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In this paper we consider fractional splines as windows for Gabor frames. We introduce
two new types of symmetric, fractional splines in addition to one found by Unser and Blu.
For the finite, discrete case we present two families of splines: One is created by sampling
and periodizing the continuous splines, and one is a truly finite, discrete construction.
We discuss the properties of these splines and their usefulness as windows for Gabor
frames and Wilson bases.
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1. Introduction

Fractional splines are a simple generalization of regular B-splines to fractional or-
ders. They have been developed by Unser and Blu in a series of papers 22,3,4 mostly
in the context of wavelets and fractional Brownian motion.

Fractional splines are interesting in relation to Gabor frames, because they pro-
vide a smooth parameter family of functions ranging from the rectangular box
function, which generates an orthonormal Gabor basis, to the Gaussian function,
which is the function with the best time/frequency concentration. The fact that
splines converge to the Gaussian as the order grows is shown in 21 along with some
considerations of B-splines as Gabor windows for continuous Gabor frames. A result
about the non-existence of certain Gabor frames with spline windows was reported
in 11.

Fractional splines retain most of the well-known properties of regular B-splines,
but they are no longer compactly supported. This makes them less useful for ap-
plications where data is continuously produced and analyzed (e.g. processing long
music signals). However, in many applications (e.g. image processing) all data are
available at the time of processing, and fast algorithms exists for these kinds of
Gabor systems, 24,1,20.

A regular B-spline of order n can be defined as n convolutions of the rectangular

1



January 10, 2007 11:48 WSPC/WS-IJWMIP splinepaper

2 Peter L. Søndergaard

function. Because a convolution of two functions can be computed by pointwise
multiplication of their Fourier transforms, we get the classical expression for the
B-spline βn of order n = 0, 1, 2, . . . in the Fourier domain:

β̂n (ω) = sinc (ω)n+1
, ω ∈ R. (1.1)

This definition extends naturally to fractional orders α > − 1
2 :

β̂α
+ (ω) = sinc (ω)α+1

, ω ∈ R. (1.2)

This is a simple shift of the βα
+ spline defined in 22. This spline is not even around

x = 0, because is has a complex valued Fourier transform.
Symmetry is an important goal for window construction because symmetric

windows are a requirement for Wilson bases 7,5 and the modified discrete cosine
transform (MDCT) 17,18. Both Wilson bases and the MDCT are cosine modulated
filter banks closely related to Gabor frames of twice the redundancy. In 3 Blu and
Unser’s presents a family of symmetric, fractional splines. In this paper, we present
two other definitions, yielding splines that generates tighter (better conditioned)
Gabor frames than Blu and Unsers definition.

A central property of B-splines is that they form a partition of unity, PU, mean-
ing that the sum of integer translates of a B-spline is a constant function. This
property can be important i.e. in image processing, where it is advantageous to be
able to represent a large, almost constant area of an image using few coefficients.
In relation to local, trigonometric bases, this has been investigated in 14,2.

In 3,22 Unser and Blu have shown methods to generate discrete fractional splines
by sampling. In this paper, we present two other methods for producing discrete and
finite splines. In Section 4 we present a method to obtain finite, discrete fractional
splines by sampling and periodizing their continuous counterparts. In Section 5 we
present another method where we transfer the definition of the continuous splines
to the finite, discrete setting. Finally, in Section 6 we make numerical comparisons
of the different types of splines and study their usefullness as windows for Gabor /
Wilson / MDCT frames and bases.

2. Definitions

We define the Fourier transform F : L2 (R) 7→ L2 (R) as

(Ff) (ω) = f̂ (ω) =
∫

x∈R
f (x) e−2πiωxdx, ω ∈ R, (2.1)

and the Discrete Fourier Transform (DFT) of h ∈ CL as

(Fh) (k) = ĥ (k) =
1√
L

L−1∑
l=0

h (k) e−2πikl/L, k = 0, . . . , L− 1, (2.2)

where i denotes the imaginary unit. The sinc function is given by

sinc (x) =

{
sin(πx)

πx x ∈ R \ {0}
1 x = 0

. (2.3)
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The sinc function is the Fourier transform of the box function β0
+, which is explicitly

given by

β0
+ (x) =


1 if |x| < 1

2
1
2 if |x| = 1

2

0 if |x| > 1
2 .

