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ABSTRACT. In this paper we investigate the computational aspects of some
recently proposed iterative methods for approximating the canonical tight and
canonical dual window of a Gabor frame (g, a, b). The iterations start with
the window g while the iteration steps comprise the window g, the kth iterand
γk, the frame operators S and Sk corresponding to (g, a, b) and (γk, a, b), re-
spectively, and a number of scalars. The structure of the iteration step of the
method is determined by the envisaged convergence order m of the method.
We consider two strategies for scaling the terms in the iteration step: norm
scaling, where in each step the windows are normalized, and initial scaling
where we only scale in the very beginning. Norm scaling leads to fast, but
conditionally convergent methods, while initial scaling leads to uncondition-
ally convergent methods, but with possibly suboptimal convergence constants.
The iterations, initially formulated for time-continuous Gabor systems, are
considered and tested in a discrete setting in which one passes to the appro-
priately sampled-and-periodized windows and frame operators. Furthermore,
they are compared with respect to accuracy and efficiency with other methods
to approximate canonical windows associated with Gabor frames.

1. Introduction

We consider in this paper iterative schemes for the approximation of the
canonical tight and canonical dual windows associated with a Gabor frame.
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There are several motivations for this study:

• Fast algorithms for computing dual/tight windows allow for more
flexibility in choosing the windows. Instead of working with fixed,
precomputed windows, fast algor ithms allow for changing the win-
dows on the fly. This can lead to more robust applications, that be
tter adapt to a larger variety of problems.

• When designing Gabor windows meeting an optimality criterion, it
is often necessary to generate sequences of windows, and then speed
is important.

We refer to [6, Ch. 8-10] and [11, Ch. 5-9, 11-13] for recent and compre-
hensive treatments of the theory of Gabor systems and frames; to fix no-
tations and conventions we briefly give here the main features. We denote
for g ∈ L2 (R) and a > 0, b > 0 by (g, a, b) the collection of time-frequency
shifted windows

gna,mb, m, n ∈ Z, (1.1)

where for x, y ∈ R we denote

gx,y = e2πiytg(t− x), t ∈ R. (1.2)

We refer to g as the window and to a and b as the time-shift and frequency-
shift parameters, respectively, of the Gabor system (g, a, b). When there are
A > 0, B < ∞, called the lower and upper frame bound, respectively, such
that for all f ∈ L2 (R) there holds

A ‖f‖2 ≤
∞∑

m,n=−∞
|(f, gna,mb)|2 ≤ B ‖f‖2 , (1.3)

we call (g, a, b) a Gabor frame. When in (1.3) the second inequality holds
for all f ∈ L2 (R), we have that

f ∈ L2 (R) 7→ Sf :=
∞∑

m,n=−∞
(f, gna,mb) gna,mb (1.4)

is well-defined as a bounded, positive, semi-definite linear operator of L2 (R).
We call S the frame operator of (g, a, b). The frame operator commutes with
all relevant shift operators, i.e., we have for all f ∈ L2 (R)

Sfna,mb = (Sf)na,mb , m, n ∈ Z. (1.5)

We shall assume in the remainder of this paper that (g, a, b) is a Gabor
frame. Thus the frame operator S is positive definite and therefore bound-
edly invertible. There are two windows canonically associated to the Gabor
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frame (g, a, b). These are the canonical tight window gt and the canonical
dual window gd, defined by

gt = S−1/2g , gd = S−1g, (1.6)

respectively. The practical relevance of these windows is that they give rise
to Gabor series representations of arbitrary f ∈ L2 (R) according to

f =
∞∑

m,n=−∞

(
f, gt

na,mb

)
gt
na,mb =

∞∑
m,n=−∞

(
f, gd

na,mb

)
gna,mb, (1.7)

where both series are L2 (R)-convergent. Furthermore, the Gabor systems(
gt, a, b

)
and

(
gd, a, b

)
are Gabor frames themselves with frame operators

equal to the identity I and S−1, respectively.
The computation of gt and gd according to (1.6) requires taking the

inverse square root and the inverse of the frame operator S, respectively. In
the often occurring practical case that ab is a rational number, the frame
operator is highly structured which allows relatively efficient methods for
computing S−1, see [27]. The computation of S−

1
2 is much more awkward,

even in the case that ab is rational, and often requires advanced techniques
from numerical linear algebra, see for instance [13].

In [20] the calculus of Gabor frame operators was combined with a use
of the spectral mapping theorem and Kantorovich’s inequality to analyze
an iteration scheme for the approximation of gt that was proposed around
1995 by Feichtinger and Strohmer (independently of one another). In this
iteration scheme one sets γ0 = g and for k = 0, 1, . . .

I. γk+1 =
1
2
αkγk +

1
2
βkS

−1
k γk; αk =

1
‖γk‖

, βk =
1∥∥S−1

k γk

∥∥ , (1.8)

where Sk is the frame operator corresponding to (γk, a, b). It was shown
in [20] that (γk, a, b) is indeed a Gabor frame, and that γk

‖γk‖ converges (at

least) quadratically to gt

‖gt‖ . From the numerical results in [20] for the case

that g is the standard Gaussian window 21/4 exp
(
−πt2

)
and a = b = 1/

√
2

it appears that the resulting method compares favorably with other iterative
techniques for computing inverse square roots, [24, 25, 29].

The investigations in [20] were followed by the introduction in [18, 19]
of two families of iterative algorithms for the approximation of gt and gd,
in which the iteration step involves the initial window g and the frame
operator S as well as the current window γk and frame operator Sk, but
frame operator inversion as in (1.8) do not occur. The following instances
of these two families were analyzed in [18, 19]. Again we set γ0 = g, and for
k = 0, 1, . . .

II. γk+1 =
3
2
αkγk −

1
2
βkSkγk; αk =

1
‖γk‖

, βk =
1

‖Skγk‖
, (1.9)
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III.
γk+1 =

15
8
εk0γk −

5
4
εk1Skγk +

3
8
εk2S

2
kγk;

εk0 =
1

‖γk‖
, εk1 =

1
‖Skγk‖

, εk2 =
1∥∥S2
kγk

∥∥ , (1.10)

for the approximation of gt, and

IV. γk+1 = 2αkγk − βkSkg; αk =
1

‖γk‖
, βk =

1
‖Skg‖

, (1.11)

V.
γk+1 = 3δk0γk − 3δk1Skg + δk2SSkγk;

δk0 =
1

‖γk‖
, δk1 =

1
‖Skg‖

, δk2 =
1

‖SSkγk‖
, (1.12)

for the approximation of gd.
The algorithms II-V are, contrary to algorithm I, conditionally conver-

gent in the sense that the frame bound ratio A
B of the initial Gabor frame

(g, a, b) should exceed a certain lower bound. Accordingly, in algorithm II
and III we have that γk

‖γk‖ converges to gt

‖gt‖ quadratically and cubically when
A
B > 1

2 and A
B > 3

7 , respectively. In algorithm IV and V we have that γk
‖γk‖

converges to gd

‖gd‖ quadratically and cubically when A
B > 1

2

(√
5− 1

)
and

A
B > 0.513829766 . . ., respectively. A remarkable phenomenon that emerged
from the preliminary experiments done with the algorithms around 2002,
was the fact that the lower bounds for the algorithms II, III seem far too
pessimistic while those for the algorithms IV and V appear to be realistic.

In the algorithms just presented, all computed windows are normalized.
We shall refer to this as norm scaling. Another possibility that we will
investigate, is to replace all scalars α’s, β’s, ε’s and δ’s that occur in (1.9-
1.12) by 1, and then initially scale the windows by replacing

g by g/B̂1/2 , S by S/B̂. (1.13)

We shall refer to this scaling strategy as initial scaling. If B̂ is (an esti-
mate for) the best upper frame bound maxσ (S) then the algorithms will
be unconditionally convergent, with guaranteed desired convergence order,
but with convergence constants that may not be as good as the ones that
can be obtained by using the norm scaling as described by (1.9-1.12).

Matrix versions of algorithms II-III without any scaling have been
treated in [5]. In [14, 23] the matrix version of algorithm II is considered
using norm scaling and a scaling method that approximates the optimal
scaling. The matrix version of algorithm IV is known as a Schulz iteration,
see [28]. The fact that S, and therefore ϕ (S) with ϕ continuous and positive
on the spectrum of S, commutes with all relevant shift operators, allows us
to formulate the iteration steps on the level of the windows themselves.
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In this paper we investigate the algorithms II-V, using both norm
and initial scaling, with more emphasis on computational aspects than in
[20, 18, 19]. Here it is necessary to consider sampled-and-periodized Gabor
systems in the style of [16]. This allows for a formulation and analysis of the
algorithms I-V in an entirely similar way as was done in [20, 18, 19]. Thanks
to the fact that the involved (canonical) windows and frame operators be-
have so conveniently under the operations of sampling and periodization,
the observations done on the sampled-and-periodized systems are directly
relevant to the time-continuous systems. We must restrict here to rational
values of ab, and this gives the frame operator additional structure which
can be exploited in the computations as dictated by the recursion steps, also
see [2, 27, 30] for this matter.

