] ;:load double to be converted
FST DWORD PTR [TX] ;store X because sign(X) is needed
FIST DWORD PTR [I1] ;store rndint(x) as default result
FISUB DWORD PTR [I] ;compute DIFF = X - rndint(X)

FSTP DWORD PTR [DIFF] ;store DIFF as we need sign(DIFF)
MOV EAX, [TX] ; X

MOV EDX, [DIFF] ;DIFF

TEST EDX, EDX ;DIFF == 0 7

Jz $DONE ;default result is 0K, done

XOR EDX, EAX ;need correction if sign(X) != sign(DIFF)
SAR EAX, 31 ; (X<0) ? OxFFFFFFFF : O

SAR EDX, 31 ; sign(X)!=sign(DIFF)?0xFFFFFFFF:0
LEA EAX, [EAX+EAX+1] ; (X<0) ? OxFFFFFFFF : 1

AND EDX, EAX ;correction: -1, 0, 1

SUB [I], EDX ;trunc(X)=rndint(X)-correction
$DONE:

The second substitution simulates a truncating floating-point to
integer conversion using only integer instructions and therefore
works correctly independent of the FPUs current rounding
mode. It does not handle NaNs, infinities, and overflows
according to the IEEE-754 standard. Note that the first
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instruction of this code may cause an STLF size mismatch
resulting in performance degradation if the variable to be
converted has been stored recently.

Example 3 (Potentially faster):
MOV ECX, DWORD PTR[X+4] ;get upper 32 bits of double

XOR EDX, EDX ;1 =0

MOV EAX, ECX ;save sign bit

AND ECX, 07FF00000h ;isolate exponent field

CMP ECX, O03FF0O0000h ;1f abs(x) < 1.0

JB $DONEZ2 ; then i =0

MOV EDX, DWORD PTRLX] ;get lTower 32 bits of double
SHR ECX, 20 ;extract exponent

SHRD EDX, EAX, 21 ;extract mantissa

NEG ECX ;compute shift factor for extracting
ADD ECX, 1054 ;non-fractional mantissa bits
OR EDX, 080000000h ;set integer bit of mantissa
SAR EAX, 31 ix <0 7 Oxffffffff : 0O

SHR EDX, CL ;1 = trunc(abs(x))

XOR EDX, EAX ;T =x <0 ? ~1 i

SUB EDX, EAX ;T =x <0 ? -7 1

$DONEZ:

MOV [I], EDX ;store result

For applications that can tolerate a floating-point-to-integer
conversion that is not compliant with existing programming
language standards (but is IEEE-754 compliant), perform the
conversion using the rounding mode that is currently in effect
(usually round-to-nearest even).

Example 4 (Fastest):
FLD QWORD PTR [X] ; get double to be converted
FISTP DWORD PTR [I] ; store integer result

Some compilers offer an option to use the code from Example 4
for floating-point-to-integer conversion, using the default
rounding mode.

Lastly, consider setting the rounding mode throughout an
application to truncate and using the code from Example 4 to
perform extremely fast conversions that are compliant with
language standards and IEEE-754. This mode is also provided
as an option by some compilers. Note that use of this technique
also changes the rounding mode for all other FPU operations
inside the application, which can lead to significant changes in
numerical results and even program failure (for example, due to
lack of convergence in iterative algorithms).
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Check Argument Range of Trigonometric Instructions

Efficiently

The transcendental instructions FSIN, FCOS, FPTAN, and
FSINCOS are architecturally restricted in their argument
range. Only arguments with a magnitude of <= 2763 can be
evaluated. If the argument is out of range, the C2 bit in the FPU
status word is set, and the argument is returned as the result.
Software needs to guard against such (extremely infrequent)
cases.

If an “argument out of range” is detected, a range reduction
subroutine is invoked which reduces the argument to less than
2763 before the instruction is attempted again. While an
argument > 2263 is unusual, it often indicates a problem
elsewhere in the code and the code may completely fail in the
absence of a properly guarded trigonometric instruction. For
example, in the case of FSIN or FCOS generated from a sin() or
cos() function invocation in the high-level language, the
downstream code might reasonably expect that the returned
result is in the range [-1,1].

A naive solution for guarding a trigonometric instruction may
check the C2 bit in the FPU status word after each FSIN, FCOS,
FPTAN, and FSINCOS instruction, and take appropriate action
if it is set (indicating an argument out of range).

Example 1 (Avoid):
FLD QWORD PTR [x] ;argument

FSIN ;compute sine

FSTSW  AX ;store FPU status word to AX

TEST AX, 0400h ;1s the C2 bit set?

Jz $in_range ;no, argument was in range, all 0K
CALL $reduce_range ;reduce argument in ST(0) to < 2763
FSIN ;compute sine (in-range argument

; guaranteed)
$in_range:

Such a solution is inefficient since the FSTSW instruction is
serializing with respect to all x87/3DNow!/MMX instructions
and should thus be avoided (see the section “Floating-Point
Compare Instructions” on page 133). Use of FSTSW in the
above fashion slows down the common path through the code.
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Instead, it is advisable to check the argument before one of the
trigonometric instructions is invoked.

Example 1 (Preferred):
FLD QWORD PTR [x] ;argument

FLD DWORD PTR [two_to_the_63] ;2763

FCOMIP ST,ST(1) ;argument <= 2763 ?

JBE $in_range ;Yes, It is in range.

CALL $reduce_range ;reduce argument in ST(0) to < 2763
$in_range:

FSIN ;compute sine (in-range argument

; guaranteed)

Since out-of-range arguments are extremely uncommon, the
conditional branch will be perfectly predicted, and the other
instructions used to guard the trigonometric instruction can
execute in parallel to it.
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Take Advantage of the FSINCOS Instruction

Frequently, a piece of code that needs to compute the sine of an
argument also needs to compute the cosine of that same
argument. In such cases, use the FSINCOS instruction to
compute both trigonometric functions concurrently, which is
faster than using separate FSIN and FCOS instructions to
accomplish the same task.

Example 1 (Avoid):

FLD QWORD PTR [x]
FLD DWORD PTR [two_to_the_63]
FCOMIP ST,ST(1)

JBE $in_range

CALL $reduce_range
$in_range:

FLD ST(0)

FCOS

FSTP QWORD PTR [cosine_x]
FSIN

FSTP QWORD PTR [sine_x]

Example 1 (Preferred):

FLD QWORD PTR [x]

FLD DWORD PTR [two_to_the_63]
FCOMIP ST,ST(1)

JBE $in_range

CALL $reduce_range

$in_range:

FSINCOS

FSTP QWORD PTR [cosine_x]

FSTP QWORD PTR [sine_x]
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3DNow!™ and MMX™
Optimizations

This chapter describes 3DNow! and MMX code optimization
techniques for the AMD Athlon™ processor. Guidelines are
listed in order of importance. 3DNow! porting guidelines can be
found in the 3DNow!™ Instruction Porting Guide, order# 22621.

Use 3DNow!™ Instructions

When single precision is required, perform floating-point
computations using the 3DNow! instructions instead of x87
instructions. The SIMD nature of 3DNow! achieves twice the
number of FLOPs that are achieved through x87 instructions.
3DNow! instructions provide for a flat register file instead of
the stack-based approach of x87 instructions.

See the 3DNow!™ Technology Manual, order# 21928 for
information on instruction usage.

Use FEMMS Instruction

Though there is no penalty for switching between x87 FPU and
3DNow!/MMX instructions in the AMD Athlon processor, the
FEMMS instruction should be used to ensure the same code
also runs optimally on AMD-K6® family processors. The
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FEMMS instruction is supported for backward compatibility
with AMD-K6 family processors, and is aliased to the EMMS
instruction.

3DNow! and MMX instructions are designed to be used
concurrently with no switching issues. Likewise, enhanced
3DNow! instructions can be used simultaneously with MMX
instructions. However, x87 and 3DNow! instructions share the
same architectural registers so there is no easy way to use them
concurrently without cleaning up the register file in between
using FEMMS/EMMS.

Use 3DNow!™ Instructions for Fast Division

3DNow! instructions can be used to compute a very fast, highly
accurate reciprocal or quotient.

Optimized 13-Bit Precision Divide
This divide operation executes with a total latency of seven

cycles, assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 1:

MOVD MMO, [MEM] 0| W

PFRCP MMO, MMO /W | 1/W (approximate)
MOVQ MM2, [MEM] Y | X

PFMUL MMZ, MMO Y/W | X/W

Optimized Full 23-Bit Precision Divide

This divide operation executes with a total latency of 15 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 2:

MOVD MMO, [W] ; O | W

PFRCP MM1, MMOQ ; 1/W | 1/W (approximate)
PUNPCKLDQ MMO, MMO ; W | W (MMX instr.)
PFRCPITL  MMO, MM1 : 1/W | 1/W (refine)

MOVQ MMZ, [X_Y] ; Y | X

PFRCPIT2  MMO, MM1 : 1/W | 1/W (final)

PFMUL MM2, MMO : Y/W | X/W
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Pipelined Pair of 24-Bit Precision Divides

This divide operation executes with a total latency of 21 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 3:

MOVQ MMO,
PFRCP MM1,
MOVQ MM2,
PUNPCKHDQ  MMO,
PFRCP MMO,
PUNPCKLDQ MMI1,
MOVQ MMO,

PFRCPITL MMZ ,
PFRCPITZ MMZ,
PFMUL MMO,

[DIVISORS]
MMO

MMO

MMO

MMO

MMO
[DIVIDENDS]
MM1

MM1

MM2

N
1/x

1/y
1/y

1/y
1/y

; zly

(approximate)
(approximate)
(approximate)

(intermediate)
(final)
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Newton-Raphson Reciprocal

Consider the quotient g = 4/;. An (on-chip) ROM-based table
lookup can be used to quickly produce a 14-to-15-bit precision
approximation of 1/b using just one 3-cycle latency PFRCP
instruction. A full 24-bit precision reciprocal can then be
quickly computed from this approximation using a Newton
Raphson algorithm.

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Z1+1=Z1.(2*b.Z1)

Given that the initial approximation is accurate to at least 14
bits, and that a full IEEE single-precision mantissa contains 24
bits, just one Newton-Raphson iteration is required. The
following sequence shows the 3DNow! instructions that produce
the initial reciprocal approximation, compute the full precision
reciprocal from the approximation, and finally, complete the
desired divide of %/,

Xg = PFRCP(Db)

= PFRCPIT1(b,Xy)
X, = PFRCPIT2(X;.Xg)
= PFMUL(a,X,)

><
et
I

o)
I

The 24-bit final reciprocal value is X,. In the AMD Athlon
processor 3DNow! technology implementation the operand X,
contains the correct round-to-nearest single precision
reciprocal for approximately 99% of all arguments.
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Use 3DNow!™ Instructions for Fast Square Root and

Reciprocal Square Root

3DNow! instructions can be used to compute a very fast, highly
accurate square root and reciprocal square root.

Optimized 15-Bit Precision Square Root

This square root operation can be executed in only seven cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four less cycles than the square root
operation.

Example 1:

MOVD MMO, [MEM] ; 0| a

PFRSQRT MM1, MMO ;1/sqrt(a) | 1/sqrt(a) (approximate)
PUNPCKLDQ MMO, MMO ; a | a (MMX instr.)
PFMUL MMO, MM1 ; sqrt(a) | sqrt(a)

Optimized 24-Bit Precision Square Root

This square root operation can be executed in only 19 cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four less cycles than the square root
operation.

Example 2:

MOVD MMO, [MEMI 0] a

PFRSQRT MM1, MMO ; 1/sqrt(a) | 1/sqrt(a) (approx.)
MOVQ MMZ, MM1 ; X_0 = 1/(sqrt a) (approx.)
PFMUL MM1, MM1 ;0 X0 * X_0 | X_0* X_0 (step 1)
PUNPCKLDQ MMO, MMO ; a | a (MMX instr)
PFRSQITI  MMI1, MMO ; (intermediate) (step 2)
PFRCPIT2  MM1, MM2 ; 1/sqrt(a) | 1/sqrt(a) (step 3)
PFMUL MMO, MM1 ; sqrt(a) | sqrt(a)
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Newton-Raphson Reciprocal Square Root

The general Newton-Raphson reciprocal square root recurrence
is:

Zivg = 1/2 « 75 o (3 - b e 7;%)

To reduce the number of iterations, the initial approximation is
read from a table. The 3DNow! reciprocal square root
approximation is accurate to at least 15 bits. Accordingly, to
obtain a single-precision 24-bit reciprocal square root of an
input operand b, one Newton-Raphson iteration is required,
using the following sequence of 3DNow! instructions:

Xg = PFRSQRT(b)

Xl = PFMUL(Xo,XO)

X, = PFRSQITI(b,X;)
X3 = PFRCPIT2(X,,Xp)
X; = PFMUL(b,X3)

The 24-bit final reciprocal square root value is X3. In the
AMD Athlon processor 3DNow! implementation, the estimate
contains the correct round-to-nearest value for approximately
87 % of all arguments. The remaining arguments differ from the
correct round-to-nearest value by one unit-in-the-last-place. The
square root (X,) is formed in the last step by multiplying by the
input operand b.
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Use MMX™ PMADDWD Instruction to Perform Two 32-Bit

Multiplies in Parallel

The MMX PMADDWD instruction can be used to perform two
signed 16x16—32 bit multiplies in parallel, with much higher
performance than can be achieved using the IMUL instruction.
The PMADDWD instruction is designed to perform four
16x16—32 bit signed multiplies and accumulate the results
pairwise. By making one of the results in a pair a zero, there are
now just two multiplies. The following example shows how to
multiply 16-bit signed numbers a, b, ¢, d into signed 32-bit
products a*c and b*d:

Example 1:

PXOR MMZ, MM2 0|0
MOVD MMO, [abl ; 00| b oa
MOVD MM1, [cd] ; 00| dc
PUNPCKLWD MMO, MMZ 0b | O0a
PUNCPKLWD MMI1, MMZ ; 0d ] 0c
PMADDWD MMO, MM1 b*d | a*c

Use PMULHUW to Compute Upper Half of Unsigned

Products

The PMULHUW is an MMX extension that computes the upper
16 bits of four unsigned 16x16->32 products. The previously
available MMX PMULHW instruction can be used to compute
the upper 16 bits of four signed 16x16->32 products. Note that
PMULLW can be used to compute the lower 16 bits of four
16x16->32 bit products regardless of whether the multiplication
is signed or unsigned.

Without PMULHUW, it is actually quite difficult to perform
unsigned multiplies using MMX instructions. Example 2 shows
how this can be accomplished if this is required in blended code
that needs to run well on both the AMD Athlon processor and
AMD-K6 family processors. A restriction of the replacement
code is that all words of the multiplicand must be in range
0...0x7FFF, a condition that is frequently met.
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The replacement code uses the following algorithm. Let A be
the unsigned multiplicand in range 0...0x7FFF, and let B be the
unsigned multiplier in range 0...0xFFFF. The unsigned
multiplication A*B can be accomplished as follows when only
signed multiplication, denoted by @, is available.

If Bisinrange 0...0x7FFF, A*B = A @ B. However, if B is in range
0x8000...0xFFFF, then B is interpreted as a signed operand with
value B’=B-2216. Thus A @ B=A*B-2"16*A,or A* B=A @B +
2716*A. Given that PMULLW computes the lower 16 bits of the
result, only the upper 16 bits of the result, R = (A*B >> 16),
needs to be found. Thus R = PMULHW(A,B) if B in 0...0x7FFFF,
and R = A + PMULHW(A,B) if B in 0x8000...0xFFFF. This means
that the next step is to conditionally add A to the output of
PMULHW if bit 15 of Bis set, i.e., if Bis negative under a signed
interpretation.

Example 1:
IN: MMO = A3 A2 | A1 A0 Ai are unsigned words
; MM1 = B3 B2 | B2 Bl  Bi are unsigned words
; OUT: MMO = A1*B1 | AO*BO  unsigned DWORD results
MM2 = A3*B3 | A2*B2  unsigned DWORD results
MOVQ MM2, MMO i, {0..4}

PMULLW MMO, MM1 i*Bi

A
5 (A <15:0>, 1 = {0..4}
PMULHUW ~ MM1, MM2 ; (Ai*Bi
;3 (
(A
(A

)

)<31:16>, i = {0..4}

MOVQ MMZ, MMO Ai*Bi)<15:0>, i = {0..4}
)
)

PUNPCKLWD MMO, MM1 1*B1)<31:0> | (A0O*B0)<31:0>

PUNPCKHWD MM2, MM1 3*B3)<31:0> | (A2*B2)<31:0>
AMD-K6® and Example 2:
AMD Athlon™ IN: MMO = A3 A2 | Al A0 Ai are unsigned words <= Ox7FFF
Processor Blended ; MM1 = B3 B2 | B2 Bl  Bi are unsigned words
Code ; OUT: MMO = AI*B1 | AO*BO unsigned DWORD results
; MM2 = A3*B3 | A2*B2  unsigned DWORD results
MOVQ MM2, MMO A1 i=1{0..4}
PMULLW MMO, MM1 ; (Ai*Bi)<15:0>, i = {0..4}
MOVQ MM3, MM1 B1 i=1{0..4}
PSRAW MM3, 15 ; Mi = Bi <0 7 Oxffff : 0, 1 = {0..4}
PAND MM3, MM2 ; Mi = Bi < 0 ? Ai : 0, i = {0..4}
PMULHW MM1, MM2 (Ai@Bi)<31:16>, i = {0..4}
PADDW MM1, MM3 (Ai*Bi)<31:16> = (A1 < 0) 7
(A1@B7)<31:16>+A1 (Ai@Bi)<31:16>
MOVQ MMZ, MMO ; (Ai*Bi)<15:0>, i = {0..4}
PUNPCKLWD MMO, MM1 ; (A1*B1)<31:0> | (A0*B0)<31:0>
PUNPCKHWD MM2, MM1 ; (A3*B3)<31:0> | (A2*B2)<31:0>
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3DNow!™ and MMX™ Intra-Operand Swapping

AMD Athlon™
Processor-Specific
Code

AMD-K6® and
AMD Athlon™
Processor Blended
Code

If the swapping of MMX register halves is necessary, use the
PSWAPD instruction, which is a new AMD Athlon 3DNow! DSP
extension. Use this instruction only for AMD Athlon processor-
specific code. “PSWAPD MMregl, MMreg2” performs the
following operation:

temp = mmreg?

mmregl[63:32] = temp[31:0]

mmregl[31:0] = temp[63:32]

See the AMD Extensions to the 3DNow!™ and MMX™ Instruction
Set Manual, order# 22466 for more usage information.

Otherwise, for blended code, which needs to run well on
AMD-K6 and AMD Athlon family processors, the following code
is recommended:

Example 1 (Preferred, faster):

;MM1 = SWAP (MMO), MMO destroyed

MOVQ MM1, MMO ;make a copy
PUNPCKLDQ  MMO, MMO ;duplicate lower half
PUNPCKHDQ MM1, MMO ;combine lower halves

Example 2 (Preferred, fast):

;MM1 = SWAP (MMO), MMO preserved

MOVQ MM1, MMO ;make a copy
PUNPCKHDQ MM1, MM1 ;duplicate upper half
PUNPCKLDQ MM1, MMO ;combine upper halves

Both examples accomplish the swapping, but the first example
should be used if the original contents of the register do not
need to be preserved. The first example is faster due to the fact
that the MOVQ and PUNPCKLDQ instructions can execute in
parallel. The instructions in the second example are dependent
on one another and take longer to execute.
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Fast Conversion of Signed Words to Floating-Point

In many applications there is a need to quickly convert data
consisting of packed 16-bit signed integers into floating-point
numbers. The following two examples show how this can be
accomplished efficiently on AMD processors.

The first example shows how to do the conversion on a processor
that supports AMD’s 3DNow! extensions, such as the
AMD Athlon processor. It demonstrates the increased
efficiency from using the PI2ZFW instruction. Use of this
instruction should only be for AMD Athlon processor specific
code. See the AMD Extensions to the 3DNow!™ and MMX™
Instruction Set Manual, order# 22466 for more information on
this instruction.

The second example demonstrates how to accomplish the same
task in blended code that achieves good performance on the
AMD Athlon processor as well as on the AMD-K6 family
processors that support 3DNow! technology.

Example 1 (AMD Athlon processor specific code using 3DNow! DSP

extension):
MOVD MMO, [packed_signed_word] ; 00| ba
PUNPCKLWD MMO, MMO ; bb | aa
PI2FW MMO, MMO ;xb=float(b) | xa=float(a)
MOVQ [packed_float], MMO ;  store xb | xa
Example 2 (AMD-K6 and AMD Athlon processor blended code):
MOVD MM1, [packed_signed_word] ; 00 | ba
PXOR MMO, MMO ; 00|00
PUNPCKLWD MMO, MMI ; b0 | ao0
PSRAD MMO, 16 ;sign extend: b | a
PI2FD MMO, MMO ; xb=float(b) | xa=float(a)
MOVQ [packed_float], MMO ; store xb | xa
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Width of Memory Access Differs Between PUNPCKL* and

PUNPCKH*

Note that the width of the memory access performed by the
load-execute forms of PUNPCKLBW, PUNPCKLWD, and
PUNPCKLDQ is 32 bits (a DWORD), while the width of the
memory access of the load-execute forms of PUNPCKHBW,
PUNPCKHWD, and PUNPCKHDAQ is 64 bits (a QWORD).

This means that the alignment requirements for memory
operands of PUNPCKL* instructions (DWORD alignment) are
less strict than the alignment requirements for memory
operands of PUNPCKH™* instructions (QWORD alignment).
Code can take advantage of this in order to reduce the number
of misaligned loads in a program. A second advantage of using
PUNPCKL* instead of PUNPCKHY* is that it helps avoid size
mismatches during load-to-store forwarding. Store data from
either a DWORD store or the lower DWORD of a QWORD store
can be bypassed inside the load/store buffer to PUNPCKL*, but
only store data from a QWORD store can be bypassed to
PUNPCKH*.

Example 1 (Avoid):

MOV [fool, EAX // DWORD aligned store
MOV [foo+t4], EDX ; b // DWORD aligned store
PUNPCKHDQ MMO, [foo-4] ; a | <junk> // STLF size mismatch,
// potentially misaligned
PUNPCKHDQ MMO, [foo] ; b | a // STLF size mismatch,
// potentially misaligned

Q

Example 1 (Preferred):

MOV [foo], EAX ; a // DWORD aligned store
MOV [foo+4], EDX ; b // DWORD aligned store
MOVD MMO, [foo] ; 0 | a // DWORD aligned Tload,

// STLF size match
PUNPCKLDQ MMO, [foo+4] ; b | a // DWORD aligned load,
// STLF size match
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Use MMX™ PXOR to Negate 3DNow!™ Data

For both the AMD Athlon and AMD-K6 processors, it is
recommended that code use the MMX PXOR instruction to
change the sign bit of 3DNow! operations instead of the 3DNow!
PFMUL instruction. On the AMD Athlon processor, using
PXOR allows for more parallelism, as it can execute in either
the FADD or FMUL pipes. PXOR has an execution latency of
two, but because it is an MMX instruction, there is an initial one
cycle bypassing penalty, and another one cycle penalty if the
result goes to a 3DNow! operation. The PFMUL execution
latency is four, therefore, in the worst case, the PXOR and
PMUL instructions are the same in terms of latency. On the
AMD-K6 processor, there is only a one cycle latency for PXOR,
versus a two cycle latency for the 3DNow! PFMUL instruction.

Use the following code to negate 3DNow! data:

msgn DQ 8000000080000000h
PXOR MMO, [msgn] ;toggle sign bit
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Use MMX™ PCMP Instead of 3DNow!™ PFCMP

Both Numbers
Positive

One Negative, One
Positive

Both Numbers
Negative

Use the MMX PCMP instruction instead of the 3DNow! PFCMP
instruction. On the AMD Athlon processor, the PCMP has a
latency of two cycles while the PFCMP has a latency of four
cycles. In addition to the shorter latency, PCMP can be issued to
either the FADD or the FMUL pipe, while PFCMP is restricted
to the FADD pipe.

Note: The PFCMP instruction has a ‘GE’ (greater or equal)
version (PFCMPGE) that is missing from PCMP.

If both arguments are positive, PCMP always works.

If one number is negative and the other is positive, PCMP still
works, except when one number is a positive zero and the other
is a negative zero.

Be careful when performing integer comparison using PCMPGT
on two negative 3DNow! numbers. The result is the inverse of
the PFCMPGT floating-point comparison. For example:

-2 = 84000000

-4 84800000

PCMPGT gives 84800000 > 84000000, but -4 < -2. To address
this issue, simply reverse the comparison by swapping the
source operands.
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Use MMX™ Instructions for Block Copies and Block Fills

For moving or filling small blocks of data of less than 512 bytes
between cacheable memory areas, the REP MOVS and REP
STOS families of instructions deliver good performance and are
straightforward to use. For moving and filling larger blocks of
data, or to move/fill blocks of data where the destination is in
non-cacheable space, it is recommended to make use of MMX
instructions and extended MMX instructions. The following
examples demonstrate how to copy any number of DWORDs
between a DWORD aligned source and a DWORD aligned
destination, and how to fill any number of DWORDs at a
DWORD aligned destination.

AMD-K6® and The following example code is written for the inline assembler

AMD Athlon™ of Microsoft Visual C, and uses instruction macros defined in

Processor Blended the file AMD3DX.H from the AMD Athlon Processor SDK. It is

Code suitable for moving/filling a DWORD aligned block of data in
the following situations:

m Blended code, i.e., code that needs to perform well on both
the AMD Athlon processor and AMD-K6 family processors,
operating on a data block of more than 512 bytes

m AMD Athlon processor-specific code where the destination
is in cacheable memory, the data block is smaller than
8 Kbytes, and immediate data re-use of the data at the
destination is expected

m AMD-K6 processor-specific code where the destination is in
non-cacheable memory and the data block is larger than 64
bytes.
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Example 1:

f#include "amd3dx.h"

// block copy: copy a number of
// to DWORD aligned destination

_asm {

MOV EST, [src_ptr]
MOV EDI, [dst_ptr]
MOV ECX, [blk_sizel
PREFETCH (ESI)
CMP ECX, 1
JB $copydone2_cc
TEST EDI, 7
J7Z $dstgalignedZ_cc
MOVD MMO, [ESI]
MOVD (EDI], MMO
ADD ESI, 4
ADD EDI, 4
DEC ECX

$dstqgaligned?_cc:
MOV EBX, ECX
SHR ECX, 4
Jz $copygwordsZ_cc
prefetchm (ESI,64)
prefetchmlong (ESI,128)
ALIGN 16

$cloop2_cc:
prefetchmlong (ESI, 192)
MOVQ MMO, [ESI]
ADD EDI, 64
MOVQ MM1, [ESI+8]
ADD ESI, 64
MOVQ MM2, [ESI-48]
MOVQ [EDI-641, MMO
MOVQ MMO, [ESI-401]
MOVQ [EDI-56], MMI
MOVQ MM1, [ESI-32]
MOVQ [EDI-48], MM2
MOVQ MM2, [ESI-24]
MOVQ [EDI-40]1, MMO
MOVQ MMO, [ESI-161]
MOVQ [EDI-32], MMI
MOVQ MM1, [ESI-8]
MOVQ [EDI-24], MM2
MOVQ [EDI-16]1, MMO
DEC ECX
MOVQ [EDI-8], MM1
JNZ $cloop?_cc

AMD Athlon™ Processor x86 Code Optimization

DWORDs from DWORD aligned source
using cacheable stores.

;pointer to src, DWORD aligned
;pointer to dst, DWORD aligned
;number of DWORDs to copy

;prefetch first src cache Tine

;1ess than one DWORD to copy ?

;yes, must be no DWORDs to copy, done
;dst QWORD aligned?

;yes

;read one DWORD from src
;store one DWORD to dst
;Ssrct+

;dst++

;number of DWORDs to copy

;number of DWORDs to copy
;number of cache lines to copy
;:no whole cache lines to copy, maybe QWORDs

;prefetch src cache Tine one ahead
;prefetch src cache Tine two ahead

;align loop for optimal performance

;prefetch cache Tine three ahead

;load first QWORD in cache Tine from src
;Srct+t

;1oad second QWORD in cache line from src
;dst++

;1oad third QWORD in cache Tine from src
;store first DWORD in cache line to dst
;1oad fourth QWORD in cache line from src
;store second DWORD in cache line to dst
;load fifth QWORD in cache Tine from src
;store third DWORD in cache line to dst
;1oad sixth QWORD in cache Tine from src
;store fourth DWORD in cache line to dst
;1oad seventh QWORD in cache line from src
;store fifth DWORD in cache line to dst
;1oad eight QWORD in cache Tine from src
;store sixth DWORD in cache line to dst
;store seventh DWORD in cache line to dst
;count- -

;store eighth DWORD in cache line to dst
;until

no more cache lines to copy
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$copygwordsZ_cc:

MOV ECX, EBX ;number of DWORDs to copy

AND EBX, OxE ;number of QWORDS Teft to copy * 2

JZ $copydword2_cc ;no QWORDs Tleft, maybe DWORD Teft

ALIGN 16 ;align loop for optimal performance
$qloop2_cc:

MOVQ MMO, [EST] ;read QWORD from src

MOVQ [EDT], MMO ;store QWORD to dst

ADD EST, 8 ;Srct+t

ADD EDI, 8 ;dst++

SUB EBX, 2 ;count- -

JNZ $qloop2_cc ;until no more QWORDs left to copy
$copydword2_cc:

TEST ECX, 1 ;DWORD Teft to copy ?

Jz $copydone2_cc ;nope, we’'re done

MOVD MMO, [ESI] ;read lTast DWORD from src

MOVD [EDI], MMO ;store Tast DWORD to dst

$copydone2_cc:
FEMMS ;clear MMX state
}

/* block fi1l: fil1 a number of DWORDs at DWORD aligned destination
with DWORD initializer using cacheable stores

*/
_asm f{
MOV EDI, [dst_ptr] ;pointer to dst, DWORD aligned
MOV ECX, [blk_size]l ;number of DWORDs to copy
MOVD MMO, [fill_datal ;initialization data
PUNPCKLDQ MMO, MMO ;extend fill data to QWORD
CMP ECX, 1 ;less than one DWORD to fill ?
JB $filldone2_fc ;yes, must be no DWORDs to fill, done
TEST EDI, 7 ;dst QWORD aligned?
Jz $dstgaligned2_fc ;yes
MOVD [EDI], MMO ;store one DWORD to dst
ADD EDI, 4 ;dst++
DEC ECX ;number of DWORDs to fill
$dstgaligned2_fc:
MOV EBX, ECX ;number of DWORDs to fill
SHR ECX, 4 ;number of cache Tines to fill
Jz $fillqwords2_fc ;no whole cache lines to fill, maybe QWORDs
ALIGN 16 ;align Toop for optimal performance
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$cloop2_fc:
ADD EDI, 64
MOVQ [EDI-641, MMO
MOVQ [EDI-561, MMO
MOVQ [EDI-48]1, MMO
MOVQ [EDI-401, MMO
MOVQ [EDI-321, MMO
MOVQ [EDI-247, MMO
MOVQ [EDI-161, MMO
DEC ECX
MOVQ [EDI -81, MMO
JNZ $cloop2_fc
$fillqwords2_fc:
MOV ECX, EBX
AND EBX, OxE
JZ $filldword2_fc
ALIGN 16
$qloop2_fc:
MOVQ LEDIT, MMO
ADD EDI, 8
SUB EBX, 2
JNZ $qloop2_fc
$filldword2_fc:
TEST ECX, 1
Jz $filldone2_fc
MOVD CEDIT, MMO
$filldone2_fc:
FEMMS
}
AMD Athlon™
Processor-Specific
Code

;until

AMD Athlon™ Processor x86 Code Optimization

;dst++

;store 1st DWORD in cache
;store 2nd DWORD in cache
;store 3rd DWORD in cache
;store 4th DWORD in cache
;store 5th DWORD in cache
;store 6th DWORD in cache
;store 7th DWORD in cache
;count- -

;store 8th DWORD in cache
no more cache lines to copy

;number of DWORDs to fill
;number of QWORDS left to
;no QWORDs left, maybe DWORD Teft

;store QWORD to dst
;dst++

;count- -

;until

;DWORD Teft to fill 7
;nope, we’'re done
;store Tast DWORD to dst

;clear MMX state

line
line
line
line
line
line
line

line

fill

to dst
to dst
to dst
to dst
to dst
to dst
to dst

to dst

* 2

;align loop for optimal performance

no more QWORDs Teft to copy

The following example code is written for the inline assembler
of Microsoft Visual C, and uses instruction macros defined in
the file AMD3DX.H from the AMD Athlon Processor SDK. It is

suitable for moving/filling a DWORD aligned block of data in
the following situations:

m AMD Athlon processor specific code where the destination
is in non-cacheable memory space

m AMD Athlon processor specific code where the destination
is in cacheable memory, but the data block is larger than
8 Kbytes, or immediate data re-use of the data at the
destination is not expected
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_asm {
MOV ESI, [src_ptr] ;pointer to src, DWORD aligned
MOV EDI, [dst_ptr] ;pointer to dst, DWORD aligned
MOV ECX, [blk_sizel ;number of DWORDs to copy
PREFETCH (ESI) ;prefetch first src cache Tine
PCMPEQD mm4, mm4 sOXFFFFFFff | OXFfffffff
PSRLQ mm4, 32 ;0 | OXFEFffffff (mask to write DWORD with MASKMOVQ)
CMP ECX, 1 ;less than one DWORD to copy ?
JB $copydone?2_cnc ;yes, must be no DWORDs to copy, done
TEST EDI, 7 ;dst QWORD aligned?
J7Z $dstgalignedZ2_cnc;yes
MOVD MMO, [ESI] ;read one DWORD from src
MASKMOVQ  (MMO, mm4) ;streaming store one DWORD to dst
ADD EST, 4 ;Srct+t
ADD EDI, 4 ;dst++
DEC ECX ;number of DWORDs to copy
$dstqgaligned?_cnc:
MOV EBX, ECX ;number of DWORDs to copy
SHR ECX, 4 ;number of cache lines to copy
Jz $copygwords2_cnc ;no whole cache lines to copy, maybe QWORDs

prefetchm (ESI,64)
prefetchmlong (ESI,128)

;prefetch src cache Tine one ahead
;prefetch src cache Tine two ahead

ALIGN 16 ;align Toop for optimal performance
$cloop?2_cnc:

prefetchmlong (ESI, 192) ;prefetch cache Tine three ahead
MOVQ MMO, [EST] ;1oad 1st QWORD in cache line from src
ADD EDI, 64 ;Srct+
MOVQ MM1, [ESI+8] ;1oad 2nd QWORD in cache line from src
ADD ESI, 64 ;dst++
MOVQ MM2, [ESI-48] ;1oad 3rd QWORD in cache line from src
MOVNTQM (EDI, MMO, -64) ;streaming store 1st DWORD in cache line to dst
MOVQ MMO, [ESTI-40] ;1oad 4th QWORD in cache line from src
MOVNTQM (EDI, MM1, -56) ;streaming store 2nd DWORD in cache Tline to dst
MOVQ MM1, [ESI-32] ;1oad 5th QWORD in cache line from src
MOVNTQM (EDI, MM2, -48) ;streaming store 3rd DWORD in cache line to dst
MOVQ MM2, [ESI-24] ;1oad 6th QWORD in cache line from src
MOVNTQM (EDI, MMO, -40) ;streaming store 4th DWORD in cache Tine to dst
MOVQ MMO, [ESI-16] ;1oad 7th QWORD in cache line from src
MOVNTQM (EDI, MM1, -32) ;streaming store 5th DWORD in cache line to dst
MOVQ MM1, [ESI-8] ;1oad 8th QWORD in cache line from src
MOVNTQM (EDI, MM2, -24) ;streaming store 6th DWORD in cache line to dst
MOVNTQM (EDI, MMO, -16) ;streaming store 7th DWORD in cache Tine to dst
DEC ECX ;count- -
MOVNTQM (EDI, MMI1, -8) ;streaming store 8th DWORD in cache Tine to dst
JNZ $cloop2_cnc ;until no more cache Tines to copy
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$copygwords2_cnc:

MOV
AND
JZz

ALIGN

$qloopZ2_cnc:
MOVQ
MOVNTQ
ADD
ADD
SUB
JNZ

$copydword2_
TEST
JZz
MOVD
MASKMOVQ

$copydone2_c
SFENCE
FEMMS
}

/* block fill

ECX, EBX
EBX, OxE
$copydword2_cnc
16

MMO, [EST]

(EDI, MMO)

ESI, 8

EDI, 8

EBX, 2

$qloop2_cnc

cne:

ECX, 1
$copydone2_cnc
MMO, [ESI]
(MMO, mm4)

nc:

: fi1l a number of
with DWORD initializer using

AMD Athlon™ Processor x86 Code Optimization

;number of DWORDs to copy
;number of QWORDS Teft to copy * 2
;no QWORDs Tleft, maybe DWORD Teft

;align loop for optimal performance

;read QWORD from src

;streaming store QWORD to dst
;Srct+t
;dst++
;count -

;until no more QWORDs left to copy

;DWORD Teft to copy ?