(2.4)

Convolution of two functions is given by

(f ∗ g) (x) =
∫

y∈R
f(y)g(x− y)dy, x ∈ R, f, g ∈ L1 (R) (2.5)

(f ∗ g) (l) =
L−1∑
k=0

f(k)g(l − k), l = 0, . . . , L− 1, f, g ∈ CL. (2.6)

The convolution of two functions can be computed in the Fourier domain:

f̂ ∗ g (ω) = f̂ (ω) ĝ (ω) , ω ∈ R, ∀f, g ∈ L1 (R) , (2.7)

f̂ ∗ g (k) =
√

Lf̂ (k) ĝ (k) , k = 0, . . . , L− 1, ∀f, g ∈ CL. (2.8)

A family of elements {ej}j∈J in a separable Hilbert space H is called a frame if
constants 0 < A ≤ B < ∞ exist such that

A ‖f‖2
H ≤

∑
j∈J

∣∣〈f, ej〉H
∣∣2 ≤ B ‖f‖2

H , ∀f ∈ H. (2.9)

The constants A and B are called lower and upper frame bounds, respectively.
We define the Wiener space by

W (R) =

{
f

∣∣∣∣∑
n∈Z

ess sup
x∈[0,1]

|f (x + n)| < ∞

}
. (2.10)

The Wiener space is a subspace of L1(R) and L2(R).
We define Gabor systems for L2 (R) and CL by

Definition 2.1. A Gabor system (g, α, β) for L2 (R) with g ∈ L2 (R) and α, β > 0
is given by

gm,n (x) = e2πimβxg (x− na) , ,m, n ∈ Z. (2.11)

Definition 2.2. A Gabor system
(
gD, a, b

)
for CL with g ∈ CL, a, b ∈ N is given

by

gD
m,n (l) = e2πimbl/Lg (l − na) , ,m = 0, . . . ,

L

b
− 1, n = 0, . . . ,

L

a
− 1. (2.12)

For more information about Gabor systems and frames, see the books 10,6,8,9.
We consider the following symmetries of discrete signals:
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Definition 2.3. Let g ∈ CL. We say that g is whole point even (WPE) if

g (l) = g (−l) = g (L− l)

for l = 0, . . . , L − 1. This implies that g (0) must always be real, and so must
g
(

L
2 + 1

)
if L is even.

Definition 2.4. Let g ∈ CL. We say that g is half point even (HPE) if

g (l) = g (L− 1− l)

for l = 0, . . . , L− 1. This implies that g
(

L−1
2

)
must be real if L is odd.

If g is HPE then

ĝ (k) = h (k) eπik/L, (2.13)

where h is some real-valued signal: h ∈ RL.
It is relevant to consider these two symmetries, because WPE and HPE windows

are a requirement for discrete Wilson bases 5 and the MDCT 17,18.

Definition 2.5. The basis functions wm,n ∈ CL of a Wilson basis for CL with
M ∈ N channels and where g ∈ CL is WPE if ct = 0 or HPE if ct = 1

2 are given
by:

If m = 0:

w0,n(l) = g (l − 2nM)

If m is odd and less than M :

wm,n(l) =
√

2 sin(2π
m

2M
(l + ct))g (l − 2nM)

wm+M,n(l) =
√

2 cos(2π
m

2M
(l + ct))g (l − (2n + 1) M)

If m is even and less than M :

wm,n(l) =
√

2 cos
(
2π

m

2M
(l + ct)

)
g (l − 2nM)

wm+M,n(l) =
√

2 sin
(
2π

m

2M
(l + ct)

)
g (l − (2n + 1) M)

If m = M and M is even:

wM,n(l) = (−1)lg (l − 2nM)

else if m = M and M is odd:

wM/2,n(l) = (−1)lg (l − (2n + 1) M) .
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Fig. 1. The figure shows the B-splines of order 0 and 1.