The notions ”smart” (or, rather, ”smart but risky”) and ”safe” (or,
rather, ”safe but conservative”) were introduced in a casual way in [19]
to distinguish between cases where the stationary point(s) of the function
transforming (frame) operators according to (4.2), (4.9) has a good chance
to be well-placed in the middle of and on the ”safe” side of the relevant
spectral set, respectively. In the present paper, we choose to refer to the
strategies leading to smart and safe modes as ”norm scaling” and ”initial
scaling”, respectively, and discard the terms ”smart” and ”safe” altogether.

2. Paper outline and results

In Section 3 and 4 we present the basic results of [18, 19] on transforming
g into γ = ϕ (S) g, where ϕ is a function positive and continuous on σ (S),
so as to obtain a window γ whose frame operator Sγ (for approximating
gt) or the operator (SSγ)1/2 =: Zγ (for approximating gd) is closer to (a
multiple of) the identity I than S itself. Here we recall that

(
gt, a, b

)
has

frame operator I and that
(
gd, a, b

)
has frame operator S−1. Thus we relate

the operators S and Sγ and their frame bounds, and we present a bound for
the distance between (the normed) γ and gt in terms of the frame bounds of
Sγ . Similarly, we relate the frame bounds of (g, a, b) and the minimum and
maximum of σ (Zγ), and we present a bound for the difference between (the
normed) γ and gd in terms of the latter minimum and maximum. Next, in
Section 4, the choice of ϕ is specified so as to accommodate the recursions of
type II, III and of type IV, V which gives us a means to monitor the frame
bound ratio Ak

Bk
(for gt) and of the ratio between minimum and maximum

of σ (Zk) (for gd) during the iteration process.
In Section 5 we present the algorithms using only initial scaling. In

Section 6 we elaborate on the observation that all algorithms take place
in the closed linear span Lg of the adjoint orbit

{
gj/b,l/a

∣∣j, l ∈ Z
}
. Here

the dual lattice representation of frame operators is relevant as well as an
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operator norm to measure the distance of Sk (for gt) and of (SSk)
1/2 (for

gd) from (a multiple of) the identity. The consideration of the algorithms
in the space Lg reveals a fundamental difference between the algorithms
for computing gt and gd that manifests itself in the totally different after-
convergence behaviour of the two families of algorithms.

In Section 7 we give some considerations in the Zak transform domain,
so as to produce examples of Gabor frames for which a specific algorithm
diverges.

In Section 8 we discuss the discretization and finitization aspects (through
sampling and periodization) that have to be taken into account since the
algorithms are to be tested numerically.

In Section 9 we show how the algorithms can be expressed for discrete,
finite Gabor systems, and show that the algorithms are scalar iterations of
the singular values of certain matrices. We present an efficient implementa-
tion of the iterative algorithms, and we list the window functions we have
used to test the algorithms.

In Section 10 we present our experimental results, compare them with
what the theory predicts and with other methods to compute tight and
dual windows. We provide examples that show the quadratic and cubic
convergence of the algorithms, and the exponential divergence of the dual
iterations after the initial convergence. We give an example that breaks the
norm scaling schemes for both the tight and dual iterations, and show how
various error norms of the iteration step behave. Comparisons with other
methods are made: we show that the tight iterations are competitive with
respect to computing time and superior with respect to precision. Finally,
we show that the number of iterations needed for full convergence of the
algorithms are dependent on the frame bound ratio, but independent of the
structural properties of the discretization. For initial scaling, we show that it
is easy to choose a scaling parameter that gives almost optimal convergence.

3. Frame operator calculus and basic inequalities

The basic theory to analyze the recursions appears somewhat scattered
in [20, 18, 19]; for the reader’s convenience, we give in Section 3 and 4
a concise yet comprehensive summary of the basic results and ideas. We
let (g, a, b) be a Gabor frame with frame operator S and best frame bounds
A = minσ (S) > 0, B = maxσ (S), where σ (S) is the spectrum of S. In this
section we present the basic inequalities expressing the approximation errors
in terms of the (frame) bounds on the involved (frame) operators. These
inequalities are a consequence of the calculus of Gabor frame operators, the
spectral mapping theorem and Kantorovich’s inequality.

Proposition 1. Let ϕ be continuous and positive on [A,B], and set γ :=
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ϕ (S) g. The following holds.

(i) (γ, a, b) is a Gabor frame with frame operator Sγ := Sϕ2 (S) and best
frame bounds

Aγ := min
s∈σ(S)

sϕ2 (s) , Bγ := max
s∈σ(S)

sϕ2 (s) . (3.1)

Furthermore,
gt = S−1/2g = S−1/2

γ γ = γt, (3.2)

and ∥∥∥∥ γ

‖γ‖
− gt

‖gt‖

∥∥∥∥ ≤ (
1−Q1/4

γ

) √
2

1 +Qγ
; Qγ =

Aγ

Bγ
. (3.3)

(ii) Let Zγ := (SSγ)1/2 = Sϕ (S), and

Eγ := minσ (Zγ) = min
s∈σ(S)

sϕ (s) , (3.4)

Fγ := maxσ (Zγ) = max
s∈σ(S)

sϕ (s) . (3.5)

Then

gd = Z−1
γ γ , Zγγ = Sγg, (3.6)

and ∥∥∥∥ γ

‖γ‖
− gd

‖gd‖

∥∥∥∥ ≤ (
1−R1/2

γ

) √
2

1 +Rγ
; Rγ =

Eγ

Fγ
. (3.7)

The basic result (i) gives us a clue how to produce a good approximation γ
‖γ‖

of gt

‖gt‖ : take ϕ such that sϕ2 (s) is flat on σ (S) ⊂ [A,B] so that the number
Qγ in (3.3) is close to 1. Similarly, by the basic result (ii), the number Rγ

in (3.7) is close to 1 when ϕ is such that sϕ (s) is flat on σ (S) ⊂ [A,B], and
then we obtain a good approximation of gd

‖gd‖ . In the next two subsections,

we use this basic result repeatedly with polynomials ϕ of fixed degree m so
as to obtain iterative approximations of gt and gd.

4. Norm scaling

4.1 Iterations for approximating gt

We consider iteration schemes

γ0 = g; γk+1 = ϕk (Sk) γk, k = 0, 1, . . . , (4.1)



8 A.J.E.M. Janssen and Peter L. Søndergaard

for the approximation of gt, where Sk is the frame operator of (γk, a, b). We
use here the basic result (i) repeatedly with

g = γk, S = Sk and γ = γk+1, Sγ = Sk+1 = Skϕ
2
k (Sk) . (4.2)

For k = 0, 1, . . . we have that γt
k = gt and that∥∥∥∥ γk

‖γk‖
− gt

‖gt‖

∥∥∥∥ ≤ (
1−Q

1/4
k

) √
2

1 +Qk
; Qk =

Ak

Bk
, (4.3)

where Ak and Bk are the best frame bounds of Sk. The numbers Ak, Bk

can be computed and estimated recursively according to A0 = A, B0 = B
and

Ak+1 = min
s∈σ(Sk)

sϕ2
k (s) ≥ min

s∈[Ak,Bk]
sϕ2

k (s) , (4.4)

Bk+1 = max
s∈σ(Sk)

sϕ2
k (s) ≤ max

s∈[Ak,Bk]
sϕ2

k (s) , (4.5)

for k = 0, 1, . . ..
We should choose ϕk such that sϕ2

k (s) is flat on σ (Sk). To that end
there is proposed in [19, Subsec. 5.1] for m = 2, 3, . . . the choice

ϕk (s) =
m−1∑
j=0

amjαkjs
j , αkj =

∥∥∥Sj
kγk

∥∥∥−1
, (4.6)

where the amj are defined by

m−1∑
l=0

(−1)l

(
−1/2
l

)
(1− x)l =

m−1∑
j=0

amjx
j , x > 0. (4.7)

The motivation for this choice is as follows. The left-hand side of (4.7) is the
(m− 1)th order Taylor approximation of x−1/2 around x = 1, while (when
Qk is sufficiently close to 1)

αkjS
j
k ≈

(
Sk

‖Sk‖

)j 1
‖γk‖

, j = 0, . . . ,m− 1. (4.8)

Hence sϕ2
k (s) =

(
s1/2ϕk (s)

)2
should be expected to be flat on σ (Sk), with

1−Qk+1 potentially of order (1−Qk)
m.