;no, we’re done

;read last DWORD from src
;streaming store last DWORD to dst

;flush WC buffers used by streaming stores
;clear MMX state

DWORDs at DWORD aligned destination
streaming stores.

*/
_asm f{
MOV EDI, [dst_ptr] ;pointer to dst, DWORD aligned
MOV ECX, [blk_size]l ;number of DWORDs to copy
MOVD MMO, [fill_datal ;initialization data
PUNPCKLDQ MMO, MMO ;extend fill data to QWORD
PCMPEQD MM1, MM1 sOXTFFFFFff | OxFfffffff
PSRLQ MM1, 32 ;0 | OXffffffff (mask to write DWORD with MASKMOVQ)
CMP ECX, 1 ;less than one DWORD to fill ?
JB $filldone2_fnc ;yes, must be no DWORDs to fill, done
TEST EDI, 7 ;dst QWORD aligned?
Jz $dstgaligned2_fnc;yes
MASKMOVQ  (MMO, MM1) ;streaming store one DWORD to dst
ADD EDI, 4 ;dst++
DEC ECX ;number of DWORDs to fill
$dstgaligned2_fnc:
MOV EBX, ECX ;number of DWORDs to fill
SHR ECX, 4 ;number of cache Tines to fill
Jz $fillgwordsZ2_fnc ;no whole cache lines to fill, maybe QWORDs
ALIGN 16 ;align Toop for optimal performance
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$cloop?2_Tfnc:
ADD EDI, 64 ;dst++

MOVNTQM (EDI, MMO, -64) ;streaming store 1st DWORD in cache line to dst
MOVNTQM (EDI, MMO, -56) ;streaming store 2nd DWORD in cache line to dst
MOVNTQM (EDI, MMO, -48) ;streaming store 3rd DWORD in cache Tine to dst
MOVNTQM (EDI, MMO, -40) ;streaming store 4th DWORD in cache Tine to dst
MOVNTQM (EDI, MMO, -32) ;streaming store 5th DWORD in cache line to dst
MOVNTQM (EDI, MMO, -24) ;streaming store 6th DWORD in cache Tine to dst
MOVNTQM (EDI, MMO, -16) ;streaming store 7th DWORD in cache Tine to dst
DEC ECX ;count- -

MOVNTQM (EDI, MMO, -8) ;streaming store 8th DWORD in cache Tine to dst
JNZ $cloop2_fnc ;until no more cache lines to copy

$fillgwords2_fnc:

MOV ECX, EBX ;number of DWORDs to fill

AND EBX, OxE ;number of QWORDS Teft to fill * 2

Jz $filldword2_fnc ;no QWORDs left, maybe DWORD Teft

ALIGN 16 ;align Toop for optimal performance
$qloop2_fnc:

MOVNTQ (EDI, MMO) ;streaming store QWORD to dst

ADD EDI, 8 ;dst++

SUB EBX, 2 ;count - -

JNZ $qloop2_fnc ;until no more QWORDs left to copy
$filldword2_fnc:

TEST ECX, 1 ;DWORD Teft to fill ?

Jz $filldone2_fnc ;nope, we’'re done

MASKMOVQ (MMO, MM1) ;streaming store last DWORD to dst
$filldone2_fnc:

SFENCE ;flush WC buffers used by streaming stores

FEMMS ;clear MMX state
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Efficient 64-Bit Population Count Using MMX™ Instructions

Population count is an operation that determines the number of
set bits in a bit string. For example, this can be used to
determine the cardinality of a set. The following example code
shows how to efficiently implement a population count function
for 64-bit operands. The example is written for the inline
assembler of Microsoft Visual C.

Function popcount64() is based on an O(log(n)) algorithm that
successively groups the bits into groups of 2, 4, and 8 bits, while
maintaining a count of the set bits in each group. This phase of
the algorithm is described in detail in steps 1 through 3 of the
section “Efficient Implementation of Population Count
Function” on page 114.

In the final phase of popcount64(), the intermediate results
from all eight 8-bit groups are summed using the PSADBW
instruction. PSADBW is an extended MMX instruction that
sums the absolute values of byte-wise differences between two
MMX registers. In order to sum the eight bytes in an MMX
register, the second source operand is set to zero. Thus the
absolute difference for each byte equals the value of that byte
in the first source operand.

Example:
##include "amd3d.h"

__declspec (naked) unsigned int __stdcall popcounté64

(unsigned __int64 v)

{
static const __int64 C55 = 0x5555555555555555;
static const __int64 C33 0x3333333333333333;
static const __int64 COF = OxOFOFOFOFOFOFOFOF;

__asm {
MOVD MMO, [ESP+4] ;v_low
PUNPCKLDQ MMO, [ESP+8] ;v
MOVQ MM1, MMO SV
PSRLD MMO, 1 vy 1
PAND MMO, [C55] ; (v >> 1) & 0x55555555
PSUBD MM1, MMO w=v - ((v>>1)8&
; 0x55555555)
MOVQ MMO, MM1 W
PSRLD MM1, 2 WoO> 2
PAND MMO, [C33] ;w & 0x33333333
PAND MM1, [C33] ;(w >> 2) & 0x33333333
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PADDD MMO, MM1 ;x = (w & 0x33333333) +
((w >> 2) & 0x33333333)
MOVQ MM1, MMOQ ;X
PSRLD MMO, 4 iX >> 4
PADDD MMO, MM1 (X o+ (x >> 4)
PAND MMO, [COF] 3y = (X + (x >> 4) &
; OxOFOFOFOF)
PXOR MM1, MM1 ;0
PSADBW (MMO, MMI1) ;sum across all 8 bytes
MOVD EAX, MMO ;result in EAX per calling
; convention
FEMMS ;clear MMX state
RET 8 ;pop 8-byte argument off

; stack and return

Use MMX™ PXOR to Clear All Bits in an MMX Register

To clear all the bits in an MMX register to zero, use:
PXOR MMreg, MMreg

Note that PXOR MMreg, MMreg is dependent on previous
writes to MMreg. Therefore, using PXOR in the manner
described can lengthen dependency chains, which in return
may lead to reduced performance. An alternative in such cases
is to use:

zero DD O

MOVD MMreg, DWORD PTR [zerol]

i.e., to load a zero from a statically initialized and properly
aligned memory location. However, loading the data from
memory runs the risk of cache misses. Cases where MOVD is
superior to PXOR are therefore rare and PXOR should be used
in general.
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Use MMX™ PCMPEQD to Set All Bits in an MMX Register

To set all the bits in an MMX register to one, use:
PCMPEQD MMreg, MMreg

Note that “PCMPEQD MMreg, MMreg” is dependent on
previous writes to MMreg. Therefore, using PCMPEQD in the
manner described can lengthen dependency chains, which in
turn may lead to reduced performance. An alternative in such
cases is to use:

ones DQ OFFFFFFFFFFFFFFFFA
MOVQ MMreg, QWORD PTR [ones]

i.e., to load a quadword of OxFFFFFFFFFFFFFFFF from a
statically initialized and properly aligned memory location.
However, loading the data from memory runs the risk of cache
misses. Therefore, cases where MOVQ is superior to PCMPEQD
are rare and PCMPEQD should be used in general.

Use MMX™ PAND to Find Floating-Point Absolute Value in
3DNow!™ Code

Use the following to compute the absolute value of 3DNow!
floating-point operands:

mabs DQ 7FFFFFFF7FFFFFFF
PAND MMO, [mabs] ;mask out sign bit
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Integer Absolute Value Computation Using MMX™
Instructions

The following examples show how to efficiently compute the
absolute value of packed signed WORDs and packed signed
DWORDs using MMX instructions. The algorithm works by
checking the sign bit of the operand and constructing a mask
from it. The mask is then used to conditionally compute first the
one’s complement and then the two’s complement of the
operand in case the operand is negative, and leave the operand
unchanged if the operand is positive or zero.

Note that the smallest negative number is mapped to itself by
this code, but this also happens for calls to the C library
function labs() and thus is perfectly acceptable.

Example 1 (packed WORDs):
: IN: MMO = x

; OUT: MMO = abs(x)
MOVQ MM1, MMO
PSRAW ~ MM1, 15
PXOR MMO, MM1
PSUBW ~ MMO, MM1

<0 ? Oxffff : O
P ~X 1 X
<07 -x : X

Example 2 (packed DWORDs):

; IN:  MMO X

; OUT: MMO abs(x)
MOVQ MM1, MMO
PSRAD MM1, 31
PXOR MMO, MM1
PSUBD MMO, MM1

/N
(@]
~

<0 7 Oxffffffff : O
? ~X 1 X
<07 -x : X

/N
(e}
~

Optimized Matrix Multiplication

The multiplication of a 4x4 matrix with a 4x1 vector is
commonly used in 3D graphics for geometry transformation.
This routine serves to translate, scale, rotate, and apply
perspective to 3D coordinates represented in homogeneous
coordinates. The following code sample is a general 3D vertex
transformation and 3DNow! optimized routine that completes
in 18 cycles if aligned to a 32-byte cache line boundary and 22
cycles if aligned to a 16-byte, but not 32-byte boundary on the
AMD-K6-2 and AMD-K6-III processors. The transformation
takes 16 cycles on the AMD Athlon processor.
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Matrix Multiplication
Code Sample

/* Function XForm performs a fully generalized 3D transform on an array
of vertices pointed to by "v" and stores the transformed vertices in
the location pointed to by "res". Each vertex consists of four floats.
The 4x4 transform matrix is pointed to by "m". The matrix elements are
also floats. The argument "numverts" indicates how many vertices have

to be transformed. The computation performed for each vertex is:

res->x = v->x*m[0][0]

res->y v->x*m[0][1]

res->z v->x*ml0][2]

res->w = v->x*m[0][3]
*/

v->y*m[1][0]
v->y*m[1]1[1]
v->y*ml1]1[2]
v->y*m[1]1[3]

v->z*m[2]1[0]
v->z*m[2]1[1]
v->z*m[2]1[2]
v->z*m[2]1[3]

v-owrsm[3]1[L0]
v-owsm[3][1]
v-owrm[3][2]
v-owrsmL3]1[3]

I
+ + + +
+ + + +
+ + + +

ffdefine MO0 O
#fdefine MO1 4
ffdefine M02 8
ffdefine M03 12
ffdefine M10 16
ffdefine M11 20
ffdefine M12 24
ffdefine M13 28
ffdefine M20 32
ffdefine M21 36
ffdefine M22 40
ffdefine M23 44
ffdefine M30 48
ffdefine M31 52
ffdefine M32 56
fdefine M33 60

void XForm (float *res, const float *v, const float *m, int numverts)
{

_asm |
MOV EDX, [V] ;EDX = source vector ptr
MOV EAX, [M] ;EAX = matrix ptr
MOV EBX, [RES] ;EBX = destination vector ptr
MOV ECX, [NUMVERTS] ;ECX = number of vertices to transform

;:3DNow! version of fully general 3D vertex tranformation.
;0ptimal for AMD Athlon (completes in 16 cycles)

FEMMS ;clear MMX state

ALIGN 16 ;for optimal branch alignment
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$$xform:

ADD

MOVQ

MOVQ

ADD

MOVQ

MOVQ
PUNPCKLDQ
MOVQ
PFMUL
PUNPCKHDQ
PFMUL
MOVQ

MOVQ

MOVQ
PFMUL
MOVQ
PUNPCKLDQ
PFMUL
MOVQ
PFMUL
PFADD

MOVQ
PFMUL
PFADD

MOVQ
PUNPCKHDQ
PFADD

PFMUL
PFMUL
PFADD
PFADD

MOVQ
PFADD

MOVQ
DEC
JNZ

FEMMS

EBX,
MMO,
MMI,
EDX,
MMZ,
MM3,
MMO,
MM4,
MM3,
MMZ,
MM4 ,
MM5,
MM7,
MM6 ,
MM5,
MMO,
MM1,
MM7,
MM2Z,
MMO,
MM3,

MM4 ,
MM2Z,
MM5,

MM1,
MM6 ,
MM3,

MM4 ,
MM1,
MM5,

MM3,

16
QWORD
QWORD
16
MMO
QWORD
MMO
QWORD
MMO
MM2
MM2
QWORD
QWORD
MM1
MMO
QWORD
MM1
MM2
QWORD
MM1
MM4

QWORD
MM1
MM7

QWORD
MM6
MMO

MM6
MM6
MM2

MM4

[EBX-161,

MM5,

MM1

[EBX-81, M

ECX

$$XFORM

PTR
PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

MM3

M5

[EDX]
[EDX+8]

[EAX+MOO0]

[EAX+M10]

[EAX+M02]
[EAX+M12]

[EAX+M20]

[EAX+M22]

[EAX+M30]

[EAX+M32]

v -Sx*mL0T[L ]+ -

;v7>x*m[O][1]

;res++

vV-oy
VoW

sVt

vV-oy
mLOJL1]
V->X
mL11L1]

V-oy

Sv->y*ml1701]

mL0J[3]
m{1][3]

VoW

vOx*mI01[3]

mf2]01]

V->Z

Sv->y*ml17[3]

mf2]103]

v z*mi21[1]
svox*mLOT[1]+v->y*ml1][1] |
Cyx*mI0T[0T4v->y*m[ 17107
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VDX
V->Z

V->X

mLO]L0]

V->X

mC1][0]
v->x*mL0]J[L0]
V-Doy
v->y*m[1][0]
m[O][2]
ml1]1[2]

V->Z
vO>x*m[0][2]
m[2][0]

V->Z
v-oy*m[1][2]
m{2][2]

| v->z*m[2][0]

m{31017 | m[3100]

v->z*m[2103] | v->z*m[21[2]
sv-ox*mLOI[3]+v->y*ml1]1[3] |
s vox*m0]02]+v->y*m[1]1[2]

m{3103] | m[31[2]

Veow |
>y*m[11[1]+v->z*m[2]1[1] |

VoW

3 veox*mLO0JL0]+v->y*ml1IL0]+v->z*m[2][0]
sv-ow*mI3101] | v->w*m[31[0]
sv-ow*mI3103] | v->w*m[3]1[2]
sv->x*mLO0I031+v->y*m[1][3]+v->z*m[2]1[3] |

s veox*mLO0JL2]+v->y*ml1]1[2]+v->z*m[2][2]
sV-ox* mLOILII+v->y*mlI]L1]+v->z*m[2][1]+

s veowrsm[31[1] | v->x*m[0JL0]+v->y*m[1]1[0]+
s v->z*m[21[0]+v->w*m[3][0]

;store res->y | res->x

sV-ox*mLO0IL3]+v->y*ml1]03]+v->z*m[2][3]+
s v-owrsm[3103] | v->x*m[0IL2]+v->y*m[1][2]+
s v-ozeml2102]+v->w mI3][2]

;store res->w | res->z

;numverts- -

;until numverts

;clear MMX state
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Efficient 3D-Clipping Code Computation Using 3DNow!™
Instructions

3D-Clipping Code

Clipping is one of the major activities occurring in a 3D
graphics pipeline. In many instances, this activity is split into
two parts, which do not necessarily have to occur consecutively:

m Computation of the clip code for each vertex, where each
bit of the clip code indicates whether the vertex is outside
the frustum with regard to a specific clip plane.

m Examination of the clip code for a vertex and clipping if the
clip code is non-zero.

The following example shows how to use 3DNow! instructions to
efficiently implement a clip code computation for a frustum
that is defined by:

B W<=X<=W
B W<=y<=Ww

B -W<=Z<=W

Sample

.DATA

RIGHT ~ EQU 01h

LEFT EQU 02h

ABOVE  EQU 04h

BELOW EQU 08h

BEHIND EQU 10h

BEFORE EQU 20h
ALIGN 8

ABOVE_RIGHT DD RIGHT
DD ABOVE

BELOW_LEFT DD LEFT
DD BELOW

BEHIND_BEFORE DD  BEFORE
DD BEHIND

.CODE
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Generalized computation of 3D clip code (out code)
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Register usage: IN MM5 y | x
MME  w | z
ouT MM?2 clip code (out code)
DESTROYS MMO,MM1,MM2,MM3,MM4
PXOR MMO, MMO ; 010
MOVQ MM1, MM6 sw | oz
MOVQ MM4, MMb sy | ox
PUNPCKHDQ MM1, MM1 oW | ow
MOVQ MM3, MM6 oW | oz
MOVQ MM2, MM5 sy | ox
PFSUBR MM3, MMO sw | -z
PFSUBR MM2, MMO scy | o-x
PUNPCKLDQ MM3, MM6 sz | -z
PFCMPGT MM4, MM1 ; Y>W?FFFFFFFF:0 | x>w?FFFFFFFF:0
MOVQ MMO, QWORD PTR [ABOVE_RIGHT] ABOVE | RIGHT
PFCMPGT MM3, MM1 Z>W?FFFFFFFF:0 | -zZ>W>FFFFFFFF:0
PFCMPGT MM2, MM1 -y>W?FFFFFFFF:0 | -x>w?FFFFFFFF:0
MOVQ MM1, QWORD PTR [BEHIND_BEFORE] BEHIND | BEFORE
PAND MM4, MMO y > w ? ABOVE:0O | x > w ? RIGHT:O0
MOVQ MMO, QWORD PTR [BELOW_LEFT] BELOW | LEFT
PAND MM3, MM1 z > w ? BEHIND:O | -z > w ? BEFORE:O
PAND MM2, MMO -y > w ? BELOW:0 | -x > w ? LEFT:0
POR MM2, MM4 ; BELOW,ABOVE | LEFT,RIGHT
POR MM2, MM3 ;BELOW,ABOVE,BEHIND | LEFT,RIGHT,BEFORE
MOVQ MM1, MM2 ;BELOW,ABOVE,BEHIND | LEFT,RIGHT,BEFORE
PUNPCKHDQ MMZ2, MMZ2 ;BELOW,ABOVE,BEHIND | BELOW,ABOVE,BEHIND
POR MMZ, MM1 ;zclip, yclip, xclip = clip code
168 3DNow!™ and MMX™ Optimizations Chapter 10



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

Efficiently Determining Similarity Between RGBA Pixels

The manipulation of 32-bit RGBA pixels commonly occurs in
graphics imaging. Each of the components (red, blue, green,
and Alpha-channel) occupies one byte of the 32-bit pixel. The
order of the components within the pixel can vary between
systems. This optimization guideline shows how to efficiently
determine whether two RGBA pixels are similar (i.e.,
approximately equal) regardless of the actual component
ordering. The example also demonstrates techniques of general
utility:

m Computing absolute differences using unsigned saturating
arithmetic

m Performing unsigned comparisons in MMX using unsigned
saturating arithmetic

m Combining multiple conditions into one condition for
branching

The pixels_similar() function determines whether two RGBA
pixels are similar by computing the absolute difference
between identical components of each pixel. If any absolute
difference is greater than or equal to some cutoff value, TOL,
the pixels are found to be dissimilar and the function returns 0.
If all absolute differences for all components are less than TOL,
the pixels are found to be similar and the function returns 1.
The following algorithm is used in the MMX implementation.

Step 1: Absolute differences can be computed efficiently by
taking advantage of unsigned saturation. Under unsigned
saturation, if the difference between two entities is negative
the result is zero. By performing subtraction on two operands in
both directions, and ORing the results, the absolute difference
is computed.

Example 1:
sub_unsigned_sat (i,k) = (1 > k) ?i-k:0
sub_unsigned_sat (k,i) = (1 <=k) ? k-1 0
(sub_unsigned_sat (i,k) |
sub_unsigned_sat (k,i))) = (i > k) ? i-k : k-1 = abs(i-k)

In this case, the source operands are bytes, so the MMX
instruction PSUBUSB is used to subtract with unsigned
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saturation, then the results are merged using POR. Note that on
the AMD Athlon processor, the above computation should not
be used in algorithms that require the sum of absolute
differences, such as motion vector computations during
MPEG-2 encoding as an extended MMX instruction, PSADBW,
specifically exists for that purpose. For the AMD-K6 processor
family or for blended code, the above computation can be used
as a building block in the computation of sums of absolute
differences.

Step 2: The absolute difference of each component is in the
range 0...255. In order to compare these against the cutoff
value, do not use MMX compare instructions, as these
implement signed comparisons, which would flag any input
above 127 to be less than the (positive) cutoff value. Instead, we
turn again to unsigned saturated arithmetic. In order to test
whether a value is below a cutoff value TOL, (TOL-1) is
subtracted using unsigned saturation. An input less than TOL
results in an output of zero, an input equal to or greater than
TOL results in a non-zero output. Since the operands are byte
size, again use the PSUBUSB instruction.

Step 3: According to the similarity metric chosen, two pixels are
similar if the absolute differences of all components are less
than the cutoff value. In other words, the pixels are similar if all
results of the previous step are zero. This can be tested easily by
concatenating and if the concatenation is equal to zero, all
absolute differences are below the cutoff value and the pixels
are thus similar under the chosen metric. MMX instructions do
not require explicit concatenation, instead, the four byte
operands can simply be viewed as a DWORD operand and
compared against zero using the PCMPEQD instruction.

Note that the implementation of unsigned comparison in step 2
does not produce "clean" masks of all 1s or all Os like the MMX
compare instructions since this is not needed in the example
code. Where this is required, the output for an unsigned
comparison may be created as follows:
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Example 2:

a>b ? -1 : 0 ==> MOVQ MMregl, [al]
PSUBUS* MMregl, [b]
PCMPGT* MMregl, [zero]

a<=p? -1 : 0 == MOVQ MMregl, [al
PSUBUS* MMregl, [b]
PCMPEQ* MMregl, [zero]

a<b ? -1 : 0 ==> MOVQ MMregl, [b]
PSUBUS* MMregl, [a]
PCMPGT* MMregl, [zero]

Since MMX defines subtraction with unsigned saturation only
for byte and WORD sized operands, the above code does not
work for comparisons of unsigned DWORD operands.

Example 3:

#include <stdlib.h>
#include <stdio.h>

Jidefine TOL 5

typedef struct ({
unsigned char r, g, b, a;
} PIXEL;

##ifdef C_VERSION
int _stdcall pixels_similar (PIXEL pixell, PIXEL pixel2)
{

return ((Tabs(((int)pixell.r) ((int)pixel2.r)) < TOL) &&
(Tabs(((int)pixell.g) ((int)pixel2.g)) < TOL) &&
(Tabs(((int)pixell.b) ((int)pixel2.b)) < TOL) &&
(Tabs(((int)pixell.a) ((int)pixelz.a)) < T0L)) ? 1 : O;

}

ffelse /* IC_VERSION */

static unsigned int tolerance = {((TOL-1) << 24) | ((TOL-1) << 16) |
((TOL-1) << 8) | ((TOL-1) << 0) };

__declspec (naked) int _stdcall pixels_similar (PIXEL pixell, PIXEL pixel2)
{

_asm {
MOVD MMO, [ESP+8] ;al ...orl
MOVD MM1, [ESP+4] ;a2 ... re
MOVQ MM2, MMO ;al ... orl
PSUBUSB MMO, MM1 ;al>a2?al-a2:0 ... rl>r2?rl-r2:0
PSUBUSB MM1, MM2 ;al<=az27a2-al:0 ... r1<=r2?0:r2-rl1:0
MOVD MMZ, [tolerance];TOL-1 TOL-1 TOL-1 TOL-1
POR MMO, MM1 ;da=labs(al-a2) ... dr=labs(rl-r2)
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PSUBUSB MMO,

PXOR MMZ,
PCMPEQD MMO,
MOVD EAX,
EMMS

AND EAX,
RET 8

}
)

MM2
MM2
MM2
MMO

;da<TOL?0:da-TOL+1 ... dr<TOL?0:dr-TOL+1

;0

; (da<TOL&&db<TOL&&Ag<TOL&&Ar<TOL) ?0xffffffff:0
;move to EAX because of calling conventions
;clear MMX state

; (da<TOL&&db<TOL&&dg<TOL&&dr<TOL) 2 1 : O

;pop two DWORD arguments and return

ffendif /* C_VERSION */

Use 3DNow!™ PAVGUSB for MPEG-2 Motion Compensation

Use the 3DNow! PAVGUSB instruction for MPEG-2 motion
compensation. The PAVGUSB instruction produces the rounded
averages of the eight unsigned 8-bit integer values in the source
operand (an MMX register or a 64-bit memory location) and the
eight corresponding unsigned 8-bit integer values in the
destination operand (an MMX register). The PAVGUSB
instruction is extremely useful in DVD (MPEG-2) decoding
where motion compensation performs a lot of byte averaging
between and within macroblocks. The PAVGUSB instruction
helps speed up these operations. In addition, PAVGUSB can
free up some registers and make unrolling the averaging loops
possible.

The following code fragment uses original MMX code to
perform averaging between the source macroblock and
destination macroblock:

Example 1 (Avoid):

MOV ESI, DWORD PTR Src_MB

MOV EDI, DWORD PTR Dst_MB

MOV EDX, DWORD PTR SrcStride

MOV EBX, DWORD PTR DstStride

MOVQ MM7, QWORD PTR [ConstFEFE]
MOVQ MM6, QWORD PTR [Const0101]
MOV ECX, 16

L1:

MOVQ MMO, [EST] ;:MMO=QWORD1
MOVQ MM1, [EDI] ;:MM1=QWORD3
MOVQ MM2, MMO

MOVQ MM3, MM1

PAND MM2, MM6

PAND MM3, MM6
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PAND MMO, MM7 ;MMO = QWORD1 & Oxfefefefe
PAND MM1, MM7 ;MM1 = QWORD3 & Oxfefefefe

POR MM2, MM3 ;calculate adjustment

PSRLQ MMO, 1 ;MMO = (QWORD1 & Oxfefefefe)/2
PSRLQ MM1, 1 ;MM1 = (QWORD3 & Oxfefefefe)/?2
PAND MM2, MM6

PADDB MMO, MM1  ;MMO = QWORD1/2 + QWORD3/2 w/o adjustment
PADDB MMO, MMZ2 ;add 1sb adjustment

MOVQ [EDI], MMO

MOVQ MM4, [ESI+8] ; MM4=QWORD?2

MOVQ MM5, [EDI+8] ;MM5=QWORD4

MOVQ MM2, MM4

MOVQ MM3, MM5

PAND MM2, MM6

PAND MM3, MM6

PAND MM4, MM7 ;MMO = QWORD2 & Oxfefefefe
PAND MM5, MM7 ;MM1 = QWORD4 & Oxfefefefe

POR MMZ, MM3 ;calculate adjustment

PSRLQ MM4, 1 ;MMO = (QWORD2 & Oxfefefefe)/2
PSRLQ MM5, 1 ;MM1 = (QWORD4 & Oxfefefefe)/2
PAND MM2, MM6

PADDB MM4, MM5 ;MMO = QWORD2/2 + QWORD4/2 w/o adjustment
PADDB MM4, MM2 ;add Tsb adjustment

MOVQ [EDI+8], MM4

ADD ESI, EDX

ADD EDI, EBX

LOOP L1

The following code fragment uses the 3DNow! PAVGUSB
instruction to perform averaging between the source
macroblock and destination macroblock:

Example 1 (Preferred):

MOV EAX, DWORD PTR Src_MB

MOV EDI, DWORD PTR Dst_MB

MOV EDX, DWORD PTR SrcStride

MOV EBX, DWORD PTR DstStride

MOV ECX, 16

L1:

MOVQ MMO, [EAX] :MMO=QWORD1

MOVQ MM1, [EAX+8] ;MM1=QWORD?

PAVGUSB MMO, [EDI] ; (QWORD1 + QWORD3)/2 with adjustment

PAVGUSB MM1, [EDI+8] ; (QWORD2 + QWORD4)/2 with adjustment
ADD EAX, EDX

MOVQ LEDI], MMO
MOVQ LEDI+8], MMI1
ADD EDI, EBX
LOOP L1
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Efficient Implementation of floor() Using 3DNow!™

Instructions

The function floor() returns the greatest integer less than or
equal to a given floating-point argument x. The integer result is
returned as a floating-point number. In other words, floor()
implements a floating-point-to-integer conversion that rounds
towards negative infinity and then converts the result back to a
floating-point number.

The 3DNow! instruction set supports only one type of floating-
point to integer conversion, namely truncation, i.e., a
conversion that rounds toward zero. For arguments greater than
or equal to zero, rounding towards zero and rounding towards
negative infinity returns identical results. For negative
arguments, rounding towards negative infinity produces results
that are smaller by 1 than results from rounding towards zero,
unless the input is an integer.

The following code efficiently computes floor() based on the
definition that floor(x) <= x. It uses PF2ID and PI2FD to
compute float(trunc(x)). If the result is greater than x, it
conditionally decrements the result by 1, thus computing
floor(x). This computation transfers the input into the integer
domain during the intermediate computation, which leads to
incorrect results due to integer overflow with saturation if
abs(x) > 2731. This issue is addressed by observing that for
single-precision numbers with absolute value > 2724, the
number contains only integer bits, and therefore floor(x) = x.
The computation below, therefore, returns x for x > 2/24.

Example:

MABS DQ 7FFFFFFF/FFFFFFFR
TTTF DQ 4B8000004B800000N

;p IN: mm0 = x
;3 OUT: mmO = floor(x)

MOVQ MM3, [MABS] :mask for absolute value

PF2ID MM1, MMO ;trunc(x)

MOVQ MM4, [TTTF] ;2724

PAND MM3, MMO ;abs(x)

PI2FD MM2, MM1 ;float(trunc(x))

PCMPGTD MM3, MM4 ;abs(x) > 27224 : Oxffffffff : 0
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Stream of Packed Unsigned Bytes

MOVQ MM4,
PFCMPGT MM2,
PAND MMO,
PADDD  MMI,
PI2FD MM4,
PANDN MM3,
POR MMO,

MMO
MM4
MM3
MM2
MM1
MM4
MM3

AMD Athlon™ Processor x86 Code Optimization

: trunc(x)

T X
;float(trunc(x)) > x 2 Oxffffffff : O
;abs(x) > 2724 7 x : 0
;float(trunc(x)) > x 2 trunc(x)-1
;floor(x)
;abs(x) > 2224 2 0 : floor(x)
;abs(x) > 2724 ? x : floor(x)

The following code is an example of how to process a stream of
packed unsigned bytes (like RGBA information) with faster
3DNow! instructions.

Example 1:

outside Tloop:

PXOR

inside loop:
MOVD
PUNPCKLBW
MOVQ
PUNPCKLWD
PUNPCKHWD
PI2FD

PI2FD

MMO,

MMI,
MM1,
MM2Z,
MM1,
MM2Z,
MM1,
MMZ,

MMO

[VAR]
MMO
MM1
MMO
MMO
MM1
MM2

0 | v[£31,vL2]1,v[1]1,v[0]
0,v[11,0,v[0]
0,v[11,0,v[0]

;0,v[3],0,v[2]
;0,v[31,0,v[2]

0,0,0,v[1]
0,0,0,v[3]
float(v[1])
float(v[3])

0,0,0,v[0]
0,0,0,v[2]
float(v[0])
float(v[2])
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Complex Number Arithmetic

Complex numbers have a “real” part and an “imaginary” part.
Multiplying complex numbers (ex. 3 + 4i) is an integral part of
many algorithms such as Discrete Fourier Transform (DFT) and
complex FIR filters. Complex number multiplication is shown
below:

(srcO0.real + srcO.imag) * (srcl.real + srcl.imag) = result
result = (result.real + result.imag)

result.real = srcO.real*srcl.real - srcO.imag*srcl.imag
result.imag = srcO.real*srcl.imag + srcO.imag*srcl.real

Example 1:

(14+27) * (3+4i) => result.real + result.imag
result.real = 1*3 - 2*4 = -5

result.imag = 1%47 + 2i*3 = 101

result = -5 +101

Assuming that complex numbers are represented as two
element vectors [v.real, v.imag], one can see the need for
swapping the elements of srcl to perform the multiplies for
result.imag, and the need for a mixed positive/negative
accumulation to complete the parallel computation of
result.real and result.imag.

PSWAPD performs the swapping of elements for srcl and
PFPNACC performs the mixed positive/negative accumulation
to complete the computation. The code example below
summarizes the computation of a complex number multiply.

Example 2:

;MMO = sO.imag | sO.real ;reg_hi | reg_lo

;MM1 = sl.imag | sl.real

PSWAPD ~ MMZ, MMO ;M2 = sO.real | sO.imag

PFMUL MMO, MM1 ;MO = sO.imag*sl.imag | sO.real*sl.real

PFMUL MM1, MM2 ;M1 = sO.real*sl.imag | sO.imag*sl.real
|

PFPNACC MMO, MM1 ;MO = res.imag res.real

PSWAPD supports independent source and result operands and
enables PSWAPD to also perform a copy function. In the above
example, this eliminates the need for a separate “MOVQ MM2,
MMO” instruction.

176 3DNow!™ and MMX™ Optimizations Chapter 10



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

11

General x86 Optimization
Guidelines

Short Forms

This chapter describes general code optimization techniques
specific to superscalar processors (that is, techniques common
to the AMD-K6® processor, AMD Athlon™ processor, and
Pentium® family processors). In general, all optimization
techniques used for the AMD-K6 processor, Pentium, and
Pentium Pro processors either improve the performance of the
AMD Athlon processor or are not required and have a neutral
effect (usually due to fewer coding restrictions with the
AMD Athlon processor).

Use shorter forms of instructions to increase the effective
number of instructions that can be examined for decoding at
any one time. Use 8-bit displacements and jump offsets where
possible.

Example 1 (Avoid):
CMP REG, O

Example 2 (Preferred):
TEST REG, REG

Although both of these instructions have an execute latency of
one, fewer opcode bytes need to be examined by the decoders
for the TEST instruction.
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Dependencies

Spread out true dependencies to increase the opportunities for
parallel execution. Anti-dependencies and output
dependencies do not impact performance.

Register Operands

Maintain frequently used values in registers rather than in
memory. This technique avoids the comparatively long latencies
for accessing memory.