3. Symmetric splines for the real line

The βα
+ spline defined by (1.2) is not symmetric for α not being an integer, which

means in cannot be used as a window function with Wilson bases. In the following,
we shall present three ways to overcome this problem.

The first way is to add βα
+ to its own reverse:

βα
e (x) =

βα
+ (x) + βα

+ (−x)
2

. (3.1)

In the Fourier domain, this has the expression

β̂α
e =

β̂α
+ + β̂α

+

2
= <

(
β̂α

+

)
. (3.2)

Another way of looking at this is, that βα
e is the even part of βα

+. This can be seen
from (3.1).

In 3 Blu and Unser’s presents a family of symmetric, fractional splines, βα
∗ .

These splines coincides with the regular B-splines only when α is an odd integer.
In particular, β0

∗ is not the box function. For our purpose, namely Gabor analysis,
this is a downside, because the box function often (depending on the parameters
α and β) generates a tight Gabor frame. We will therefore define another family
of B-splines, βα

×, which coincides with the regular B-splines for α being an even
integer.
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The definition of βα
∗ and βα

× comes from substituting the normal power function
xα with its signed and unsigned |x|α counterparts. The signed power of a real
number is given by:

s〈α〉 = |s|α−1
s = |s|α sign(s), ∀s ∈ R. (3.3)

We can now define the three types of B-splines:

Definition 3.1. Let α > − 1
2 . Then βα

e , βα
∗ , βα

× ∈ L2 (R) are given in the Fourier
domain by

β̂α
e (ω) = <

(
sinc (ω)α+1

)
, ω ∈ R, (3.4)

β̂α
∗ (ω) = |sinc (ω)|α+1

, ω ∈ R, (3.5)

β̂α
× (ω) = sinc (ω)〈α+1〉

, ω ∈ R. (3.6)

We shall use the notation βα in results that hold for all three type of B-splines.
When α > − 1

2 then sinc raised to α + 1 is an L2(R) function, and because the
Fourier transform maps L2(R) to L2(R), then βα ∈ L2(R).

It is clear from the definition that βα
e = βα

× for even values of α, and βα
e = βα

∗
for odd values of α. Contrary to the regular B-splines then βα

× is not compactly
supported for odd values of α, and βα

∗ is not compactly supported for even values
of α. For integer values of α, βα

e is equal to the normal, compactly supported B-
splines. Figure 1 shows the B-splines of order 0 and 1, where these differences are
most visible. All the splines quickly start to resemble the Gaussian function as
α →∞. Figure 2 shows the three symmetric B-splines for order α = 0.3.

From the definition and (2.7) it can be seen that the splines have the following
simple convolution properties for α > − 1

2 :

βα+1
e = βα

e ∗ β0
+ (3.7)

βα+1
∗ = βα

∗ ∗ β0
∗ (3.8)

βα+1
× = βα

∗ ∗ β0
+ (3.9)

In 22, pure time domain expressions are given for βα
+ and βα

∗ . By adapting the
proof, the same decay result can be shown for βα

e and βα
×:

|βα (x)| ≤ Ct |x|−(α+2)
, (3.10)

where Ct is a constant independent of x.
The decay in frequency is straightforward to show from the definition:

∣∣∣β̂α (ω)
∣∣∣ ≤ Cf |ω|−(α+1)

, (3.11)

where Cf is a constant independent of ω. Using the decay results, it is easy to show
that βα ∈ W (R) when α ≥ 0 and β̂α ∈ W (R) when α > 0.
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Fig. 2. The three splines of order α = 0.3. From left to right: βα
e , βα

∗ and βα
×.