When m = 2, 3 we get the iterations II, III in (1.9), (1.10). It is shown
in [18, Sec. 4] and [19, Sec. 6] that for m = 2 the quantity Qk = Ak

Bk

increases to 1 and that γk
‖γk‖ →

gt

‖gt‖ quadratically when k → ∞, provided

that A
B > 1

2 . For m = 3 it is shown in [18, Sec. 8] that Qk increases to 1 and
that γk

‖γk‖ →
gt

‖gt‖ cubically when k →∞, provided that A
B > 3

7 . In [18, 19] it
was observed for m = 2, 3 that the choice of αkj causes sϕ2

k (s) to have one
or more stationary points in [Ak, Bk] so that the odds for flatness of sϕ2

k (s)
on [Ak, Bk] are favourable.
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4.2 Iterations for approximating gd

We consider iteration schemes

γ0 = g; γk+1 = ϕk (Zk) γk, k = 0, 1, . . . , (4.9)

for the approximation of gd, where Zk = (SSk)
1/2 with Sk the frame operator

of (γk, a, b). It is seen from (4.9) by induction that γk = ψk (S) g for some
function ψk. Hence by the basic result (i) with ϕ = ψk, we have that

Sk = Sψ2
k (S) , Zk = Sψk (S) , (4.10)

and, by the basic result (ii), that∥∥∥∥ γk

‖γk‖
− gd

‖gd‖

∥∥∥∥ ≤ (
1−R

1/2
k

) √
2

1 +Rk
; Rk =

Ek

Ek
, (4.11)

where Ek = minσ (Zk), Fk = maxσ (Zk). A further use of the calculus of
frame operators as given by the basic result (i), yields

Zk+1 = Zkϕk (Zk) . (4.12)

Consequently, the numbers Ek, Fk can be computed and estimated recur-
sively according to E0 = A, F0 = B and

Ek+1 = min
z∈σ(Zk)

zϕk (z) ≥ min
z∈[Ek,Fk]

zϕk (z) , (4.13)

Fk+1 = max
z∈σ(Zk)

zϕk (z) ≤ max
z∈[Ek,Fk]

zϕk (z) , (4.14)

for k = 0, 1, . . ..
We should choose ϕk such that zϕk (z) is flat on σ (Zk). To that end

there is proposed in [19, Subsec. 5.2] for m = 2, 3, . . . the choice

ϕk (z) =
m−1∑
j=0

bmjβkjz
j , βkj =

∥∥∥Zj
kγk

∥∥∥−1
, (4.15)

where the bmj are defined by

m−1∑
l=0

(1− x)l =
m−1∑
j=0

bmjx
j , x > 0. (4.16)

The motivation for the proposal is similar to the one for the choice of ϕk

in (4.6) in Subsec. 4.1; we now note that the left-hand side of (4.16) is the
(m− 1)th order Taylor approximation of x−1 around x = 1. The implemen-
tation of the resulting recurrence step

γk+1 =
m−1∑
j=0

bmj
Zj

kγk∥∥∥Zj
kγk

∥∥∥ , Zk = (SSk)
1/2 , (4.17)
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is made feasible by the observation that, thanks to the second item in (3.6),
Zkγk = Skg so that

Z2r
k γk = (SSk)

r γk, Z2r+1
k γk = (SSk)

r Skg, r = 0, 1, . . . . (4.18)

When m = 2, 3 we get the recurrences IV, V in (1.11) and (1.12). It
is shown in [18, Sec. 5] and [19, Sec. 7], that for m = 2 the quantity
Rk = Ek

Fk
increases to 1 and that γk

‖γk‖ →
gd

‖gd‖ quadratically when k → ∞,

provided that A
B > 1

2

(√
5− 1

)
. For m = 3 it is shown in [18, Sec. 9] that Rk

increases to 1 and that γk
‖γk‖ →

gd

‖gd‖ cubically when k → ∞, provided that
A
B > 0.513829766 . . .. In [18, 19] it was observed for m = 2, 3 that the choice
of βkj causes zϕk (z) to have one or more stationary points in [Ek, Fk].

5. Initial scaling

The algorithms II-V are guaranteed to converge when the lower bound ratio
A
B of (g, a, b) exceeds a certain value. The proofs, as given in [18] and [19], re-
quire a careful analysis of the extreme values of the functions ϕk on the spec-
tra of the relevant operators and can become quite complicated, especially
in the cases of algorithms III, V. However, the algorithms are efficient in the
sense that the envisaged convergence order m is realized with favourable
convergence constants. In practice, as the experiments in Section 10 show,
the algorithms II, III turn out to converge in almost all cases, even when the
frame bound ratio is close to 0. However, divergence of the algorithms IV,
V occurs much more frequently. In Section 7 we present examples, using the
Zak transform, of frames (g, a, b) such that algorithm II and IV diverges.

It would be desirable to have versions of the algorithms that are guar-
anteed to converge, no matter how small the frame bound ratio of the initial
frame is (as long as it is positive). In the following, we present the initial
scaling versions of the algorithms that converge at the envisaged conver-
gence order m, possibly with suboptimal convergence constants. Since we
can freely switch scaling strategy, a possible strategy is to initially scale such
that convergence is guaranteed, and to continue until one is confident that
the relevant condition number exceeds the specific lower bound so that the
norm scaling mode can be applied from that point onwards.

The introduction in [19] of the notion of “safe modes” was prompted by
an observation by M. Hampejs who prescaled the window g (and the frame
operator) and deleted all normalization operations in the recursion step of
algorithms II, IV. In the present paper, the prescaling is done in such a way
that the scaled S has its spectrum exclusively in the attraction region of the
function ϕ describing the simplified recursion. More specifically, we consider
the iteration steps as given in Subsections 4.1, 4.2, with all α’s and β’s equal
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(a) s > 0 7→ s
`
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(b) z > 0 7→ zϕd
m (z) .

FIGURE 1 The figure shows the two set of functions governing the convergence of the tight
and dual iterations using initial scaling for order m = 1, 2, 3, 4 with ϕt

m and ϕd
m defined

by (5.1) and (5.2). For (a), the attraction point 1 has attraction regions m = 2 : (0, 3),
m = 3 : (0, 7/3), m = 4 : (0, 2.525847988). For (b), the attraction point 1 has attraction
region (0, 2) for m = 2, 3, 4.

to 1. The ϕ’s thus obtained are independent of k and are given by

ϕt
m (s) :=

m−1∑
l=0

(−1)l

(
−1/2
l

)
(1− s)l =

m−1∑
j=0

amjs
j , s > 0, (5.1)

and

ϕd
m (z) :=

m−1∑
l=0

(1− z)l =
m−1∑
j=0

bmjz
j , z > 0, (5.2)

respectively. The relevant spectra transform by the spectral mapping theo-
rem according to

σ (Sk) →
{
s
(
ϕt

m (s)
)2

∣∣∣∣ s ∈ σ (Sk)
}

= σ (Sk+1) , (5.3)

and

σ (Zk) →
{
zϕd

m (z)
∣∣∣∣ z ∈ σ (Zk)

}
= σ (Zk+1) , (5.4)

respectively.
The functions ϕt

m and ϕd
m are (m− 1)th order Taylor approximations

of s−1/2 and z−1 around s = 1 and z = 1, respectively. Hence s
(
ϕt

m (s)
)2

and zϕd
m (z) approximate 1 around s = 1 and z = 1, respectively. In Fig. 1

we have shown plots of the mappings

s > 0 7→ s
(
ϕt

m (s)
)2

, z > 0 7→ zϕd
m (z) (5.5)
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for m = 1, 2, 3, 4, respectively. Fig. 1(a) also appears in [5]. In all cases, the
point s = 1 = z is an attractor for the region (0, 2). Consequently, when
S0 = S, Z0 = S have spectrum in (0, 2), the spectra σ (Sk), σ (Zk) converge
to 1 as k → ∞, and the convergence is of order m in the sense that the
ratio of minimum and maximum of the spectra converge to 1 at order m.

Thus we should replace g by g/
(
B̂

)1/2
and S by S/B̂ where B̂ is such that

σ
(
S/B̂

)
⊂ (0, 2) to obtain iterations having mth order convergence to gt

and to
(
B̂

)1/2
gd, respectively.

To guarantee convergence an estimate of maxσ (S) is needed. In [2]
a number of upper bounds of maxσ (S) are developed for discrete-time,
periodic Gabor systems. A convenient upper bound for our purposes follows
from the dual lattice representation of the frame operator S, see Section 6
for more details, as

maxσ (S) ≤ 1
ab

∑
j,l

∣∣(g, gj/b,l/a

)∣∣ . (5.6)

We make some comments for scaling optimally in the first iteration
step. We shall refer to this method as initial optimal scaling. Assume that
σ (S) consists of the entire interval [A,B]. Consider the tight iterations as
described in this Section, and assume that we replace S by S/B̂. Then

A1 = min
{
s
(
ϕt

m (s)
)2

∣∣∣∣s ∈ [
A/B̂,B/B̂

]}
, (5.7)

B1 = max
{
s
(
ϕt

m (s)
)2

∣∣∣∣s ∈ [
A/B̂,B/B̂

]}
. (5.8)

Initial optimal scaling occurs for that value of B̂ for which the ratio
A1/B1 is maximal. The optimal value of the scaling parameter F̂ for the dual
iterations is defined in a similar way. For the five iteration types, the optimal
B̂ or F̂ is shown in Table 1. All these numbers are close to the center of
the interval [A,B] or [E,F ]. It is not hard to show that all optimally scaled
operators S and Z have their spectra in the attraction regions given in Fig. 1
for the algorithms II-V.