Stack Allocation

When allocating space for local variables and/or outgoing
parameters within a procedure, adjust the stack pointer and
use moves rather than pushes. This method of allocation allows
random access to the outgoing parameters so that they can be
set up when they are calculated instead of being held
somewhere else until the procedure call. In addition, this
method reduces ESP dependencies and uses fewer execution
resources.
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Appendix A

AMD Athlon™ Processor
Microarchitecture

Introduction

When discussing processor design, it is important to understand
the following terms—architecture, microarchitecture, and design
implementation. The term architecture refers to the instruction
set and features of a processor that are visible to software
programs running on the processor. The architecture
determines what software the processor can run. The
architecture of the AMD Athlon processor is the
industry-standard x86 instruction set.

The term microarchitecture refers to the design techniques used
in the processor to reach the target cost, performance, and
functionality goals. The AMD Athlon processor
microarchitecture is a decoupled decode/execution design
approach. In other words, the decoders essentially operate
independent of the execution units, and the execution core uses
a small number of instructions and simplified circuit design for
fast single-cycle execution and fast operating frequencies.

The term design implementation refers to the actual logic and
circuit designs from which the processor is created according to
the microarchitecture specifications.
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AMD Athlon™ Processor Microarchitecture

The innovative AMD Athlon processor microarchitecture
approach implements the x86 instruction set by processing
simpler operations (OPs) instead of complex x86 instructions.
These OPs are specially designed to include direct support for
the x86 instructions while observing the high-performance
principles of fixed-length encoding, regularized instruction
fields, and a large register set. Instead of executing complex
x86 instructions, which have lengths from 1 to 15 bytes, the
AMD Athlon processor executes the simpler fixed-length OPs,
while maintaining the instruction coding efficiencies found in
x86 programs. The enhanced microarchitecture used in the
AMD Athlon processor enables higher processor core
performance and promotes straightforward extendibility for
future designs.

Superscalar Processor

The AMD Athlon processor is an aggressive, out-of-order,
three-way superscalar x86 processor. It can fetch, decode, and
issue up to three x86 instructions per cycle with a centralized
instruction control unit (ICU) and two independent instruction
schedulers—an integer scheduler and a floating-point
scheduler. These two schedulers can simultaneously issue up to
nine OPs to the three general-purpose integer execution units
(IEUs), three address-generation units (AGUs), and three
floating-point/3DNow!™/MMX™ execution units. The
AMD Athlon moves integer instructions down the integer
execution pipeline, which consists of the integer scheduler and
the IEUs, as shown in Figure 1 on page 181. Floating-point
instructions are handled by the floating-point execution
pipeline, which consists of the floating-point scheduler and the
x87/3DNow!/MMX execution units.
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32-Entry L1 TLB/256-Entry L2 TLB

System Interface L2 SRAMs

Figure 1. AMD Athlon™ Processor Block Diagram

Instruction Cache

The out-of-order execute engine of the AMD Athlon processor
contains a very large 64-Kbyte L1 instruction cache. The L1
instruction cache is organized as a 64-Kbyte, two-way,
set-associative array. Each line in the instruction array is 64
bytes long. Functions associated with the L1 instruction cache
are instruction loads, instruction prefetching, instruction
predecoding, and branch prediction. Requests that miss in the
L1 instruction cache are fetched from the backside L2 cache or,
subsequently, from the local memory using the bus interface
unit (BIU).

The instruction cache generates fetches on the naturally
aligned 64 bytes containing the instructions and the next
sequential line of 64 bytes (a prefetch). The principal of
program spatial locality makes data prefetching very effective
and avoids or reduces execution stalls due to the amount of
time wasted reading the necessary data. Cache line
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Predecode

Branch Prediction

replacement is based on a least-recently used (LRU)
replacement algorithm.

The L1 instruction cache has an associated two-level translation
look-aside buffer (TLB) structure. The first-level TLB is fully
associative and contains 24 entries (16 that map 4-Kbyte pages
and eight that map 2-Mbyte or 4-Mbyte pages). The second-level
TLB is four-way set associative and contains 256 entries, which
can map 4-Kbyte pages.

Predecoding begins as the L1 instruction cache is filled.
Predecode information is generated and stored alongside the
instruction cache. This information is used to help efficiently
identify the boundaries between variable length x86
instructions, to distinguish DirectPath from VectorPath
early-decode instructions, and to locate the opcode byte in each
instruction. In addition, the predecode logic detects code
branches such as CALLs, RETURNSs and short unconditional
JMPs. When a branch is detected, predecoding begins at the
target of the branch.

The fetch logic accesses the branch prediction table in parallel
with the instruction cache and uses the information stored in
the branch prediction table to predict the direction of branch
instructions.

The AMD Athlon processor employs combinations of a branch
target address buffer (BTB), a global history bimodal counter
(GHBC) table, and a return address stack (RAS) hardware in
order to predict and accelerate branches. Predicted-taken
branches incur only a single-cycle delay to redirect the
instruction fetcher to the target instruction. In the event of a
mispredict, the minimum penalty is ten cycles.

The BTB is a 2048-entry table that caches in each entry the
predicted target address of a branch.

In addition, the AMD Athlon processor implements a 12-entry
return address stack to predict return addresses from a near or
far call. As CALLs are fetched, the next EIP is pushed onto the
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Early Decoding

DirectPath Decoder

VectorPath Decoder
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return stack. Subsequent RETs pop a predicted return address
off the top of the stack.

The DirectPath and VectorPath decoders perform
early-decoding of instructions into MacroOPs. A MacroOP is a
fixed length instruction which contains one or more OPs. The
outputs of the early decoders keep all (DirectPath or
VectorPath) instructions in program order. Early decoding
produces three MacroOPs per cycle from either path. The
outputs of both decoders are multiplexed together and passed
to the next stage in the pipeline, the instruction control unit.

When the target 16-byte instruction window is obtained from
the instruction cache, the predecode data is examined to
determine which type of basic decode should occur—
DirectPath or VectorPath.

DirectPath instructions can be decoded directly into a
MacroOP, and subsequently into one or two OPs in the final
issue stage. A DirectPath instruction is limited to those x86
instructions that can be further decoded into one or two OPs.
The length of the x86 instruction does not determine DirectPath
instructions. A maximum of three DirectPath x86 instructions
can occupy a given aligned 8-byte block. 16-bytes are fetched at
a time. Therefore, up to six DirectPath x86 instructions can be
passed into the DirectPath decode pipeline.

Uncommon x86 instructions requiring two or more MacroOPs
proceed down the VectorPath pipeline. The sequence of
MacroOPs is produced by an on-chip ROM known as the MROM.
The VectorPath decoder can produce up to three MacroOPs per
cycle. Decoding a VectorPath instruction may prevent the
simultaneous decode of a DirectPath instruction.
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Instruction Control Unit

Data Cache

The instruction control unit (ICU) is the control center for the
AMD Athlon processor. The ICU controls the following
resources—the centralized in-flight reorder buffer, the integer
scheduler, and the floating-point scheduler. In turn, the ICU is
responsible for the following functions—MacroOP dispatch,
MacroOP retirement, register and flag dependency resolution
and renaming, execution resource management, interrupts,
exceptions, and branch mispredictions.

The ICU takes the three MacroOPs per cycle from the early
decoders and places them in a centralized, fixed-issue reorder
buffer. This buffer is organized into 24 lines of three MacroOPs
each. The reorder buffer allows the ICU to track and monitor up
to 72 in-flight MacroOPs (whether integer or floating-point) for
maximum instruction throughput. The ICU can simultaneously
dispatch multiple MacroOPs from the reorder buffer to both the
integer and floating-point schedulers for final decode, issue,
and execution as OPs. In addition, the ICU handles exceptions
and manages the retirement of MacroOPs.

The L1 data cache contains two 64-bit ports. It is a
write-allocate and writeback cache that uses an LRU
replacement policy. The data cache and instruction cache are
both two-way set-associative and 64-Kbytes in size. It is divided
into 8 banks where each bank is 8 bytes wide. In addition, this
cache supports the MOESI (Modified, Owner, Exclusive,
Shared, and Invalid) cache coherency protocol and data parity.

The L1 data cache has an associated two-level TLB structure.
The first-level TLB is fully associative and contains 32 entries
(24 that map 4-Kbyte pages and eight that map 2-Mbyte or
4-Mbyte pages). The second-level TLB is four-way set
associative and contains 256 entries, which can map 4-Kbyte

pages.
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Integer Scheduler
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The integer scheduler is based on a three-wide queuing system
(also known as a reservation station) that feeds three integer
execution positions or pipes. The reservation stations are six
entries deep, for a total queuing system of 18 integer
MacroOPs.Each reservation station divides the MacroOPs into
integer and address generation OPs, as required.

Integer Execution Unit

The integer execution pipeline consists of three identical
pipes—0, 1, and 2. Each integer pipe consists of an integer
execution unit (IEU) and an address generation unit (AGU).
The integer execution pipeline is organized to match the three
MacroOP dispatch pipes in the ICU as shown in Figure 2 on
page 185. MacroOPs are broken down into OPs in the
schedulers. OPs issue when their operands are available either
from the register file or result buses.

OPs are executed when their operands are available. OPs from
a single MacroOP can execute out-of-order. In addition, a
particular integer pipe can be executing two OPs from different
MacroOPs (one in the IEU and one in the AGU) at the same
time.

Instruction Control Unit and Register Files A
i MacroOPs i MacroOPs i
Integer Scheduler 2
(18-entry)
8
Figure 2. Integer Execution Pipeline
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Each of the three IEUs are general purpose in that each
performs logic functions, arithmetic functions, conditional
functions, divide step functions, status flag multiplexing, and
branch resolutions. The AGUs calculate the logical addresses
for loads, stores, and LEAs. A load and store unit reads and
writes data to and from the L1 data cache. The integer
scheduler sends a completion status to the ICU when the
outstanding OPs for a given MacroOP are executed.

All integer operations can be handled within any of the three
IEUs with the exception of multiplies. Multiplies are handled
by a pipelined multiplier that is attached to the pipeline at pipe
0. See Figure 2 on page 185. Multiplies always issue to integer
pipe 0, and the issue logic creates results bus bubbles for the
multiplier in integer pipes 0 and 1 by preventing non-multiply
OPs from issuing at the appropriate time.

Floating-Point Scheduler

The AMD Athlon processor floating-point logic is a
high-performance, fully-pipelined, superscalar, out-of-order
execution unit. It is capable of accepting three MacroOPs of any
mixture of x87 floating-point, 3DNow! or MMX operations per
cycle.

The floating-point scheduler handles register renaming and has
a dedicated 36-entry scheduler buffer organized as 12 lines of
three MacroOPs each. It also performs OP issue, and
out-of-order execution. The floating-point scheduler
communicates with the ICU to retire a MacroOP, to manage
comparison results from the FCOMI instruction, and to back
out results from a branch misprediction.
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Floating-Point Execution Unit

The floating-point execution unit (FPU) is implemented as a
coprocessor that has its own out-of-order control in addition to
the data path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 3 shows a block diagram of the dataflow through
the FPU.

Instruction Control Unit

Pipeline
Stage
7
8
9
10
FPU Register File (88-entry) 11
" FADD - FMUL : 12
« MMX™ ALU || * MMX ALU TOF to
« 3DNow! ™ e MMX Mul FSTORE 15
_ + 3DNow!

Figure 3. Floating-Point Unit Block Diagram

As shown in Figure 3, the floating-point logic uses three
separate execution positions or pipes for superscalar x87,
3DNow! and MMX operations. The first of the three pipes is
generally known as the adder pipe (FADD), and it contains
3DNow! add, MMX ALU/shifter, and floating-point add
execution units. The second pipe is known as the multiplier
(FMUL). It contains a 3DNow!/MMX multiplier/reciprocal unit,
an MMX ALU and a floating-point multiplier/divider/square
root unit. The third pipe is known as the floating-point
load/store (FSTORE), which handles floating-point constant
loads (FLDZ, FLDPI, etc.), stores, FILDs, as well as many OP
primitives used in VectorPath sequences.
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Load-Store Unit (LSU)

Result Buses
from
Core

Figure 4. Load/Store Unit

The load-store unit (LSU) manages data load and store accesses
to the L1 data cache and, if required, to the backside L2 cache
or system memory. The 44-entry LSU provides a data interface
for both the integer scheduler and the floating-point scheduler.
It consists of two queues—a 12-entry queue for L1 cache load
and store accesses and a 32-entry queue for L2 cache or system
memory load and store accesses. The 12-entry queue can
request a maximum of two L1 cache loads and two L1 cache
(32-bits) stores per cycle. The 32-entry queue effectively holds
requests that missed in the L1 cache probe by the 12-entry
queue. Finally, the LSU ensures that the architectural load and
store ordering rules are preserved (a requirement for x86
architecture compatibility).

Operand
Buses
D\

\

N /E
= LSU =g
= 44-Entry =0
= 64KH

Store Data
to BIU
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L2 Cache Controller

Write Combining

The AMD Athlon processor contains a very flexible onboard L2
controller. It uses an independent backside bus to access up to
8-Mbytes of industry-standard SRAMs. There are full on-chip
tags for a 512-Kbyte cache, while larger sizes use a partial tag
system. In addition, there is a two-level data TLB structure. The
first-level TLB is fully associative and contains 32 entries (24
that map 4-Kbyte pages and eight that map 2-Mbyte or 4-Mbyte
pages). The second-level TLB is four-way set associative and
contains 256 entries, which can map 4-Kbyte pages.

See Appendix C, “Implementation of Write Combining” on
page 205 for detailed information about write combining.

AMD Athlon™ System Bus

The AMD Athlon system bus is a high-speed bus that consists of
a pair of unidirectional 13-bit address and control channels and
a bidirectional 64-bit data bus. The AMD Athlon system bus
supports low-voltage swing, multiprocessing, clock forwarding,
and fast data transfers. The clock forwarding technique is used
to deliver data on both edges of the reference clock, therefore
doubling the transfer speed. A four-entry 64-byte write buffer is
integrated into the BIU. The write buffer improves bus
utilization by combining multiple writes into a single large
write cycle. By using the AMD Athlon system bus, the
AMD Athlon processor can transfer data on the 64-bit data bus
at 200 MHz, which yields an effective throughput of 1.6-Gbyte
per second.
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Appendix B

Pipeline and Execution Unit
Resources Overview

The AMD Athlon™ processor contains two independent
execution pipelines—one for integer operations and one for
floating-point operations. The integer pipeline manages x86
integer operations and the floating-point pipeline manages all
x87, 3DNow!™ and MMX™ instructions. This appendix
describes the operation and functionality of these pipelines.

Fetch and Decode Pipeline Stages

Figure 5 and Figure 6 on page 192 show the AMD Athlon
processor instruction fetch and decoding pipeline stages. The
pipeline consists of one cycle for instruction fetches and four
cycles of instruction alignment and decoding. The three ports in
stage 5 provide a maximum bandwidth of three MacroOPs per
cycle for dispatching to the instruction control unit (ICU).
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Figure 5. Fetch/Scan/Align/Decode Pipeline Hardware

The most common x86 instructions flow through the DirectPath
pipeline stages and are decoded by hardware. The less common
instructions, which require microcode assistance, flow through
the VectorPath. Although the DirectPath decodes the common
x86 instructions, it also contains VectorPath instruction data,
which allows it to maintain dispatch order at the end of cycle 5.

[1] 1 [2] " Bl [+ ] [5 ] (6] 1
Directpat" .......................................... >
l ‘ ALIGNT ALIGN2 EDEC .
FETCH SCAN >
MECTL MEROM MESEQ
Vettorpath .......................................... »

Figure 6. Fetch/Scan/Align/Decode Pipeline Stages
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The FETCH pipeline stage calculates the address of the next
x86 instruction window to fetch from the processor caches or
system memory.

SCAN determines the start and end pointers of instructions.
SCAN can send up to six aligned instructions (DirectPath and
VectorPath) to ALIGN1 and only one VectorPath instruction to
the microcode engine (MENG) per cycle.

Because each 8-byte buffer (quadword queue) can contain up to
three instructions, ALIGN1 can buffer up to a maximum of nine
instructions, or 24 instruction bytes. ALIGN1 tries to send three
instructions from an 8-byte buffer to ALIGN2 per cycle.

For VectorPath instructions, the microcode engine control
(MECTL) stage of the pipeline generates the microcode entry
points.

ALIGN2 prioritizes prefix bytes, determines the opcode,
ModR/M, and SIB bytes for each instruction and sends the
accumulated prefix information to EDEC.

In the microcode engine ROM (MEROM) pipeline stage, the
entry-point generated in the previous cycle, MECTL, is used to
index into the MROM to obtain the microcode lines necessary
to decode the instruction sent by SCAN.

The early decode (EDEC) stage decodes information from the
DirectPath stage (ALIGN2) and VectorPath stage (MEROM)
into MacroOPs. In addition, EDEC determines register
pointers, flag updates, immediate values, displacements, and
other information. EDEC then selects either MacroOPs from
the DirectPath or MacroOPs from the VectorPath to send to the
instruction decoder (IDEC) stage.

The microcode engine decode (MEDEC) stage converts x86
instructions into MacroOPs. The microcode engine sequencer
(MESEQ) performs the sequence controls (redirects and
exceptions) for the MENG.

At the instruction decoder (IDEC)/rename stage, integer and
floating-point MacroOPs diverge in the pipeline. Integer
MacroOPs are scheduled for execution in the next cycle.
Floating-point MacroOPs have their floating-point stack
operands mapped to registers. Both integer and floating-point
MacroOPs are placed into the ICU.
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Integer Pipeline Stages

The integer execution pipeline consists of four or more stages
for scheduling and execution and, if necessary, accessing data
in the processor caches or system memory. There are three
integer pipes associated with the three IEUs.

Instruction Control Unit and Register Files P age
l MacroOPs l MacroOPs l
Integer Scheduler ,
(18-entry)
ew | 8

Figure 7. Integer Execution Pipeline

Figure 7 and Figure 8 show the integer execution resources and
the pipeline stages, which are described in the following
sections.

E] L] [y [Dedq [Dods

SCHED EXEC> ADDGEI> DC ACC RESP

Figure 8. Integer Pipeline Stages
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In the scheduler (SCHED) pipeline stage, the scheduler buffers
can contain MacroOPs that are waiting for integer operands
from the ICU or the IEU result bus. When all operands are
received, SCHED schedules the MacroOP for execution and
issues the OPs to the next stage, EXEC.

In the execution (EXEC) pipeline stage, the OP and its
associated operands are processed by an integer pipe (either
the IEU or the AGU). If addresses must be calculated to access
data necessary to complete the operation, the OP proceeds to
the next stages, ADDGEN and DCACC.

In the address generation (ADDGEN) pipeline stage, the load
or store OP calculates a linear address, which is sent to the data
cache TLBs and caches.

In the data cache access (DCACC) pipeline stage, the address
generated in the previous pipeline stage is used to access the
data cache arrays and TLBs. Any OP waiting in the scheduler
for this data snarfs this data and proceeds to the EXEC stage
(assuming all other operands were available).

In the response (RESP) pipeline stage, the data cache returns
hit/miss status and data for the request from DCACC.
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Floating-Point Pipeline Stages

The floating-point unit (FPU) is implemented as a coprocessor
that has its own out-of-order control in addition to the data
path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 9 shows a block diagram of the dataflow through
the FPU.
Pipeline

Stage

Instruction Control Unit
Stack Map 7

== =) =S— =
Register Rename 8
- o =

Scheduler (36-entry)

ag= 10
FPU Register File (88-er@<— 11

"

"~ FADD - FMUL : 12

« MMX™ ALU | [ * MMXALU || e to

«3DNow!™ || * MMX Mul jTORS 15
+ 3DNow!

Figure 9. Floating-Point Unit Block Diagram

The floating-point pipeline stages 7-15 are shown in Figure 10
and described in the following sections. Note that the
floating-point pipe and integer pipe separates at cycle 7.

Ll [e]7 [7 [2]] [1s]7

5 s 3 o s s> e [

Figure 10. Floating-Point Pipeline Stages
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Cycle 8-REGREN

Cycle 9-SCHEDW

Cycle 10-SCHED

Cycle 11 -FREG

Cycle 12-15-
Floating-Point
Execution (FEXEC1-4)
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The stack rename (STKREN) pipeline stage in cycle 7 receives
up to three MacroOPs from IDEC and maps stack-relative
register tags to virtual register tags.

The register renaming (REGREN) pipeline stage in cycle 8 is
responsible for register renaming. In this stage, virtual register
tags are mapped into physical register tags. Likewise, each
destination is assigned a new physical register. The MacroOPs
are then sent to the 36-entry FPU scheduler.

The scheduler write (SCHEDW) pipeline stage in cycle 9 can
receive up to three MacroOPs per cycle.

The schedule (SCHED) pipeline stage in cycle 10 schedules up
to three MacroOPs per cycle from the 36-entry FPU scheduler
to the FREG pipeline stage to read register operands.
MacroOPs are sent when their operands and/or tags are
obtained.

The register file read (FREG) pipeline stage reads the
floating-point register file for any register source operands of
MacroOPs. The register file read is done before the MacroOPs
are sent to the floating-point execution pipelines.

The FPU has three logical pipes—FADD, FMUL, and FSTORE.
Each pipe may have several associated execution units. MMX
execution is in both the FADD and FMUL pipes, with the
exception of MMX instructions involving multiplies, which are
limited to the FMUL pipe. The FMUL pipe has special support
for long latency operations.

DirectPath/VectorPath operations are dispatched to the FPU
during cycle 6, but are not acted upon until they receive
validation from the ICU in cycle 7.
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Execution Unit Resources

Terminology
The execution units operate with two types of register values—
operands and results. There are three operand types and two
result types, which are described in this section.
Operands The three types of operands are as follows:
m Address register operands—Used for address calculations of
load and store instructions
m Data register operands—Used for register instructions
m Store data register operands— Used for memory stores
Results The two types of results are as follows:
m Data register results—Produced by load or register
instructions
m Address register results—Produced by LEA or PUSH
instructions
Examples The following examples illustrate the operand and result
definitions:
ADD EAX, EBX
The ADD instruction has two data register operands (EAX
and EBX) and one data register result (EAX).
MOV EBX, [ESP+4*ECX+8] ;Load
The Load instruction has two address register operands
(ESP and ECX as base and index registers, respectively)
and a data register result (EBX).
MOV [ESP+4*ECX+8], EAX ;Store
The Store instruction has a data register operand (EAX)
and two address register operands (ESP and ECX as base
and index registers, respectively).
LEA EST, [ESP+4*ECX+8]
The LEA instruction has address register operands (ESP
and ECX as base and index registers, respectively), and an
address register result (ESI).
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Integer Pipeline Operations

Table 2 shows the category or type of operations handled by the
integer pipeline. Table 3 shows examples of the decode type.

Table 2. Integer Pipeline Operation Types

Category Execution Unit
Integer Memory Load or Store Operations L/S
Address Generation Operations AGU
Integer Execution Unit Operations IEU
Integer Multiply Operations IMUL

Table 3. Integer Decode Types

x86 Instruction | Decode Type OPs
MOV  CX, [SP+4] DirectPath AGU, L/S
ADD AX, BX DirectPath IEU
CMP  CX, [AX] VectorPath | AGU, L/S, IEU
VA Addr DirectPath IEU

As shown in Table 2, the MOV instruction early decodes in the
DirectPath decoder and requires two OPs—an address
generation operation for the indirect address and a data load
from memory into a register. The ADD instruction early
decodes in the DirectPath decoder and requires a single OP
that can be executed in one of the three IEUs. The CMP
instruction early decodes in the VectorPath and requires three
OPs—an address generation operation for the indirect address,
a data load from memory, and a compare to CX using an IEU.
The final JZ instruction is a simple operation that early decodes
in the DirectPath decoder and requires a single OP. Not shown
is a load-op-store instruction, which translates into only one
MacroOP (one AGU OP, one IEU OP, and one L/S OP).
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Table 4 shows the category or type of operations handled by the
floating-point execution units. Table 5 shows examples of the

decode types.

Table 4. Floating-Point Pipeline Operation Types

Category

Execution Unit

FPU/3DNow!/MMX Load/store or

Miscellaneous Operations FSTORE
FPU/3DNow!/MMX Multiply Operation FMUL
FPU/3DNow!/MMX Arithmetic Operation FADD

Table 5.  Floating-Point Decode Types

x86 Instruction | Decode Type OPs
FADD ST, ST(i) DirectPath FADD
FSIN VectorPath various
PFACC DirectPath FADD
PFRSQRT DirectPath FMUL

As shown in Table 4, the FADD register-to-register instruction
generates a single MacroOP targeted for the floating-point
scheduler. FSIN is considered a VectorPath instruction because
it is a complex instruction with long execution times, as
compared to the more common floating-point instructions. The
MMX PFACC instruction is DirectPath decodeable and
generates a single MacroOP targeted for the arithmetic
operation execution pipeline in the floating-point logic. Just
like PFACC, a single MacroOP is early decoded for the 3DNow!
PFRSQRT instruction, but it is targeted for the multiply
operation execution pipeline.
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Load/Store Pipeline Operations

The AMD Athlon processor decodes any instruction that
references memory into primitive load/store operations. For
example, consider the following code sample:

MOV AX, [EBX] ;1 Toad MacroOP

PUSH EAX ;1 store MacroQP
POP EAX ;1 lToad MacroOP
ADD [EAX], EBX ;1 lToad/store and 1 TEU MacroOPs
FSTP [EAX] ;1 store MacroQP
MOVQ [EAX], MMO ;1 store MacroQP

As shown in Table 6, the load/store unit (LSU) consists of a
three-stage data cache lookup.

Table 6. Load/Store Unit Stages

Stage 1 (Cycle 8) Stage 2 (Cycle 9) Stage 3 (Cycle 10)
Address Calculation / LS1 | Transport Address to Data | Data Cache Access / LS2
Scan Cache Data Forward

Loads and stores are first dispatched in order into a 12-entry
deep reservation queue called LS1. LLS1 holds loads and stores
that are waiting to enter the cache subsystem. Loads and stores
are allocated into LS1 entries at dispatch time in program
order, and are required by LS1 to probe the data cache in
program order. The AGUs can calculate addresses out of
program order, therefore, LS1 acts as an address reorder buffer.

When a load or store is scanned out of the LS1 queue (stage 1),
it is deallocated from the LS1 queue and inserted into the data
cache probe pipeline (stage 2 and stage 3). Up to two memory
operations can be scheduled (scanned out of LS1) to access the
data cache per cycle. The LSU can handle the following:

m Two 64-bit loads per cycle or
m One 64-bit load and one 64-bit store per cycle or
m Two 32-bit stores per cycle
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Code Sample Analysis

The samples in Table 7 on page 203 and Table 8 on page 204
show the execution behavior of several series of instructions as
a function of decode constraints, dependencies, and execution
resource constraints.

The sample tables show the x86 instructions, the decode pipe in
the integer execution pipeline, the decode type, the clock
counts, and a description of the events occurring within the
processor. The decode pipe gives the specific IEU used (see
Figure 7 on page 194). The decode type specifies either
VectorPath (VP) or DirectPath (DP).

The following nomenclature is used to describe the current
location of a particular operation:

m D—Dispatch stage (Allocate in ICU, reservation stations,
load-store (LLS1) queue)

m I—Issue stage (Schedule operation for AGU or FU
execution)

m E—Integer Execution Unit (IEU number corresponds to
decode pipe)

m & —Address Generation Unit (AGU number corresponds to
decode pipe)

m M—Multiplier Execution

m S—Load/Store pipe stage 1 (Schedule operation for
load/store pipe)

m A—Load/Store pipe stage 2 (1st stage of data cache/LS2
buffer access)

m $—Load/Store pipe stage 3 (2nd stage of data cache/LS2
buffer access)

Note: Instructions execute more efficiently (that is, without
delays) when scheduled apart by suitable distances based on
dependencies. In general, the samples in this section show
poorly scheduled code in order to illustrate the resultant
effects.
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Table 7. Sample 1 - Integer Register Operations

Instruction Decode | Decode Clocks

Number Instruction Pipe | Type | | | 2 | 3 | 4 |5 |6 | 7|38
1 IMUL EAX, ECX 0 VP D | M M M M
2 INC  ESI 0 DP D | E
3 MOV EDI, 0x07F4 1 DP D | E
4 ADD  EDI, EBX 2 DP D | E
5 SHL EAX 8 0 DP D | E
6 OR EAX, OXOF 1 DP D | E
7 INC EBX 2 DP D | E
8 ADD  ESI, EDX 0 DP D | E

ARSI A

Comments for Each Instruction Number
1.

The IMUL is a VectorPath instruction. It cannot be decoded or paired with other operations and,
therefore, dispatches alone in pipe 0. The multiply latency is four cycles.

The simple INC operation is paired with instructions 3 and 4. The INC executes in IEUO in cycle 4.
The MOV executes in IEUT in cycle 4.
The ADD operation depends on instruction 3. It executes in IEU2 in cycle 5.

The SHL operation depends on the multiply result (instruction 1). The MacroOP waits in a reservation
station and is eventually scheduled to execute in cycle 7 after the multiply result is available.

This operation executes in cycle 8 in IEU1.

This simple operation has a resource contention for execution in IEU2 in cycle 5. Therefore, the operation
does not execute until cycle 6.

The ADD operation executes immediately in IEUO after dispatching.
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Table 8. Sample 2 - Integer Register and Memory Load Operations

Instruc Decode | Decode Clocks

Num Instruction Pipe Type |1 (2 (3| 4 5|6 |7 | 8|9 (10112
1 DEC EDX 0 DP D| I |E

2 MOV  EDI, [ECX] 1 DP D| I |&S| A |S

3 SUB  EAX, [EDX+20] 2 DP D| I |&S| A |9l]|E

4 |SAR EAX 5 0 DP D I | E

5 |ADD ECX, [EDI+4] 1 DP D | &S| A | S

6 |AND EBX, OxIF 2 DP D| I | E

7 MOV  ESI, [0xOF100] 0 DP D| I |&|S|A]|S

8 |OR  ECX [ESI+EAX*4+8] 1 DP D | |&S|A|S|E

Comments for Each Instruction Number
. The ALU operation executes in IEUO.

. The load operation generates the address in AGU1 and is simultaneously scheduled for the load/store pipe in cycle 3. In
cycles 4 and 5, the load completes the data cache access.

. The load-execute instruction accesses the data cache in tandem with instruction 2. After the load portion completes, the
subtraction is executed in cycle 6 in IEU2.

. The shift operation executes in IEUO (cycle 7) after instruction 3 completes.

. This operation is stalled on its address calculation waiting for instruction 2 to update EDI. The address is calculated in
cycle 6. In cycle 7/8, the cache access completes.

. This simple operation executes quickly in [EU2

. The address for the load is calculated in cycle 5 in AGUO. However, the load is not scheduled to access the data cache
until cycle 6. The load is blocked for scheduling to access the data cache for one cycle by instruction 5. In cycles 7 and 8,
instruction 7 accesses the data cache concurrently with instruction 5.

. The load execute instruction accesses the data cache in cycles 10/11 and executes the ‘OR’ operation in IEU1 in cycle 12.
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Appendix C

Implementation of
Write Combining

Introduction

This appendix describes the memory write-combining feature
as implemented in the AMD Athlon™ processor family. The
AMD Athlon processor supports the memory type and range
register (MTRR) and the page attribute table (PAT) extensions,
which allow software to define ranges of memory as either
writeback (WB), write-protected (WP), writethrough (WT),
uncacheable (UC), or write-combining (WC).

Defining the memory type for a range of memory as WC or WT
allows the processor to conditionally combine data from
multiple write cycles that are addressed within this range into a
merge buffer. Merging multiple write cycles into a single write
cycle reduces processor bus utilization and processor stalls,
thereby increasing the overall system performance.

To understand the information presented in this appendix, the
reader should possess a knowledge of K86™ processors, the x86
architecture, and programming requirements.
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Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations:
UC—Uncacheable memory type
WC—Write-combining memory type
WT—Writethrough memory type

WP —Write-protected memory type
WB—Writeback memory type

One Byte—8 bits

One Word—16 bits

Longword—32 bits (same as a x86 doubleword)
Quadword—64 bits or 2 longwords
Octaword—128 bits or 2 quadwords

Cache Block—64 bytes or 4 octawords or 8 quadwords

What is Write Combining?

Write combining is the merging of multiple memory write
cycles that target locations within the address range of a write
buffer. The AMD Athlon processor combines multiple
memory-write cycles to a 64-byte buffer whenever the memory
address is within a WC or WT memory type region. The
processor continues to combine writes to this buffer without
writing the data to the system, as long as certain rules apply
(see Table 9 on page 208 for more information).

Programming Details

The steps required for programming write combining on the
AMD Athlon processor are as follows:

1. Verify the presence of an AMD Athlon processor by using
the CPUID instruction to check for the instruction family
code and vendor identification of the processor. Standard
function 0 on AMD processors returns a vendor
identification string of “AuthenticAMD” in registers EBX,
EDX, and ECX. Standard function 1 returns the processor
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signature in register EAX, where EAX[11-8] contains the
instruction family code. For the AMD Athlon processor, the
instruction family code is six.

2. In addition, the presence of the MTRRs is indicated by bit
12 and the presence of the PAT extension is indicated by bit
16 of the extended features bits returned in the EDX
register by CPUID function 8000_0001h. See the AMD
Processor Recognition Application Note, order# 20734 for
more details on the CPUID instruction.

3. Write combining is controlled by the MTRRs and PAT.
Write combining should be enabled for the appropriate
memory ranges. The AMD Athlon processor MTRRs and
PAT are compatible with the Pentium® II.

Write-Combining Operations

In order to improve system performance, the AMD Athlon
processor aggressively combines multiple memory-write cycles
of any data size that address locations within a 64-byte write
buffer that is aligned to a cache-line boundary. The data sizes
can be bytes, words, longwords, or quadwords.

WC memory type writes can be combined in any order up to a
full 64-byte sized write buffer.

WT memory type writes can only be combined up to a fully
aligned quadword in the 64-byte buffer, and must be combined
contiguously in ascending order. Combining may be opened at
any byte boundary in a quadword, but is closed by a write that is
either not “contiguous and ascending” or fills byte 7.

All other memory types for stores that go through the write
buffer (UC and WP) cannot be combined.

Combining is able to continue until interrupted by one of the
conditions listed in Table 9 on page 208. When combining is
interrupted, one or more bus commands are issued to the
system for that write buffer, as described by Table 10 on
page 209.
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Table 9. Write Combining Completion Events

Event

Comment

Non-WB write outside of
current buffer

The first non-WB write to a different cache block address
closes combining for previous writes. WB writes do not affect
write combining. Only one line-sized buffer can be open for
write combining at a time. Once a buffer is closed for write
combining, it cannot be reopened for write combining.

I/O Read or Write

Any IN/INS or OUT/OUTS instruction closes combining. The
implied memory type for all IN/OUT instructions is UC,
which cannot be combined.

Serializing instructions

Any serializing instruction closes combining. These
instructions include: MOVCRx, MOVDRx, WRMSR, INVD,
INVLPG, WBINVD, LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM,
INIT, HALT.

Flushing instructions

Any flush instruction causes the WC to complete.

Locks

Any instruction or processor operation that requires a cache
or bus lock closes write combining before starting the lock.
Writes within a lock can be combined.

Uncacheable Read

A UC read closes write combining. A WC read closes
combining only if a cache block address match occurs
between the WC read and a write in the write buffer.

Different memory type

Any WT write while write-combining for WC memory or any
WC write while write combining for WT memory closes write
combining.

Write combining is closed if all 64 bytes of the write buffer

Buffer full .

are valid.

If 16 processor clocks have passed since the most recent
WT time-out write for WT write combining, write combining is closed.

There is no time-out for WC write combining.