The three types of splines all form a partition of unity (PU):∑
k∈Z

βα (x + k) = 1, a.e.x ∈ R. (3.12)

Since βα ∈ L1(R), this is a consequence of the fact that

β̂α (n) =

{
1 if n = 0

0 if n ∈ Z \ {0}
(3.13)

For a simple proof, see 23 .

4. Discrete splines by sampling and periodization

In the papers 16,13,15,19 a theory for finite, discrete Gabor frames obtained from
sampled and periodized Gabor frames for CL has been developed. The main results
are as follows: Suppose that g ∈ L2 (R) (satisfying certain conditions) generates a
Gabor frame for L2 (R). Then

• gD ∈ CL obtained from g by sampling and periodization will generate a
Gabor frame for CL with the same (or better) frame bounds.

• The canonical dual/tight windows of these two Gabor systems are related
by sampling and periodization as well.

• If f ∈ L2 (R) and fD ∈ CL are also related by sampling and periodization
then 〈

fD, gD
m,n

〉
=
∑
r∈Z

∑
s∈Z

〈
f, gm+ rL

b ,n+ sL
a

〉
. (4.1)

This corresponds to an aliasing in time and frequency of the expansion
coefficients from the continuous Gabor system, very similar to the well
known phenomena for Fourier series and the DFT.

This theory is the reason for trying to define finite, discrete fractional splines by
sampling and periodization.

We define the finite, discrete splines by sampling and periodization of their
continuous counterparts. We shall denote splines that are WPE by a capital ’W’
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and similarly denote splines that are HPE by a capital ’H’, see Definition 2.3 and
2.4:

Definition 4.1. We define the discrete splines Cα,+W
L,a , Cα,eW

L,a , Cα,∗W
L,a , Cα,×W

L,a ,
Cα,+H

L,a , Cα,eH
L,a , Cα,∗H

L,a , Cα,×H
L,a by sampling and periodization of their continuous

counterparts:

Cα,W
L,a (l) =

1
a

∑
n∈Z

βα

(
l

a
+ nN

)
, l = 0, . . . , L− 1 (4.2)

Cα,H
L,a (l) =

1
a

∑
n∈Z

βα

(
2l + 1

2a
+ nN

)
, l = 0, . . . , L− 1. (4.3)

The splines Cα,+W
L,a , Cα,×W

L,a Cα,+H
L,a Cα,×H

L,a are defined for α ≥ 0, while Cα,∗W
L,a

and Cα,∗H
L,a are only defined for α > 0. This is because the periodization of β0

∗ is
divergent.

To find Fourier domain expressions for α > 0 for these splines, the main tool
will be the Poisson summation formula:

Lemma 4.1 (The Poisson summation formula). . Let f ∈ L2 (R) then∑
n

f (x + nN) =
1
L

∑
k

f̂

(
k

N

)
e2πikx/N , a.e. x ∈ R. (4.4)

When both f, f̂ ∈ W (R), the Poisson summation formula hold with pointwise
convergence everywhere, 10, and this is exactly the case for βα when α > 0.

We shall make use of Hurwitz’ zeta function 12, also known as the generalized
zeta function:

ζ (z, v) =
∞∑

k=0

1
(k + v)z , z > 1, v > 0 (4.5)

In the following, we set β = α + 1 to shorten the formulas. Using the Poisson
summation formula (4.4) and Hurwitz’ zeta function, we obtain Fourier domain
expressions for for the splines defined in Definition 4.1:

Proposition 4.1. For α > 0 we have the following. For even a and m = 1, . . . , L−
1.