If we scale optimally in each iteration step, and not just the first, we
get the best possible convergence constants. However, this method is not
practically feasible because of the repeated calculations of frame bounds,
and we shall use it only as a reference method. We refer to it as constant
optimal scaling, see Fig. 4.
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TABLE 1

Method. B̂ or F̂
I.

√
AB

II. 1
3

(
A+

√
AB +B

)
III. 3

10 (B +A) + 2
5

√
1
2 (B2 +A2) + 1

16 (B −A)2

IV. 1
2 (E + F )

V. 1
3 (F + E) + 1

3

√
1
2 (F 2 + E2) + 1

2 (F − E)2

The table shows the optimal scaling constant, B̂ or F̂ , for doing initial
scaling of the five iteration types.

6. Considerations in the adjoint orbit space

We consider the closed linear span Lg of the adjoint orbit
{
gj/b,l/a

∣∣ j, l ∈ Z
}
.

According to the duality principle of Gabor analysis we have that the adjoint
orbit is a Riesz basis for Lg (for this matter we refer to [6, Secs. 3.6 and 9.2],
and [11, Ch. 7]). Furthermore, when f ∈ L2 (R), the orthogonal projection
of f onto Lg is given by

Pgf =
1
ab

∑
j,l

(
f,

(
gd

)
j/b,l/a

)
gj/b,l/a

=
1
ab

∑
j,l

(
f,

(
gt

)
j/b,l/a

) (
gt

)
j/b,l/a

. (6.1)

As a consequence of γt
k = gt in all our algorithms, we see that γk ∈ Lg.

There is also the Wexler-Raz biorthogonality relation,(
g,

(
gd

)
j/b,l/a

)
=

(
gt,

(
gt

)
j/b,l/a

)
= abδj0δl0, (6.2)

where δ is Kronecker’s delta. Finally, there is the following fundamental
identity of Gabor analysis. Assume that f, ξ, γ, h ∈ L2 (R) and that the three
Gabor systems (f, a, b), (ξ, a, b), (γ, a, b) have finite upper frame bounds.
Then we have∑

m,n

(f, γna,mb) (ξna,mb, h) =
1
ab

∑
j,l

(
ξ, γj/b,l/a

) (
fj/b,l/a, h

)
(6.3)
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with absolute convergence at either side. We can regard (6.3) as a represen-
tation result for the frame-type operator

Sγ,ξ : f →
∑
n,m

(f, γna,mb) ξna,mb, (6.4)

viz. as

Sγ,ξ =
1
ab

∑
j,l

(
ξ, γj/b,l/a

)
Uj,l, (6.5)

where Uj,l is the unitary operator

Uj,l : f → fj/b,l/a. (6.6)

This is the dual lattice representation (also known as the Janssen represen-
tation, see [6, Sec. 7.2] and [11, Corr. 9.3.7]) of the frame operator. In
order for (6.5) to be well-defined, we assume that γ, ξ satisfies the so-called
Condition A’:

A’: ∑
j,l

∣∣(ξ, γj/b,l/a

)∣∣ <∞, (6.7)

see [11, Def. 7.2.1]. If ξ = γ then this is the Condition A introduced
by Tolimieri and Orr in [32]. We refer to Appendix A where an instance,
relevant in the present context, of a pair ξ, γ satisfying condition A’ is given.

6.1 Estimate for upper frame bound

If g satisfies Condition A, the frame operator S of (g, a, b) has the represen-
tation

S =
1
ab

∑
j,l

(
g, gj/b,l/a

)
Uj,l, (6.8)

with absolute convergence in the operator norm. Therefore, there is the
upper bound

B̂ =
1
ab

∑
j,l

∣∣(g, gj/b,l/a

)∣∣ (6.9)

for the best upper frame bound maxσ (S) of (g, a, b).
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6.2 Error measure

We measure convergence of γk to gt and gd by inspecting L2-distances of
the normed windows. This quantity is bounded in terms of the numbers Qk

and Rk in (3.3) and (3.7) that measure how close the operators Sk and Zk

are to being a multiple of the identity operator. In the converse direction, it
would be useful to have a measure on the windows that translates directly
to the distance of Sk and Zk to (a multiple of) the identity operator. Such
a measure can indeed be found. As to gt we note that when g satisfies
Condition A then Sk has the representation

Sk =
1
ab

∑
j,l

(
γk, (γk)j/b,l/a

)
Uj,l, (6.10)

whence ∥∥∥∥Sk −
1
ab
‖γk‖2 I

∥∥∥∥ ≤ 1
ab

∑
j,l 6=0,0

∣∣∣(γk, (γk)j/b,l/a

)∣∣∣ . (6.11)

As to gd we note that Zk = Sϕk (S) and with γk = ϕk (S) g there holds by
frame operator calculus

Sϕk (S) f =
∑
m,n

(
f, (γk)na,mb

)
gna,mb. (6.12)

Hence there is the representation

Zk = Sϕk (S) =
1
ab

∑
j,l

(
g, (γk)j/b,l/a

)
Uj,l. (6.13)

Therefore ∥∥∥∥Zk −
1
ab

(g, γk) I
∥∥∥∥ ≤ 1

ab

∑
j,l 6=0,0

∣∣∣(g, (γk)j/b,l/a

)∣∣∣ . (6.14)

Note that the quantities of the right-hand sides of (6.11) and (6.14) measure
to what extent the Wexler-Raz condition (6.2) is violated. In Appendix A
it is shown for a ∈ N, b−1 ∈ N and g satisfying condition A that the γk

occurring in (6.11) and the g, γk occurring in (6.14) satisfy condition A and
A’, respectively. We shall refer to the right hand sides of (6.11) and (6.14)
as the dual lattice norm.

6.3 Influence of out-of-space components

In this subsection, we give some heuristic observations that may serve to
explain the difference in after-convergence behaviour between the algorithms
to compute tight windows and those to compute dual windows.
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We have seen that all iterands γk of the algorithms are in Lg. We briefly
comment on the impact on the algorithms of γk having non-zero components
orthogonal to Lg (one can think here of round-off errors generating these
components). To that end we consider the algorithms II and IV (assuming
appropriate scaling has been carried out), and we assume that they have
converged to the extent that the operators Sk and Zk agree within machine
precision with the identity operator.

As for algorithm II we thus have that

γk+1 =
3
2
γk −

1
2
Skγk = γk (6.15)

within machine precision. Hence, possible out-of-space components in γk are
reproduced within machine precision. As a consequence, we should expect
that the error stays at its converged level when the iteration is continued
beyond the point where machine precision is reached.

Next we consider algorithm IV using initial scaling so that

γk+1 = 2γk − Skg. (6.16)

The term Skg has the representation

Skg =
1
ab

∑
j,l

(
γk, (γk)j/b,l/a

)
gj/b,l/a ∈ Lg. (6.17)

Furthermore,

Pgγk =
1
ab

∑
j,l

(
γk,

(
gd

)
j/b,l/a

)
gj/b,l/a. (6.18)

Hence, Skg = Pgγk ∈ Lg to machine precision, and, to machine precision,

Pgγk+1 =
1
ab

∑
j,l

(
γk, (γk)j/b,l/a

)
gj/b,l/a = Pgγk. (6.19)

On the other hand the orthogonal component γk − Pgγk is per (6.16) mul-
tiplied by 2, i.e., to machine precision,

γk+1 − Pgγk+1 = 2 (γk − Pgγk) . (6.20)

As a consequence, the algorithm starts to diverge beyond the point where
machine precision is reached.

The observations just made continue to hold for the more general al-
gorithms in Subsections 4.1 and 4.2. Thus no substantial after-convergence
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error build-up occurs for the algorithms of Subsection 4.1. For the algo-
rithms of Subsection 4.2, with basic recursion step

γk+1 =
m−1∑
j=0

bmjZ
j
kγk (6.21)

the terms with odd j all lie in Lg, and those with even j are given within
machine precision by bmjγk. Since

∑
j even bmj = 2m−1, the out-of-space

component in γk gets multiplied by 2m−1 in each iteration step.

7. Zak domain considerations

We consider the case that ab =p
q with integer p, q > 0 such that gcd (p, q) =

1, and we define the Zak transform Z as (the extension to L2 (R) of) the
mapping

h → (Zh) (t, ν) = b−1/2
∞∑

k=−∞
h

(
t− k

b

)
e2πikν , t, ν ∈ R. (7.1)

We refer to [34] and to [17, Sec. 1.5], for more details on the Zak transform
and its role in Gabor analysis.