WT write fills byte 7

Write combining is closed if a write fills the most significant
byte of a quadword, which includes writes that are
misaligned across a quadword boundary. In the misaligned
case, combining is closed by the LS part of the misaligned
write and combining is opened by the MS part of the
misaligned store.

If a subsequent WT write is not in ascending sequential
order, the write combining completes. WC writes have no

WT Nonsequential addressing constraints within the 64-byte line being
combined.
TLB AD bit set Write combining is closed whenever a TLB reload sets the

accessed (A) or dirty (D) bits of a Pde or Pte.
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Sending Write-Buffer Data to the System

Once write combining is closed for a 64-byte write buffer, the
contents of the write buffer are eligible to be sent to the system
as one or more AMD Athlon system bus commands. Table 10
lists the rules for determining what system commands are
issued for a write buffer, as a function of the alignment of the
valid buffer data.

Table 10. AMD Athlon™ System Bus Commands Generation Rules

1.

If all eight quadwords are either full (8 bytes valid) or empty (0 bytes valid), a
Write-Quadword system command is issued, with an 8-byte mask representing
which of the eight quadwords are valid. If this case is true, do not proceed to the
next rule.

If all longwords are either full (4 bytes valid) or empty (0 bytes valid), a
Write-Longword system command is issued for each 32-byte buffer half that
contains at least one valid longword. The mask for each Write-Longword system
command indicates which longwords are valid in that 32-byte write buffer half. If
this case is true, do not proceed to the next rule.

Sequence through all eight quadwords of the write buffer, from quadword 0 to
quadword 7. Skip over a quadword if no bytes are valid. Issue a Write-Quad system
command if all bytes are valid, asserting one mask bit. Issue a Write-Longword
system command if the quadword contains one aligned longword, asserting one
mask bit. Otherwise, issue a Write-Byte system command if there is at least one
valid byte, asserting a mask bit for each valid byte.
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Appendix D

Performance-Monitoring
Counters

Overview

This chapter describes how to use the AMD Athlon™ processor
performance monitoring counters.

The AMD Athlon processor provides four 48-bit performance
counters, which allows four types of events to be monitored
simultaneously. These counters can either count events or
measure duration. When counting events, a counter is
incremented each time a specified event takes place or a
specified number of events takes place. When measuring
duration, a counter counts the number of processor clocks that
occur while a specified condition is true. The counters can
count events or measure durations that occur at any privilege
level. Table 11 on page 214 lists the events that can be counted
with the performance monitoring counters.

The performance counters are not guaranteed to be fully
accurate and should be used as a relative measure of
performance to assist in application tuning. Unlisted event
numbers are reserved and their results undefined.
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Performance Counter Usage

The performance monitoring counters are supported by eight
MSRs—PerfEvtSel[3:0] are the performance event select
MSRs, and PerfCtr[3:0] are the performance counter MSRs.
These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively.

The PerfEvtSel[3:0] registers are located at MSR locations
C001_0000h to C001_0003h. The PerfCtr[3:0] registers are
located at MSR locations C001_0004h to C0001_0007h and are
64-byte registers.

The PerfEvtSel[3:0] registers can be accessed using the
RDMSR/WRMSR instructions only when operating at privilege
level 0. The PerfCtr[3:0] MSRs can be read from any privilege
level using the RDPMC (read performance-monitoring
counters) instruction, if the PCE flag in CR4 is set.

PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h-C001_0003h)

The PerfEvtSel[3:0] MSRs, shown in Figure 11, control the
operation of the performance-monitoring counters, with one
register used to set up each counter. These MSRs specify the
events to be counted, how they should be counted, and the
privilege levels at which counting should take place. The
functions of the flags and fields within these MSRs are as are
described in the following sections.

212 Performance-Monitoring Counters Appendix D



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Counter Mask

I:l — Reserved

Unit Mask Event Mask
Symbol Description Bit
USR User Mode 16
(N Operating System Mode 17
E Edge Detect 18
PC Pin Control 19
INT APIC Interrupt Enable 20
EN Enable Counter 2
INV Invert Mask 23

Figure 11. PerfEvtSel[3:0] Registers

Event Select Field
(Bits 0—7)

Unit Mask Field (Bits
8-15)
USR (User Mode) Flag

(Bit 16)

0S (Operating System
Mode) Flag (Bit 17)

E (Edge Detect) Flag
(Bit 18)

These bits are used to select the event to be monitored. See
Table 11 on page 214 for a list of event masks and their 8-bit
codes.

These bits are used to further qualify the event selected in the
event select field. For example, for some cache events, the mask
is used as a MESI-protocol qualifier of cache states. See
Table 11 on page 214 for a list of unit masks and their 8-bit
codes.

Events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction
with the OS flag.

Events are counted only when the processor is operating at
privilege level 0. This flag can be used in conjunction with the
USR flag.

When this flag is set, edge detection of events is enabled. The
processor counts the number of negated-to-asserted transitions
of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back
assertions to be distinguished. This mechanism allows software
to measure not only the fraction of time spent in a particular
state, but also the average length of time spent in such a state
(for example, the time spent waiting for an interrupt to be
serviced).
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PC (Pin Control) Flag
(Bit 19)

INT (APIC Interrupt
Enable) Flag (Bit 20)

EN (Enable Counter)
Flag (Bit 22)

INV (Invert) Flag (Bit
23)

Counter Mask Field
(Bits 31-24)

22007H/0—June 2000

When this flag is set, the processor toggles the PMi pins when
the counter overflows. When this flag is clear, the processor
toggles the PMi pins and increments the counter when
performance monitoring events occur. The toggling of a pin is
defined as assertion of the pin for one bus clock followed by
negation.

When this flag is set, the processor generates an interrupt
through its local APIC on counter overflow.

This flag enables/disables the PerfEvtSeln MSR. When set,
performance counting is enabled for this counter. When clear,
this counter is disabled.

By inverting the Counter Mask Field, this flag inverts the result
of the counter comparison, allowing both greater than and less
than comparisons.

For events which can have multiple occurrences within one
clock, this field is used to set a threshold. If the field is non-zero,
the counter increments each time the number of events is
greater than or equal to the counter mask. Otherwise if this
field is zero, then the counter increments by the total number of
events.

Table 11. Performance-Monitoring Counters

Nllil‘::ll:ter S(:Jl:i:e Notes / Unit Mask (bits 15-8) Event Description
40h DC Data cache accesses
41h DC Data cache misses
xxX1_xxxxb = Modified (M)
XXXX_1xxxb = Owner (0)
42h DC xxxx_x1xxb = Exclusive (E) Data cache refills from L2
XXXX_Xxx1xb = Shared (S)
XXXX_Xxx1b = Invalid (I)
xxXx1_xxxxb = Modified (M)
XXXX_1xxxb = Owner (0)
43h DC XXxXx_x1xxb = Exclusive (E) Data cache refills from system
XXXX_Xxx1xb = Shared (S)
XXXX_Xxx1b = Invalid (I)
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Table 11. Performance-Monitoring Counters (Continued)

NEI‘:::Lr S?Jl:i:e Notes / Unit Mask (bits 15-8) Event Description
xxX1_xxxxb = Modified (M)
XXXX_1xxxb = Owner (0)
44h DC xxxx_x1xxb = Exclusive (E) Data cache writebacks
XXXX_XX1xh = Shared (S)
XXXX_Xxx1b = Invalid (I)
45h DC L1 DTLB misses and L2 DTLB hits
46h DC L1 and L2 DTLB misses
47h DC Misaligned data references
80h PC Instruction cache fetches
81h PC Instruction cache misses
84h PC L1 ITLB misses (and L2 ITLB hits)
85h PC (L1 and) L2 ITLB misses
S et s (s
Cih FR Retired Ops
Ch R Retired _b'ranches (con_ditior_1a|,
unconditional, exceptions, interrupts)
C3h FR Retired branches mispredicted
Cah FR Retired taken branches
C5h FR Retired taken branches mispredicted
Céh FR Retired far control transfers
C7h R Retired resync branches (only non-
control transfer branches counted)
CDh FR Interrupts masked cycles (IF=0)
Interrupts masked while pending cycles
CEh | PR INTR ooty e
CFh FR Number of taken hardware interrupts
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PerfCtr[3:0] MSRs (MSR Addresses C001_0002h-C001_0007h)

The performance-counter MSRs contain the event or duration
counts for the selected events being counted. The RDPMC
instruction can be used by programs or procedures running at
any privilege level and in virtual-8086 mode to read these
counters. The PCE flag in control register CR4 (bit 8) allows the
use of this instruction to be restricted to only programs and
procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other
instructions. Therefore, it does not necessarily wait until all
previous instructions have been executed before reading the
counter. Similarly, subsequent instructions can begin execution
before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can
directly manipulate the performance counters, using the
RDMSR and WRMSR instructions. A secure operating system
would clear the PCE flag during system initialization, which
disables direct user access to the performance-monitoring
counters but provides a user-accessible programming interface
that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the
performance-monitoring counter MSRs (PerfCtr[3:0]). Instead,
the value should be treated as 64-bit sign extended, which
allows writing both positive and negative values to the
performance counters. The performance counters may be
initialized using a 64-bit signed integer in the range -2*7 and
+247. Negative values are useful for generating an interrupt
after a specific number of events.

Starting and Stopping the Performance-Monitoring Counters

The performance-monitoring counters are started by writing
valid setup information in one or more of the PerfEvtSel[3:0]
MSRs and setting the enable counters flag in the PerfEvtSel0
MSR. If the setup is valid, the counters begin counting
following the execution of a WRMSR instruction, which sets the
enable counter flag. The counters can be stopped by clearing
the enable counters flag or by clearing all the bits in the
PerfEvtSel[3:0] MSRs.
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Event and Time-Stamp Monitoring Software

For applications to use the performance-monitoring counters
and time-stamp counter, the operating system needs to provide
an event-monitoring device driver. This driver should include
procedures for handling the following operations:

m Feature checking

Initialize and start counters
Stop counters

Read the event counters

Read the time stamp counter

The event monitor feature determination procedure must
determine whether the current processor supports the
performance-monitoring counters and time-stamp counter. This
procedure compares the family and model of the processor
returned by the CPUID instruction with those of processors
known to support performance monitoring. In addition, the
procedure checks the MSR and TSC flags returned to register
EDX by the CPUID instruction to determine if the MSRs and
the RDTSC instruction are supported.

The initialization and start counters procedure sets the
PerfEvtSel0 and/or PerfEvtSell MSRs for the events to be
counted and the method used to count them and initializes the
counter MSRs (PerfCtr[3:0]) to starting counts. The stop
counters procedure stops the performance counters. (See
“Starting and Stopping the Performance-Monitoring Counters”
on page 216 for more information about starting and stopping
the counters.)

The read counters procedure reads the values in the
PerfCtr[3:0] MSRs, and a read time-stamp counter procedure
reads the time-stamp counter. These procedures can be used
instead of enabling the RDTSC and RDPMC instructions, which
allow application code to read the counters directly.
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Monitoring Counter Overflow

The AMD Athlon processor provides the option of generating a
debug interrupt when a performance-monitoring counter
overflows. This mechanism is enabled by setting the interrupt
enable flag in one of the PerfEvtSel[3:0] MSRs. The primary
use of this option is for statistical performance sampling.

To use this option, the operating system should do the
following:

m Provide an interrupt routine for handling the counter
overflow as an APIC interrupt

m Provide an entry in the IDT that points to a stub exception
handler that returns without executing any instructions

m Provide an event monitor driver that provides the actual
interrupt handler and modifies the reserved IDT entry to
point to its interrupt routine

When interrupted by a counter overflow, the interrupt handler
needs to perform the following actions:

m Save the instruction pointer (EIP register), code segment
selector, TSS segment selector, counter values and other
relevant information at the time of the interrupt

m Reset the counter to its initial setting and return from the
interrupt

An event monitor application utility or another application
program can read the collected performance information of the
profiled application.
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Appendix E

Programming the MTRR and
PAT

Introduction

The AMD Athlon™ processor includes a set of memory type
and range registers (MTRRs) to control cacheability and access
to specified memory regions. The processor also includes the
Page Address Table for defining attributes of pages. This
chapter documents the use and capabilities of this feature.

The purpose of the MTRRs is to provide system software with
the ability to manage the memory mapping of the hardware.
Both the BIOS software and operating systems utilize this
capability. The AMD Athlon processor’s implementation is
compatible with the Pentium® II. Prior to the MTRR
mechanism, chipsets usually provided this capability.

Memory Type Range Register (MVTRR) Mechanism

The memory type and range registers allow the processor to
determine cacheability of various memory locations prior to
bus access and to optimize access to the memory system. The
AMD Athlon processor implements the MTRR programming
model in a manner compatible with Pentium II.
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There are two types of address ranges: fixed and variable. (See
Figure 12.) For each address range, there is a memory type. For
each 4K, 16K or 64K segment within the first 1 Mbyte of
memory, there is one fixed address MTRR. The fixed address
ranges all exist in the first 1 Mbyte. There are eight variable
address ranges above 1 Mbytes. Each is programmed to a
specific memory starting address, size and alignment. If a
variable range overlaps the lower 1 MByte and the fixed
MTRRs are enabled, then the fixed-memory type dominates.

The address regions have the following priority with respect to
each other:

1. Fixed address ranges

2. Variable address ranges

3. Default memory type (UC at reset)
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FFFFFFFFh
""""""""""""""" SMM TSeg
0-8 Variable Ranges
@222 N
64 Fixed Ranges 100000h
(4 Kbytes each) ——» 256 Kbytes C0000h
16 Fixed Ranges .| 256 Kbytes
(16 Kbytes each) 80000h
8 Fixed Ranges — 512 Kbytes
(64 Kbytes each) 0

Figure 12. MTRR Mapping of Physical Memory
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Five standard memory types are defined by the AMD Athlon
processor: writethrough (WT), writeback (WB), write-protect
(WP), write-combining (WC), and uncacheable (UC). These are
described in Table 12.

Type Number Type Name Type Description
ooh UC—Uncacheable Uncacheable'for reads or writes. Cannot be combined. Must be
non-speculative for reads or writes.
oth WC—Write-Combining Uncachea'ble for reads or writes. Cap be combined. Can be speculative for
reads. Writes can never be speculative.
04h WT—Writethrough Reafjs allocate on a miss, but only to the S-state. Writes do not allocate on
a miss and, for a hit, writes update the cached entry and main memory.
0sh WP —Write-Protect WP is functlopally the same as the WT memory type, except stores do not
actually modify cached data and do not cause an exception.
Reads will allocate on a miss, and will allocate to:
. S state if returned with a ReadDataShared command.
o6h WB —Writeback M state if returned with a ReadDataDirty command.
Writes allocate to the M state, if the read allows the line to be marked E.
MTRR Capability The MTRR capability register is a read-only register that
Register Format defines the specific MTRR capability of the processor and is

defined as follows.

63 1mi 9 8 7 0
F
VCV | VCNT
X

I:l — Reserved

Symbol Description Bits
WC Write Combining Memory Type 10
FIX Fixed Range Registers 8
VCNT No. of Variable Range Registers  7-0

Figure 13. MTRR Capability Register Format

For the AMD Athlon processor, the MTRR capability register
should contain 0508h (write-combining, fixed MTRRs
supported, and eight variable MTRRs defined).
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MTRR Default Type Register Format. The MTRR default type register
is defined as follows.

1mi 9 8 7 3 2 1 0

I:l — Reserved

Symbol Description

E MTRRs Enabled

FE Fixed Range Enabled
Type Default Memory Type

F
ElE Type

Bits
11
10
7-0

Figure 14. MTRR Default Type Register Format

E

FE

Type

MTRRs are enabled when set. All MTRRs (both fixed and
variable range) are disabled when clear, and all of
physical memory is mapped as uncacheable memory
(reset state = 0).

Fixed-range MTRRs are enabled when set. All MTRRs
are disabled when clear. When the fixed-range MTRRs
are enabled and an overlap occurs with a variable-range

MTRR, the fixed-range MTRR takes priority (reset state
=0).

Defines the default memory type (reset state = 0). See
Table 13 for more details.
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Table 13. Standard MTRR Types and Properties

Memory Type

Encodingin | Internally | Writeback

Allows
Speculative | Memory Ordering Model

MTRR Cacheable Cacheable
Reads

Uncacheable (UC)

No No No Strong ordering

Write Combining (WC)

No No Yes Weak ordering

Reserved

Reserved

Writethrough (WT)

0
1
b) - - - -
3
4

Yes No Yes Speculative ordering

Write Protected (WP)

Yes, reads , ]
5 ] No Yes Speculative ordering
No, Writes

Writeback (WB)

6 Yes Yes Yes Speculative ordering

Reserved

7-255 - - - -

MTRR Overlapping

Note that if two or more variable memory ranges match then
the interactions are defined as follows:

1. If the memory types are identical, then that memory type is
used.

2. If one or more of the memory types is UC, the UC memory
type is used.

3. If one or more of the memory types is WT and the only other
matching memory type is WB then the WT memory type is
used.

4. Otherwise, if the combination of memory types is not listed
above then the behavior of the processor is undefined.

The Intel documentation (P6/PII) states that the mapping of
large pages into regions that are mapped with differing memory
types can result in undefined behavior. However, testing shows
that these processors decompose these large pages into 4-Kbyte

pages.

When a large page (2 Mbytes/4 Mbytes) mapping covers a
region that contains more than one memory type (as mapped by
the MTRRs), the AMD Athlon processor does not suppress the
caching of that large page mapping and only caches the
mapping for just that 4-Kbyte piece in the 4-Kbyte TLB.
Therefore, the AMD Athlon processor does not decompose
large pages under these conditions. The fixed range MTRRs are
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not affected by this issue, only the variable range (and MTRR
DefType) registers are affected.

Page Attribute Table (PAT)

MSR Access

I:I — Reserved

31

The Page Attribute Table (PAT) is an extension of the page
table entry format, which allows the specification of memory
types to regions of physical memory based on the linear
address. The PAT provides the same functionality as MTRRs
with the flexibility of the page tables. It provides the operating
systems and applications to determine the desired memory
type for optimal performance. PAT support is detected in the
feature flags (bit 16) of the CPUID instruction.

The PAT is located in a 64-bit MSR at location 277h. It is
illustrated in Figure 15. Each of the eight PAn fields can contain
the memory type encodings as described in Table 12 on
page 222. An attempt to write an undefined memory type
encoding into the PAT will generate a GP fault.

26 24 18 16 10 8 2

PA3 PA2 PA1 PAO

I

63

58 56 50 48 4 40 34 32

PA7 PAG PA5 PA4

Figure 15. Page Attribute Table (MSR 277h)
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Accessing the PAT

MTRRs and PAT

A 3-bit index consisting of the PATi, PCD, and PWT bits of the
page table entry, is used to select one of the seven PAT register
fields to acquire the memory type for the desired page (PATi is
defined as bit 7 for 4-Kbyte PTEs and bit 12 for PDEs which
map to 2-Mbyte or 4-Mbyte pages). The memory type from the
PAT is used instead of the PCD and PWT for the effective
memory type.

A 2-bit index consisting of PCD and PWT bits of the page table
entry is used to select one of four PAT register fields when PAE
(page address extensions) is enabled, or when the PDE doesn’t
describe a large page. In the latter case, the PATi bit for a PTE
(bit 7) corresponds to the page size bit in a PDE. Therefore, the
OS should only use PA0O-3 when setting the memory type for a
page table that is also used as a page directory. See Table 14.

Table 14. PATi 3-Bit Encodings

PATi PCD PWT PAT Entry
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The processor contains MTRRs as described earlier which
provide a limited way of assigning memory types to specific
regions. However, the page tables allow memory types to be
assigned to the pages used for linear to physical translation.

The memory type as defined by PAT and MTRRs are combined
to determine the effective memory type as listed in Table 15
and Table 16. Shaded areas indicate reserved settings.
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Table 15. Effective Memory Type Based on PAT and MTRRs

PAT Memory Type MTRR Memory Type Effective Memory Type
UcC- WB, WT, WP, WC UC-Page
uc UC-MTRR
WC X WC
WT WB, WT WT
uc ucC
WC D
WP (6)]
WP WB, WP WP
uc UC-MTRR
WC, WT D
WB WB WB
uc uc
WC WC
WT WT
Wp WP
Notes:
1. UC-MTRR indicates that the UC attribute came from the MTRRs and that the processor caches
should not be probed for performance reasons.
2. UC-Page indicates that the UC attribute came from the page tables and that the processor
caches must be probed due to page aliasing.
3. All reserved combinations default to CD.
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Table 16. Final Output Memory Types
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Input Memory Type Output Memory Type
é ) AMD-751™
éE) é f % c - g Note
g | 5| §| & £ | %
& = | = | =

° ° uc - ° ° uc 1
° ° D - ° ° c 1
° ° wC - ° ° WC 1
° ° WT - ° ° WT 1
° ° WP - ° ° WP 1
° ° WB - ° ° WB
° ° ° ° ° cD 1,2
° uc - ° uc
° D - ° CcD
° WC - ° WC
° WT - ° cD 3
° WP - ° WP 1
° WB - ° cD 3
° ° ° cD 2

° uc - ° uc

° cD - ° cD

° WC - ° WC

° WT - ° cD 6

° WP - ° CcD 6

° WB - ° cD 6

° ° ° c 2
° ° uc - ° uc
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Table 16. Final Output Memory Types (Continued)

Input Memory Type Output Memory Type

g AMD-751™
£ £ = ) Note
= = g T £ £ g
- - = - Q (-7} [
= = g £ s T E

(7]

i+ = | = | =
° ° D - ° ° D
° ° WC - ° ° WC
° ° WT - ° ° WT
° ° WP - ° ° WP
° ° WB - ° ° WT 4
° ° - ° ° ° (@) 2

Notes:

1. WPs not functional for RdMemyWrMem.

2. ForceCD must cause the MTRR memory type to be ignored in order to avoid x's.

3. DI should always be WP because the BIOS will only program RdMem-WrlO for WP
CD is forced to preserve the write-protect intent.

4. Since cached 10 lines cannot be copied back to 0, the processor forces WB to WT to
prevent cached 10 from going dirty.

5. ForceCD. The memory type is forced CD due to (1) CRO[CD]=1, (2) memory type is for
the ITLB and the I-Cache is disabled or for the DTLB and the D-Cache is disabled, (3)
when clean victims must be written back and RdIO and WrlO and WT, WB, or WP, or
(4) access to Local APIC space.

6. The processor does not support this memory type.

AMD Athlon™ Processor x86 Code Optimization
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MTRR Fixed-Range Table 17 lists the memory segments defined in each of the
Register Format MTRR fixed-range registers. (See also “Standard MTRR Types

and Properties” on page 224).
Table 17. MTRR Fixed Range Register Format

Address Range (in hexadecimal)
Register
63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0
70000- | 60000- |50000- |40000- |30000- |20000- |10000- |00000-
7FFFF | 6FFFF | 5FFFF | 4FFFF | 3FFFF | 2FFFF | 1FFFF | OFFFF

9C000- | 98000- |94000- |90000- |8CO00- |88000- | 84000- | 80000-
OFFFF  |9BFFF | 97FFF |93FFF |8FFFF |8BFFF | 87FFF | 83FFF

BCO0O- | B800O- | B4000- |B000O- |ACO00- |A8000- |A4000- | A00OO-
BFFFF |BBFFF |B7FFF |B3FFF | AFFFF | ABFFF | ATFFF | ASFFF

C7000- | C6000- |C5000- |C4000- |C3000- |C2000- |C1000- | C0000-
CTFFF  |CGFFF | CSFFF | CAFFF | C3FFF | C2FFF | CIFFF | COFFF

CF000- | CE000- | CD00O- | CC000- | CBOOO- | CA0OO- | C9000- | C8000-
CFFFF  |CEFFF | CDFFF | CCFFF | CBFFF | CAFFF | COFFF | CBFFF

D7000- | D6000- |D5000- |D4000- |D3000- |D2000- |D1000- | D000O-
D7FFF | D6FFF |DSFFF |DA4FFF | D3FFF | D2FFF  |DIFFF | DOFFF

DF000- | DE000- | DD000- |DC000- | DBOOO- | DA00O- | D9000- | D8000-
DFFFF | DEFFF | DDFFF |DCFFF | DBFFF | DAFFF |DOFFF | D8FFF

E7000- |E6000- |E5000- |E4000- |E3000- |E2000- |E1000- |E0000-
EFFFF  |E6FFF | ESFFF  |E4FFF | ESFFF | E2FFF  |EIFFF | EOFFF

EF000- | EE000- |ED000- |EC000- |EBOOO- |EA00O- |E9000- | E8000-
EFFFF  |EEFFF | EDFFF |ECFFF | EBFFF | EAFFF | EOFFF | ESFFF

F7000- |F6000- |F5000- |F4000- |F3000- |F2000- |F1000- |F0000-
FIFFF  |F6FFF | FSFFF  |FAFFF | F3FFF | F2FFF  |FIFFF | FOFFF

FFO00- | FE000- |FD000- |FCO00- |FBOOO- | FA00O- | F9000- | F8000-
FFFFF  |FEFFF | FDFFF |FCFFF | FBFFF |FAFFF  |FOFFF | F8FFF

MTRR_fix64K_00000

MTRR_fix16K_80000

MTRR_fix16K_A0000

MTRR_fix4K_C0000

MTRR_fix4K_C8000

MTRR_fix4K_D0000

MTRR_fix4K_D8000

MTRR_fix4K_E0000

MTRR_fix4K_E8000

MTRR_fix4K_F0000

MTRR_fix4K_F8000
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Variable-Range
MTRRs

Variable-Range MTRR
Register Format

63
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A variable MTRR can be programmed to start at address
0000_0000h because the fixed MTRRs always override the
variable ones. However, it is recommended not to create an
overlap.

The upper two variable MTRRs should not be used by the BIOS
and are reserved for operating system use.

The variable address range is power of 2 sized and aligned. The
range of supported sizes is from 212 9 236 in powers of 2. The
AMD Athlon processor does not implement A[35:32].

36 35 1211 87 0

Physical Base Type

l:l —» Reserved

Symbol Description

Physical Base Base address in Register Pair 35-12
Type See MTRR Types and Properties  7-0

Bits

Figure 16. MTRRphysBasen Register Format

Note: A software attempt to write to reserved bits will generate a
general protection exception.

Physical Specifies a 24-bit value which is extended by 12
Base bits to form the base address of the region defined
in the register pair.

Type See “Standard MTRR Types and Properties” on
page 224.
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63

36 35 1211 10 0

Physical Mask Vv

l:l —» Reserved

Symbol

Physical Mask 24-Bit Mask
Variable Range Register Pair Enabled 11

Vv

Bits
35-12

Figure 17. MTRRphysMaskn Register Format

Note: A software attempt to write to reserved bits will generate a
general protection exception.

Physical Specifies a 24-bit mask to determine the range of
Mask the region defined in the register pair.
A\ Enables the register pair when set (V = 0 at reset).

Mask values can represent discontinuous ranges (when the
mask defines a lower significant bit as zero and a higher
significant bit as one). In a discontinuous range, the memory
area not mapped by the mask value is set to the default type.
Discontinuous ranges should not be used.

The range that is mapped by the variable-range MTRR register
pair must meet the following range size and alignment rule:

m Each defined memory range must have a size equal to 2™ (11
<n < 36).

m The base address for the address pair must be aligned to a
similar 2™ boundary.

An example of a variable MTRR pair is as follows:

To map the address range from 8 Mbytes (0080_0000h) to
16 Mbytes (OOFF_FFFFh) as writeback memory, the base
register should be loaded with 80_0006h, and the mask
should be loaded with FFF8 00800h.
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This table defines the model-specific registers related to the
memory type range register implementation. All MTRRs are
defined to be 64 bits.

Table 18. MTRR-Related Model-Specific Register (VISR) Map

Register Address Register Name Description
OFEh MTRRcap See “MTRR Capability Register Format” on page 222.
200h MTRR Base0 See “MTRRphysBasen Register Format” on page 231.
201h MTRR Masko See “MTRRphysMaskn Register Format” on page 232.
202h MTRR Base1
203h MTRR Mask1
204h MTRR Base2
205h MTRR Mask2
206h MTRR Base3
207h MTRR Mask3
208h MTRR Base4
209h MTRR Mask4
20Ah MTRR Base5
20Bh MTRR Mask5
20Ch MTRR Base6
20Dh MTRR Maské
20Eh MTRR Base7
20Fh MTRR Mask7
250h MTRRFIX64k_00000
258h MTRRFIX16k_80000
259h MTRRFIX16k_A0000
268h MTRRFIX4k_C0000
269h MTRRFIX4k_C8000
26Ah MTRRFIX4k_D0000 | See “MTRR Fixed-Range Register Format” on page 230.
26Bh MTRRFIX4k_D8000
26Ch MTRRFIX4k_E0000
26Dh MTRRFIX4k_E8000
26Eh MTRRFIX4k_F0000
26Fh MTRRFIX4k_F8000
2FFh MTRRdefType See “MTRR Default Type Register Format” on page 223.
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Appendix F

Instruction Dispatch and
Execution Resources/Timing

This chapter describes the MacroOPs generated by each
decoded instruction, along with the relative static execution
latencies of these groups of operations. Tables 19 through 24
starting on page 237 define the following instructions: integer,
MMX, MMX extensions, floating-point, 3DNow!, and 3DNow!
extensions.

The first column in these tables indicates the instruction
mnemonic and operand types with the following notations:

m reg8—Dbyte integer register defined by instruction byte(s) or
bits 5, 4, and 3 of the modR/M byte

m mreg8—Dbyte integer register defined by bits 2, 1, and 0 of
the modR/M byte

m regl6/32—word and doubleword integer register defined by
instruction byte(s) or bits 5, 4, and 3 of the modR/M byte

m mregl6/32—word and doubleword integer register defined
by bits 2, 1, and 0 of the modR/M byte

mem8—Dbyte memory location

mem16/32—word or doubleword memory location
mem32/48—doubleword or 6-byte memory location
mem48—48-bit integer value in memory
mem64—64-bit value in memory
imm&8/16/32—8-bit, 16-bit or 32-bit immediate value
disp8—8-bit displacement value
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disp16/32—16-bit or 32-bit displacement value
disp32/48—32-bit or 48-bit displacement value
eXX—register width depending on the operand size
mem32real—32-bit floating-point value in memory
mem64real—64-bit floating-point value in memory
mem80real—80-bit floating-point value in memory
mmreg—MMX/3DNow! register

mmregl —MMX/3DNow! register defined by bits 5, 4, and 3
of the modR/M byte

m mmreg2—MMX/3DNow! register defined by bits 2, 1, and 0
of the modR/M byte

The second and third columns list all applicable encoding
opcode bytes.

The fourth column lists the modR/M byte used by the
instruction. The modR/M byte defines the instruction as
register or memory form. If mod bits 7 and 6 are documented as
mm (memory form), mm can only be 10b, 01b, or 00b.

The fifth column lists the type of instruction decode—
DirectPath or VectorPath (see “DirectPath Decoder” on page
183 and “VectorPath Decoder” on page 183 for more
information). The AMD Athlon processor enhanced decode
logic can process three instructions per clock.

The FPU, MMX, and 3DNow! instruction tables have an
additional column that lists the possible FPU execution
pipelines available for use by any particular DirectPath
decoded operation. Typically, VectorPath instructions require
more than one execution pipe resource.