Ĉα,eW
L,a (m) =

1√
L
<

( sin
(

πm
N

)
πa

)β (
ζ
(
β,

m

L

)
+ e−πiβζ

(
β, 1− m

L

)) (4.6)

Ĉα,∗W
L,a (m) =

1√
L

∣∣∣∣∣ sin
(

πm
N

)
πa

∣∣∣∣∣
β (

ζ
(
β,

m

L

)
+ ζ

(
β, 1− m

L

))
(4.7)

Ĉα,×W
L,a (m) =

1√
L

(
sin
(

πm
N

)
πa

)〈β〉 (
ζ
(
β,

m

L

)
− ζ

(
β, 1− m

L

))
(4.8)
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For odd a and m = 1, . . . , L− 1 we get the expressions

Ĉα,eW
L,a (m) =

1√
L
<

((
sin
(

πm
N

)
2πa

)β (
(−1)−β

ζ
(
β, 1− m

2L

)
+ ζ

(
β,

m

2L

)
+

+ζ

(
β,

1
2
− m

2L

)
+ (−1)β

ζ

(
β,

1
2

+
m

2L

)))
(4.9)

Ĉα,×W
L,a (m) =

1√
L

(
sin
(

πm
N

)
2πa

)〈β〉(
ζ
(
β,

m

2L

)
− ζ

(
β, 1− m

2L

)
+

+ζ

(
β,

1
2
− m

2L

)
− ζ

(
β,

1
2

+
m

2L

))
. (4.10)

The expression (4.7) holds for both even and odd a. For m = 0 and all values of a

we get

Ĉα,eW
L,a (0) = Ĉα,∗W

L,a (0) = Ĉα,×W
L,a (0) =

1√
L

. (4.11)

For a derivation, see the appendix.
The discrete splines defined in this manner does not satisfy the discrete equiv-

alent of the convolution properties (3.7)-(3.9). Instead, because these splines are
formed from sampling and periodization, they have the subsampling property

Cα,W
L,a (k) =

√
cCα,W

Lc,ac (ck) , k = 0, . . . , L− 1, (4.12)

where c ∈ N. This means, that if one picks out a regularly spaced subsequence of
the splines containing the first element, then this sequence is again a spline of the
same order and type. Another consequence is that interleaving a WPE spline with
the corresponding HPE spline will form the WPE spline (differently scaled) of twice
L and a.

5. Discrete splines by the DFT

In the previous section we defined finite, discrete splines by means of sampling and
periodization. In this section we will define finite, discrete splines by transferring
the continuous definition to the discrete case. We wish to create both WPE and
HPE spline functions. For this the following simple observations can be used:

• The convolution of two WPE functions is again a WPE function.
• The convolution of an HPE and a WPE function is a again an HPE function.

However, it does not hold that the convolution of two HPE functions is again a
HPE function. Contrary, it is a WPE function shifted by one sample.

We can construct splines by repeated convolution of a rectangular function, just
as in the continuous case. The zeroth order splines is defined by a sampling and
periodization of the box spline. Because the box spline is compactly supported, the
periodization consists of only two terms:
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Definition 5.1. Let a = {0, . . . , L− 1}. We define D0,+W
L,a , D0,+H

L,a ∈ CL by:

D0,+W
L,a (l) =

1√
a

(
β0

+

(
l − L

a

)
+ β0

+

(
l

a

))
, (5.1)

D0,+H
L,a (l) =

1√
a

(
β0

+

(
l + 1

2 − L

a

)
+ β0

+

(
l + 1

2

a

))
, (5.2)

for l = 0, . . . , L− 1.

By standard trigonometric formulas, we find that the DFT of D0,W
L,a is

D̂0,+W
L,a (k) =

2√
L

d(a−1)/2e∑
l=1

b(l) cos (2πkl/L)

 (5.3)

=


sin(a πl

L )
sin(πl

L ) if a is odd
sin((a−1) πl

L )+sin((a+1) πl
L )

2 sin(πl
L ) if a is even

(5.4)

where

b(l) =

{
1
2 if l = 0 or l = a

2

1 otherwise.
(5.5)

We define the discrete, fractional WPE B-splines in the same way as their con-
tinuous counterparts.