For f, h ∈ L2 (R) we set (when t, ν ∈ R)

Φf (t, ν) = p−1/2

(
(Zf)

(
t− l

p

q
, ν +

k

p

))
k=0,...,p−1, l=0,...,q−1

, (7.2)

and

Af,h (t, ν) =
(
Af,h

k,r (t, ν)
)

k,r=0,...,p−1
= Φf (t, ν)

(
Φh (t, ν)

)∗
, (7.3)

where the ∗ denotes conjugate transpose. Now (g, a, b) is a Gabor frame,
with frame bounds A > 0, B <∞ if and only if we have AIp×p ≤ Agg (t, ν) ≤
BIp×p for almost all t, ν ∈ R, with A and B the largest and smallest positive
real number for which the respective inequalities hold. The frame operator
S of (g, a, b) is “represented” by Agg through the formula

ΦSf = AggΦf , f ∈ L2 (R) , (7.4)

with matrix multiplication at each point (t, ν) ∈ R on the right-hand side
of (7.4). This formula extends as follows. Assume that ϕ is continuous and
positive on [A,B]. Then

Φϕ(S)f = ϕ (Agg) Φf , f ∈ L2 (R) , (7.5)



18 A.J.E.M. Janssen and Peter L. Søndergaard

which is the basic formula for functional calculus in the Zak transform do-
main.

We consider in this section the critical case a = b = 1 (in Sections 9
and 10 more general rational ab will be dealt with). Then considerable
simplifications occur since all the matrices Φ, A reduce to scalars. The
formula (7.5) then becomes

(Z (ϕ (S) f)) (t, ν) = ϕ
(
|(Zg) (t, ν)|2

)
(Zf) (t, ν) , t, ν ∈ R, (7.6)

for f ∈ L2 (R). In particular we have(
Zgt

)
(t, ν) =

(
Z

(
S−1/2g

))
(t, ν) =

(Zg) (t, ν)
|(Zg) (t, ν)|

, t, ν ∈ R, (7.7)(
Zgd

)
(t, ν) =

(
Z

(
S−1g

))
(t, ν) =

(Zg) (t, ν)
|(Zg) (t, ν)|2

=
1

(Zg)∗ (t, ν)
, t, ν ∈ R. (7.8)

To illustrate the relevance for the algorithms, we consider algorithms II
and IV for all scaling strategies. As to initial scaling, we assume that g and
S are scaled such that (g, a = 1, b = 1) has best upper frame bound B < 2,
which means that |Zg|2 < 2 everywhere. We let

G = Zg , Γk = Zγk. (7.9)

Then by functional calculus in the Zak transform domain, the algorithms II
and IV (initial scaling) assume the form

Γ0 = G ; Γk+1 =
3
2
Γk −

1
2
|Γk|2 Γk, k = 0, 1, . . . , (7.10)

and

Γ0 = G ; Γk+1 = 2Γk − |Γk|2G, k = 0, 1, . . . , (7.11)

respectively, where the relations in (7.10) and (7.11) are to be considered
at each point (t, ν) ∈ R. These recursions are then quite easily analyzed
by elementary means. For instance, one sees that the assumption B < 3 is
necessary and sufficient for (7.10) to converge to exp (i arg (G)) everywhere,
while the assumption B < 2 is necessary and sufficient for (7.11) to converge
to 1/G∗ everywhere. Unbounded recursions result when we would have
allowed B to be larger than 5 and 2, respectively.

Next we consider algorithms II, IV using norm scaling so that (7.10)
and (7.11) are to be replaced by

Γ0 = G ; Γk+1 =
3
2

Γk

‖Γk‖
− 1

2
|Γk|2 Γk∥∥Γ3

k

∥∥ , k = 0, 1, . . . , (7.12)
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and

Γ0 = G ; Γk+1 = 2
Γk

‖Γk‖
− |Γk|2G∥∥Γ2

kG
∥∥ , k = 0, 1, . . . . (7.13)

The norms used here are L2
(
[0, 1)2

)
-norms. We consider the case that

Zg = 1 on N , Zg = x > 0 on M, (7.14)

where N,M are two measurable sets ⊂ [0, 1)2 such that N∩M = ∅, N∪M =
[0, 1)2. Then (g, a = 1, b = 1) is a Gabor frame with best frame bounds
A = min

(
1, x2

)
, B = max

(
1, x2

)
. Furthermore,

Zgt = 1 on [0, 1)2 ; Zgd =
1
x

on M. (7.15)

We have for both algorithms II and IV that

Γk = ck on N , Γk = dk on M, (7.16)

where ck, dk follow recursions that can be made completely explicit (us-
ing that, for instance, ‖Γk‖ =

(
(1− ε) c2k + εd2

k

)1/2, where ε = µ (M)).
Due to the norming operations in the recursion steps, either recursion stays
bounded.

We consider the case that ε = µ (M) � 1. Then an elementary analysis
shows the following: there is a δ > 0 such that for recursion (7.12), (7.16)
there holds

• x ∈
(
0,
√

3− δ
)
⇒ ck, dk → 1,

• x ∈
(√

3 + δ,
√

5− δ
)
⇒ ck → 1, dk → −1

• x ∈
(√

5 + δ,∞
)
⇒ chaotic behaviour.

Also, there is a δ > 0 such that for recursion (7.13), (7.16) there holds

• x ∈
(
0,
√

2− δ
)
⇒ ck → 1, dk → 1

x ,

• x ∈
(√

2 + δ,∞
)
⇒ dk < 0.

8. Sampling and periodization of Gabor frames

The algorithms considered in this paper and in [20, 18, 19] have been formu-
lated for time-continuous Gabor frames while the tests we perform must take
place in a finite setting. The transition from continuous to discrete/finite
Gabor frames by sampling and periodization has been discussed in [16] and
later in [22, 30], see also [7, Subsec. 8.4] and [6, Secs. 10.2 and 10.3]. Let
a, M be positive integers, and assume that (g, a, 1/M) is a Gabor frame
with frame bounds A > 0, B <∞. Furthermore, assume that g satisfies the
aforementioned condition A and the so-called condition R:



20 A.J.E.M. Janssen and Peter L. Søndergaard

R:

lim
ε→0

∞∑
j=−∞

1
ε

∫ ε/2

−ε/2
|g (j + u)− g (j)|2 du = 0. (8.1)

The conditions R and A are not very restrictive; they are, for instance,
satisfied by all members g of Feichtinger’s algebra S0, see [7, comment after
Thm. 8.4.2]. Then the system

gD
na,m/M :=

(
gna,m/M (r)

)
r∈Z , n ∈ Z,m = 0, . . . ,M − 1 (8.2)

is a discrete Gabor frame with frame bounds A, B, the dual window gd of
the frame (g, a, 1/M) satisfies conditions R and A, and the dual window(
gD

)d corresponding to the discrete Gabor system in (8.2) is obtained by
sampling gd: (

gD
)d

(r) =
(
gd

)D
(r) , r ∈ Z. (8.3)

The transition from discrete Gabor frames to discrete, periodic Gabor
frames is just as convenient. Assume that we have a g ∈ l1 (Z) such that the
discrete Gabor system

(
gna,m/M

)
n∈Z,m=0,...,M−1

is a discrete Gabor frame
with frame bounds A > 0 B < ∞. Let L = Na = Mb for some positive
integers N, b, and define

gP (r) =
∞∑

j=−∞
g (r − jL) , r ∈ Z. (8.4)

Then the system(
gP
an,m/M (r)

)
r∈Z

, n = 0, . . . , N − 1,m = 0, . . . ,M − 1, (8.5)

is a discrete, periodic Gabor system with frame bounds A, B, the dual win-
dow gd of the discrete Gabor system is in l1 (Z), and the dual window

(
gP

)d

corresponding to the discrete periodic Gabor system in (8.5) is obtained by
periodizing gd:

(
gP

)d
(r) =

(
gd

)P
(r) =

∞∑
j=−∞

gd (r − jL) , r ∈ Z. (8.6)

An important extension of these results is given in [7, Subsec. 8.4]. Assume
that ϕ is analytic in an open neighbourhood containing [A,B], where A > 0,
B < ∞ are frame bounds of the Gabor frame (g, a, 1/M) with g satisfying
condition R and A. Then ϕ (S) g satisfies R and A as well, and

(ϕ (S) g)D = ϕ
(
SD

)
gD, (8.7)
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where SD is the frame operator corresponding to the system in (8.2). The
approach in [7, Subsec. 8.4] (which uses the Dunford representation of op-
erators as well as theorems of the Wiener 1/f -type) can be mimicked so
as to generalize the transition result from discrete Gabor systems as above
with g ∈ l1 (Z) to discrete, periodic Gabor systems. Thus, with ϕ as above
and

(
gna,m/M

)
n∈Z,m=0,...,M−1

a discrete Gabor system with g ∈ l1 (Z), frame
bounds A > 0, B <∞ and frame operator S, we have ϕ (S) g ∈ l1 (Z) and

(ϕ (S) g)P = ϕ
(
SP

)
gP , (8.8)

where SP is the frame operator of the system in (8.5). In particular, we see
that the sampling-and-periodization approach is valid for the tight window
gt in which case we should consider ϕ (s) = s−1/2.