The sixth column lists the static execution latency. The static
execution latency is defined as the number of clocks it takes to
execute an instruction, or, more directly, the time it takes to
execute the serially-dependent sequence of OPs that comprise
each instruction. It is assumed that the instruction is an L1 hit
that has already been fetched, decoded, and the operations
loaded into the scheduler. It is the best case scenario which
assumes no other instructions executing in the processor. The
following format is used to describe the static execution
latency:
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x—singular clock count

x—y—possible latency range from x to y clocks

x/y—x equals the 16-bit timing and y equals the 32-bit timing
y: latency from address register operand(s)

~ —clock count is not available

Table 19. Integer Instructions

First

Second

ModR/M

Decode

Execute

Instruction Mnemonic Byte | Byte Byte Type Latency Note
AAA 37h VectorPath 6
AAD imm8 D5h VectorPath 6
AAM imm38 Dah VectorPath 16
AAS 3Fh VectorPath 6
ADC mreg8, reg8 10h 11-xxx-xxx | DirectPath 1
ADC mems, reg8 10h mm-xxx-xxx | DirectPath 4
ADC mreg16/32, reg16/32 11h 11-xxx-xxx | DirectPath 1
ADC mem16/32, reg16/32 11h mm-xxx-xxx | DirectPath 4
ADC reg8, mreg8 12h 11-xxx-xxx | DirectPath 1
ADC reg8, mem8 12h mm-xxx-xxx | DirectPath 4
ADC reg16/32, mreg16/32 13h 11-xxx-xxx | DirectPath 1
ADC reg16/32, mem16/32 13h mm-xxx-xxx | DirectPath 4
ADC AL, imm8 14h DirectPath 1
ADC EAX, imm16/32 15h DirectPath 1
ADC mreg8, imm8 80h 11-010-xxx | DirectPath 1
ADC mem8, imm8 80h mm-010-xxx | DirectPath 4
ADC mreg16/32, imm16/32 81h 11-010-xxx | DirectPath 1

Notes:
1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imma8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
ADC mem16/32, imm16/32 81h mm-010-xxx | DirectPath 4
ADC mreg16/32, imma8 (sign extended) 83h 11-010-xxx | DirectPath 1
ADC mem16/32, imma8 (sign extended) 83h mm-010-xxx | DirectPath 4
ADD mreg8, reg8 00h 11-xxx-xxx | DirectPath 1
ADD mem8, reg8 00h mm-xxx-xxx | DirectPath 4
ADD mreg16/32, reg16/32 0th 11-xxx-xxx | DirectPath 1
ADD mem16/32, reg16/32 oth mm-xxx-xxx | DirectPath 4
ADD reg8, mreg8 02h 11-xxx-xxx | DirectPath 1
ADD reg8, mem8 02h mm-xxx-xxx | DirectPath 4
ADD reg16/32, mreg16/32 03h 11-xxx-xxx | DirectPath 1
ADD reg16/32, mem16/32 03h mm-xxx-xxx | DirectPath 4
ADD AL, imm8 04h DirectPath 1
ADD EAX, imm16/32 05h DirectPath 1
ADD mreg8, imm8 80h 11-000-xxx | DirectPath 1
ADD mems8, imm8 80h mm-000-xxx | DirectPath 4
ADD mreg16/32, imm16/32 81h 11-000-xxx | DirectPath 1
ADD mem16/32, imm16/32 81h mm-000-xxx | DirectPath 4
ADD mreg16/32, imm8 (sign extended) 83h 11-000-xxx | DirectPath 1
ADD mem16/32, imm8 (sign extended) 83h mm-000-xxx | DirectPath 4
AND mreg8, reg8 20h 11-xxx-xxx | DirectPath 1
AND mems8, reg8 20h mm-xxx-xxx | DirectPath 4
AND mreg16/32, reg16/32 21h 11-xxx-xxx | DirectPath 1
AND mem16/32, reg16/32 21h mm-xxx-xxx | DirectPath 4
AND reg8, mreg8 22h 11-xx-xxx | DirectPath 1
AND reg8, mems8 22h mm-xxx-xxx | DirectPath 4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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First

Second

ModR/M

Decode

Execute

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

Instruction Mnemonic Byte | Byte Byte Type Latency Note
AND reg16/32, mreg16/32 23h 11-xxx-xxx | DirectPath 1
AND reg16/32, mem16/32 23h mm-xxx-xxx | DirectPath 4
AND AL, imm8 24h DirectPath 1
AND EAX, imm16/32 25h DirectPath 1
AND mreg8, imm8 80h 11-100-xxx | DirectPath 1
AND mem8, imm8 80h mm-100-xxx | DirectPath 4
AND mreg16/32, imm16/32 81h 11-100-xxx | DirectPath 1
AND mem16/32, imm16/32 81h mm-100-xxx | DirectPath 4
AND mreg16/32, imm8 (sign extended) 83h 11-100-xxx | DirectPath 1
AND mem16/32, imm8 (sign extended) 83h mm-100-xxx | DirectPath 4
ARPL mreg16, reg16 63h 11-xxx-xxx | VectorPath 15
ARPL mem16, reg16 63h mm-xxx-xxx | VectorPath 19
BOUND reg16/32, mem16/32:mem16/32 62h mm-xxx-xxx | VectorPath 6
BSF reg16/32, mreg16/32 OFh | BCh 11-xxx-xxx | VectorPath 8
BSF reg16/32, mem16/32 OFh | BCh | mm-xxx-xxx | VectorPath 12/11
BSR reg16/32, mreg16/32 OFh | BDh 11-xxx-xxx | VectorPath 10
BSR reg16/32, mem16/32 OFh | BDh | mm-xxx-xxx | VectorPath 14/13
BSWAP EAX OFh | C8h DirectPath 1
BSWAP ECX OFh | C9h DirectPath 1
BSWAP EDX OFh | CAh DirectPath 1
BSWAP EBX OFh | CBh DirectPath 1
BSWAP ESP OFh | CCh DirectPath 1
BSWAP EBP OFh | CDh DirectPath 1
BSWAP ESI OFh | CEh DirectPath 1
BSWAP EDI OFh | CFh DirectPath 1
Notes:
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Table 19. Integer Instructions (Continued)
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
BT mreg16/32, reg16/32 OFh | A3h 11-xxx-xxx | DirectPath 1
BT mem16/32, reg16/32 OFh | A3h | mm-xxx-xxx | VectorPath 8
BT mreg16/32, imm8 OFh | BAh 11-100-xxx | DirectPath 1
BT mem16/32, imm8 OFh | BAh | mm-100-xxx | DirectPath 4
BTC mreg16/32, reg16/32 OFh | BBh 11-xxx-xxx | VectorPath 2
BTC mem16/32, reg16/32 OFh | BBh | mm-xxx-xxx | VectorPath 9
BTC mreg16/32, imm8 OFh | BAh 11-111-xxx | VectorPath 2
BTC mem16/32, imm8 OFh | BAh | mm-111-xxx | VectorPath 6
BTR mreg16/32, reg16/32 OFh | B3h 11-xxx-xxx | VectorPath 2
BTR mem16/32, reg16/32 OFh | B3h | mm-xxx-xxx | VectorPath 9
BTR mreg16/32, imm8 OFh | BAh 11-110-xxx | VectorPath 2
BTR mem16/32, imm8 OFh | BAh | mm-110-xxx | VectorPath 6
BTS mreg16/32, reg16/32 OFh | ABh 11-xxx-xxx | VectorPath 2
BTS mem16/32, reg16/32 OFh | ABh | mm-xxx-xxx | VectorPath 9
BTS mreg16/32, imm8 OFh | BAh 11-101-xxx | VectorPath 2
BTS mem16/32, imm8 OFh | BAh | mm-101-xxx | VectorPath 6
CALL full pointer 9Ah VectorPath 18
CALL near imm16/32 Esh VectorPath 3 2
CALL near mreg32 (indirect) FFh 11-010-xxx | VectorPath
CALL near mem32 (indirect) FFh mm-010-xxx | VectorPath
CALL mem16:16/32 FFh 11-011-xxx | VectorPath 19
CBW/CWDE 98h DirectPath 1
CLC F8h DirectPath 1
CLD FCh VectorPath 1
cu FAh VectorPath 4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

CLTS OFh | 06h VectorPath 10
cMC Fsh DirectPath 1
CMOVA/CMOVNBE reg16/32, reg16/32 OFh | 47h 11-xxx-xxx | DirectPath 1
CMOVA/CMOVNBE reg16/32, mem16/32 OFh | 47h | mm-xxx-xxx | DirectPath 4
CMOVAE/CMOVNB/CMOVNC reg16/32, mem16/32 | OFh | 43h 11-xxx-xxx | DirectPath 1
CMOVAE/CMOVNB/CMOVNC mem16/32, ofh | 43h | mm-ooco | DirectPath A
mem16/32
CMOVB/CMOVC/CMOVNAE reg16/32, reg16/32 OFh | 42h 11-xxx-xxx | DirectPath 1
CMOVB/CMOVC/CMOVNAE mem16/32, reg16/32 | OFh | 42h | mm-xxx-xxx | DirectPath 4
CMOVBE/CMOVNA reg16/32, reg16/32 OFh | 46h 11-xxx-xxx | DirectPath 1
CMOVBE/CMOVNA reg16/32, mem16/32 OFh | 46h | mm-xxx-xxx | DirectPath 4
CMOVE/CMOVZ reg16/32, reg16/32 OFh | 44h 11-xxx-xxx | DirectPath 1
CMOVE/CMOVZ reg16/32, mem16/32 OFh | 44h | mm-xxx-xxx | DirectPath 4
CMOVG/CMOVNLE reg16/32, reg16/32 OFh | 4Fh 11-xxx-xxx | DirectPath 1
CMOVG/CMOVNLE reg16/32, mem16/32 OFh | 4Fh | mm-xxx-xxx | DirectPath 4
CMOVGE/CMOVNL reg16/32, reg16/32 OFh | 4Dh 11-xxx-xxx | DirectPath 1
CMOVGE/CMOVNL reg16/32, mem16/32 OFh | 4Dh | mm-xxx-xxx | DirectPath 4
CMOVL/CMOVNGE reg16/32, reg16/32 OFh | 4Ch 11-xxx-xxx | DirectPath 1
CMOVL/CMOVNGE reg16/32, mem16/32 OFh | 4Ch | mm-xxx-xxx | DirectPath 4
CMOVLE/CMOVNG reg16/32, reg16/32 OFh | 4Eh 11-xxx-xxx | DirectPath 1
CMOVLE/CMOVNG reg16/32, mem16/32 OFh | 4Eh | mm-xxx-xxx | DirectPath 4
CMOVNE/CMOVNZ reg16/32, reg16/32 OFh | 45h 11-xxx-xxx | DirectPath 1
CMOVNE/CMOVNZ reg16/32, mem16/32 OFh | 45h | mm-xxx-xxx | DirectPath 4
CMOVNO reg16/32, reg16/32 OFh | 41h 11-xxx-xxx | DirectPath 1
CMOVNO reg16/32, mem16/32 OFh | 41h | mm-xxx-xxx | DirectPath 4
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or imma8.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n > 2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
CMOVNP/CMOVPO reg16/32, reg16/32 OFh | 4Bh 11-xxx-xxx | DirectPath 1
CMOVNP/CMOVPO reg16/32, mem16/32 OFh | 4Bh | mm-xxx-xxx | DirectPath 4
CMOVNS reg16/32, reg16/32 OFh | 4%9h 11-xxx-xxx | DirectPath 1
CMOVNS reg16/32, mem16/32 OFh | 49h | mm-xxx-xxx | DirectPath 4
CMOVO reg16/32, reg16/32 OFh | 40h 11-xxx-xxx | DirectPath 1
CMOVO reg16/32, mem16/32 OFh | 40h | mm-xxx-xxx | DirectPath 4
CMOVP/CMOVPE reg16/32, reg16/32 OFh | 4Ah 11-xxx-xxx | DirectPath 1
CMOVP/CMOVPE reg16/32, mem16/32 OFh | 4Ah | mm-xxx-xxx | DirectPath 4
CMOVS reg16/32, reg16/32 OFh | 48h 11-xxx-xxx | DirectPath 1
CMOVS reg16/32, mem16/32 OFh | 48h | mm-xxx-xxx | DirectPath 4
CMP mreg8, reg8 38h 11-xxx-xxx | DirectPath 1
CMP mem8, reg8 38h mm-xxx-xxx | DirectPath 4
CMP mreg16/32, reg16/32 39h 11-xxx-xxx | DirectPath 1
CMP mem16/32, reg16/32 39h mm-xxx-xxx | DirectPath 4
CMP reg8, mreg8 3Ah 11-xxx-xxx | DirectPath 1
CMP reg8, mem8 3Ah mm-xxx-xxx | DirectPath 4
CMP reg16/32, mreg16/32 3Bh 11-xxx-xxx | DirectPath 1
CMP reg16/32, mem16/32 3Bh mm-xxx-xxx | DirectPath 4
CMP AL, imm8 3Ch DirectPath 1
CMP EAX, imm16/32 3Dh DirectPath 1
CMP mreg8, imm8 80h 11-111-xxx | DirectPath 1
CMP mems8, imm8 80h mm-111-xxx | DirectPath 4
CMP mreg16/32, imm16/32 81h 11-111-xxx | DirectPath 1
CMP mem16/32, imm16/32 81h mm-111-xxx | DirectPath 4
CMP mreg16/32, imm8 (sign extended) 83h 11-111-xxx | DirectPath 1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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First

Second

ModR/M

Decode

Execute

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

Instruction Mnemonic Byte | Byte Byte Type Latency Note
CMP mem16/32, imm8 (sign extended) 83h mm-111-xxx | DirectPath 4
CMPSB mem8,mem8 Aé6h VectorPath 6
CMPSW mem16, mem32 A7h VectorPath 6
CMPSD mem32, mem32 A7h VectorPath 6 8
CMPXCHG mreg8, reg8 OFh | BOh 11-xxx-xxx | VectorPath 3
CMPXCHG mems8, reg8 OFh | BOh | mm-xxx-xxx | VectorPath 6
CMPXCHG mreg16/32, reg16/32 OFh | Bith 11-xxx-xxx | VectorPath 3
CMPXCHG mem16/32, reg16/32 OFh | Blh | mm-xxx-xxx | VectorPath 6
CMPXCHG8B memé64 OFh | C7h | mm-xxx-xxx | VectorPath 39
CPUID OFh | A2h VectorPath 42
CWD/CDQ 99h DirectPath 1
DAA 27h VectorPath 8
DAS 2Fh VectorPath 8
DEC EAX 48h DirectPath 1
DEC ECX 49h DirectPath 1
DEC EDX 4Ah DirectPath 1
DEC EBX 4Bh DirectPath 1
DEC ESP 4Ch DirectPath 1
DEC EBP 4Dh DirectPath 1
DECESI 4th DirectPath 1
DEC EDI 4Fh DirectPath 1
DEC mreg8 FEh 11-001-xxx | DirectPath 1
DEC mem8 FEh mm-001-xxx | DirectPath 4
DEC mreg16/32 FFh 11-001-xxx | DirectPath 1
DEC mem16/32 FFh mm-001-xxx | DirectPath 4
Notes:
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1. Static timing assumes a predicted branch.

Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

DIV mreg8 Feh 11-110-xxx | VectorPath 17
DIV AL, mem8 Feh mm-110-xxx | VectorPath 17
DIV mreg16/32 F7h 11-110-xxx | VectorPath 24/40
DIV EAX, mem16/32 F7h mm-110-xxx | VectorPath 24/40
ENTER Csh VectorPath | 13/17/19/22 | 6
IDIV mreg8 Feh 11-111-xxx | VectorPath 19
IDIV mem8 Feh mm-111-xxx | VectorPath 20
IDIV mreg16/32 F7h 11-111-xxx | VectorPath 26/42
IDIV EAX, mem16/32 F7h mm-111-xxx | VectorPath 27/43
IMUL reg16/32, imm16/32 69h 11-x0¢-xxx | VectorPath 4/5
IMUL reg16/32, mreg16/32, imm16/32 69h 11-xxx-xxx | VectorPath 4/5
IMUL reg16/32, mem16/32, imm16/32 69h mm-xxx-xxx | VectorPath 7/8
IMUL reg16/32, imm8 (sign extended) 6Bh 11-xxx-xxx | VectorPath 5
IMUL reg16/32, mreg16/32, imm8 (signed) 6Bh 11-xxx-xxx | VectorPath 4/5
IMUL reg16/32, mem16/32, imm8 (signed) 6Bh mm-xxx-xxx | VectorPath 18
IMUL mreg8 Feh 11-101-xxx | VectorPath 5
IMUL AX, AL, mem8 Feh mm-101-xxx | VectorPath 8
IMUL mreg16/32 F7h 11-101-xxx | VectorPath 5/6
IMUL EDX:EAX, EAX, mem16/32 F7h mm-101-xxx | VectorPath 8/9
IMUL reg16/32, mreg16/32 OFh | AFh 11-xxx-xxx | VectorPath 3/4
IMUL reg16/32, mem16/32 OFh | AFh | mm-xxx-xxx | VectorPath 6/7
IN AL, imm8 E4h VectorPath ~
IN AX, imm8 Esh VectorPath ~
IN EAX, imm8 E5h VectorPath ~
IN AL, DX ECh VectorPath ~
Notes:

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

IN AX, DX EDh VectorPath ~
IN EAX, DX EDh VectorPath ~
INC EAX 40h DirectPath 1
INC ECX 41h DirectPath 1
INC EDX 42h DirectPath 1
INC EBX 43h DirectPath 1
INC ESP 44h DirectPath 1
INC EBP 45h DirectPath 1
INCESI 46h DirectPath 1
INC EDI 47h DirectPath 1
INC mreg8 FEh 11-000-xxx | DirectPath 1
INC mems8 FEh mm-000-xxx | DirectPath 4
INC mreg16/32 FFh 11-000-xxx | DirectPath 1
INC mem16/32 FFh mm-000-xxx | DirectPath 4
INVD OFh | 08h VectorPath ~
INVLPG OFh | 01h | mm-111-xxx | VectorPath 106
JO short disp8 70h DirectPath 1 1
JNO short disp8 71h DirectPath 1 1
JB/JNAE/JC short disp8 72h DirectPath 1 1
JNB/JAE/JNC short disp8 73h DirectPath 1 1
JZ/JE short disp8 74h DirectPath 1 1
JNZ/INE short disp8 75h DirectPath 1 1
JBE/INA short disp8 76h DirectPath 1 1
JNBE/JA short disp8 77h DirectPath 1 1
JS short disp8 78h DirectPath 1 1
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

NS short disp8 79h DirectPath 1 1
JP/JPE short disp8 7Ah DirectPath 1 1
JNP/JPO short disp8 7Bh DirectPath 1 1
JL/INGE short disp8 7Ch DirectPath 1 1
JNL/JGE short disp8 7Dh DirectPath 1 1
JLE/ING short disp8 7Eh DirectPath 1 1
JNLE/JG short disp8 7Fh DirectPath 1 1
JCXZ/JEC short disp8 E3h VectorPath 2 1
JO near disp16/32 OFh | 80h DirectPath 1 1
JNO near disp16/32 OFh | 81h DirectPath 1 1
JB/JNAE near disp16/32 OFh | 82h DirectPath 1 1
JNB/JAE near disp16/32 OFh | 83h DirectPath 1 1
JZ/JE near disp16/32 OFh | 84h DirectPath 1 1
JNZ/INE near disp16/32 OFh | 85h DirectPath 1 1
JBE/INA near disp16/32 OFh | 86h DirectPath 1 1
JNBE/JA near disp16/32 OFh | 87h DirectPath 1 1
JS near disp16/32 OFh | 88h DirectPath 1 1
JNS near disp16/32 OFh | 89%h DirectPath 1 1
JP/JPE near disp16/32 OFh | 8Ah DirectPath 1 1
JNP/JPO near disp16/32 OFh | 8Bh DirectPath 1 1
JL/INGE near disp16/32 OFh | 8Ch DirectPath 1 1
JNL/JGE near disp16/32 OFh | 8Dh DirectPath 1 1
JLE/ING near disp16/32 OFh | 8Eh DirectPath 1 1
JNLE/JG near disp16/32 OFh | 8Fh DirectPath 1 1
JMP near disp16/32 (direct) ESh DirectPath 1
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
JMP far disp32/48 (direct) EAh VectorPath 16
JMP disp8 (short) EBh DirectPath 1
JMP far mem32 (indirect) EFh mm-101-xxx | VectorPath 18
JMP far mreg32 (indirect) FFh mm-101-xxx | VectorPath 18
JMP near mreg16/32 (indirect) FFh 11-100-xxx | DirectPath 1
JMP near mem16/32 (indirect) FFh mm-100-xxx | DirectPath 4
LAHF 9Fh VectorPath
LAR reg16/32, mreg16/32 OFh | 02h 11-xxx-xxx | VectorPath 23
LAR reg16/32, mem16/32 OFh | 02h | mm-xxx-xxx | VectorPath 25
LDS reg16/32, mem32/48 C5h mm-xxx-xxx | VectorPath 14
LEA reg16, mem16/32 8Dh mm-xxx-xxx | VectorPath 3 5
LEA reg32, mem16/32 8Dh mm-xxx-xxx | DirectPath 2 5
LEAVE Coh VectorPath 3
LES reg16/32, mem32/48 C4h mm-xxx-xxx | VectorPath 14
LFS reg16/32, mem32/48 OFh | B4h VectorPath 14
LGDT mem48 OFh | 01h | mm-010-xxx | VectorPath 35
LGS reg16/32, mem32/48 OFh | Bs5h VectorPath 14
LIDT mem48 OFh | 01h | mm-011-xxx | VectorPath 35
LLDT mreg16 OFh | 00h 11-010-xxx | VectorPath 30
LLDT mem16 OFh | 00h | mm-010-xxx | VectorPath 31
LMSW mreg16 OFh | o01h 11-100-xxx | VectorPath 1
LMSW mem16 OFh | 01h | mm-100-xxx | VectorPath 12
LODSB AL, mem8 ACh VectorPath 5 8
LODSW AX, mem16 ADh VectorPath 8
LODSD EAX, mem32 ADh VectorPath 4 8
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
LOOP disp8 E2h VectorPath 8
LOOPE/LOOPZ disp8 Elh VectorPath 8
LOOPNE/LOOPNZ disp8 EOh VectorPath 8
LSL reg16/32, mreg16/32 OFh | 03h 11-xxx-xxx | VectorPath 22
LSL reg16/32, mem16/32 OFh | 03h | mm-xxx-xxx | VectorPath 24
LSS reg16/32, mem32/48 OFh | B2h | mm-xxx-xxx | VectorPath 15
LTR mreg16 OFh | 00h 11-011-xxx | VectorPath 91
LTR mem16 OFh | 00h | mm-011-xxx | VectorPath 94
MOV mreg8, reg8 88h 11-xxx-xxx | DirectPath 1
MOV mems, reg8 88h mm-xxx-xxx | DirectPath 3
MOV mreg16/32, reg16/32 89h 11-xxx-xxx | DirectPath 1
MOV mem16/32, reg16/32 89h mm-xxx-xxx | DirectPath 3
MOV reg8, mreg8 8Ah 11-xxx-xxx | DirectPath 1
MOV reg8, mem8 8Ah mm-xxx-xxx | DirectPath 3
MOV reg16/32, mreg16/32 8Bh 11-xxx-xxx | DirectPath 1
MOV reg16/32, mem16/32 8Bh mm-xxx-xxx | DirectPath 3
MOV mreg16, segment reg 8Ch 11-xxx-xxx | VectorPath 4
MOV mem16, segment reg 8Ch mm-xxx-xxx | VectorPath 4
MOV segment reg, mreg16 8Eh 11-xxx-xxx | VectorPath 10
MOV segment reg, mem16 8Eh mm-xxx-xxx | VectorPath 12
MOV AL, mem8 Aoh DirectPath 3
MOV EAX, mem16/32 Alh DirectPath 3
MOV mems8, AL A2h DirectPath 3
MOV mem16/32, EAX A3h DirectPath 3
MOV AL, imm8 Boh DirectPath 1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency
MOV CL, imm8 B1h DirectPath 1
MOV DL, imm8 B2h DirectPath 1
MOV BL, imm8 B3h DirectPath 1
MOV AH, imm8 B4h DirectPath 1
MOV CH, imm8 Bsh DirectPath 1
MOV DH, imm8 Beh DirectPath 1
MOV BH, imm8 B7h DirectPath 1
MOV EAX, imm16/32 Bsh DirectPath 1
MOV ECX, imm16/32 Boh DirectPath 1
MOV EDX, imm16/32 BAh DirectPath 1
MOV EBX, imm16/32 BBh DirectPath 1
MOV ESP, imm16/32 BCh DirectPath 1
MOV EBP, imm16/32 BDh DirectPath 1
MOV ESI, imm16/32 BEh DirectPath 1
MOV EDI, imm16/32 BFh DirectPath 1
MOV mreg8, imm8 Céh 11-000-xxx | DirectPath 1
MOV mems8, imm8 Céh mm-000-xxx | DirectPath 3
MOV mreg16/32, imm16/32 C7h 11-000-xxx | DirectPath 1
MOV mem16/32, imm16/32 C7h mm-000-xxx | DirectPath 3
MOVSB mem8,mem8 Adh VectorPath 5
MOVSD mem16, mem16 Ash VectorPath 5
MOVSW mem32, mem32 Ash VectorPath 5 8
MOVSX reg16/32, mreg8 OFh | BEh 11-xxx-xxx | DirectPath 1
MOVSX reg16/32, mem8 OFh | BEh | mm-xxx-xxx | DirectPath 4
MOVSX reg32, mregl6 OFh | BFh 11-xxx-xxx | DirectPath 1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
MOVSX reg32, mem16 OFh | BFh | mm-xxx-xxx | DirectPath 4
MOVZX reg16/32, mreg8 OFh | Beh 11-xxx-xxx | DirectPath 1
MOVZX reg16/32, mem8 OFh | B6h | mm-xxx-xxx | DirectPath 4
MOVZX reg32, mreg16 OFh | B7h 11-xxx-xxx | DirectPath 1
MOVZX reg32, mem16 OFh | B7h | mm-xxx-xxx | DirectPath 4
MUL mreg8 Feh 11-100-xxx | VectorPath 5
MUL AL, mem8 Feh mm-100-xx | VectorPath 8
MUL mreg16 F7h 11-100-xxx | VectorPath 5
MUL AX, mem16 F7h mm-100-xxx | VectorPath 8
MUL mreg32 F7h 11-100-xxx | VectorPath 6
MUL EAX, mem32 F7h mm-100-xx | VectorPath 9
NEG mreg8 Feh 11-011-xxx | DirectPath 1
NEG mem8 Feh mm-011-xx | DirectPath 4
NEG mreg16/32 F7h 11-011-xxx | DirectPath 1
NEG mem16/32 F7h mm-011-xx | DirectPath 4
NOP (XCHG EAX, EAX) 90h DirectPath 0 7
NOT mreg8 Feh 11-010-xxx | DirectPath 1
NOT mem8 Feh mm-010-xx | DirectPath 4
NOT mreg16/32 F7h 11-010-xxx | DirectPath 1
NOT mem16/32 F7h mm-010-xx | DirectPath 4
OR mreg8, reg8 08h 11-xxx-xxx | DirectPath 1
OR mem8, reg8 08h mm-xxx-xxx | DirectPath 4
OR mreg16/32, reg16/32 09h 11-xxx-xxx | DirectPath 1
OR mem16/32, reg16/32 09h mm-xxx-xxx | DirectPath 4
OR reg8, mreg8 0Ah 11-xxx-xxx | DirectPath 1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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First

Second

ModR/M

Decode

Execute

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

Instruction Mnemonic Byte | Byte Byte Type Latency Note

OR reg8, mem8 0Ah mm-xxx-xxx | DirectPath 4
OR reg16/32, mreg16/32 0Bh 11-xxx-xxx | DirectPath 1
OR reg16/32, mem16/32 0Bh mm-xxx-xxx | DirectPath 4
ORAL, imm8 0Ch DirectPath 1
OR EAX, imm16/32 0Dh DirectPath 1
OR mreg8, imm8 80h 11-001-xxx | DirectPath 1
OR mem8, imm8 80h mm-001-xxx | DirectPath 4
OR mreg16/32, imm16/32 81h 11-001-xxx | DirectPath 1
OR mem16/32, imm16/32 81h mm-001-xxx | DirectPath 4
OR mreg16/32, imm8 (sign extended) 83h 11-001-xxx | DirectPath 1
OR mem16/32, imm8 (sign extended) 83h mm-001-xxx | DirectPath 4
OUT imm8, AL E6h VectorPath ~
OUT imm8, AX E7h VectorPath ~
OUT imm8, EAX E7h VectorPath ~
OUT DX, AL EEh VectorPath ~
OUT DX, AX EFh VectorPath ~
OUT DX, EAX EFh VectorPath ~
POP ES 07h VectorPath 11
POP SS 17h VectorPath 11
POP DS 1Fh VectorPath 11
POP FS OFh | Ath VectorPath 11
POP GS OFh | Adh VectorPath 11
POP EAX 58h VectorPath

POP ECX 59h VectorPath

POP EDX 5Ah VectorPath

Notes:
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Table 19. Integer Instructions (Continued)

Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

POP EBX 5Bh VectorPath 4
POP ESP 5Ch VectorPath 4
POP EBP 5Dh VectorPath 4
POP ESI 5Eh VectorPath 4
POP EDI 5Fh VectorPath 4
POP mreg 16/32 8Fh 11-000-xxx | VectorPath 4
POP mem 16/32 8Fh mm-000-xxx | VectorPath 3
POPA/POPAD 61h VectorPath 7/6
POPF/POPFD 9Dh VectorPath 15
PUSH ES 06h VectorPath 3 2
PUSH CS OEh VectorPath 3
PUSH FS OFh | AOh VectorPath 3
PUSH GS OFh | A8h VectorPath 3
PUSH SS 16h VectorPath 3
PUSH DS 1Eh VectorPath 3 2
PUSH EAX 50h DirectPath 3 2
PUSH ECX 51h DirectPath 3 2
PUSH EDX 52h DirectPath 3 2
PUSH EBX 53h DirectPath 3 2
PUSH ESP 54h DirectPath 3 2
PUSH EBP 55h DirectPath 3 2
PUSH ESI 56h DirectPath 3 2
PUSH EDI 57h DirectPath 3 2
PUSH imm8 6Ah DirectPath 3 2
PUSH imm16/32 68h DirectPath 3 2
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

PUSH mreg16/32 FFh 11-110-xxx | VectorPath 3
PUSH mem16/32 FFh mm-110-xxx | VectorPath 3 2
PUSHA/PUSHAD 60h VectorPath 6
PUSHF/PUSHFD 9Ch VectorPath 4
RCL mreg8, imm8 Coh 11-010-xxx | DirectPath 5
RCL mem8, imm8 Coh mm-010-xxx | VectorPath 6
RCL mreg16/32, imm8 Cih 11-010-xxx | DirectPath 5
RCL mem16/32, imm8 Cih mm-010-xxx | VectorPath 6
RCL mreg8, 1 Doh 11-010-xxx | DirectPath 1
RCL mems, 1 Doh mm-010-xxx | DirectPath 4
RCL mreg16/32, 1 D1h 11-010-xxx | DirectPath 1
RCL mem16/32, 1 D1h mm-010-xxx | DirectPath 4
RCL mreg8, CL D2h 11-010-xxx | DirectPath 5
RCL mems, CL D2h mm-010-xxx | VectorPath 6
RCL mreg16/32, CL D3h 11-010-xxx | DirectPath 5
RCL mem16/32, CL D3h mm-010-xxx | VectorPath 6
RCR mreg8, imm8 Coh 11-011-xxx | DirectPath 5
RCR mem8, imm8 Coh mm-011-xxx | VectorPath 6
RCR mreg16/32, imm8 Cih 11-011-xxx | DirectPath 5
RCR mem16/32, imm8 Cih mm-011-xxx | VectorPath 6
RCR mreg8, 1 Doh 11-011-xxx | DirectPath 1
RCR mems, 1 Doh mm-011-xxx | DirectPath 4
RCR mreg16/32, 1 Dih 11-011-xxx | DirectPath 1
RCR mem16/32, 1 D1h mm-011-xxx | DirectPath 4
RCR mreg8, CL D2h 11-011-xxx | DirectPath 5
Notes:
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
RCR mems, CL D2h mm-011-xxx | VectorPath 6
RCR mreg16/32, CL D3h 11-011-xxx | DirectPath 5
RCR mem16/32, CL D3h mm-011-xxx | VectorPath 6
RDMSR OFh | 32h VectorPath ~
RDPMC OFh | 33h VectorPath ~
RDTSC OFh | 31h VectorPath 11
RET near imm16 C2h VectorPath 5
RET near C3h VectorPath 5
RET far imm16 CAh VectorPath 16
RET far CBh VectorPath 16
ROL mreg8, imm8 Coh 11-000-xxx | DirectPath 1 3
ROL mem8, imm8 Coh mm-000-xxx | DirectPath 4 3
ROL mreg16/32, imm8 Cih 11-000-xxx | DirectPath 1 3
ROL mem16/32, imm8 Cih mm-000-xxx | DirectPath 4 3
ROL mreg8, 1 Doh 11-000-xxx | DirectPath 1
ROL mems, 1 Doh mm-000-xxx | DirectPath 4
ROL mreg16/32, 1 D1h 11-000-xxx | DirectPath 1
ROL mem16/32, 1 D1h mm-000-xxx | DirectPath 4
ROL mreg8, CL D2h 11-000-xxx | DirectPath 1 3
ROL mems8, CL D2h mm-000-xxx | DirectPath 4 3
ROL mreg16/32, CL D3h 11-000-xxx | DirectPath 1 3
ROL mem16/32, CL D3h mm-000-xxx | DirectPath 4 3
ROR mreg8, imm8 Coh 11-001-xxx | DirectPath 1 3
ROR mems8, imm8 Coh mm-001-xxx | DirectPath 4 3
ROR mreg16/32, imm8 Cih 11-001-xxx | DirectPath 1 3
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

254

Instruction Dispatch and Execution Resources/Timing

Appendix F



AMDZ1

22007H/0—June 2000

Table 19. Integer Instructions (Continued)

AMD Athlon™ Processor x86 Code Optimization

. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
ROR mem16/32, imm8 Cih mm-001-xxx | DirectPath 4 3
ROR mreg8, 1 Doh 11-001-xxx | DirectPath 1
ROR mems, 1 Doh mm-001-xxx | DirectPath 4
ROR mreg16/32, 1 Dih 11-001-xxx | DirectPath 1
ROR mem16/32, 1 Dih mm-001-xxx | DirectPath 4
ROR mreg8, CL D2h 11-001-xxx | DirectPath 1 3
ROR mems, CL D2h mm-001-xxx | DirectPath 4 3
ROR mreg16/32, CL D3h 11-001-xxx | DirectPath 1 3
ROR mem16/32, CL D3h mm-001-xxx | DirectPath 4 3
SAHF 9Eh VectorPath 2
SAR mreg8, imm8 Coh 11-111-xxx | DirectPath 1 3
SAR mem8, imm8 Coh mm-111-xxx | DirectPath 4 3
SAR mreg16/32, imm8 Cih 11-111-xxx | DirectPath 1 3
SAR mem16/32, imm8 Cih mm-111-xxx | DirectPath 4 3
SAR mreg8, 1 Doh 11-111-xxx | DirectPath 1
SAR mems, 1 Doh mm-111-xxx | DirectPath 4
SAR mreg16/32, 1 D1h 11-111-xxx | DirectPath 1
SAR mem16/32, 1 D1h mm-111-xxx | DirectPath 4
SAR mreg8, CL D2h 11-111-xxx | DirectPath 1 3
SAR mem8, CL D2h mm-111-xxx | DirectPath 4 3
SAR mreg16/32, CL D3h 11-111-xxx | DirectPath 1 3
SAR mem16/32, CL D3h mm-111-xxx | DirectPath 4 3
SBB mreg8, reg8 18h 11-xxx-xxx | DirectPath 1
SBB mem8, reg8 18h mm-xxx-xxx | DirectPath 4
SBB mreg16/32, reg16/32 19h 11-xxx-xxx | DirectPath 1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

SBB mem16/32, reg16/32 19h mm-xxx-xxx | DirectPath 4
SBB reg8, mreg8 1Ah 11-xxx-xxx | DirectPath 1
SBB reg8, mems8 1Ah mm-xxx-xxx | DirectPath 4
SBB reg16/32, mreg16/32 1Bh 11-xxx-xxx | DirectPath 1
SBB reg16/32, mem16/32 1Bh mm-xxx-xxx | DirectPath 4
SBB AL, imm8 1Ch DirectPath 1
SBB EAX, imm16/32 1Dh DirectPath 1
SBB mreg8, imm8 80h 11-011-xxx | DirectPath 1
SBB mem8, imm8 80h mm-011-xxx | DirectPath 4
SBB mreg16/32, imm16/32 8th 11-011-xxx | DirectPath 1
SBB mem16/32, imm16/32 8th mm-011-xxx | DirectPath 4
SBB mreg16/32, imm8 (sign extended) 83h 11-011-xxx | DirectPath 1
SBB mem16/32, imm8 (sign extended) 83h mm-011-xxx | DirectPath 4
SCASB AL, mem8 AEh VectorPath 4 8
SCASW AX, mem16 AFh VectorPath 4 8
SCASD EAX, mem32 AFh VectorPath 4
SETO mreg8 OFh | 90h 11-xxx-xxx | DirectPath 1
SETO mem8 OFh | 90h | mm-xxx-xxx | DirectPath 3
SETNO mreg8 OFh | 91h 11-xxx-xxx | DirectPath 1
SETNO mem8 OFh | 91h | mm-xxx-xxx | DirectPath 3
SETB/SETC/SETNAE mreg8 OFh | 92h 11-xxx-xxx | DirectPath 1
SETB/SETC/SETNAE mem8 OFh | 92h | mm-xxx-xxx | DirectPath 3
SETAE/SETNB/SETNC mreg8 OFh | 93h 11-xxx-xxx | DirectPath 1
SETAE/SETNB/SETNC mem8 OFh | 93h | mm-xxx-xxx | DirectPath 3
SETE/SETZ mreg8 OFh | 94h 11-xxx-xxx | DirectPath 1
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

SETE/SETZ mem8 OFh | 94h | mm-xxx-xxx | DirectPath 3
SETNE/SETNZ mreg8 OFh | 95h 11-xxx-xxx | DirectPath 1
SETNE/SETNZ mem8 OFh | 95h | mm-xxx-xxx | DirectPath 3
SETBE/SETNA mreg8 OFh | 96h 11-xxx-xxx | DirectPath 1
SETBE/SETNA mem8 OFh | 96h | mm-xxx-xxx | DirectPath 3
SETA/SETNBE mreg8 OFh | 97h 11-xxx-xxx | DirectPath 1
SETA/SETNBE mem8 OFh | 97h | mm-xxx-xxx | DirectPath 3
SETS mreg8 OFh | 98h 11-xxx-xxx | DirectPath 1
SETS mem8 OFh | 98h | mm-xxx-xxx | DirectPath 3
SETNS mreg8 OFh | 99h 11-xxx-xxx | DirectPath 1
SETNS mem8 OFh | 99h | mm-xxx-xxx | DirectPath 3
SETP/SETPE mreg8 OFh | 9Ah 11-xxx-xxx | DirectPath 1
SETP/SETPE mem8 OFh | 9Ah | mm-xxx-xxx | DirectPath 3
SETNP/SETPO mreg8 OFh | 9Bh 11-xxx-xxx | DirectPath 1
SETNP/SETPO mem8 OFh | 9Bh | mm-xxx-xxx | DirectPath 3
SETL/SETNGE mreg8 OFh | 9Ch 11-xxx-xxx | DirectPath 1
SETL/SETNGE mem8 OFh | 9Ch | mm-xxx-xxx | DirectPath 3
SETGE/SETNL mreg8 OFh | 9Dh 11-xxx-xxx | DirectPath 1
SETGE/SETNL mem8 OFh | 9Dh | mm-xxx-xxx | DirectPath 3
SETLE/SETNG mreg8 OFh | 9Eh 11-xxx-xxx | DirectPath 1
SETLE/SETNG mem8 OFh | 9Eh | mm-xxx-xxx | DirectPath 3
SETG/SETNLE mreg8 OFh | 9Fh 11-xxx-xxx | DirectPath 1
SETG/SETNLE mem8 OFh | 9Fh | mm-xxx-xxx | DirectPath 3
SGDT mem48 OFh | 01h | mm-000-xxx | VectorPath 17
SIDT mem48 OFh | 01h | mm-001-xxx | VectorPath 17
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.