Definition 5.2. Let α > −1 and a = {0, . . . , L− 1}. We define
Dα,eW

L,a , Dα,∗W
L,a , Dα,×W

L,a ∈ CL

D̂α,eW
L,a = L

α
2 <

((
D̂α,W

L,a

)α+1
)

(5.6)

D̂α,∗W
L,a = L

α
2

∣∣∣∣D̂α,W
L,a

∣∣∣∣α+1

(5.7)

D̂α,×W
L,a = L

α
2

(
D̂α,W

L,a

)〈α+1〉

(5.8)

The constant term L
α
2 is necessary to ensure the proper normalization. It comes

from the
√

L appearing in (2.8).
The Fourier domain methods used so far need to be modified for defining the

HPE splines, because the Fourier transform of an HPE function is not real valued.
Instead we will use the convolution properties (3.7)-(3.9) as the definition. We define
the zero-order splines by:

The unsigned power spline of order zero can be defined in the Fourier domain
using (2.13):
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Definition 5.3. Let a = {0, . . . , L− 1}. We define D0,∗H
L,a ∈ CL in the Fourier

domain by

D̂0,∗H
L,a (k) =


∣∣∣∣B̂0,+HD

L,a (k)
∣∣∣∣ eπik/L if 0 ≤ k <

⌊
L
2

⌋
−
∣∣∣∣B̂0,+HD

L,a (k)
∣∣∣∣ eπik/L otherwise

.

Using the two zero order HPE splines just defined, we can define all the HPE
splines:

Definition 5.4. Let a = {0, . . . , L− 1} and α > 0. We define
Dα,eH

L,a , Dα,∗H
L,a , Dα,×H

L,a ∈ CL in the Fourier domain by:

D̂α,eH
L,a = L

α
2 <
((

D̂0,W
L,a

)α)
D̂0,+H

L,a , (5.9)

D̂α,∗H
L,a = L

α
2

∣∣∣∣D̂0,W
L,a

∣∣∣∣α D̂0,∗H
L,a , (5.10)

D̂α,×H
L,a = L

α
2

∣∣∣∣D̂0,W
L,a

∣∣∣∣α D̂0,H
L,a . (5.11)

6. Numerical results

In this section we consider Gabor frames and Wilson bases as defined in Definition
2.2 and 2.5.

The six different types of splines (both in WPE and HPE variation) have
been implemented in the Linear Time Frequency Toolbox (LTFAT) available from
http://www.univie.ac.at/nuhag-php/ltfat as the function pbspline (Periodic
B-spline). Implementations of Gabor systems, Wilson bases and frame bound cal-
culations are available as well.

Implementations of Hurwitz’ zeta function needed for the ’C’ splines can (among
other places) be found in GSL (the GNU Scientific Library), Maple and Mathemat-
ica. Octave uses the GSL implementation and Matlab uses the Maple implementa-
tion.

Figure 3 show a comparison of the frame bound ratio B
A of Gabor frames using

splines windows with different values of α. The windows that consistently generates
the lowest frame bound ratios are the signed power splines, Cα,× and Dα,×, and
the unsigned power splines Cα,∗ and Dα,∗ generate the highest. The even splines,
Cα,e and Dα,e, oscillates between these two, as would be expected.

For values of α close to zero, using a WPE spline when a is odd and an HPE
spline when a is even gives much lower frame bounds that doing the opposite. The
cause of this is that D0,+W

L,a for a odd and D0,+H
L,a for a even consists of only the

values 0 and 1. Because D0,+W
L,a forms a PU, then also g (k) =

∣∣∣D0,+W
L,a (k)

∣∣∣2 forms
a PU. This is exactly the requirement for generating a tight Gabor frame for this
case.
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(d) even a, HPE

Fig. 3. The figure show the frame bound ratio B
A

of a Gabor frame using one of the six types of
splines as window function. The parameters for the left plot are L = 48, a = 3 and M = 4. For the
right plot they are L = 96, a = 6 and M = 8. The top row shows WPE windows and the bottom
row shows HPE windows.