It follows from the above results that the algorithms can be considered
for discrete and for discrete, periodic Gabor frames. The findings for these
systems are of direct relevance to the algorithms we have considered for the
time-continuous case.

9. Implementational aspects

All implementations are done in the finite, discrete setting of Gabor frames.
We denote for g ∈ CL and a, b ∈ N by (g, a, b) the collection of time-
frequency shifted windows

gna,mb, n ∈ Z,m ∈ Z, (9.1)

where for j, k ∈ Z we denote

gj,k = e2πikl/Lg(l − j), l = 0, . . . L− 1. (9.2)

Note that it must hold that L = Na = Mb for some M,N ∈ N. Additionally,
we define c, d, p, q ∈ N by

c = gcd (a,M) , d = gcd (b,N) , p =
a

c
=
b

d
, q =

M

c
=
N

d
. (9.3)

With these numbers, the density of the Gabor system can be written as
(ab) /L = p/q, where p/q is an irreducible fraction. It holds that L = cdpq.

9.1 Matrix representation and the SVD

Let Og ∈ CL×MN be the matrix representation of the synthesis operator of
a Gabor frame so that

(Og)l,m+nM = gma,nb (l) , l = 0, . . . , L− 1, (9.4)
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for m = 0, . . . ,M − 1, n = 0, . . . , N − 1. Hence Og has the column vectors
gma,nb. The matrix representation of the frame operator corresponding to
(g, a, b) is then given as OgO

∗
g . Since (g, a, b) is a frame we have that Og has

full rank L ≤MN .
Assume that ϕ is continuous and positive on σ (S). From

(ϕ (S) g)na,mb = ϕ (S) gna,mb, (9.5)

we have that

Oϕ(S)g = ϕ (S)Og = ϕ
(
OgO

∗
g

)
Og. (9.6)

Furthermore, note that for the Frobenius norm ‖Og‖fro we have ‖Og‖2fro =
MN ‖g‖2 , since all columns of Og have norm ‖g‖.

The iterations can be written in terms of the synthesis operator ma-
trices as follows. Denote the synthesis operator matrix corresponding to
the Gabor frame (γk, a, b) by Ωk. Then we can write the iteration step for
algorithm II with norm scaling as

Ω0 = Og; Ωk+1 =
3
2

Ωk

‖Ωk‖fro
− 1

2
(ΩkΩ∗) Ωk∥∥(
ΩkΩ∗k

)
Ωk

∥∥
fro

, k = 0, 1, . . . . (9.7)

We shall consider the thin SVD of the synthesis operator matrices.
Thus we let Og = UΣV ∗, where U ∈ CL×L is unitary (Og has full rank),
Σ ∈ RL×L is a diagonal matrix with positive diagonal elements and V ∈
CMN×L has orthonormal columns. With ϕ as above, we compute the thin
SVD of Oϕ(S)g as

Oϕ(S)g = ϕ
(
OgO

∗
g

)
Og = ϕ

(
UΣ2U∗

)
UΣV ∗

= Uϕ
(
Σ2

)
U∗UΣV ∗ = UΣϕ

(
Σ2

)
V ∗. (9.8)

Here we have used that ϕ
(
UΣ2U∗

)
= Uϕ

(
Σ2

)
U∗, a basic fact in the func-

tional calculus of matrices. The equation (9.8) shows that Oϕ(S)g has the
same right and left singular vectors as Og, and the singular values transform
according to ϕ→ σϕ2 (σ). As a consequence we have,

Ogt = UV ∗ , Ogd = UΣ−1V ∗, (9.9)

for the synthesis operators corresponding to
(
gt, a, b

)
and

(
gd, a, b

)
, respec-

tively, for which we should take ϕ (s) = s−1/2 and ϕ (s) = s−1 in (9.8). We
thus see that we have obtained the matrices occurring in the polar decom-
position of Og and the Moore-Penrose pseudo-inverse of Og.

A further observation is that ‖Og‖2fro =
∑j=L

j=1 σ
2
j , where σj , j = 0, . . . , L−

1, are the singular values of Og. Letting ϕk,j be the singular values of Ωk
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and using that Ωk = UΣkV
∗, we can write the iteration step in (9.7) on the

level of singular values as

σk+1,j =
3
2
αkσk,j −

1
2
βkσ

3
k,j , αk

=
1√∑j=L

j=1 σ
2
k,j

, βk =
1√∑j=L

j=1 σ
6
k,j

, (9.10)

where j = 0, . . . , L− 1, and k = 0, 1, . . ..

9.2 Factorization of finite, discrete Gabor systems

Similar to the Zibulski-Zeevi representation of the Gabor frame operator in
the continuous case, see [34, 35, 17], it is possible to compute the actions of
the finite, discrete Gabor frame operator (and also the analysis and synthesis
operators) very efficiently. Several equivalent methods exists using almost
the same number of operations, but differing in the order. In [4] a finite,
discrete version of the Zibulski-Zeevi representation is developed. Another
method was developed in [26] and [31]. Unfortunately, [31] contains some
errors, which have been corrected in [3]. In the following we shall present
the Zak-transform method from [4].

For h ∈ CL and K ∈ {0, . . . , L− 1} such that L
K ∈ N, we define the

finite, discrete Zak transform ZKh by

(ZKh) (r, s) =

√
K

L

L/K−1∑
l=0

h (r − lK) e2πislK/L, r, s ∈ Z. (9.11)

The finite, discrete Zak transform is quasi-periodic in its first variable and
periodic in the second,

(ZKh)
(
r + kK, s+ l

K

L

)
= e2πiksK/L (ZKh) (r, s) , (9.12)

see [15] for more details. The values (ZKh) (r, s) of a finite, discrete Zak-
transform on the fundamental domain r = 0, . . . ,K − 1, s = 0, . . . ,K/L− 1
can be calculated efficiently by K FFT’s of length K/L. To obtain values
outside the fundamental domain, the quasi-periodicity relation (9.12) can
be used.

We define the cd matrices Φf
r,s of size p× q and the p× p matrices Af

r,s

by

Φf
r,s =

√
cdq ((Zaf) (r + kM, s+ ld))k=0,...,p−1; l=0,...,q−1 , (9.13)

where r = 0, . . . , c− 1, s = 0, . . . , d− 1 and

Af,h
r,s =

(
Af,h

r,s

)
k,l=0,...,p−1

= Φf
r,s

(
Φh

r,s

)∗
. (9.14)
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With these definitions is holds that the frame operator S of (g, a, b) is “rep-
resented” by Agg through the formula

ΦSf = AggΦf , f ∈ CL, (9.15)

see [4].
With this efficient representation of the frame operator of a finite, dis-

crete Gabor system, we may express the iterations schemes in the finite,
discrete Zak domain. We let

G = Φg , Γk = Φγk , Ak = Φγk,γk = Γk (Γk)
∗ . (9.16)

By functional calculus, algorithm II in the finite, discrete Zak transform
takes the form

Γ0 = G ; Γk+1 =
3
2
Γk −

1
2
AkΓk, k = 0, 1, . . . . (9.17)

The expressions for the other iterations types are similar.

9.3 Other methods

We have considered two other methods of computing the canonical tight
window utilizing the factorization (9.13). To calculate the factorization of
the canonical tight window gt,Φgt

, we use an eigenvalue decomposition of
the factorization of the frame operator of (g, a, b): for each r = 0, . . . , c− 1,
s = 0, . . . , d− 1 compute Ur,s, Dr,s such that Agg

r,s = Ur,sDr,sU
∗
r,s, where Ur,s

is unitary and Dr,s is diagonal and set

Φgt

r,s = Ur,sD
−1/2
r,s U∗r,sΦ

g
r,s. (9.18)

We shall refer to this method as the EIG method. The other method uses
(9.9) applied to the matrices of the factorization: for each r = 0, . . . , c− 1,
s = 0, . . . , d− 1 compute Ur,s, Dr,s, Vr,s such that Φg

r,s = Ur,sDr,sV
∗
r,s, where

Ur,s is unitary, Dr,s is diagonal and Vr,s has orthonormal columns. Then it
follows from functional calculus in the Zak transform domain (pretty much
as in (9.8); also see (7.5)) that

Φgt

r,s = Ur,sV
∗
r,s. (9.19)

We shall refer to this method as the SVD method.
For computing the canonical dual window we have considered simply

inverting the matrices of the factorization of the frame operator:

Φgd

r,s =
(
Agg

r,s

)−1 Φg
r,s.