3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.

4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
SHL/SAL mreg8, imm8 Coh 11-100-xxx | DirectPath 1 3
SHL/SAL mem8, imm8 Coh mm-100-xxx | DirectPath 4 3
SHL/SAL mreg16/32, imm8 Cih 11-100-xxx | DirectPath 1 3
SHL/SAL mem16/32, imm8 Cih mm-100-xxx | DirectPath 4 3
SHL/SAL mreg8, 1 Doh 11-100-xxx | DirectPath 1
SHL/SAL mems, 1 Doh mm-100-xxx | DirectPath 4
SHL/SAL mreg16/32, 1 D1h 11-100-xxx | DirectPath 1
SHL/SAL mem16/32, 1 D1h mm-100-xxx | DirectPath 4
SHL/SAL mreg8, CL D2h 11-100-xxx | DirectPath 1 3
SHL/SAL mems, CL D2h mm-100-xxx | DirectPath 4 3
SHL/SAL mreg16/32, CL D3h 11-100-xxx | DirectPath 1 3
SHL/SAL mem16/32, CL D3h mm-100-xxx | DirectPath 4 3
SHR mreg8, imm8 Coh 11-101-xxx | DirectPath 1 3
SHR mem8, imm8 Coh mm-101-xxx | DirectPath 4 3
SHR mreg16/32, imm8 Cih 11-101-xxx | DirectPath 1 3
SHR mem16/32, imm8 Cih mm-101-xxx | DirectPath 4 3
SHR mreg8, 1 Doh 11-101-xxx | DirectPath 1
SHR mems, 1 Doh mm-101-xxx | DirectPath 4
SHR mreg16/32, 1 D1h 11-101-xxx | DirectPath 1
SHR mem16/32, 1 D1h mm-101-xxx | DirectPath 4
SHR mreg8, CL D2h 11-101-xxx | DirectPath 1 3
SHR mems, CL D2h mm-101-xxx | DirectPath 4 3
SHR mreg16/32, CL D3h 11-101-xxx | DirectPath 1 3
SHR mem16/32, CL D3h mm-101-xxx | DirectPath 4 3
SHLD mreg16/32, reg16/32, imm8 OFh | A4h 11-xxx-xxx | VectorPath 3
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

258

Instruction Dispatch and Execution Resources/Timing

Appendix F



AMDZ1

22007H/0—June 2000

Table 19. Integer Instructions (Continued)

AMD Athlon™ Processor x86 Code Optimization

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

Instruction Mnemonic First | Second | ModR/M Decode Execute Note
Byte | Byte Byte Type Latency

SHLD mem16/32, reg16/32, imm8 OFh | A4h | mm-xxx-xxx | VectorPath 6 3
SHLD mreg16/32, reg16/32, CL OFh | A5h 11-xxx-xxx | VectorPath 6 3
SHLD mem16/32, reg16/32, CL OFh | A5h | mm-xxx-xxx | VectorPath 6 3
SHRD mreg16/32, reg16/32, imm8 OFh | ACh 11-xxx-xxx | VectorPath 6 3
SHRD mem16/32, reg16/32, imm8 OFh | ACh | mm-xxx-xxx | VectorPath 8 3
SHRD mreg16/32, reg16/32, CL OFh | ADh 11-xxx-xxx | VectorPath 6 3
SHRD mem16/32, reg16/32, CL OFh | ADh | mm-xxx-xxx | VectorPath 8 3
SLDT mreg16 OFh | 00h 11-000-xxx | VectorPath 5

SLDT mem16 OFh | 00h | mm-000-xxx | VectorPath 5

SMSW mreg16 OFh | O01h 11-100-xxx | VectorPath 4

SMSW mem16 OFh | 01h | mm-100-xxx | VectorPath 3

STC Foh DirectPath 1

STD FDh VectorPath 2

STI FBh VectorPath 4

STOSB mems, AL AAh VectorPath 4

STOSW mem16, AX ABh VectorPath 4

STOSD mem32, EAX ABh VectorPath 4 8
STR mreg16 OFh | 00h 11-001-xxx | VectorPath 5

STR mem16 OFh | 00h | mm-001-xxx | VectorPath 5

SUB mreg8, reg8 28h 11-xxx-xxx | DirectPath 1

SUB mem8, reg8 28h mm-xxx-xxx | DirectPath 4

SUB mreg16/32, reg16/32 29h 11-xxx-xxx | DirectPath 1

SUB mem16/32, reg16/32 2% mm-xxx-xxx | DirectPath 4

SUB reg8, mreg8 2Ah 11-xxx-xxx | DirectPath 1

SUB reg8, mem8 2Ah mm-xxx-xxx | DirectPath 4

Notes:
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1. Static timing assumes a predicted branch.

Instruction Mnemonic First | Second | ModR/M Decode Execute Note

Byte | Byte Byte Type Latency
SUB reg16/32, mreg16/32 2Bh 11-xxx-xxx | DirectPath 1
SUB reg16/32, mem16/32 2Bh mm-xxx-xxx | DirectPath 4
SUB AL, imm8 2Ch DirectPath 1
SUB EAX, imm16/32 2Dh DirectPath 1
SUB mreg8, imm8 80h 11-101-xxx | DirectPath 1
SUB mem8, imm8 80h mm-101-xxx | DirectPath 4
SUB mreg16/32, imm16/32 81h 11-101-xxx | DirectPath 1
SUB mem16/32, imm16/32 81h mm-101-xxx | DirectPath 4
SUB mreg16/32, imm8 (sign extended) 83h 11-101-xxx | DirectPath 1
SUB mem16/32, imma8 (sign extended) 83h mm-101-xxx | DirectPath 4
SYSCALL OFh | 05h VectorPath ~
SYSENTER OFh | 34h VectorPath ~
SYSEXIT OFh | 35h VectorPath ~
SYSRET OFh | 07h VectorPath ~
TEST mreg8, reg8 84h 11-xxx-xxx | DirectPath 1
TEST mem8, reg8 84h mm-xxx-xxx | DirectPath 4
TEST mreg16/32, reg16/32 85h 11-xxx-xxx | DirectPath 1
TEST mem16/32, reg16/32 85h mm-xxx-xxx | DirectPath 4
TEST AL, imm8 A8h DirectPath 1
TEST EAX, imm16/32 Adh DirectPath 1
TEST mreg8, imm8 Feh 11-000-xxx | DirectPath 1
TEST mems8, imm8 Feh mm-000-xxx | DirectPath 4
TEST mreg16/32, imm16/32 F7h 11-000-xxx | DirectPath 1
TEST mem16/32, imm16/32 F7h mm-000-xxx | DirectPath 4
VERR mreg16 OFh | 00h 11-100-xxx | VectorPath 11
Notes:

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.

260

Instruction Dispatch and Execution Resources/Timing

Appendix F



AMDZ1

22007H/0—June 2000

Table 19. Integer Instructions (Continued)

AMD Athlon™ Processor x86 Code Optimization

First

Second

ModR/M

Decode

Execute

1. Static timing assumes a predicted branch.

Instruction Mnemonic Byte | Byte Byte Type Latency Note
VERR mem16 OFh | 00h | mm-100-xxx | VectorPath 12
VERW mreg16 OFh | 00h 11-101-xxx | VectorPath 11
VERW mem16 OFh | 00h | mm-101-xxx | VectorPath 12
WAIT 9Bh DirectPath 0 7
WBINVD OFh | 0% VectorPath ~
WRMSR OFh | 30h VectorPath ~
XADD mreg8, reg8 OFh | Coh 11-100-xxx | VectorPath 2
XADD mem8, reg8 OFh | COh | mm-100-xxx | VectorPath 5
XADD mreg16/32, reg16/32 OFh | Cih 11-101-xxx | VectorPath 2
XADD mem16/32, reg16/32 OFh | Clh | mm-101-xxx | VectorPath 5
XCHG reg8, mreg8 86h 11-xxx-xxx | VectorPath 2
XCHG reg8, mem8 86h mm-xxx-xxx | VectorPath 23
XCHG reg16/32, mreg16/32 87h 11-xxx-xxx | VectorPath 2
XCHG reg16/32, mem16/32 87h mm-xxx-xxx | VectorPath 23
XCHG EAX, EAX (NOP) 90h DirectPath 0 7
XCHG EAX, ECX 91h VectorPath 2
XCHG EAX, EDX 92h VectorPath 2
XCHG EAX, EBX 93h VectorPath 2
XCHG EAX, ESP 94h VectorPath 2
XCHG EAX, EBP 95h VectorPath 2
XCHG EAX, ESI 96h VectorPath 2
XCHG EAX, EDI 97h VectorPath 2
XLAT D7h VectorPath 5
XOR mreg8, reg8 30h 11-xxx-xxx | DirectPath 1
XOR mem8, reg8 30h mm-xxx-xxx | DirectPath 4
Notes:

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.

5. The execution latency of the LEA instruction Is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.

6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.

7. These Instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.

8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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. . First | Second | ModR/M Decode Execute
Instruction Mnemonic Note
Byte | Byte Byte Type Latency
XOR mreg16/32, reg16/32 31h 11-xxx-xxx | DirectPath 1
XOR mem16/32, reg16/32 31h mm-xxx-xxx | DirectPath 4
XOR reg8, mreg8 32h 11-xxx-xxx | DirectPath 1
XOR reg8, mems8 32h mm-xxx-xxx | DirectPath 4
XOR reg16/32, mreg16/32 33h 11-xxx-xxx | DirectPath 1
XOR reg16/32, mem16/32 33h mm-xxx-xxx | DirectPath 4
XOR AL, imm8 34h DirectPath 1
XOR EAX, imm16/32 35h DirectPath 1
XOR mreg8, imm8 80h 11-110-xxx | DirectPath 1
XOR mem8, imm8 80h mm-110-xxx | DirectPath 4
XOR mreg16/32, imm16/32 81h 11-110-xxx | DirectPath 1
XOR mem16/32, imm16/32 81h mm-110-xxx | DirectPath 4
XOR mreg16/32, imma8 (sign extended) 83h 11-110-xxx | DirectPath 1
XOR mem16/32, imma8 (sign extended) 83h mm-110-xxx | DirectPath 4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or immé.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the
use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 48.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) forn>2.
7 These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of
three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 102.
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Table 20. MMX™ Instructions
Instruction Mnemonic ;;::;:) ;'yrts: M;‘;?e/ M D:yc;:e FPU Pipe(s) f:fec::; Notes

EMMS OFh 77h DirectPath | FADD/FMUL/FSTORE 2 3
MOVD mmreg, reg32 OFh | 6Eh | 11-xx-xxx | VectorPath - 3 1,4
MOVD mmreg, mem32 OFh | 6Eh | mm-xxx-xxx | DirectPath | FADD/FMUL/FSTORE 2 2,3
MOVD reg32, mmreg OFh | 7Eh | 11-xxx-xxx | VectorPath - 5 1,4
MOVD mem32, mmreg OFh | 7Eh | mm-xxx-xxx | DirectPath FSTORE 2

MOVQ mmregl, mmreg2 OFh | 6Fh | 11-xxx-xxx | DirectPath FADD/FMUL 2

MOVQ mmreg, memé64 OFh | 6Fh | mm-xxx-xxx | DirectPath | FADD/FMUL/FSTORE 2 2,3
MOVQ mmreg2, mmreg1 OFh | 7Fh | 11-xxx-xxx | DirectPath FADD/FMUL 2

MOVQ memé64, mmreg OFh | 7Fh | mm-xxx-xxx | DirectPath FSTORE 2
PACKSSDW mmreg1, mmreg2 OFh | 6Bh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PACKSSDW mmreg, memé64 OFh | 6Bh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PACKSSWB mmreg1, mmreg2 OFh | 63h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PACKSSWB mmreg, mem64 OFh | 63h | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PACKUSWB mmreg1, mmreg2 OFh | 67h | 11-xoexxx | DirectPath FADD/FMUL 2
PACKUSWB mmreg, mem64 OFh | 67h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PADDB mmreg1, mmreg2 OFh | FCh | 11-xxx-xxx | DirectPath FADD/FMUL 2

PADDB mmreg, memé4 OFh | FCh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PADDD mmreg1, mmreg2 OFh | FEh | 11-xxx-xxx | DirectPath FADD/FMUL 2

PADDD mmreg, memé64 OFh FEh | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PADDSB mmreg1, mmreg2 OFh | ECh | 11-xoexxx | DirectPath FADD/FMUL 2

PADDSB mmreg, mem64 OFh | ECh | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PADDSW mmreg1, mmreg2 OFh | EDh | 11-xxx-xxx | DirectPath FADD/FMUL 2

PADDSW mmreg, mem64 OFh | EDh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PADDUSB mmreg1, mmreg2 OFh | DCh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PADDUSB mmreg, memé64 OFh | DCh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PADDUSW mmreg1, mmreg2 OFh | DDh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PADDUSW mmreg, mem64 OFh | DDh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2

Notes:

two additional cycles.

three execution resources.

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.

2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
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Instruction Mnemonic ;yr::g) ;'yrts: Mg‘;‘:e/ M D:yc;:e FPU Pipe(s) f:::::; Notes
PADDW mmreg1, mmreg2 OFh | FDh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PADDW mmreg, mem64 OFh | FDh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PAND mmreg1, mmreg2 OFh | DBh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PAND mmreg, mem64 OFh | DBh | mm-xxx-xxx | DirectPath FADD/FMUL 2
PANDN mmreg1, mmreg2 OFh | DFh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PANDN mmreg, mem64 OFh | DFh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPEQB mmreg1, mmreg2 OFh | 74h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPEQB mmreg, mem64 OFh | 74h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPEQD mmreg1, mmreg2 OFh | 76h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPEQD mmreg, mem64 OFh | 76h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPEQW mmreg1, mmreg2 OFh | 75h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPEQW mmreg, mem64 OFh | 75h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPGTB mmregl, mmreg2 OFh | 64h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPGTB mmreg, memé64 OFh | 64h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPGTD mmreg1, mmreg2 OFh | 66h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPGTD mmreg, memé64 OFh | 66h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PCMPGTW mmreg1, mmreg2 OFh | 65h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PCMPGTW mmreg, mem64 OFh | 65h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PMADDWD mmreg1, mmreg2 OFh | F5h | 11-xxx-xxx | DirectPath FMUL 3
PMADDWD mmreg, mem64 OFh | F5h | mm-xxx-xxx | DirectPath FMUL 3 2
PMULHW mmreg1, mmreg2 OFh | E5h | 11-xxx-xxx | DirectPath FMUL 3
PMULHW mmreg, mem64 OFh E5h | mm-xxx-xxx | DirectPath FMUL 3 2
PMULLW mmreg1, mmreg2 OFh | D5h | 11-xxx-xxx | DirectPath FMUL 3
PMULLW mmreg, memé64 OFh | D5h | mm-xxx-xxx | DirectPath FMUL 3 2
POR mmreg1, mmreg2 OFh | EBh | 11-xxx-xxx | DirectPath FADD/FMUL 2
POR mmreg, memé64 OFh | EBh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSLLD mmreg1, mmreg2 OFh | F2h | 11-xxx-xxx | DirectPath FADD/FMUL 2

Notes:

two additional cycles.

three execution resources.

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.

2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
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Table 20. MMX™ Instructions (Continued)
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two additional cycles.

three execution resources.

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.

2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least

Instruction Mnemonic ;yr::g) ;'yrts: Mg‘;‘:e/ M D:yc;:e FPU Pipe(s) f:::::; Notes
PSLLD mmreg, mem64 OFh | F2h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSLLD mmreg, imm8 OFh | 72h | 11-110-xxx | DirectPath FADD/FMUL 2
PSLLQ mmregl, mmreg2 OFh F3h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSLLQ mmreg, memé64 OFh F3h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSLLQ mmreg, imm8 OFh | 73h | 11-110-xxx | DirectPath FADD/FMUL 2
PSLLW mmreg1, mmreg2 OFh | F1h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSLLW mmreg, memé64 OFh | F1h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSLLW mmreg, imm8 OFh | 71h | 11-110-xxx | DirectPath FADD/FMUL 2
PSRAW mmreg1, mmreg2 OFh | ETh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSRAW mmreg, memé4 OFh Eth | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSRAW mmreg, imm8 OFh 71h | 11-100-xxx | DirectPath FADD/FMUL 2
PSRAD mmreg1, mmreg2 OFh | E2h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSRAD mmreg, mem64 OFh | E2h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSRAD mmreg, imm8 OFh | 72h | 11-100-xxx | DirectPath FADD/FMUL 2
PSRLD mmreg1, mmreg2 OFh | D2h | 11-xoexxx | DirectPath FADD/FMUL 2
PSRLD mmreg, meme64 OFh | D2h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSRLD mmreg, imm8 OFh | 72h | 11-010-xxx | DirectPath FADD/FMUL 2
PSRLQ mmregl, mmreg2 OFh | D3h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSRLQ mmreg, mem64 OFh | D3h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSRLQ mmreg, imm8 OFh | 73h | 11-010-xxx | DirectPath FADD/FMUL 2
PSRLW mmreg1, mmreg2 OFh | D1h | 1-xxx-xxx | DirectPath FADD/FMUL 2
PSRLW mmreg, mem64 OFh | D1h | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PSRLW mmreg, imm8 OFh 71h | 11-010-xxx | DirectPath FADD/FMUL 2
PSUBB mmreg1, mmreg2 OFh | F8h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBB mmreg, mem64 OFh | F8h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSUBD mmreg1, mmreg2 OFh | FAh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBD mmreg, mem64 OFh | FAh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
Notes:

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
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Table 20. MMX™ Instructions (Continued)

22007H/0—June 2000

Prefix

First

ModR/M

Decode

Execute

Instruction Mnemonic Byte(s) | Byte Byte Type FPU Pipe(s) Latency Notes
PSUBSB mmreg1, mmreg2 OFh | E8h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBSB mmreg, memé64 OFh | E8h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSUBSW mmreg1, mmreg2 OFh | E9h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBSW mmreg, mem64 OFh | E9h | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PSUBUSB mmreg1, mmreg2 OFh | D8h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBUSB mmreg, mem64 OFh | D8h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSUBUSW mmreg1, mmreg2 OFh | D9h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBUSW mmreg, memé64 OFh | D9h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PSUBW mmreg1, mmreg2 OFh | F9h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PSUBW mmreg, memé64 OFh Foh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKHBW mmreg1, mmreg2 OFh | 68h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKHBW mmreg, mem64 OFh | 68h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKHDQ mmregl, mmreg2 OFh | 6Ah | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKHDQ mmreg, mem64 OFh | 6Ah | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKHWD mmregl, mmreg2 | OFh | 69h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKHWD mmreg, memé64 OFh | 69h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKLBW mmreg1, mmreg2 OFh | 60h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKLBW mmreg, mem32 OFh | 60h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKLDQ mmreg1, mmreg2 OFh | 62h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKLDQ mmreg, mem32 OFh | 62h | mm-xxx-xxx | DirectPath FADD/FMUL 2 2
PUNPCKLWD mmreg1, mmreg2 OFh | 61h | 11-xxx-xxx | DirectPath FADD/FMUL 2
PUNPCKLWD mmreg, mem32 OFh 61h | mm-xx-xxx | DirectPath FADD/FMUL 2 2
PXOR mmreg1, mmreg2 OFh | EFh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PXOR mmreg, mem64 OFh | EFh | mm-xxx-xxx | DirectPath FADD/FMUL 2 2

Notes:

two additional cycles.

three execution resources.

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.

2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.

266

Instruction Dispatch and Execution Resources/Timing

Appendix F




AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

Table 21. MMX™ Extensions
Instruction Mnemonic Prefix | First| ModR/M Decode _FPU Execute Notes
Byte(s) | Byte Byte Type Pipe(s) Latency

MASKMOVQ mmreg1, mmreg2 OFh | F7h VectorPath | FADD/FMUL/FSTORE 24
MOVNTQ mem64, mmreg OFh | E7h DirectPath FSTORE 3

PAVGB mmreg1, mmreg2 OFh | EOh | T11-xx-xxx | DirectPath FADD/FMUL 2

PAVGB mmreg, mem64 OFh Eoh | mm-xx-xxx | DirectPath FADD/FMUL 2

PAVGW mmreg1, mmreg2 OFh | E3h | 11-xxx-xxx | DirectPath FADD/FMUL 2

PAVGW mmreg, mem64 OFh | E3h | mm-xxx-xxx | DirectPath FADD/FMUL 2

PEXTRW reg32, mmreg, imm8 OFh | C5h VectorPath - 7 3
PINSRW mmreg, reg32, imm8 OFh | C4h VectorPath - 5 3
PINSRW mmreg, mem16, imm8 OFh | C4h VectorPath - 5 3
PMAXSW mmreg1, mmreg2 OFh | EEh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PMAXSW mmreg, mem64 OFh EEh | mm-xxx-xxx | DirectPath FADD/FMUL 2
PMAXUB mmreg1, mmreg2 OFh | DEh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PMAXUB mmreg, memé64 OFh | DEh | mm-xxx-xxx | DirectPath FADD/FMUL 2
PMINSW mmreg1, mmreg2 OFh | EAh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PMINSW mmreg, memé64 OFh | EAh | mm-xxx-xxx | DirectPath FADD/FMUL 2
PMINUB mmreg1, mmreg2 OFh | DAh | 11-xxx-xxx | DirectPath FADD/FMUL 2
PMINUB mmreg, mem64 OFh | DAh | mm-xxx-xxx | DirectPath FADD/FMUL 2
PMOVMSKB reg32, mmreg OFh | D7h VectorPath - 6 3
PMULHUW mmreg1, mmreg2 OFh | E4h | 11-xxx-xxx | DirectPath FMUL 3
PMULHUW mmreg, mem64 OFh | E4h | mm-xx-xxx | DirectPath FMUL 3
PSADBW mmreg1, mmreg2 OFh | F6h | 11-xxx-xxx | DirectPath FADD 3
PSADBW mmreg, mem64 OFh Feh | mm-xxx-xxx | DirectPath FADD 3
PSHUFW mmreg1, mmreg2, imm8 OFh 70h DirectPath FADD/FMUL 2
PSHUFW mmreg, mem64, imm8 OFh | 70h DirectPath FADD/FMUL 2
PREFETCHNTA mem8 OFh | 18h | mm-000-xxx | DirectPath - ~ 1
PREFETCHTO mem8 OFh | 18h | mm-001-xxx | DirectPath - ~ 1
PREFETCHT1 mem8 OFh | 18h | mm-010-xxx | DirectPath - ~ 1
PREFETCHT2 mem8 OFh 18h | mm-011-xxx | DirectPath - ~ 1
SFENCE OFh | AEh VectorPath - 2/8 2
Notes:

instructions.

1. For the PREFETCHNTA/TQ/TI/T2 instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
2. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is visible to the other stores and

3. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
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Table 22. Floating-Point Instructions

22007H/0—June 2000

Instruction Mnemonic First | Second | ModR/M Decode FPU Execute Note
Byte | Byte Byte Type Pipe(s) Latency

F2XM1 Doh 11-110-000 | VectorPath - 64
FABS D9h 11-100-001 | DirectPath FMUL 2
FADD ST, ST(i) Dsh 11-000-xxx | DirectPath FADD 4 1
FADD [mem32real] Dsh mm-000-xxx | DirectPath FADD 4 4
FADD ST(i), ST DCh 11-000-xxx | DirectPath FADD 4 1
FADD [memé64real] DCh mm-000-xxx | DirectPath FADD 4 4
FADDP ST(i), ST DEh 11-000-xxx | DirectPath FADD 4 1
FBLD [mem80] DFh mm-100-xxx | VectorPath - 91
FBSTP [mem80] DFh mm-110-xxx | VectorPath - 198
FCHS Doh 11-100-000 | DirectPath FMUL 2
FCLEX DBh 11-100-010 | VectorPath - 23
FCMOVB ST(0), ST(i) DAh 11-000-xxx | VectorPath - 7 7
FCMOVE ST(0), ST(i) DAh 11-001-xxx | VectorPath - 7 7
FCMOVBE ST(0), ST(i) DAh 11-010-xxx | VectorPath - 7 7
FCMOVU ST(0), ST(i) DAh 11-011-xxx | VectorPath - 7 7
FCMOVNB ST(0), ST(i) DBh 11-000-xxx | VectorPath - 7 7
FCMOVNE ST(0), ST(i) DBh 11-001-xxx | VectorPath - 7 7
FCMOVNBE ST(0), ST(i) DBh 11-010-xxx | VectorPath - 7 7
FCMOVNU ST(0), ST(i) DBh 11-011-xxx | VectorPath - 7 7
FCOM ST(i) Dsh 11-010-xxx | DirectPath FADD 2 1
FCOMP ST(i) Dsh 11-011-xxx | DirectPath FADD 2 1
FCOM [mem32real] D8h mm-010-xxx | DirectPath FADD 2 4
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” Is the difference between the exponents of divisor and dividend. If “s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Instruction Mnemonic First | Second | ModR/M Decode _FPU Execute Note
Byte | Byte Byte Type Pipe(s) Latency

FCOM [meme64real] DCh mm-010-xxx | DirectPath FADD 2 4
FCOMI ST, ST(i) DBh 11-110-xxx | VectorPath FADD 3 3
FCOMIP ST, ST(i) DFh 11-110-xxx | VectorPath FADD 3 3
FCOMP [mem32real] D8h mm-011-xxx | DirectPath FADD 2 4
FCOMP [memé64real] DCh mm-011-xxx | DirectPath FADD 2 4
FCOMPP DEh 11-011-001 | DirectPath FADD 2
FCOS Doh 11-111-111 | VectorPath - 97-196
FDECSTP Doh 11-110-110 | DirectPath | FADD/FMUL/FSTORE 2
FDIV ST, ST(i) Dsh 11-110-xxx | DirectPath FMUL 16/20/24 | 1,5
FDIV ST()), ST DCh 11-111-xxx | DirectPath FMUL 16/20/24 | 1,5
FDIV [mem32real] D8h mm-110-xxx | DirectPath FMUL 16/20/24 | 4,5
FDIV [meméd4real] DCh mm-110-xxx | DirectPath FMUL 16/20/24 | 4,5
FDIVP ST(i), ST DEh 11-111-xxx | DirectPath FMUL 16/20/24 | 1,5
FDIVR ST, ST(i) Dsh 11-110-xxx | DirectPath FMUL 16/20/24 | 1,5
FDIVR ST(i), ST DCh 11-111-xxx | DirectPath FMUL 16/20/24 | 1,5
FDIVR [mem32real] D8h mm-111-xxx | DirectPath FMUL 16/20/24 | 4,5
FDIVR [memé64real] DCh mm-111-xxx | DirectPath FMUL 16/20/24 | 4,5
FDIVRP ST(i), ST DEh 11-110-xxx | DirectPath FMUL 16/20/24 | 1,5
FFREE ST(i) DDh 11-000-xxx | DirectPath | FADD/FMUL/FSTORE 2 1,2
FFREEP ST(i) DFh 11-000-xxx | DirectPath | FADD/FMUL/FSTORE 2 1,2
FIADD [mem32int] DAh mm-000-xxx | VectorPath - 9 4
FIADD [mem16int] DEh mm-000-xxx | VectorPath - 9 4
FICOM [mem32int] DAh mm-010-xxx | VectorPath - 9 4

Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Table 22. Floating-Point Instructions (Continued)

22007H/0—June 2000

Instruction Mnemonic First | Second | ModR/M Decode FPU Execute Note
Byte | Byte Byte Type Pipe(s) Latency

FICOM [mem16int] DEh mm-010-xxx | VectorPath - 9
FICOMP [mem32int] DAh mm-011-xxx | VectorPath - 9
FICOMP [mem16int] DEh mm-011-xxx | VectorPath - 9
FIDIV [mem32int] DAh mm-110-xxx | VectorPath - 21/25/29 | 4,5
FIDIV [mem16int] DEh mm-110-xxx | VectorPath - 21/25/29 | 4,5
FIDIVR [mem32int] DAh mm-111-xxx | VectorPath - 21/25/29 | 4,5
FIDIVR [mem16int] DEh mm-111-xxx | VectorPath - 21/25/29 | 4,5
FILD [mem16int] DFh mm-000-xxx | DirectPath FSTORE 4 4
FILD [mem32int] DBh mm-000-xxx | DirectPath FSTORE 4 4
FILD [meme64int] DFh mm-101-xxx | DirectPath FSTORE 4 4
FIMUL [mem32int] DAh mm-001-xxx | VectorPath - 9 4
FIMUL [mem16int] DEh mm-001-xxx | VectorPath - 9 4
FINCSTP Doh 11-110-111 | DirectPath | FADD/FMUL/FSTORE 2 2
FINIT DBh 11-100-011 | VectorPath - 91
FIST [mem16int] DFh mm-010-xxx | DirectPath FSTORE 4 4
FIST [mem32int] DBh mm-010-xxx | DirectPath FSTORE 4 4
FISTP [mem16int] DFh mm-011-xxx | DirectPath FSTORE 4 4
FISTP [mem32int] DBh mm-011-xxx | DirectPath FSTORE 4 4
FISTP [memé64int] DFh mm-111-xxx | DirectPath FSTORE 4 4
FISUB [mem32int] DAh mm-100-xxx | VectorPath - 9 4
FISUB [mem16int] DEh mm-100-xxx | VectorPath - 9 4
FISUBR [mem32int] DAh mm-101-xxx | VectorPath - 9 4
FISUBR [mem16int] DEh mm-101-xxx | VectorPath - 9 4
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” Is the difference between the exponents of divisor and dividend. If “s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Instruction Mnemonic First | Second | ModR/M Decode FPU Execute Note

Byte | Byte Byte Type Pipe(s) Latency

FLD ST(i) Doh 11-000-xxx | DirectPath FADD/FMUL 2 1

FLD [mem32real] D9h mm-000-xxx | DirectPath | FADD/FMUL/FSTORE 2 4

FLD [mem64real] DDh mm-000-xxx | DirectPath | FADD/FMUL/FSTORE 2 4

FLD [mem8o0real] DBh mm-101-xxx | VectorPath - 10 4

FLD1 Doh 11-101-000 | DirectPath FSTORE 4

FLDCW [mem16] D9h mm-101-xxx | VectorPath - 11

FLDENV [mem14byte] D9h mm-100-xxx | VectorPath - 129

FLDENV [mem28byte] D9h mm-100-xxx | VectorPath - 129

FLDL2E Doh 11-101-010 | DirectPath FSTORE 4

FLDL2T Doh 11-101-001 | DirectPath FSTORE 4

FLDLG2 Doh 11-101-100 | DirectPath FSTORE 4

FLDLN2 Doh 11-101-101 | DirectPath FSTORE 4

FLDPI Doh 11-101-011 | DirectPath FSTORE 4

FLDZ Doh 11-101-110 | DirectPath FSTORE 4

FMUL ST, ST(i) D8h 11-001-xxx | DirectPath FMUL 4 1

FMUL ST(i), ST DCh 11-001-xxx | DirectPath FMUL 4 1

FMUL [mem32real] D8h mm-001-xxx | DirectPath FMUL 4 4

FMUL [memé64real] DCh mm-001-xxx | DirectPath FMUL 4 4

FMULP ST(i), ST DEh 11-001-xxx | DirectPath FMUL 4 1

FNOP Doh 11-010-000 | DirectPath | FADD/FMUL/FSTORE 2 2

FPTAN Doh 11-110-010 | VectorPath - 107-216

FPATAN Doh 11-110-011 | VectorPath - 158-175

FPREM Doh 11-111-000 | DirectPath FMUL 9+e+n 6

Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” Is the difference between the exponents of divisor and dividend. If “s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Table 22. Floating-Point Instructions (Continued)
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Instruction Mnemonic First | Second | ModR/M Decode FPU Execute Note
Byte | Byte Byte Type Pipe(s) Latency
FPREM1 D9h 11-110-101 | DirectPath FMUL 9+e+n 6
FRNDINT D9h 11-111-100 | VectorPath - 10
FRSTOR [mem94byte] DDh mm-100-xxx | VectorPath - 138
FRSTOR [mem108byte] DDh mm-100-xxx | VectorPath - 138
FSAVE [mem94byte] DDh mm-110-xxx | VectorPath - 159
FSAVE [mem108byte] DDh mm-110-xxx | VectorPath - 159
FSCALE D9h 11-111-101 | VectorPath - 8
FSIN D9h 11-111-110 | VectorPath - 96-192
FSINCOS Doh 11-111-011 | VectorPath - 107-211
FSQRT Doh 11-111-010 | DirectPath FMUL 19/27/35
FST [mem32real] Doh mm-010-xxx | DirectPath FSTORE 2
FST [meme64real] DDh mm-010-xxx | DirectPath FSTORE 2
FST ST(i) DDh 11-010xxx | DirectPath FADD/FMUL 2
FSTCW [mem16] D9h mm-111-xxx | VectorPath - 4
FSTENV [mem14byte] Doh mm-110-xxx | VectorPath - 89
FSTENV [mem28byte] Doh mm-110-xxx | VectorPath - 89
FSTP [mem32real] Doh mm-011-xxx | DirectPath FADD/FMUL
FSTP [meme64real] DDh mm-011-xxx | DirectPath FADD/FMUL 4
FSTP [mem80real] D9h mm-111-xxx | VectorPath - 8
FSTP ST(i) DDh 11-011-xxx | DirectPath FADD/FMUL 2
FSTSW AX DFh 11-100-000 | VectorPath - 12
FSTSW [mem16] DDh mm-111-xxx | VectorPath FSTORE
FSUB [mem32real] D8h mm-100-xxx | DirectPath FADD 4 4
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” Is the difference between the exponents of divisor and dividend. If “s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Instruction Mnemonic First | Second | ModR/M Decode FPU Execute Note
Byte | Byte Byte Type Pipe(s) Latency

FSUB [mem64real] DCh mm-100-xxx | DirectPath FADD 4 4
FSUB ST, ST(i) D8h 11-100-xxx | DirectPath FADD 4 1
FSUB ST(i), ST DCh 11-101-xxx | DirectPath FADD 4 1
FSUBP ST(i), ST DEh 11-101-xxx | DirectPath FADD 4 1
FSUBR [mem32real] Dsh mm-101-xxx | DirectPath FADD 4 4
FSUBR [meme64real] DCh mm-101-xxx | DirectPath FADD 4 4
FSUBR ST, ST(i) D8h 11-100-xxx | DirectPath FADD 4 1
FSUBR ST(i), ST DCh 11-101-xxx | DirectPath FADD 4 1
FSUBRP ST(i), ST DEh 11-100-xxx | DirectPath FADD 4 1
FTST Doh 11-100-100 | DirectPath FADD 2
FUCOM DDh 11-100-xxx | DirectPath FADD 2
FUCOMI ST, ST(i) DBh 11-101-xxx | VectorPath FADD 3 3
FUCOMIP ST, ST(i) DFh 11-101-xxx | VectorPath FADD 3 3
FUCOMP DDh 11-101-xxx | DirectPath FADD 2
FUCOMPP DAh 11-101-001 | DirectPath FADD 2
FWAIT 9Bh DirectPath - 0
FXAM Doh 11-100-101 | VectorPath - 3
FXCH Doh 11-001-xxx | DirectPath | FADD/FMUL/FSTORE 2 2
FXRSTOR [mem512byte] OFh | AEh | mm-001-xxx | VectorPath - 68/108 8
FXSAVE [mem512byte] OFh | AEh | mm-000-xxx | VectorPath - 31/79 8
FXTRACT Doh 11-110-100 | VectorPath - 7
FYL2X Doh 11-110-001 | VectorPath - 116-126
FYL2XP1 Doh 11-111-001 | VectorPath - 126
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a
latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).