Figure 4 show the same investigation for Wilson bases. We have constructed
a Wilson basis for which the unmodulated terms form a PU. This means that we
must choose the parameter a for the splines as a = 2M , and therefore the value
of a cannot be odd. We see similar result as for Gabor frames, except that the ’e’
splines may sometimes generate frames with a lower frame bound ratio than those
generated by the ’x’ splines.

Figure 5 shows the effect of using a window that forms a PU in image compres-
sion. The image used is a standard test image, the ’cameraman’, which has a large
background area of almost constant color. For each of the three windows C0,eW ,
C0.4,eW and the Gaussian, the test image has been heavily compressed so as to
produce visible artifacts of the compression. The two spline windows that form a
PU provides a smooth resolution of the background, while the Gaussian produces a
visibly disturbing pattern in the background. The box function on the other hand
produces a sharp image but with visible horizontal and vertical lines, because of
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Fig. 4. The figure show the frame bound ratio B
A

of a Wilson basis as defined in Definition 2.5
using one of the six types of splines as window function. The parameters are L = 36 using M = 6
channels. The left figure shows a Wilson basis with ct = 0 using WPE splines as window. The
right plot show a Wilson basis with ct = 1

2
using HPE splines as windows.

the sharp cutoff.a The image produced by the fractional spline C0.4,eW shows a
smoother background without disturbing lines or patterns.

7. Conclusion

We have introduced two families of finite, discrete, symmetric B-splines suitable for
discrete Gabor analysis:

• A family of discrete splines constructed by sampling and periodization of
the continuous splines. These splines are suitable for Gabor analysis if we
are working with signals coming from a sampling of continuous signals,
and desire a precise estimate of sampling errors. To compute these splines,
evaluation of Hurwitz’ zeta function is needed, which can be slow if not
properly implemented.

• A family of discrete splines defined in the same manner as their continuous
counterparts. These splines are very similar to the splines produced by
sampling and periodization, but lack the close relationship to the continuous
splines. They are very fast to compute, requiring only a single DFT.

For Gabor systems, the splines formed by raising the sinc function to a signed power
consistently generated Gabor frames with a lower frame bound ratio than the other
types of splines.

An implementation of the different type of splines discussed in this paper is
available in the LTFAT toolbox as the function pbspline. By default this function
will return a spline of type Be,D

L,a , as this spline coincides with the normal B-splines

aWhen using this window a 2D Wilson transform is almost the same transform as the 2D block
DCT that is used in JPEG encoding of images.
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(a) Original (b) Box WPE window

(c) ’ec’ WPE spline window with α =
.4

(d) Gauss window

Fig. 5. The figure shows a test done on a standard test image, the Cameraman. The image in the
upper left corner is the original 256x256 greyscale image. The other 3 images have been compressed
using a 2D Wilson basis with M = 16 channels and different window functions as specified below
each image. The specified window was used for synthesis and the corresponding canonical dual
window was used for analysis. The 1% largest coefficients have been kept, and all other coefficients
set to zero.

for all integer orders, and because it is fast and reliable to compute (computation
does not depend on an external library to be available).