We shall refer to this as the INV method.
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TABLE 2

Method: Flop count per iteration:
I. 16Lp+ 4

3cdp
3.

II. 16Lp.
III. 24Lp.
IV. 16Lp.
V. 24Lp+ 8cdp3.

Total flop count:
INV. 16Lp+ 4

3cdp
3.

EIG. 24Lp+ 14cdp3.
SVD. 64Lp+ 32cdp3.

This table shows the flop count of each of the considered methods. The
flop count does not include the cost of the pre- and post-factorization.
The application of an inverse matrix needed for the algorithms I and INV
is done using a Cholesky factorization followed by two substitutions. An
iteration step of V takes more flops to compute than an iteration step of III,
because we need to compute the two terms Skg and Skγk. The flop counts
for EIG and SVD methods are only approximations, because eigenvalues
and singular values can be calculated by many different methods with
different flop counts, and because the process usually involves an itera-
tive step, see [10].The term cdp3 is less than or equal to Lp for a Gabor frame.

9.4 Implementational costs

The computation of Φg needs to be done before the iteration step. It can
be computed using 5L log2N flops. This transforms the initial window g
into the finite, discrete Zak domain. All computations in this domain are
then done by multiplication of p× q and p× p matrices. The transform Φ is
unitary from CL with Euclidean norm into Cc×d×p×q, also with Euclidean
norm. This gives an easy way to calculate the norms needed for the norm
scaling.

We count the number of real floating point operation needed, and as-
sume that everything is done using complex arithmetics. The flop count for
a single iteration step in the transform domain for each of the 5 algorithms
can be seen in Table 2.

A quick comparison show that the iterative methods for computing
the tight window are comparable in number of flops to the EIG and SVD
methods, if the number of necessary iterations is not to big. For the inverse
iterations, the situation is different: computing the inverse of the block
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matrices by a direct approach requires only slightly more flops than a single
iteration step of algorithm IV, so an iterative method will always use more
flops than the direct approach. However, there might be situations were it
is not desirable to compute the inverse. For instance, if the initial window
g has small support then the iteration steps can be performed by multiple
passes through a filter bank.

9.5 Stopping criterion

Because of the guaranteed quadratic/cubic convergence of the algorithms,
it is possible to devise a simple yet powerful stopping criterion: we consider
the difference

‖γk+1 − γk‖
‖γk+1‖

. (9.20)

When this difference is close to the machine precision eps, the considered
algorithm has converged. This is a standard stopping criterion, but using
it this way means that we have done exactly one iteration step too much.
Therefore, we stop when (9.20) is less than

√
eps and 3

√
eps for the algorithms

having quadratic and cubic convergence, respectively.

9.6 Window functions

As the basic window functions we shall use the Gaussian ϕw ∈ L2 (R) and
the hyperbolic secant ψw ∈ L2 (R) given by

ϕw (t) =
(w

2

)−1/4
e−πt2/w, t ∈ R, (9.21)

ψw (t) =
√
π

2
w−1/4sech

(
t
π√
w

)
, t ∈ R. (9.22)

It holds that the Fourier transform of ϕw is ϕ1/w and similarly for ψw.
As window functions for the testing of the iterative algorithms we shall use
finite, discrete versions of these, obtained by the sampling-and-periodization
process described in Sec. 8:

ϕD
w (l) =

(
wL

2

)−1/4 ∑
k∈Z

e−π(l/
√

L−k
√

L)2
/w, (9.23)

ψD
w (l) =

√
π

2
(wL)−1/4

∑
k∈Z

sech
((

l√
L
− k

√
L

)
π√
w

)
, (9.24)

for l = 0, . . . , L− 1. The properties from the continuous setting carry over:
the functions have almost unit norm, and the Discrete Fourier Transform of
ϕD

w is ϕD
1/w and similarly for ψD

w . For more details on the hyperbolic secant
as a Gabor window, see [21].
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FIGURE 2 Fig. (a) shows the function MONSTER of length 600 with a single sin-
gular value set to σreal = 6. Fig. (b) shows the Discrete Fourier Transform of the function.

To produce examples for which the norm scaling methods diverges,
we have constructed a function (MONSTER) which is a Gaussian function
modified in such a way that the first singular value, σreal, of the matrix
representation of the Gabor synthesis operator that corresponds to a real and
symmetric singular vector, is given a large value. The function is shown on
Fig. 3. This function is a generalization to the case of rational oversampling
of the counterexample given in Sec. 7 and exploits the fact that the iterations
can be considered as scalar iterations of the singular values of the Gabor
synthesis operator, (9.10).

10. Experiments

This section contains the results from the experiments we have done in order
to test the algorithms thoroughly and to demonstrate the various aspects of
the algorithms that have been shown analytically. The computations have
been done in Matlab and Octave, and the full source code is available for
download from http://www2.mat.dtu.dk/software/iteralg/. We will
show figures demonstrating the important aspects, but since we cannot in-
clude all material, the reader is encouraged to download the software and
do experiments with it.

10.1 Convergence and divergence of norm scaling

Figure 3 show the convergence behaviour for a well-conditioned problem.
The figure shows that algorithm I,II and IV exhibit quadratic convergence,
while III and V exhibit cubic convergence as proved in Subsections 4.1 and
4.2. Furthermore, the algorithms for computing the tight window stay con-
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FIGURE 3 The figure shows the behaviour of the 5 iteration types for the first
12 iterations of each. The y-axis shows the l2-norm of the difference between the
iteration step and a precomputed, normalized solution. The system considered in the Ga-
bor frame for C432,

`
ϕD

1 , 18, 18
´
. The Gabor frame has a frame bound ratio of B/A = 2.03.

verged close to the machine precision, while the algorithms for computing
the dual window diverge. Algorithm V also diverges faster than IV. This
is as proved in Subsection 6.3; the slopes of the two line segments beyond
the 5th iteration in Fig. 3(b) corresponds to divergence factors 2 (for IV)
and 4 (for V). A visible numerical aspect is that iteration V is not able to
reach full precision, because the iterand is quickly affected by the buildup
of numerical errors. The convergence behaviour of the algorithms for the
initial window being a hyperbolic secant is almost the same.

Two examples of using different scaling strategies are shown in Fig. 4(a)
and 4(b). The figures show that initially scaling by the best scaling con-
stant is as good as using norm scaling, and using initial scaling by an easily
computable scaling constant results in only 1-2 more iterations than us-
ing norm scaling. Comparing these methods to the method using optimal
scaling, we see that for a well-conditioned problem the norm-scaling and
optimal initial scaling are close to matching optimal convergence. For a
worse conditioned problem (Fig. 4(b)), optimal scaling clearly outperforms
the other methods. However, this observation has little practical relevance,
because the computed canonical windows gd and gt will have a bad time-
frequency localization. Higham [12] uses a scaling strategy for algorithm I
that approximates the optimal scaling. This requires an estimate for the
smallest eigenvalue of the matrix, but this is easy to obtain since the matrix
is inverted as part of the iteration step. For algorithms II-V we cannot use
inversions, and so an estimate for the smallest eigenvalue (or lower frame
bound) is difficult to obtain. We have therefore not pursued such a method
for algorithms II-V.

The iterations for computing the tight window are very robust when
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FIGURE 4 Fig. (a) shows the convergence behaviour for algorithm II using four different
scaling strategies: norm scaling, initial scaling by the optimal constant, initial scaling by
the dual lattice norm and constant optimal scaling. The system considered in the Gabor
frame for C432,

`
ϕD

1 , 18, 18
´
. Fig (b) shows the same, but instead using the window ϕD

1/5.
This is a very narrow window, and the generated Gabor frame has a frame bound ratio
of B/A = 180.8.
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FIGURE 5 Fig. (a) shows the behaviour of the dual lattice norm and the l2-norm of the
difference between the iteration step and the normalized solution for a run of algorithm
II using norm scaling. Fig. (b) shows the behaviour of the best upper and lower frame
bound of Zk in each iteration step for a run of algorithm IV using norm scaling. The
system considered is in both cases are the Gabor frame for C600 with a = b = 20 using
the MONSTER function.
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FIGURE 6 The figure shows the numerical accuracy of three different methods to
compute the canonical tight window. The plot is parametric in w. For each method, one
line corresponds to a narrow window, w < 1, the other corresponds to a wide window,
w > 1. Almost overlapping points on different lines correspond to values w1, w2 such that
w1 = 1/w2. The error measure used is the dual lattice norm. The Gabor frames used are
the Gabor frames for C432,

`
ϕD

w , 18, 18
´
.

using norm scaling. It is easy to create examples of Gabor systems with
frame bound ratios B/A > 1012 for which the iterations converge, by using
badly dilated Gaussians or by using a constant function with a small amount
of noise added. However, by using the MONSTER function, it is possible
to create an example for which the norm scaling iterations diverge. The
behaviour of the dual lattice norm and ‖g − γk‖2 in each iteration step
for a run of algorithm II is shown in Fig. 5(a). It can be seen that the
iteration converges to the wrong tight window. Another typical behaviour
is that the iteration oscillates between two different functions with the same
dual lattice norm. The behaviour of algorithm IV on the same examples is
shown in Fig. 5(b), the figure displays the optimal frame bounds of Zk for
each iteration step. Here we see exponential convergence of the lower frame
bound of Zk to zero.