4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.

6. There is additional latency associated with this instruction. “e” Is the difference between the exponents of divisor and dividend. If “s”
is the number of normalization shifts performed on the result then n = (s+1)/2 where (0 <= n <= 32).

7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 134
for more information.

8. The first number is for when no error condition is present. The second number is for when there is an error condition.
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Table 23. 3DNow!™ Instructions

Instruction Mnemonic Prefix imm8 ModR/M | Decode F PU Execute Note
Byte(s) Byte Type Pipe(s) Latency

FEMMS OFh OEh DirectPath | FADD/FMUL/FSTORE 2 2
PAVGUSB mmregl, mmreg2 | OFh, OFh | BFh 11-xxx-xxx | DirectPath FADD/FMUL 2
PAVGUSB mmreg, memé64 OFh,0Fh | BFh | mm-xxx-xxx | DirectPath FADD/FMUL 2 3
PF2ID mmreg1, mmreg2 OFh, OFh | 1Dh 11-xxx-xxx | DirectPath FADD 4

PF2ID mmreg, mem64 OFh,OFh | 1Dh | mm-xxx-xxx | DirectPath FADD 4 3
PFACC mmreg1, mmreg2 OFh, OFh | AEh 11-xxx-xxx | DirectPath FADD 4

PFACC mmreg, mem64 OFh,OFh | AEh | mm-xxx-xxx | DirectPath FADD 4 3
PFADD mmreg1, mmreg2 OFh, OFh | 9Eh 11-xxx-xxx | DirectPath FADD 4

PFADD mmreg, mem64 OFh,OFh | 9Eh | mm-xxx-xxx | DirectPath FADD 4 3
PFCMPEQ mmreg1, mmreg2 | OFh, OFh | BOh 11-xxx-xxx | DirectPath FADD 4
PFCMPEQ mmreg, mem64 OFh, OFh | BOh | mm-xxx-xxx | DirectPath FADD 4 3
PFCMPGE mmreg1, mmreg2 | OFh, OFh | 90h 11-xxx-xxx | DirectPath FADD 4
PFCMPGE mmreg, mem64 | OFh,OFh | 90h | mm-xxx-xxx | DirectPath FADD 4 3
PFCMPGT mmreg1, mmreg2 | OFh, OFh | Aoh 11-xxx-xxx | DirectPath FADD 4
PFCMPGT mmreg, mem64 OFh, OFh | AOh | mm-xxx-xxx | DirectPath FADD 4 3
PFMAX mmreg1, mmreg2 OFh, OFh | A4h 11-xxx-xxx | DirectPath FADD 4

PFMAX mmreg, mem64 OFh, OFh | A4h | mm-xxx-xxx | DirectPath FADD 4 3
PFMIN mmreg1, mmreg2 OFh, OFh | 94h 11-xxx-xxx | DirectPath FADD 4

PFMIN mmreg, memé4 OFh,OFh | 94h | mm-xxx-xxx | DirectPath FADD 4 3
PFMUL mmreg1, mmreg2 OFh, OFh | B4h 11-xxx-xxx | DirectPath FMUL 4

PFMUL mmreg, mem64 OFh, OFh | B4h | mm-xxx-xxx | DirectPath FMUL 4 3
PFRCP mmreg1, mmreg2 OFh, OFh | 96h 11-xxx-xxx | DirectPath FMUL 3

PFRCP mmreg, memé64 OFh, OFh | 96h | mm-xxx-xxx | DirectPath FMUL 3 3
PFRCPIT1 mmregl, mmreg2 | OFh, OFh | Aéh 11-xxx-xxx | DirectPath FMUL 4
PFRCPIT1 mmreg, mem64 OFh,OFh | A6h | mm-xxx-xxx | DirectPath FMUL 4 3
PFRCPIT2 mmregl, mmreg2 | OFh, OFh | B6h 11-xxx-xxx | DirectPath FMUL 4
PFRCPIT2 mmreg, mem64 OFh,OFh | Beh | mm-xxx-xxx | DirectPath FMUL 4 3
Notes:

1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.

2. The byte listed in the column titled immé’ is actually the Opcode Byte.

3. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

4. This instruction has an effective latency of that which is listed. However, it generates an internal NOP with a latency of two cycles but
no related dependencies. These internal NOP(s) can be executed at a rate of three per cycle and can use any of the three execution
resources
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Table 23. 3DNow!™ Instructions (Continued)

AMD Athlon™ Processor x86 Code Optimization

two additional cycles.

resources

Instruction Mnemonic Prefix imm8 ModR/M | Decode F PU Execute Note
Byte(s) Byte Type Pipe(s) Latency

PFRSQIT1 mmregl, mmreg2 | OFh,OFh | A7h 11-xxx-xxx | DirectPath FMUL 4
PFRSQIT1 mmreg, memé64 OFh,0Fh | A7h | mm-xxx-xxx | DirectPath FMUL 4 3
PFRSQRT mmreg1, mmreg2 | OFh, OFh | 97h 11-xxx-xxx | DirectPath FMUL 3
PFRSQRT mmreg, mem64 OFh,OFh | 97h mm-xxx-xxx | DirectPath FMUL 3 3
PFSUB mmregl, mmreg2 OFh, OFh | 9Ah 11-xxx-xxx | DirectPath FADD 4
PFSUB mmreg, memé64 OFh,OFh | 9Ah | mm-xxx-xxx | DirectPath FADD 4 3
PFSUBR mmreg1, mmreg2 OFh, OFh | AAh 11-xxx-xxx | DirectPath FADD 4
PFSUBR mmreg, memé64 OFh,OFh | AAh | mm-xxx-xxx | DirectPath FADD 4 3
PI2FD mmreg1, mmreg2 OFh, OFh | 0Dh 11-xxx-xxx | DirectPath FADD 4
PI2FD mmreg, mem64 OFh,OFh | 0Dh | mm-xxx-xxx | DirectPath FADD 4 3
PMULHRW mmreg1, mmreg2 | OFh, OFh | B7h 11-xxx-xxx | DirectPath FMUL 3
PMULHRW mmreg1, memé4 | OFh,OFh | B7h | mm-xxx-xxx | DirectPath FMUL 3 3
PREFETCH mem8 OFh 0Dh | mm-000-xxx | DirectPath - ~ 1,2
PREFETCHW mem8 OFh 0Dh | mm-001-xxx | DirectPath - ~ 1,2
Notes:

1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
2. The byte listed in the column titled immé’ is actually the Opcode Byte.

3. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least

4. This instruction has an effective latency of that which is listed. However, it generates an internal NOP with a latency of two cycles but
no related dependencies. These internal NOP(s) can be executed at a rate of three per cycle and can use any of the three execution
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Table 24. 3DNow!™ Extensions

22007H/0—June 2000

Instruction Mnemonic Prefix imm8 ModR/M | Decode F PU Execute Note
Byte(s) Byte Type Pipe(s) Latency
PF2IW mmreg1, mmreg2 OFh, OFh | 1Ch 11-xxx-xxx | DirectPath FADD 4
PF2IW mmreg, mem64 OFh,0Fh | 1Ch | mm-xxx-xxx | DirectPath FADD 4 1
PFNACC mmreg1, mmreg2 OFh, OFh | 8Ah 11-xxx-xxx | DirectPath FADD 4
PFNACC mmreg, memé64 OFh,OFh | 8Ah | mm-xxx-xxx | DirectPath FADD 4 1
PFPNACC mmreg1l, mmreg2 OFh, OFh | 8Eh 11-xxx-xxx | DirectPath FADD 4
PFPNACC mmreg, memé64 OFh,OFh | 8Eh | mm-xxx-xxx | DirectPath FADD 4 1
PI2FW mmreg1, mmreg2 OFh, OFh | 0Ch 11-xxx-xxx | DirectPath FADD 4
PI2FW mmreg, mem64 OFh,0Fh | 0Ch | mm-xxx-xxx | DirectPath FADD 4 1
PSWAPD mmreg1l, mmreg2 OFh,OFh | BBh 11-xxx-xxx | DirectPath FADD/FMUL 2
PSWAPD mmreg, memé64 OFh,OFh | BBh | mm-xxx-xxx | DirectPath FADD/FMUL 2 1

Notes:

cycles.

1. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the Load)/Store
Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least two additional
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Appendix G

DirectPath versus
VectorPath Instructions

Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register<«register op
memory’ as well as ‘register«register op register’ forms of
instructions.

DirectPath Instructions

The following tables contain DirectPath instructions, which
should be used in the AMD Athlon processor wherever possible:

m Table 25, “DirectPath Integer Instructions,” on page 278

m Table 26, “DirectPath MMX™ Instructions,” on page 285
and Table 27, “DirectPath MMX™ Extensions,” on page 286

m Table 28, “DirectPath Floating-Point Instructions,” on
page 287

m All 3DNow! instructions, including the 3DNow! Extensions,
are DirectPath and are listed in Table 23, “3DNow!™
Instructions,” on page 274 and Table 24, “3DNow!™ Exten-
sions,” on page 276.
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Instruction Mnemonic f:te:::; Instruction Mnemonic f::ec::;
ADC mreg8, reg8 1 AND mem8, reg8 4
ADC mems, reg8 4 AND mreg16/32, reg16/32 1
ADC mreg16/32, reg16/32 1 AND mem16/32, reg16/32 4
ADC mem16/32, reg16/32 4 AND reg8, mreg8 1
ADC reg8, mreg8 1 AND reg8, mem8 4
ADC reg8, mem8 4 AND reg16/32, mreg16/32 1
ADC reg16/32, mreg16/32 1 AND reg16/32, mem16/32 4
ADC reg16/32, mem16/32 4 AND AL, imm8 1
ADC AL, imm8 1 AND EAX, imm16/32 1
ADC EAX, imm16/32 1 AND mreg8, imm8 1
ADC mreg8, imm8 1 AND mem8, imm8 4
ADC mems8, imm8 4 AND mreg16/32, imm16/32 1
ADC mreg16/32, imm16/32 1 AND mem16/32, imm16/32 4
ADC mem16/32, imm16/32 4 AND mreg16/32, imm8 (sign extended) 1
ADC mreg16/32, imm8 (sign extended) 1 AND mem16/32, imma8 (sign extended) 4
ADC mem16/32, imma8 (sign extended) 4 BSWAP EAX 1
ADD mreg8, reg8 1 BSWAP ECX 1
ADD mems8, reg8 4 BSWAP EDX 1
ADD mreg16/32, reg16/32 1 BSWAP EBX 1
ADD mem16/32, reg16/32 4 BSWAP ESP 1
ADD reg8, mreg8 1 BSWAP EBP 1
ADD reg8, mem8 4 BSWAP ESI 1
ADD reg16/32, mreg16/32 1 BSWAP EDI 1
ADD reg16/32, mem16/32 4 BT mreg16/32, reg16/32 1
ADD AL, imm8 1 BT mreg16/32, imm8 1
ADD EAX, imm16/32 1 BT mem16/32, imm8 4
ADD mreg8, imm8 1 CBW/CWDE 1
ADD mem8, imm8 4 CLC 1
ADD mreg16/32, imm16/32 1 cmcC 1
ADD mem16/32, imm16/32 4 CMOVA/CMOVBE reg16/32, reg16/32 1
ADD mreg16/32, imm8 (sign extended) 1 CMOVA/CMOVBE reg16/32, mem16/32 4
ADD mem16/32, imm8 (sign extended) 4 CMOVAE/CMOVNB/CMOVNC reg16/32, |
AND mreg8, reg8 1 mem16/32
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Table 25. DirectPath Integer Instructions (Continued)
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Instruction Mnemonic f:teec::; Instruction Mnemonic f:te:::;
CMOVAE/CMOVNB/CMOVNC mem16/32, . CMP mreg16/32, reg16/32 1
Tem16/32 CMP mem16/32, reg16/32 4
CMOVB/CMOVC/CMOVNAE reg16/32, | CMIP regs, mrega ]
reg16/52 CMP reg8, mem8 4
CMOVB/CMOVC/CMOVNAE mem16/32,
regl6/32 4 CMP reg16/32, mreg16/32 1
CMOVBE/CMOVNA reg16/32, reg16/32 1 CMP reg16/32, mem16/32 4
CMOVBE/CMOVNA reg16/32, mem16/32 4 CMP AL, imm8 1
CMOVE/CMOVZ reg16/32, reg16/32 1 CMP EAX, imW16/32 1
CMOVE/CMOVZ reg16/32, mem16/32 4 CMP mreg8, imm8 1
CMOVG/CMOVNLE reg16/32, reg16/32 1 CMP mem8, imm8 4
CMOVG/CMOVNLE reg16/32, mem16/32 4 CMP mreg16/32, imm16/32 1
CMOVGE/CMOVNL reg16/32, reg16/32 1 CMP mem16/32, imm16/32 4
CMOVGE/CMOVNL reg16/32, mem16/32 4 CMP mreg16/32, imm8 (sign extended) 1
CMOVL/CMOVNGE reg16/32, regi6/32 1 CMP mem16/32, imm8 (sign extended) 4
CMOVL/CMOVNGE reg16/32, mem16/32 4 CwD/CDQ 1
CMOVLE/CMOVNG reg16/32, reg16/32 1 DEC EAX 1
CMOVLE/CMOVNG reg16/32, mem16/32 4 DEC ECX 1
CMOVNE/CMOVNZ reg16/32, reg16/32 1 DEC EDX 1
CMOVNE/CMOVNZ reg16/32, mem16/32 4 DEC EBX 1
CMOVNO reg16/32, reg16/32 1 DECESP 1
CMOVNO reg16/32, mem16/32 4 DEC EBP 1
CMOVNP/CMOVPO reg16/32, reg16/32 1 DECESI 1
CMOVNP/CMOVPO reg16/32, mem16/32 4 DECEDI 1
CMOVNS reg16/32, reg16/32 1 DEC mregs8 1
CMOVNS reg16/32, mem16/32 4 DEC mem8 4
CMOVO reg16/32, reg16/32 1 DEC mreg16/32 1
CMOVO reg16/32, mem16/32 4 DEC mem16/32 4
CMOVP/CMOVPE reg16/32, reg16/32 1 INC EAX 1
CMOVP/CMOVPE reg16/32, mem16/32 4 INC ECX 1
CMOVS reg16/32, reg16/32 1 INC EDX 1
CMOVS reg16/32, mem16/32 4 INC EBX 1
CMP mregs, reg8 1 INC ESP ]
CMP mem8, reg8 4 INC EBP 1
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Instruction Mnemonic f:teec::; Instruction Mnemonic f:te:::;
INCESI 1 JNP/JPO near disp16/32 1
INCEDI 1 JL/INGE near disp16/32 1
INC mreg8 1 JNL/JGE near disp16/32 1
INC mem8 4 JLE/ING near disp16/32 1
INC mreg16/32 1 JNLE/JG near disp16/32 1
INC mem16/32 4 JMP near disp16/32 (direct) 1
JO short disp8 1 JMP far disp32/48 (direct) 16
JNO short disp8 1 JMP disp8 (short) 1
JB/JNAE short disp8 1 JMP near mreg16/32 (indirect) 1
JNB/JAE short disp8 1 JMP near mem16/32 (indirect) 4
JZ/JE short disp8 1 LEA reg32, mem16/32 2
JNZ/INE short disp8 1 MOV mreg8, reg8 1
JBE/INA short disp8 1 MOV mem8, reg8 3
JNBE/JA short disp8 1 MOV mreg16/32, reg16/32 1
JS short disp8 1 MOV mem16/32, reg16/32 3
INS short disp8 1 MOV reg8, mreg8 1
JP/JPE short disp8 1 MOV reg8, mem8 3
JNP/JPO short disp8 1 MOV reg16/32, mreg16/32 1
JL/INGE short disp8 1 MOV reg16/32, mem16/32 3
JNL/JGE short disp8 1 MOV AL, mem8 3
JLE/ING short disp8 1 MOV EAX, mem16/32 3
JNLE/JG short disp8 1 MOV mems8, AL 3
JO near disp16/32 1 MOV mem16/32, EAX 3
JNO near disp16/32 1 MOV AL, imm8 1
JB/JNAE near disp16/32 1 MOV CL, imm8 1
JNB/JAE near disp16/32 1 MOV DL, imm8 1
JZ/JE near disp16/32 1 MOV BL, imm8 1
JNZ/INE near disp16/32 1 MOV AH, imm8 1
JBE/INA near disp16/32 1 MOV CH, imm8 1
JNBE/JA near disp16/32 1 MOV DH, imm8 1
JS near disp16/32 1 MOV BH, imm8 1
JNS near disp16/32 1 MOV EAX, imm16/32 1
JP/JPE near disp16/32 1 MOV ECX, imm16/32 1
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Instruction Mnemonic f:teec::; Instruction Mnemonic f:te:::;
MOV EDX, imm16/32 1 OR reg16/32, mreg16/32 1
MOV EBX, imm16/32 1 OR reg16/32, mem16/32 4
MOV ESP, imm16/32 1 ORAL, imm8 1
MOV EBP, imm16/32 1 OR EAX, imm16/32 1
MOV ESI, imm16/32 1 OR mreg8, imm8 1
MOV EDI, imm16/32 1 OR mem8, imm8 4
MOV mreg8, imm8 1 OR mreg16/32, imm16/32 1
MOV mem8, imm8 3 OR mem16/32, imm16/32 4
MOV mreg16/32, imm16/32 1 OR mreg16/32, imm8 (sign extended) 1
MOV mem16/32, imm16/32 3 OR mem16/32, imm8 (sign extended) 4
MOVSX reg16/32, mreg8 1 PUSH EAX 3
MOVSX reg16/32, mem8 4 PUSH ECX 3
MOVSX reg32, mreg16 1 PUSH EDX 3
MOVSX reg32, mem16 4 PUSH EBX 3
MOVZX reg16/32, mreg8 1 PUSH ESP 3
MOVZX reg16/32, mem8 4 PUSH EBP 3
MOVZX reg32, mreg16 1 PUSH ESI 3
MOVIX reg32, mem16 4 PUSH EDI 3
NEG mreg8 1 PUSH imm8 3
NEG mem8 4 PUSH imm16/32 3
NEG mreg16/32 1 RCL mreg8, imm8 5
NEG mem16/32 4 RCL mreg16/32, imm8 5
NOP (XCHG EAX, EAX) 0 RCL mregs, 1 1
NOT mreg8 1 RCL mems, 1 4
NOT mem8 4 RCL mreg16/32, 1 1
NOT mreg16/32 1 RCL mem16/32, 1 4
NOT mem16/32 4 RCL mreg8, CL 5
OR mreg8, reg8 1 RCL mregi6/32, CL 5
OR mem8, reg8 4 RCR mreg8, imm8 5
OR mreg16/32, reg16/32 1 RCR mreg16/32, imm8 5
OR mem16/32, reg16/32 4 RCR mreg8, 1 1
OR reg8, mreg8 1 RCR mems, 1 4
OR reg8, mem8 4 RCR mreg16/32, 1 1
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Table 25. DirectPath Integer Instructions (Continued)

Instruction Mnemonic f:teec::; Instruction Mnemonic f:te:::;
RCR mem16/32, 1 4 SAR mreg16/32, 1 1
RCR mreg8, CL 5 SAR mem16/32, 1 4
RCR mreg16/32, CL 5 SAR mreg8, CL 1
ROL mreg8, imm8 1 SAR mems8, CL 4
ROL mem8, imm8 4 SAR mreg16/32, CL 1
ROL mreg16/32, imm8 1 SAR mem16/32, CL 4
ROL mem16/32, imm8 4 SBB mreg8, reg8 1
ROL mreg8, 1 1 SBB mem8, reg8 4
ROL mems, 1 4 SBB mreg16/32, reg16/32 1
ROL mreg16/32, 1 1 SBB mem16/32, reg16/32 4
ROL mem16/32, 1 4 SBB reg8, mreg8 1
ROL mreg8, CL 1 SBB reg8, mem8 4
ROL mems8, CL 4 SBB reg16/32, mreg16/32 1
ROL mreg16/32, CL 1 SBB reg16/32, mem16/32 4
ROL mem16/32, CL 4 SBB AL, imm8 1
ROR mreg8, imm8 1 SBB EAX, imm16/32 1
ROR mem8, imm8 4 SBB mreg8, imm8 1
ROR mreg16/32, imm8 1 SBB mem8, imm8 4
ROR mem16/32, imm8 4 SBB mreg16/32, imm16/32 1
ROR mreg8, 1 1 SBB mem16/32, imm16/32 4
ROR mems, 1 4 SBB mreg16/32, imm8 (sign extended) 1
ROR mreg16/32, 1 1 SBB mem16/32, imm8 (sign extended) 4
ROR mem16/32, 1 4 SETO mreg8 1
ROR mreg8, CL 1 SETO mem8 3
ROR mem8, CL 4 SETNO mreg8 1
ROR mreg16/32, CL 1 SETNO mem8 3
ROR mem16/32, CL 4 SETB/SETC/SETNAE mreg8 1
SAR mreg8, imm8 1 SETB/SETC/SETNAE mem8 3
SAR mem8, imm8 4 SETAE/SETNB/SETNC mreg8 1
SAR mreg16/32, imm8 1 SETAE/SETNB/SETNC mem8 3
SAR mem16/32, imm8 4 SETE/SETZ mreg8 1
SAR mreg8, 1 1 SETE/SETZ mem8 3
SAR mems, 1 4 SETNE/SETNZ mreg8 1
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Instruction Mnemonic f:teec::; Instruction Mnemonic f:::::;
SETNE/SETNZ mem8 3 SHR mreg8, imm8 1
SETBE/SETNA mreg8 1 SHR mem8, imm8 4
SETBE/SETNA mem8 3 SHR mreg16/32, imm8 1
SETA/SETNBE mreg8 1 SHR mem16/32, imm8 4
SETA/SETNBE mem8 3 SHR mreg8, 1 1
SETS mreg8 1 SHR mem8, 1 4
SETS mem8 3 SHR mreg16/32, 1 1
SETNS mreg8 1 SHR mem16/32, 1 4
SETNS mem8 3 SHR mreg8, CL 1
SETP/SETPE mreg8 1 SHR mems, CL 4
SETP/SETPE mem8 3 SHR mreg16/32, CL 1
SETNP/SETPO mreg8 1 SHR mem16/32, CL 4
SETNP/SETPO mem8 3 STC 1
SETL/SETNGE mreg8 1 SUB mreg8, reg8 1
SETL/SETNGE mem8 3 SUB mem8, reg8 4
SETGE/SETNL mreg8 1 SUB mreg16/32, reg16/32 1
SETGE/SETNL mem8 3 SUB mem16/32, reg16/32 4
SETLE/SETNG mreg8 1 SUB reg8, mreg8 1
SETLE/SETNG mem8 3 SUB reg8, mem8 4
SETG/SETNLE mreg8 1 SUB reg16/32, mreg16/32 1
SETG/SETNLE mem8 3 SUB reg16/32, mem16/32 4
SHL/SAL mreg8, imm8 1 SUB AL, imm8 1
SHL/SAL mem8, imm8 4 SUB EAX, imm16/32 1
SHL/SAL mreg16/32, imm8 1 SUB mreg8, imm8 1
SHL/SAL mem16/32, imm8 4 SUB mem8, imm8 4
SHL/SAL mreg8, 1 1 SUB mreg16/32, imm16/32 1
SHL/SAL mems, 1 4 SUB mem16/32, imm16/32 4
SHL/SAL mreg16/32, 1 1 SUB mreg16/32, imm8 (sign extended) 1
SHL/SAL mem16/32, 1 4 SUB mem16/32, imm8 (sign extended) 4
SHL/SAL mreg8, CL 1 TEST mreg8, reg8 1
SHL/SAL mems, CL 4 TEST mems8, reg8 4
SHL/SAL mreg16/32, CL 1 TEST mreg16/32, reg16/32 1
SHL/SAL mem16/32, CL 4 TEST mem16/32, reg16/32 4
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Table 25. DirectPath Integer Instructions (Continued)

Instruction Mnemonic

Execute
Latency

TEST AL, imm8

1

TEST EAX, imm16/32

TEST mreg8, imm8

TEST mems8, imm8

TEST mreg16/32, imm16/32

TEST mem16/32, imm16/32

WAIT

XCHG EAX, EAX (NOP)

XOR mreg8, reg8

XOR mem8, reg8

XOR mreg16/32, reg16/32

XOR mem16/32, reg16/32

XOR reg8, mreg8

XOR reg8, mem8

XOR reg16/32, mreg16/32

XOR reg16/32, mem16/32

XOR AL, imm8

XOR EAX, imm16/32

XOR mreg8, imm8

XOR mem8, imm8

XOR mreg16/32, imm16/32

XOR mem16/32, imm16/32

XOR mreg16/32, imm8 (sign extended)

XOR mem16/32, imma8 (sign extended)

1
1
4
1
4
0
0
1
4
1
4
1
4
1
4
1
1
1
4
1
4
1
4
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Table 26. DirectPath MMX™ Instructions

Instruction Mnemonic

Execute
Latency

AMD Athlon™ Processor x86 Code Optimization

EMMS

2

MOVD mmreg, mem32

Instruction Mnemonic Execute
Latency
PCMPEQD mmregl, mmreg2 2

MOVD mem32, mmreg

PCMPEQD mmreg, mem64

MOVQ mmreg1, mmreg2

PCMPEQW mmreg1, mmreg2

MOVQ mmreg, mem64

PCMPEQW mmreg, mem64

MOVQ mmreg2, mmreg]1

PCMPGTB mmreg1, mmreg2

MOVQ memé64, mmreg

PCMPGTB mmreg, memé64

PACKSSDW mmreg1, mmreg2

PCMPGTD mmreg1, mmreg2

PACKSSDW mmreg, mem64

PCMPGTD mmreg, mem64

PACKSSWB mmreg1, mmreg2

PCMPGTW mmreg1, mmreg2

PACKSSWB mmreg, mem64

PCMPGTW mmreg, mem64

PACKUSWB mmreg1, mmreg2

PMADDWD mmreg1, mmreg2

PACKUSWB mmreg, memé64

PMADDWD mmreg, memé64

PADDB mmreg1, mmreg2

PMULHW mmreg1, mmreg2

PADDB mmreg, mem64

PMULHW mmreg, mem64

PADDD mmreg1, mmreg2

PMULLW mmreg1, mmreg2

PADDD mmreg, mem64

PMULLW mmreg, mem64

PADDSB mmregl, mmreg2

POR mmreg1, mmreg2

PADDSB mmreg, mem64

POR mmreg, memé64

PADDSW mmreg1, mmreg2

PSLLD mmreg1, mmreg2

PADDSW mmreg, mem64

PSLLD mmreg, memé64

PADDUSB mmreg1, mmreg2

PSLLD mmreg, imm8

PADDUSB mmreg, memé64

PSLLQ mmregl, mmreg2

PADDUSW mmreg1, mmreg2

PSLLQ mmreg, mem64

PADDUSW mmreg, mem64

PSLLQ mmreg, imm8

PADDW mmreg1, mmreg2

PSLLW mmreg1, mmreg2

PADDW mmreg, mem64

PSLLW mmreg, mem64

PAND mmreg1, mmreg2

PSLLW mmreg, imm8

PAND mmreg, mem64

PSRAW mmreg1, mmreg2

PANDN mmreg1, mmreg2

PSRAW mmreg, mem64

PANDN mmreg, memé64

PSRAW mmreg, imm8

PCMPEQB mmreg1, mmreg2

PSRAD mmreg1, mmreg2

PCMPEQB mmreg, mem64

NINININININIDNINNNDNNNNNNDNNNDNDDNNNNDNDDNNDNDNDNDNINDNDDN

PSRAD mmreg, memé64

PSRAD mmreg, imm8

NININININININININMDNMNDDDNNMNDNMNMDNMNMOA A AN AN AW W DNDIDNIDNDINNIDNIDNIDNDNDN
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Table 26. DirectPath MMX™ Instructions (Continued)

Instruction Mnemonic Execute
Latency
PSRLD mmregl, mmreg2 2

PSRLD mmreg, mem64

PSRLD mmreg, imm8

PSRLQ mmreg1, mmreg2

PSRLQ mmreg, mem64

PSRLQ mmreg, imm8

PSRLW mmreg1, mmreg2

PSRLW mmreg, memé64

PSRLW mmreg, imm8

PSUBB mmreg1, mmreg2

PSUBB mmreg, mem64

PSUBD mmreg1, mmreg2

PSUBD mmreg, memé64

PSUBSB mmreg1, mmreg2

PSUBSB mmreg, memé4

PSUBSW mmreg1, mmreg2

PSUBSW mmreg, memé64

PSUBUSB mmreg1, mmreg2

PSUBUSB mmreg, memé64

PSUBUSW mmreg1, mmreg2

PSUBUSW mmreg, mem64

PSUBW mmreg1, mmreg2

PSUBW mmreg, mem64

PUNPCKHBW mmreg1, mmreg2

PUNPCKHBW mmreg, memé64

PUNPCKHDQ mmreg1, mmreg2

PUNPCKHDQ mmreg, mem64

PUNPCKHWD mmreg1, mmreg2

PUNPCKHWD mmreg, mem64

PUNPCKLBW mmreg1, mmreg2

PUNPCKLBW mmreg, mem32

PUNPCKLDQ mmreg1, mmreg2

PUNPCKLDQ mmreg, mem32

NINININININIDNIDNNNDNNNNNDNNNNNDDNNNDNDDNNDNDNDNNINDNDDN

22007H/0—June 2000

Instruction Mnemonic

Execute
Latency

PUNPCKLWD mmreg1, mmreg2

2

PUNPCKLWD mmreg, mem32

PXOR mmreg1, mmreg2

PXOR mmreg, mem64

2
2
2

Table 27. DirectPath MMX™ Extensions

Instruction Mnemonic

Execute
Latency

MOVNTQ mem64, mmreg

3

PAVGB mmreg1, mmreg2

PAVGB mmreg, mem64

PAVGW mmreg1, mmreg2

PAVGW mmreg, mem64

PMAXSW mmreg1, mmreg2

PMAXSW mmreg, mem64

PMAXUB mmreg1, mmreg2

PMAXUB mmreg, mem64

PMINSW mmreg1, mmreg2

PMINSW mmreg, mem64

PMINUB mmreg1, mmreg2

PMINUB mmreg, mem64

PMULHUW mmreg1, mmreg2

PMULHUW mmreg, memé64

PSADBW mmreg1, mmreg2

PSADBW mmreg, mem64

PSHUFW mmreg1, mmreg2, imm8

PSHUFW mmreg, mem64, imm8

NN N W W W IDNINIDNDNNNDNNNDNDNDDNDNDDN

PREFETCHNTA mem8

!