Appendix A. Derivation of the periodic, discrete fractional splines
by sampling and periodization

We wish to find an explicit expression for the DFT of

Cα,+W
L,a (l) =

1
a

∑
n

βα
+

(
l

a
+ nN

)
. (A.1)



January 10, 2007 11:48 WSPC/WS-IJWMIP splinepaper

Symmetric, discrete fractional splines and Gabor systems 15

To derive this, we will need to consider the following two sums: For the first one,
we expand the sum in (4.5) to run through all whole numbers:

∑
k∈Z

(z + k)−β =
∞∑

k=1

(z − k)−β +
∞∑

k=0

(z + k)−β (A.2)

=
∞∑

k=0

(z − (k + 1))−β +
∞∑

k=0

(z + k)−β (A.3)

= (−1)−β
ζ (β, 1− z) + ζ (β, z) (A.4)

For the second one, we consider a sum with alternating signs. We split it for k even
and k odd and use (A.4):

∑
k∈Z

(
(−1)k

)β

(z + k)β
=
∑
k∈Z

1

(z + 2k)β
+
∑
k∈Z

(−1)β

(z + 2k + 1)β
(A.5)

= 2−β

(∑
k∈Z

(z

2
+ k
)−β

+ (−1)β
∑
k∈Z

(
z + 1

2
+ k

)−β
)

(A.6)

= 2−β

(
(−1)−β

ζ
(
β, 1− z

2

)
+ ζ

(
β,

z

2

)
+

+ ζ

(
β,

1
2
− z

2

)
+ (−1)β

ζ

(
β,

1
2

+
z

2

))
(A.7)

Using the Poisson summation formula (4.4) and the well-known aliasing of high-
mode waves to low mode waves (also a form of Poisson-summation) we obtain

Cα,+W
L,a (l) =

1
a

∑
n

βα
+

(
l

a
+ nN

)
(A.8)

=
1
L

∑
k∈Z

sinc
(

k

N

)α+1

e2πikl/L (A.9)

=
1
L

L−1∑
m=0

(∑
k∈Z

sinc
(

m + kL

N

)α+1
)

e2πilm/L (A.10)

=
1
L

L−1∑
m=0

(∑
k∈Z

sinc
(m

N
+ ka

)α+1
)

e2πilm/L (A.11)

for j = 0, . . . , L − 1 and α > 0. The infinite sum is absolute convergent because
we have assumed α > 0. From the last expression we recognize the discrete Fourier
transform of Cα,+W

L,a :

Ĉα,+W
L,a (m) =

1√
L

∑
k∈Z

sinc
(m

N
+ ka

)α+1

, m = 0, . . . , L− 1. (A.12)

To get rid of the infinite sum, we rewrite for m = 1, . . . , L− 1:
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Ĉα,+W
L,a (m) =

1√
L

∑
k∈Z

sinc
(m

N
+ ka

)α+1

(A.13)

=
1√
L

∑
k∈Z

(
sin
(

πm
N + πka

)
πm
N + πka

)α+1

(A.14)

=
1√
L

sin
(πm

N

)α+1∑
k∈Z

(
(−1)ka

)α+1

(
πm
N + πka

)α+1 (A.15)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

(
(−1)ka

)α+1

(
m
L + k

)α+1 (A.16)

The last expression (A.16) simplifies when a is even. We therefore first treat the
case when a is even and use (A.4) with β = α + 1:

̂Bα,+WC
L,a (m) (A.17)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

1(
m
L + k

)α+1 (A.18)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1 (
(−1)−(α+1)

ζ
(
α + 1, 1− m

L

)
+ ζ

(
α + 1,

m

L

))
.(A.19)

To treat the case when a is odd, we use use (A.7) on (A.16):

̂Bα,+WC
L,a (m) =

1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

(
(−1)k

)α+1

(
m
L + k

)α+1 (A.20)

=
1√
L

(
sin
(

πm
N

)
2πa

)α+1(
(−1)−(α+1)

ζ
(
α + 1, 1− m

2L

)
+ ζ

(
α + 1,

m

2L

)
+

+ζ

(
α + 1,

1
2
− m

2L

)
+ (−1)α+1

ζ

(
α + 1,

1
2

+
m

2L

))
(A.21)

For m = 0 we get trivially from the properties of the sinc function that

Ĉα,+W
L,a (0) =

1√
L

. (A.22)

The derivations of Ĉα,∗W
L,a and Ĉα,×W

L,a are very similar.
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