10.2 Comparison with other methods

Figure 6 show a comparison of the numerical precision of the algorithms for
computing the canonical tight window compared to the numerical precision
of other standard methods. The stability of the tight iterations proved in
Subsection 6.3 is clearly visible. The method based on computing eigenval-
ues deteriorates quickly as the frame bound ratio increases, while the SVD
behaves much better. The eigenvalue method should not be used if the frame
bound ratio of the problem is unknown. An explanation for this is that in
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the SVD method, the singular values are never considered, they are simply
set equal to 1. Therefore, roundoff errors on the small singular values do
not affect the computation, in contrast to the EIG method, where round-off
errors on the smallest eigenvalues are magnified because of the inversion of
eigenvalues.1

The actual running time of the methods is determined by the flop count
for each method (see the previous section for details) and of how fast the
floating point operations can be executed by a computer. We will not give
exact timings of the iterative algorithms, because we have not created opti-
mal implementations of the algorithms, so timing them makes little sense.
We note, however, that the key ingredients in the algorithms are FFTs of
small length and matrix multiplications of small size matrices. Fast imple-
mentations exists for both algorithms, see [33, 9]. This makes it possible to
create efficient implementations of the iterative algorithms. To present an
idea of the speed of the algorithms, we have timed the computation of the
canonical tight window of a Gaussian of length L = 10800 with a = 120 and
M = 160 using algorithm II with norm scaling. On a normal (at the time
of writing) laptop PC using Matlab this computation takes about 1 second.

10.3 Number of iterations

To study how the number of necessary iterations depends on the frame
bound ratio of the initial Gabor frame, we have plotted the number of it-
erations for the algorithms to converge, as a function of the frame bound
ratio of the Gabor frame. Figure 7 shows such a plot, using Gaussians to
generate Gabor frames with varying frame bound ratios. The jumps in the
curves occur when, according to the stopping criterion, an additional iter-
ation step is necessary. Even though algorithm III has cubic convergence,
it is almost never able to compete with algorithm I. The jump in the graph
for algorithm V is due to the magnification of round-off errors dominating
the convergence, and causing divergence. The same happens for algorithm
IV, but for considerable worse frame bound ratios (not visible in the graph).
The graphs for the hyperbolic secant look similar.

The number of necessary iterations might also depend on the size of
the matrix blocks appearing in the factorization. This issue is slightly prob-
lematic to address, since creating a test problem involving bigger matrices
also means altering the frame bound ratio. To minimize this effect, we have
considered p, q running through the Fibonacci numbers, 2, 3, 5, 8, . . ., such

1The slope of the graph for the EIG method in Fig. 6 is highly problem dependent.
For a Gaussian window then err ≈ b(B/A)a with a ≈ 2.67 where err can be the
dual lattice norm or the l2-norm of the distance to a reference solution. For a sech
window then a ≈ 1.1. For more details on the stability of computing eigenvalues
and singular values, see [1].
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FIGURE 7 The figure shows the number of iterations the algorithms need in order to
reach machine precision. The three algorithms compared are I using norm scaling, and
II-V using initial scaling by (6.9). The Gabor frames used are the Gabor frames for C432,`
ϕD

w , 18, 18
´
.

that p/q →
(√

5− 1
)
/2. This creates a series of irreducible fractions p/q

while keeping p/q close to a certain number away from 1. The result of
the test is that the number of necessary iterations seems to be completely
independent of the size of the matrix blocks! We have omitted the graphs,
as they are simply horizontal lines. For algorithm I, it is proved in [23] that
this is indeed the case.

10.4 Choosing an initial scaling

Figure 1 shows that for each iteration type there is a range of values of
the upper frame bound of the scaled window, Bscaled, that will guarantee
convergence. Figure 8 shows an example of the effect of prescaling the input
window to obtain specific values of Bscaled. As shown in Fig. 1, algorithm III
diverges if Bscaled is larger than 7/3. The dual iterations IV and V diverge
if Bscaled > 2 and II has a chaotic behaviour if 3 < Bscaled < 5 and diverges
if Bscaled > 5 (not shown in the plot).

The choice of B̂ that minimizes the number of iterations is to choose
B̂ according to Table 1. An estimate for this is difficult to calculate, as it
involves an estimate for the lower frame bound. Fortunately, as can be seen
on Fig. 8 there is a large region around the optimal scaling point, where
only 1 or 2 extra iterations are needed.

10.5 Summary from the numerical experiments

We sum up the main points of the numerical experiments.

1. The algorithms are simple to implement, because they do not require



Iterative algorithms to approximate canonical Gabor windows: Computational aspects 33

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3  3.5

N
um

be
r 

of
 it

er
at

io
ns

.

Initial B.

II
III

(a) tight iterations

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3  3.5

N
um

be
r 

of
 it

er
at

io
ns

.

Initial B.

IV
V

(b) dual iterations

FIGURE 8 The figure shows the number of necessary iterations to find the tight/dual
window of a Gabor frame for C432,

`
ϕD

1 , 18, 18
´
, as a function of the best upper frame

bounds of the initial window.

implementation of matrix inversion or the SVD.
2. The algorithms with quadratic convergence are usually faster than

the ones with cubic convergence, because of the lower computational
complexity per iteration step.

3. The iterative algorithms for computing canonical dual windows should
only be used in under special circumstances, because they slowly di-
verge if too many iterations are done, and because they are usually
slower than doing a direct inversion. However, they are the best
choice if a direct inversion is not possible.

4. The iterative algorithms for computing canonical tight windows are
extremely precise and faster than a direct method for well behaved
cases.

5. Initial scaling by an easily computable bound provides methods that
are both fast and guaranteed to converge.

A. A result on Condition A’

Proposition A.1. Assume that (g, a, b = 1/M) is a Gabor frame that
satisfies condition A, where a,M ∈ N. Also assume that ϕ is analytic around
[A,B] and positive on [A,B], where A > 0, B < ∞ are lower, upper frame
bounds of (g, a, b). Finally, let γ = ϕ (S) g where S is the frame operator
corresponding to (g, a, b). Then g, γ satisfies the Condition A’, i.e.,

∑
j,l

∣∣(g, γj/b,l/a

)∣∣ <∞. (A.1)
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Proof. We have for f, h ∈ L2 (R) that∑
n,m

(f, γna,mb) (gna,mb, h) =
∑
n,m

(f, (ϕ (S) g)na.mb) (gna,mb, h)

=
∑
n,m

(ϕ (S) f, gna,mb) (gna,mb, h)

= (Sϕ (S) f, h) . (A.2)

We know that (γ, a, b)is a Gabor frame. Now take f, h ∈ L2 (R) such
that (f, a, b) and (h, a, b) have finite upper frame bounds. Then by the
fundamental identity of Gabor analysis, see [17, Subsecs. 1.4.1 and 1.4.2],∑

n,m

(f, γna,mb) (gna,mb, h) =
1
ab

∑
j,l

(
g, γj/b,l/a

) (
fj/b,l/a, h

)
, (A.3)

with absolute convergence on either side of (A.3) . Thus Sϕ (S) has the dual
lattice representation

Sϕ (S) =
1
ab

∑
j,l

(
g, γj/lb,l/a

)
Uj,l. (A.4)

Now let ψ (s) = sϕ (s). This ψ is analytic around [A,B] and positive on
[A,B]. By functional calculus of frame operators in the time-frequency
domain, see [7, Sec. 8.3], there holds that Sϕ (S) has also the dual lattice
representation

Sϕ (S) =
∑
j,l

(
ψ

(
1
ab
HH∗

))
0,0;j,l

Uj,l, (A.5)

where H is the analysis operator with respect to the dual lattice, defined for
f ∈ L2 (R), by

Hf =
((
f, gj/b,l/a

))
j,l∈Z . (A.6)

It follows from the proof of [7, Thm. 4.3], in particular from uniform bound-
edness of (8.4.14) (with ψ instead of ϕ), that

∑
j,l

∣∣∣∣∣
(
ψ

(
1
ab
HH∗

))
0,0;j,l

∣∣∣∣∣ < ∞. (A.7)

By uniqueness of the coefficients in the dual lattice representation (just
consider a well-behaved h such that (hna,mb)n,m∈Z is a tight frame, i.e.
such that Uj,lh, j, l ∈ Z, is an orthogonal set of functions), it follows that∑

j,l

∣∣(g, γj/b,l/a

)∣∣ <∞, as required.

Note A.1. It is implicit in the statement and proof of [7, Thm 4.3] that
the γ of the above result is such that condition A is satisfied by (γ, a, b).
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