PREFETCHTO mem8

4

PREFETCHT1 mem8

4

PREFETCHT2 mem8
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Table 28. DirectPath Floating-Point Instructions

AMD Athlon™ Processor x86 Code Optimization

Instruction Mnemonic

Execute
Latency

FIST [mem16int]

4

FIST [mem32int]

FISTP [mem16int]

FISTP [mem32int]

FISTP [memé64int]

FLD ST()

FLD [mem32real]

FLD [memé64real]

FLD1

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL ST, ST())

FMUL ST(), ST

FMUL [mem32real]

FMUL [memé64real]

FMULP ST(i), ST

bR BRINININ|BRRREs

FNOP

2

FPREM

9+e+n

FPREM1

9+e+n

FSQRT

19/27/35

FST [mem32real]

2

FST [meme64real]

FST ST(i)

FSTP [mem32real]

FSTP [memé64real]

FSTP [mem80real]

FSTP ST())

FSUB [mem32real]

Instruction Mnemonic f:::::;
FABS 2
FADD ST, ST(i) 4
FADD [mem32real] 4
FADD ST(i), ST 4
FADD [memé64real] 4
FADDP ST(i), ST 4
FCHS 2
FCOM ST(i) 2
FCOMP ST(i) 2
FCOM [mem32real] 2
FCOM [meme64real] 2
FCOMP [mem32real] 2
FCOMP [memé64real] 2
FCOMPP 2
FDECSTP 2
FDIV ST, ST(i) 16/20/24
FDIV ST(i), ST 16/20/24
FDIV [mem32real] 16/20/24
FDIV [meméd4real] 16/20/24
FDIVP ST(i), ST 16/20/24
FDIVR ST, ST(i) 16/20/24
FDIVR ST(i), ST 16/20/24
FDIVR [mem32real] 16/20/24
FDIVR [memeé6d4real] 16/20/24
FDIVRP ST(i), ST 16/20/24
FFREE ST(i) 2
FFREEP ST(i) 2
FILD [mem16int] 4
FILD [mem32int] 4
FILD [meme64int] 4
FIMUL [mem32int] 9
FIMUL [mem16int] 9
FINCSTP 2

FSUB [memé64real]

BB |IN|O| BB |IN|N
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Table 28. DirectPath Floating-Point Instructions (Continued)

Instruction Mnemonic

Execute
Latency

FSUB ST, ST(i)

4

FSUB ST(i), ST

FSUBP ST(i), ST

FSUBR [mem32real]

FSUBR [memé64real]

FSUBR ST, ST())

FSUBR ST(i), ST

FSUBRP ST(i), ST

FTST

FUCOM

FUCOMP

FUCOMPP

NININNIN|I PP+

FWAIT

FXCH

22007H/0—June 2000
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VectorPath Instructions

AMD Athlon™ Processor x86 Code Optimization

The following tables contain VectorPath instructions, which

should be avoided in the AMD Athlon processor:

m Table 29, “VectorPath Integer Instructions,” on page 289
m Table 30, “VectorPath MMX™ Instructions,” on page 293
and Table 31, “VectorPath MMX™ Extensions,” on
page 293
m Table 32, “VectorPath Floating-Point Instructions,” on
page 294
Table 29. VectorPath Integer Instructions
Instruction Mnemonic f:te:::; Instruction Mnemonic f:::::;
AAA 6 BTS mreg16/32, imm8 2
AAD 6 BTS mem16/32, imm8 6
AAM 16 CALL full pointer 18
AAS 6 CALL near imm16/32 3
ARPL mreg16, reg16 15 CALL near mreg32 (indirect) 4
ARPL mem16, reg16 19 CALL near mem32 (indirect) 4
BOUND reg16/32, 6 CALL mem16:16/32 19
mem16/32:mem16/32 CLD 1
BSF reg16/32, mreg16/32 8 L 4
BSF reg16/32, mem16/32 12/1 CITS 10
BSR reg16/32, mreg16/32 10 CMPSB mem8,mems 6
BSR reg16/32, mem16/32 14/13 CMPSW mem16, mem32 6
BT mem16/32, reg16/32 8 CMPSD mem32, mem32 6
BTC mreg16/32, reg16/32 2 CMPXCHG mregs, reg8 3
BTC mem16/32, reg16/32 9 CMPXCHG mems, reg8 6
BTC mreg16/32, imm8 2 CMPXCHG mreg16/32, reg16/32 3
BTC mem16/32, imm3 6 CMPXCHG mem16/32, regl6/32 6
BTR mreg16/32, reg16/32 2 CMPXCHG8B meme64 39
BTR mem16/32, reg16/32 9 CPUID 5
BTR mreg16/32, imm8 2 DAA 8
BTR mem16/32, imm8 6 DAS 8
BTS mreg16/32, reg16/32 2 DIV mreg8 17
BTS mem16/32, reg16/32 9 DIV AL, mem8 17
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Table 29. VectorPath Integer Instructions (Continued)’

22007H/0—June 2000

. . Execute . . Execute
Instruction Mnemonic Latency Instruction Mnemonic Latency
DIV mreg16/32 24/40 LAR reg16/32, mreg16/32 23
DIV EAX, mem16/32 24/40 LAR reg16/32, mem16/32 25
ENTER 13/17/19/22 LDS reg16/32, mem32/48 14
IDIV mreg8 19 LEA reg16, mem16/32 3
IDIV mem8 20 LEAVE 3
IDIV mreg16/32 26/42 LES reg16/32, mem32/48 14
IDIV EAX, mem16/32 27/43 LFS reg16/32, mem32/48 14
IMUL reg16/32, imm16/32 4/5 LGDT mem48 35
IMUL reg16/32, mreg16/32, imm16/32 4/5 LGS reg16/32, mem32/48 14
IMUL reg16/32, mem16/32, imm16/32 7/8 LIDT mem48 35
IMUL reg16/32, imm8 (sign extended) 5 LLDT mreg16 30
IMUL reg16/32, mreg16/32, imm8 LLDT mem16 31
igned) 4/5
(signe LMSW mreg16 1
IMUL reg16/32, mem16/32, imm8 18 LMSW mem16 12
(signed)
LODSB AL, mem8 5
IMUL mreg8 5
LODSW AX, mem16 5
IMUL AX, AL, mem8 8
LODSD EAX, mem32 4
IMUL mreg16/32 5/6 -
LOOP disp8 8
IMUL EDX:EAX, EAX, mem16/32 8/9 -
LOOPE/LOOPZ disp8 8
IMUL reg16/32, mreg16/32 3/4 -
LOOPNE/LOOPNZ disp8 8
IMUL reg16/32, mem16/32 6/7
- LSL reg16/32, mreg16/32 22
IN AL, imm8 ~
- LSL reg16/32, mem16/32 24
IN AX, imm8 ~
- LSS reg16/32, mem32/48 15
IN EAX, imm8 ~
LTR mreg16 91
IN AL, DX ~
LTR mem16 94
IN AX, DX ~
MOV mreg16, segment reg
IN EAX, DX ~
INVD MOV mem16, segment reg
MOV segment reg, mreg16 10
INVLPG 106
- MOV segment reg, mem16 12
JCXZ/JEC short disp8 2
- - MOVSB mem8,mem8 5
JMP far disp32/48 (direct) 16
— MOVSD mem16, mem16 5
JMP far mem32 (indirect) 18
— MOVSW mem32, mem32 5
JMP far mreg32 (indirect) 18
MUL mreg8 5
LAHF 3
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Table 29. VectorPath Integer Instructions (Continued)

AMD Athlon™ Processor x86 Code Optimization

Instruction Mnemonic f:teec::; Instruction Mnemonic f:f:::;
MUL AL, mem8 8 PUSH DS 3
MUL mreg16 5 PUSH mreg16/32 3
MUL AX, mem16 8 PUSH mem16/32 3
MUL mreg32 6 PUSHA/PUSHAD 6
MUL EAX, mem32 9 PUSHF/PUSHFD 4
OUT imm8, AL ~ RCL mem8, imm8 6
OUT imms8, AX ~ RCL mem16/32, imm8 6
OUT imm8, EAX ~ RCL mems, CL 6
OUT DX, AL ~ RCL mem16/32, CL 6
OUT DX, AX ~ RCR mems8, imm8 6
OUT DX, EAX ~ RCR mem16/32, imm8 6
POP ES 11 RCR mems, CL 6
POP SS 1 RCR mem16/32, CL 6
POP DS 1 RDMSR ~
POP FS 11 RDPMC ~
POP GS 11 RDTSC 10
POP EAX 4 RET near imm16 5
POP ECX 4 RET near 5
POP EDX 4 RET far imm16 16
POP EBX 4 RET far 16
POP ESP 4 SAHF
POP EBP 4 SCASB AL, mem8
POP ESI 4 SCASW AX, mem16
POP EDI 4 SCASD EAX, mem32
POP mreg 16/32 4 SGDT mem48 17
POP mem 16/32 3 SIDT mem48 17
POPA/POPAD 7/6 SHLD mreg16/32, reg16/32, imm8 6
POPF/POPFD 15 SHLD mem16/32, reg16/32, imm8 6
PUSH ES 3 SHLD mreg16/32, reg16/32, CL 6
PUSH CS 3 SHLD mem16/32, reg16/32, CL 6
PUSH FS 3 SHRD mreg16/32, reg16/32, inm8 6
PUSH GS 3 SHRD mem16/32, reg16/32, imm8 8
PUSH SS 3 SHRD mreg16/32, reg16/32, CL 6
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Table 29. VectorPath Integer Instructions (Continued)

22007H/0—June 2000

Instruction Mnemonic

Execute
Latency

SHRD mem16/32, reg16/32, CL

8

SLDT mreg16

SLDT mem16

SMSW mreg16

SMSW mem16

Instruction Mnemonic f:teec::;
XCHG EAX, ESP 2
XCHG EAX, EBP 2
XCHG EAX, ESI 2
XCHG EAX, EDI 2
XLAT >

STD

STI

STOSB mems8, AL

STOSW mem16, AX

STOSD mem32, EAX

STR mreg16

STR mem16

(SIS, R R L AR N NS RS, |

SYSCALL

1§

SYSENTER

1

SYSEXIT

SYSRET

VERR mreg16

VERR mem16

VERW mreg16

VERW mem16

WBINVD

WRMSR

XADD mreg8, reg8

XADD mems8, reg8

XADD mreg16/32, reg16/32

XADD mem16/32, reg16/32

XCHG reg8, mreg8

XCHG reg8, mem8

XCHG reg16/32, mreg16/32

XCHG reg16/32, mem16/32

XCHG EAX, ECX

XCHG EAX, EDX

XCHG EAX, EBX
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Table 30. VectorPath MMX™ Instructions

Instruction Mnemonic Execute
Latency
MOVD mmreg, mreg32 5
MOVD mreg32, mmreg 7

Table 31. VectorPath MMX™ Extensions

Instruction Mnemonic f:::::;
MASKMOVQ mmreg1, mmreg2 24
PEXTRW reg32, mmreg, imm8 4
PINSRW mmreg, reg32, imm8
PINSRW mmreg, mem16, imm8
PMOVMSKB reg32, mmreg
SFENCE 2/8
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Table 32. VectorPath Floating-Point Instructions

22007H/0—June 2000

Instruction Mnemonic f:teec::;
FLDCW [mem16] 11
FLDENV [mem14byte] 129
FLDENV [mem28byte] 129
FPTAN 107-216
FPATAN 158-175
FRNDINT 10
FRSTOR [mem94byte] 138
FRSTOR [mem108byte] 138
FSAVE [mem94byte] 159
FSAVE [mem108byte] 159
FSCALE 8
FSIN 96-192
FSINCOS 107-211
FSTCW [mem16] 4
FSTENV [mem14byte] 89
FSTENV [mem28byte] 89
FSTP [mem80real] 8
FSTSW AX 12
FSTSW [mem16] 8
FUCOMI ST, ST(i) 3
FUCOMIP ST, ST(i) 3
FXAM 3
FXRSTOR [mem512byte] 68/108
FXSAVE [mem512byte] 31/79
FXTRACT 7
FYL2X 116-126
FYL2XP1 126

Instruction Mnemonic f:::::;
F2XM1 64
FBLD [mem80] 91
FBSTP [mem80] 198
FCLEX 23
FCMOVB ST(0), ST(i) 7
FCMOVE ST(0), ST(i) 7
FCMOVBE ST(0), ST(i) 7
FCMOVU ST(0), ST(i) 7
FCMOVNB ST(0), ST() 7
FCMOVNE ST(0), ST(i) 7
FCMOVNBE ST(0), ST(i) 7
FCMOVNU ST(0), ST(i) 7
FCOMI ST, ST(i) 3
FCOMIP ST, ST(i) 3
FCOS 97-196
FIADD [mem32int] 9
FIADD [mem16int] 9
FICOM [mem32int] 9
FICOM [mem16int] 9
FICOMP [mem32int] 9
FICOMP [mem16int] 9
FIDIV [mem32int] 21/25/29
FIDIV [mem16int] 21/25/29
FIDIVR [mem32int] 21/25/29
FIDIVR [mem16int] 21/25/29
FIMUL [mem32int] 9
FIMUL [mem16int] 9
FINIT 91
FISUB [mem32int] 9
FISUB [mem16int]

FISUBR [mem32int]
FISUBR [mem16int]
FLD [mem80real] 10

294

DirectPath versus VectorPath Instructions

Appendix G



AMDZ1

22007H/0—June 2000

Index

AMD Athlon™ Processor x86 Code Optimization

1 Code Padding Using Neutral Code Fillers. ............. 52
Numerlcs Code Sample Analysis. ..........cooiiinnnenn... 202
3DNowW!™ INStruCtions . . .« o v v vt venennenenene.. 12, 141 Complex Number Arithmetic....................... 176

3DNow! and MMX™ Intra-Operand Swapping . .. .... 149 Const Type Qualifier .. ....... ... ... . . L. 27
CliPPINg . o v o et e 167 Constant Control Code, Multiple..................... 28
Fast DivisSion . ........c.uuiniuinininninnenennnn. 142
Fast Square Root and Reciprocal Square Root .. ..... 145
FEMMS Instruction ..............ooueuiennenenen.. 141 D
PAVGUSB for MPEG-2 Motion Compensation. .. ..... 172
PF2ID InStructions . . .. .. oovvt i vt 37 Bata;ache """""""""""""""""""" 4 '3' 12;
PFCMP InStruction. . . ..o vvvveerereneanennennnn. 153 CCOTIIE. - - e e >
PEMUL INStruction. . . . . . oooooooeeoo 152 Dfependenmes .................................... 178
PI2FW INStIUCHON . v voeeeeeee e, 150 leSCtPgth 183
PREFETCH and PREFETCHW Instructions. . . . 9. 59—60 €COAET. . ottt e
? 62 64; DirectPath Over VectorPath Instructions . .. .. 10, 44, 277
"""""""""""""""""""" ? Displacements, 8-Bit Sign-Extended .................. 52
PSWAPD ............ S A 149, 176 DAVISION ¢ « « e e e e e e e e e et eeaaeeeens 95-98, 123
Scalar Code Translated into 3DNow! Code ........ 78-81 Replace Divides with Multiplies, Integer . . . ... ... 41, 95
Using 3DNow! Instructions. . ................. 142—-143
A Dynamic Memory Allocation Consideration............ 31
Address Generation Interlocks . ...................... 91
AMD Athlon™ Processor E
Branch-FreeCode ............. ... 74 . L
CodePadding ......... ..ot 53 Event a}nd Tm}e-Stamp Monitoring Software .......... 217
Compute Upper Half of Unsigned Products . ........ 148 Execution Unlt‘ Besources .......................... 198
; Extended-PrecisionData. ................ .. ... ... 134
Family. . ... e 3
Microarchitecture . ........................ 4,179-180
AMD Athlon SystemBus . ...............c ... 189 F
Commands GenerationRules ..................... 209
Far Control Transfer Instructions. .. .................. 82
Fetch and Decode Pipeline Stages. . ................. 191
B FFREEP MaCrO . ..o eeeeeeeeanns. 132
. . . Floating-Point
Binary-to-ASCII Decimal Conversion . ................ 118 Compare Instructions 133
Blended Code, AMD-K6 and AMD Athlon Processors Divides and Square Ro.o't.s """""""""""" 36
3DNow! and MMX Intra-Operand Swapping . ........ 149 Execution Uit . . . ... ... 187
Block Copiesand Block Fills . ..................... 154 OPUMIZALIONS « « « + + + v v v oo oo 131
léra:inclll }?ﬁf}mples """""""""""""""" ég Pipeline Operations. . .. ........viuiinennenne... 200
ode Yadging ............ I Pipeline Stages. . ... ..ot 196
Compute Upper Half of Unsigned Products ......... 148 Scheduler 186
Branch Target Buffer (BTB)...................... 82, 182 Signed Words to Floating-Point . .................. 150
BraAriFhe; hT. 48 To Integer Conversions . .............c.coueuu... 37,134
1gn Branch Targets .. .........cooviveiienn Variables and Expressions are Type Float ........... 15
Based on Comparisons Between Floats .............. 39 floor() Function 174
Compound Branch Conditions. . .................... 25 FRNDINT Instru.cii.o'n. """"""""""""""" 134
Dependent on Random Data.................... 13, 73 FSINCOS INStruction. . .. ...........oeevuneeenn.... 139
Prediction ........... R R R PP 182 FXCH INStEUCHION .« o v v oeeoee e e, 133
Replace with Computation in 3DNow! Code .. ........ 77
cL 1s. 25 Group I — Essential Optimizations .................. 7-8
ANGUAZE . ¢ v v ettt s G mM—s d Ovtimizations. . . . .. .. ........ 7.10
Array-Style Over Pointer-Style Code ................ 18 roup econdary Dptimizations >
C Code to 3DNow! Code Examples............... 78-81
Structure Component Considerations ............ 34,71 I
Cache . ..o 4
. If Statement . . ... ..ottt 30
64-Byte Cache Line. ... Tt 13, 65 Immediates, 8-Bit Sign-Extended. .................... 51
Cache and Memory Optimizations .................. 57 IMUL INStruction. . . ..ottt et iie e iiie e 99
CALL and RETURN Instructions ...................... 76 Inline Functions. .............. ... ... .. .... 89-90, 104
Index 295



AMDZU

AMD Athlon™ Processor x86 Code Optimization 22007H/0—June 2000
Inline REP String with Low Counts .................. 103 PUNPCKL* and PUNPCKH* . .................... 151
Instruction PXOR ..ottt 152, 162
Cache . .. R 181 MOVZX and MOVSX . . o oo oo, 91
Control Unit ... 184 MSR ACCESS « oottt e e e ettt e 225
Decoding . PR 43 Multiplication
Short Encodings ............ .. ... i 48 By CONSANt « .o vttt ettt et 99
Short Forms. ... ... 177 MALTIX « 2 o v eeee et e e et e e 164
Integer .......... R R 95 Multiplies over Divides, Floating Point. ............ 131
Arithmetic, 64-Bit. ... ... 104 Muxing CONSLIUCES. « . vttt tteeeeeniiineeennn. 77
Division ..... ... 41
Execution Unit ........ ..., 185
Operand, Consider Sign..............covuvuevn... 16 N
Pipeline Operations ... ........c.oitueennunennnn. 199 .
Pipeline Stages . .......ovvuiei i 194 Newton-Raphson Reciprocal. ...................co. 144
Scheduler....... ... ... . . . . 185 Newton-Raphson Reciprocal Square Root ............ 146
Use 32-Bit Data Types for Integer Code . .. ........... 15
I- OPerands. . ... v ittt e 198
L2 Cache Controller .. ........coouiiiininenenenn.. 189 0 lt‘iaéﬁ:asltizgsgitzie Operand Size, Repeated String.. . . ... 102
LEA INStIUCHON ..ottt et e e eie e eieenns 48, 51 PUIMUZALOM STAT: ««vvveevve e
LEAVE INStrucCtion . . .« oot vttt et e eeeeee e 50
LOAd/StOTE . . .o et e et 22, 188, 201 P
Load-E)fecute‘Instructlon.s ..................... 10-11, 44 Page Attribute Table (PAT). .. .. ............ 219, 225-226
Floating-Point Instructions ..................... 11, 45 Parallelism 31
Integer TNStruCtONS « .o v vt veeeieeeeeeeenennnnns 44 PerfCir MSR.. . . .. ... 16
Local Functions. . .. ...ttt i e 30 PerfEvtSel MSR . . . o oo o, 212
Local Variable§ ............................. 35, 41, 72 Performance-Monitoring Counters. . ......... 211’ 216, 218
LOOPINStruction . ......ouuuiiiuenneeeeeeennnennnn 82 Pipeline and Execution Unit Resources . ............. 191
Loops. ) . Pointers
Deriving Loop Control For Partially Unrolled. ........ 88 De-referenced ATGUMENtS. . . . ..o vnernnernnennn. 41
1(\}/Ie'nfer1‘c L;OP Hmztn.lgh R R Sg Use Array-Style CodeInstead ..................... 18
inimize Fointer Afthmetic. . ...........oo..ee. Population Count Function. .................... 114, 161
Partial Loop Unrolling . . .......... ... .. ... ...... 86 Predecod 182
REP String with Low Variable Counts.............. 103 Pref etC(l)l G
Unroll Small Loops. ..« o oo i 20 r(Ia)e o Di 63
Unrolling Loops . .....oiniiiii it 86 M?ltlig)rll;ng ISEANCE. . . v 61
Prototypes. . . ..o 27
Memory R
Dynamic Memory Allocation....................... 31 Read-Modify-Write Instructions. . .................... 46
Pushing Memory Data ...............ooooiiniinn.. 94 Recursive FUNCHONS .. ....ooviieieeineieennnn. 83
Size and Alignment Issues....................... 8,57 Register Operands. ............uuuiiieneneeenono.. 178
Memory Type Range Register MTRR) ............... 219 Register Reads and Writes, Partial . .................. 49
Capability Register Format....................... 222 REP PrefixX .. oviv ittt ittt 103
Default Type Register Format..................... 223 RGBA PiXelS. .. outtee et 169
Fixed-Range Register Format..................... 230
MSR Format . .......coiinniiiiiiiiieennn. 233
MTRRS and PAT . . ..o 226 S
Overlapping. . . .....i it 224 .
Variable-Range MTRR Register Format ............ 231 S;{hfglilrilsltgr uctmn """""""""""""""""" 2513
ﬁ;ggﬁdy ITypes DLttt ﬁ% SHR INStruCtion . . .« oot vi v it ee e et eieeeeanns 51
» MSTIUCHIONS . . v v e Signed Words to Floating-Point Conversion ........... 150
64-Bit Population Count................ccvvuunn.. 161 Square Root 145
Block Copiesand Block Fills . ..................... 154 Stack TTTorororrororomommmmommrmrnn
Integer Absolute Value Computation............... 164 Alignment Considerations 70
Integer-Only Work .................coiuinin... 102 Allocation . .. . ... 178
MOVQ. et e 104 S L d.l;“ """ d """"""""" 2122 66 .6.8 69
PAND to Find Absolute Value in 3DNow! Code. . ..... 163 tore-to-Load Forwarding . . . .......... .. T44> DD, DO
PANDN . ..ottt et 77 Stream of Packed Unsigned Bytes ................... 175
PCMP Instead of 3DNow! PECMP ... ... oo .. 153 String InStructions. . .. .....covvtitnn oo, 102-103
PCMPEQD. . ... e 163 Structure (Struct). . ....... ..o i, 34-35, 71-72
PMADDWD Instruction .............cocouvueno... 147 Subexpressions, Explicitly Extract Common ........... 33
PMULHUW . ... 147 Superscalar Processor . . .........oouuuineeennnaa... 180
PREFETCHNTA/TO/TUTZ ..o 60 Switch Statement. . . .......ovoueneeeenenaenan.. 26, 30
296 Index



AMDZ1

22007H/0—June 2000

AMD Athlon™ Processor x86 Code Optimization

TBYTE Variables .......... . ... ... 70 Write Combining . ............. 12, 65, 189, 205207, 209
Trigonometric Instructions .................. .. ..... 137

x86 Optimization Guidelines ....................... 177
Unit-Stride ACCESS .+ . oo v v it e it i e 60, 63—64 XORINSEIUCHION. « v v et e et e et e ee e eee e e 104
VectorPathDecoder . ..., 183
VectorPath Instructions . . . ..., 289
Index 297



AMDA
AMD Athlon™ Processor x86 Code Optimization 22007H/0—June 2000

298 Index



	Contents
	Revision History
	Introduction
	About this Document
	Chapter 1: Introduction
	Chapter 2: Top Optimizations
	Chapter 3: C Source Level Optimizations
	Chapter 4: Instruction Decoding Optimizations
	Chapter 5: Cache and Memory Optimizations
	Chapter 6: Branch Optimizations
	Chapter 7: Scheduling Optimizations
	Chapter 8: Integer Optimizations
	Chapter 9: Floating-Point Optimizations
	Chapter 10: 3DNow!™ and MMX™ Optimizations
	Chapter 11: General x86 Optimizations Guidelines
	Appendix A: AMD�Athlon Processor Microarchitecture
	Appendix B: Pipeline and Execution Unit Resources Overview
	Appendix C: Implementation of Write Combining
	Appendix D: Performance-Monitoring Counters
	Appendix E: Programming the MTRR and PAT
	Appendix F: Instruction Dispatch and Execution Resources/Timing
	Appendix G: DirectPath versus VectorPath Instructions

	AMD�Athlon™ Processor Family
	AMD�Athlon™ Processor Microarchitecture Summary

	Top Optimizations
	Group I — Essential Optimizations
	Group II — Secondary Optimizations
	Optimization Star
	Group I Optimizations — Essential Optimizations
	Memory Size and Alignment Issues
	Avoid Memory Size Mismatches
	Align Data Where Possible

	Use the 3DNow!™ PREFETCH and PREFETCHW Instructions
	Select DirectPath Over VectorPath Instructions

	Group II Optimizations�—�Secondary Optimizations
	Load�Execute Instruction Usage
	Use Load�Execute Instructions
	Use Load-Execute Floating-Point Instructions with Floating-Point Operands
	Avoid Load�Execute Floating�Point Instructions with Integer Operands

	Take Advantage of Write Combining
	Use 3DNow!™ Instructions
	Avoid Branches Dependent on Random Data
	Avoid Placing Code and Data in the Same 64�Byte Cache Line


	C Source Level Optimizations
	Ensure Floating�Point Variables and Expressions are of Type Float
	Use 32�Bit Data Types for Integer Code
	Consider the Sign of Integer Operands
	Use unsigned types for:
	Use signed types for:

	Use Array Style Instead of Pointer Style Code
	Example 1 (Avoid):
	Example 1 (Preferred):
	Reality Check

	Completely Unroll Small Loops
	Avoid Unnecessary Store-to-Load Dependencies
	Always Match the Size of Stores and Loads
	Consider Expression Order in Compound Branch Conditions
	Switch Statement Usage
	Optimize Switch Statements

	Use Prototypes for All Functions
	Use Const Type Qualifier
	Generic Loop Hoisting
	Generalization for Multiple Constant Control Code

	Declare Local Functions as Static
	Dynamic Memory Allocation Consideration
	Introduce Explicit Parallelism into Code
	Explicitly Extract Common Subexpressions
	C Language Structure Component Considerations
	Sort by Base Type Size
	Pad by Multiple of Largest Base Type Size

	Sort Local Variables According to Base Type Size
	Accelerating Floating-Point Divides and Square Roots
	Fast Floating-Point-to-Integer Conversion
	Speeding Up Branches Based on Comparisons Between Floats
	Branches Dependent on Integer Comparisions are Fast

	Avoid Unnecessary Integer Division
	Example 1 (Avoid):
	Example 1 (Preferred):

	Copy Frequently De-Referenced Pointer Arguments to Local Variables

	Instruction Decoding Optimizations
	Overview
	Select DirectPath Over VectorPath Instructions
	Load�Execute Instruction Usage�
	Use Load�Execute Integer Instructions
	Use Load�Execute Floating�Point Instructions with Floating�Point Operands
	Avoid Load�Execute Floating�Point Instructions with Integer Operands

	Use Read-Modify-Write Instructions Where Appropriate
	Align Branch Targets in Program Hot Spots
	Use 32�Bit LEA Rather than 16�Bit LEA Instruction
	Use Short Instruction Encodings
	Avoid Partial Register Reads and Writes
	Use LEAVE Instruction for Function Epilogue Code
	Replace Certain SHLD Instructions with Alternative Code
	Use 8�Bit Sign�Extended Immediates
	Use 8�Bit Sign�Extended Displacements
	Code Padding Using Neutral Code Fillers
	Recommendations for AMD�K6® Family and AMD�Athlon™ Processor Blended Code


	Cache and Memory Optimizations
	Memory Size and Alignment Issues
	Avoid Memory Size Mismatches
	Example 2 (Preferred if stores are close to the load):

	Align Data Where Possible

	Use the 3DNow!™ PREFETCH and PREFETCHW Instructions
	Prefetching versus Preloading
	Unit-Stride Access
	PREFETCH/W versus PREFETCHNTA/T0/T1 /T2
	PREFETCHW Usage
	Multiple Prefetches
	Determining Prefetch Distance
	Formula
	Definitions
	Exception to Unit Stride
	Data Stride per Loop Iteration
	Prefetch at Least 64 Bytes Away from Surrounding Stores


	Take Advantage of Write Combining
	Avoid Placing Code and Data in the Same 64�Byte Cache Line
	Store�to�Load Forwarding Restrictions
	Store�to�Load Forwarding Pitfalls�—�True Dependencies
	Narrow�to�Wide Store�Buffer Data Forwarding Restriction
	Wide�to�Narrow Store�Buffer Data Forwarding Restriction
	Misaligned Store�Buffer Data Forwarding Restriction
	High�Byte Store�Buffer Data Forwarding Restriction
	One Supported Store- to-Load Forwarding Case

	Summary of Store�to�Load Forwarding Pitfalls to Avoid

	Stack Alignment Considerations
	Extend to 32 Bits Before Pushing onto Stack

	Align TBYTE Variables on Quadword Aligned Addresses
	C Language Structure Component Considerations
	Sort Variables According to Base Type Size

	Branch Optimizations
	Avoid Branches Dependent on Random Data
	AMD�Athlon™ Processor Specific Code
	Example 1 — Signed integer ABS function (X = labs(X)):
	Example 2 — Unsigned integer min function (z = x < y ? x : y):

	Blended AMD�K6® and AMD�Athlon™ Processor Code

	Always Pair CALL and RETURN
	Replace Branches with Computation in 3DNow!™ Code
	Muxing Constructs
	Sample Code Translated into 3DNow!™ Code
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6


	Avoid the Loop Instruction
	Avoid Far Control Transfer Instructions
	Avoid Recursive Functions

	Scheduling Optimizations
	Schedule Instructions According to their Latency
	Unrolling Loops
	Complete Loop Unrolling
	Partial Loop Unrolling
	Deriving Loop Control For Partially Unrolled Loops


	Use Function Inlining
	Overview
	Always Inline Functions if Called from One Site
	Always Inline Functions with Fewer than 25 Machine Instructions

	Avoid Address Generation Interlocks
	Use MOVZX and MOVSX
	Minimize Pointer Arithmetic in Loops
	Push Memory Data Carefully

	Integer Optimizations
	Replace Divides with Multiplies
	Multiplication by Reciprocal (Division) Utility
	Signed Division Utility
	Unsigned Division Utility

	Unsigned Division by Multiplication of Constant
	Algorithm: Divisors 1 <= d < 231, Odd d
	Determination of a, m, s
	Algorithm: Divisors 231 <= d < 232
	Simpler Code for Restricted Dividend

	Signed Division by Multiplication of Constant
	Algorithm: Divisors 2 <= d < 231
	Determination for a, m, s
	Signed Division By 2
	Signed Division By 2n
	Signed Division By –2
	Signed Division By –(2n)
	Remainder of Signed Division by 2 or –2
	Remainder of Signed Division 2n or –(2n)


	Consider Alternative Code When Multiplying by a Constant
	Use MMX™ Instructions for Integer�Only Work
	Repeated String Instruction Usage
	Latency of Repeated String Instructions
	Guidelines for Repeated String Instructions
	Use the Largest Possible Operand Size
	Ensure DF=0 (UP)
	Align Source and Destination with Operand Size
	Inline REP String with Low Counts
	Use Loop for REP String with Low Variable Counts
	Using MOVQ and MOVNTQ for Block Copy/Fill


	Use XOR Instruction to Clear Integer Registers
	Efficient 64�Bit Integer Arithmetic
	Efficient Implementation of Population Count Function
	Step 1
	Step 2
	Step 3
	Step 4
	MMX Version

	Efficient Binary-to-ASCII Decimal Conversion
	Derivation of Multiplier Used for Integer Division by Constants
	Derivation of Algorithm, Multiplier, and Shift Factor for Unsigned Integer Division
	Example Code

	Derivation of Algorithm, Multiplier, and Shift Factor for Signed Integer Division
	Example Code



	Floating�Point Optimizations
	Ensure All FPU Data is Aligned
	Use Multiplies Rather than Divides
	Use FFREEP Macro to Pop One Register from the FPU Stack
	Floating�Point Compare Instructions
	Use the FXCH Instruction Rather than FST/FLD Pairs
	Avoid Using Extended�Precision Data
	Minimize Floating�Point�to�Integer Conversions
	Check Argument Range of Trigonometric Instructions Efficiently
	Take Advantage of the FSINCOS Instruction

	3DNow!™ and MMX™ Optimizations
	Use 3DNow!™ Instructions
	Use FEMMS Instruction
	Use 3DNow!™ Instructions for Fast Division
	Optimized 14�Bit Precision Divide
	Optimized Full 24�Bit Precision Divide
	Pipelined Pair of 24�Bit Precision Divides
	Newton�Raphson Reciprocal

	Use 3DNow!™ Instructions for Fast Square Root and Reciprocal Square Root
	Optimized 15�Bit Precision Square Root
	Optimized 24�Bit Precision Square Root
	Newton�Raphson Reciprocal Square Root

	Use MMX™ PMADDWD Instruction to Perform Two 32-Bit Multiplies in Parallel
	Use PMULHUW to Compute Upper Half of Unsigned Products
	AMD�Athlon™ Processor-Specific Code
	AMD�K6® and AMD�Athlon™ Processor Blended Code

	3DNow!™ and MMX™ Intra�Operand Swapping
	AMD�Athlon™ Processor-Specific Code
	AMD�K6® and AMD�Athlon™ Processor Blended Code

	Fast Conversion of Signed Words to Floating-Point
	Width of Memory Access Differs Between PUNPCKL* and PUNPCKH*
	Use MMX™ PXOR to Negate 3DNow!™ Data
	Use MMX™ PCMP Instead of 3DNow!™ PFCMP
	Both Numbers Positive
	One Negative, One Positive
	Both Numbers Negative

	Use MMX™ Instructions for Block Copies and Block Fills
	AMD�K6® and AMD�Athlon™ Processor Blended Code
	Example 1:
	AMD�Athlon™ Processor-Specific Code
	Example 2:

	Efficient 64-Bit Population Count Using MMX™ Instructions
	Use MMX™ PXOR to Clear All Bits in an MMX Register
	Use MMX™ PCMPEQD to Set All Bits in an MMX Register
	Use MMX™ PAND to Find Floating-Point Absolute Value in 3DNow!™ Code
	Integer Absolute Value Computation Using MMX™ Instructions
	Optimized Matrix Multiplication
	Matrix Multiplication Code Sample

	Efficient 3D-Clipping Code Computation Using 3DNow!™ Instructions
	3D-Clipping Code Sample

	Efficiently Determining Similarity Between RGBA Pixels
	Step 1:
	Step 2:
	Step 3:
	Example 3:

	Use 3DNow!™ PAVGUSB for MPEG�2 Motion Compensation
	Example 1 (Preferred):

	Efficient Implementation of floor() Using 3DNow!™ Instructions
	Stream of Packed Unsigned Bytes
	Complex Number Arithmetic

	General x86 Optimization Guidelines
	Short Forms�
	Dependencies�
	Register Operands�
	Stack Allocation�

	Appendix A
	AMD�Athlon™����Processor Microarchitecture
	Introduction
	AMD�Athlon™ Processor Microarchitecture
	Superscalar Processor
	Instruction Cache
	Predecode
	Branch Prediction
	Early Decoding
	DirectPath Decoder
	VectorPath Decoder

	Instruction Control Unit
	Data Cache
	Integer Scheduler
	Integer Execution Unit
	Floating�Point Scheduler
	Floating�Point Execution Unit
	Load�Store Unit (LSU)
	L2 Cache Controller
	Write Combining
	AMD�Athlon™ System Bus


	Appendix B
	Pipeline and Execution Unit Resources Overview
	Fetch and Decode Pipeline Stages
	Cycle 1�–�FETCH
	Cycle 2�–�SCAN
	Cycle 3 (DirectPath)�– �ALIGN1
	Cycle 3 (VectorPath)�– �MECTL
	Cycle 4 (DirectPath)�– �ALIGN2
	Cycle 4 (VectorPath)�– �MEROM
	Cycle 5 (DirectPath)�– �EDEC
	Cycle 5 (VectorPath)�– �MEDEC/MESEQ
	Cycle 6�– �IDEC/Rename

	Integer Pipeline Stages
	Cycle 7�–�SCHED
	Cycle 8�–�EXEC
	Cycle 9�–�ADDGEN
	Cycle 10�–�DCACC
	Cycle 11�–�RESP

	Floating�Point Pipeline Stages
	Cycle 7�–�STKREN
	Cycle 8�–�REGREN
	Cycle 9�–�SCHEDW
	Cycle 10�–�SCHED
	Cycle 11�–�FREG
	Cycle 12–15�– �Floating�Point Execution (FEXEC1–4)

	Execution Unit Resources
	Terminology
	Operands
	Results
	Examples

	Integer Pipeline Operations
	Floating�Point Pipeline Operations
	Load/Store Pipeline Operations
	Code Sample Analysis


	Appendix C
	Implementation of Write Combining
	Introduction
	Write�Combining Definitions and Abbreviations
	What is Write Combining?
	Programming Details
	Write-Combining Operations
	Sending Write�Buffer Data to the System


	Appendix D
	Performance-Monitoring Counters
	Overview
	Performance Counter Usage
	PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h–C001_0003h)
	Event Select Field (Bits 0—7)
	Unit Mask Field (Bits 8—15)
	USR (User Mode) Flag (Bit 16)
	OS (Operating System Mode) Flag (Bit 17)
	E (Edge Detect) Flag (Bit 18)
	PC (Pin Control) Flag (Bit 19)
	INT (APIC Interrupt Enable) Flag (Bit 20)
	EN (Enable Counter) Flag (Bit 22)
	INV (Invert) Flag (Bit 23)
	Counter Mask Field (Bits 31–24)

	PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h)
	Starting and Stopping the Performance�Monitoring Counters

	Event and Time�Stamp Monitoring Software
	Monitoring Counter Overflow

	Appendix E
	Programming the MTRR and PAT
	Introduction
	Memory Type Range Register (MTRR) Mechanism
	Memory Types
	MTRR Capability Register Format
	MTRR Default Type Register Format

	MTRR Overlapping

	Page Attribute Table (PAT)
	MSR Access
	Accessing the PAT
	MTRRs and PAT
	MTRR Fixed-Range Register Format
	Variable-Range MTRRs
	Variable-Range MTRR Register Format
	MTRR MSR Format


	Appendix F
	Instruction Dispatch and Execution Resources/Timing
	Appendix G
	DirectPath versus VectorPath Instructions
	Select DirectPath Over VectorPath Instructions
	DirectPath Instructions
	VectorPath Instructions
	Index


