GABOR FRAMES BY SAMPLING AND PERIODIZATION.
PETER L. SONDERGAARD

ABSTRACT. By sampling the window of a Gabor frame for L?*(R) sat-
isfying certain conditions, one obtains a Gabor frame for /*(Z). In this
article this idea is extended to cover interrelations among Gabor frames
for the four spaces 1°(Z), L*([0; L]) and C". It is shown how the various
types of Gabor frames are related by sampling and periodization and
how general dual windows and canonical dual windows are also related
by sampling and periodizations. Corresponding results about the expan-
sion coeflicients of functions with respect to the Gabor frames are shown.
All this can be used for fast numerical computation of approximations to
windows and expansion coefficients for the infinite-dimensional Gabor
frames. An example is presented.

1. INTRODUCTION.

In the article “From continuous to Discrete Weyl-Heisenberg Frames Through
Sampling” [11], Janssen shows that under certain conditions one can obtain
a Gabor frame for [?(Z) by sampling the window function of a Gabor frame
for L?(R) at the integers. Furthermore, it is shown that the canonical dual
windows of the two Gabor frames are also related by sampling.

The purpose of this article is to show how and under which conditions
Gabor frames for the four spaces L*(R), 1?(Z), L*([0; L]) and C are inter-
related by samplings and periodizations. The situation is shown on figure
1.1:

L2 (R) sampling l2(Z)

lpem’odization l

LX([0;L])) —— C*

FIGURE 1.1. Relationship among the four different Gabor
frames. Arrows to the right indicate that a Gabor frame can
be obtained through sampling, and arrows down indicate pe-
riodization.

The top arrow on figure 1.1 represent the relation shown in [11]. The
rightmost relation, from /2(Z) to C! by periodization is also shown in [11]
and [15].

For each relation on figure 1.1, three types of results are presented:

(1) If the window function of a Gabor frame satisfies a certain condi-
tion, then a sampling/periodization of the window generates a Ga-

bor frame with the same parameters and frame bounds for one of the
1
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other spaces. The canonical dual windows of the two Gabor frames
are similarly related by sampling/periodization.

(2) For functions f satisfying a regularity condition, simple relations
holds between the expansion coefficients of f in a Gabor frame, and
the expansion coefficients of the sampled/periodized function in the
sampled /periodized Gabor frame.

(3) If f,~+ are dual windows of a Gabor frame and satisfies a certain
condition, the sampled /periodized windows are also dual windows of
the sampled /periodized Gabor frame.

The original result presented in [11] only holds when the time/frequency-
shift parameters are compatible for both the involved Gabor frames. This
can be overcome by dilating the frame elements, and these generalizations
are presented as well. The only requirement turns out to be that the product
of the parameters should be rational.

These results are the main results, and are all presented in section 3.

The results allows one to build a mathematical model of a continuous phe-
nomena, using Gabor frames for L2(R) or L?([0; L]), and then perform the
numerical work by computing an approximation to the expansion coefficients
using samples of the functions.

The error in using the expansion coefficients obtained from the sampled
system as an approximation to the expansion coefficients from the continuous
system is given by Proposition 3.10 and 3.16, and consist of high-frequency
coefficients being aliased to the low-frequency coefficients, just as in the
Fourier-case.

Moreover, since the sampled Gabor system has the same frame bounds as
the continuous one, it is just as stable. Fast numerical algorithms for Gabor
frames for C exists, both for computing dual windows and for computing
expansion coefficients.

In the last section, section 4, another simple application of the results in
section 3 is presented: It is shown how to approximate the canonical dual
window of a Gabor frame for L2(R) by a finite number of Gabor atoms from
that Gabor frame.

In section 2 the required background and notation is presented. It includes
the definitions of the various operators used, commutation relations between
the operators, window classes for the Gabor frames, frames and Gabor frames
for each of the four spaces.

2. BASIC THEORY

The four spaces used in this article, L?(R),L%(Z),L?([0; L]) and C shares
two common properties:

(1) They are all Hilbert spaces. This is used to apply common results
from frame theory, presented in Section 2.5, to all four of them.

(2) The domains R, Z, [0; L] and C are all locally compact Abelian (LCA)
groups (the interval [0; L] will always be thought of as a parameter-
ization of the torus, T). Most of the theory used in this article can
be defined solely in terms of LCA-groups. This includes the Fourier-
transform, the translation- and modulation operators, the sampling-
and periodization operators, Gabor systems and the space Sy. We
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shall not give the LCA-definition, but instead define everything for
each of the four spaces.

2.1. The Fourier transforms. The proofs in this article will make frequent
use of various types of Fourier transformations. They are defined by

FrL'(R) — Co(R) : (Ff)(w) = /Rf(m)e%iwmdm

Fp  P(Z) — LA([0;1]) : (Ff)(w) = Zf(k)e—zmm

keZ

For) L2(0; L) — 12(Z) : (Ff)(k \/_/ fla f2mka:/de

Fr - (CL—>CL . (j:f \/—Zf 727rzk]/L

where Cp is the space of continuous functions vanishing at infinity.

Jr is the Fourier transform, F7z is a Fourier series, Fjo.r is Fourier coeffi-
cients and Fp, is the Discrete Fourier Transform. The notation might seem a
bit heavy, but it helps to avoid confusion when several different transforms
are involved.

The Fourier transform Fg can be extended to a bounded, linear, unitary
operator, Fg : L?(R) — L?(R). With this extension, all the transforms are
unitary operators.

For brevity, we shall use the notation F and f for Fg and Fg f only! The
other types of Fourier transformation will always be written with a subscript.

2.2. The translation, modulation and dilation operators. Gabor frames
for the four spaces are defined in terms of the translation and modulation
operators on the spaces.

Definition 2.1. The translation operators:
Ti: L*(R) — L*(R) : (Tof) (x) = f(
Ty (Z) = 1X(Z) = (Tf) (k) = f(k -]
T: L0 L) — L0 L) 5 (Tf) (@) = f(z — £), .t € 0 L]
T;: Ct—C"  (T;f) (k) = f(k—j), k,je€{0,...,L —1}.
The space L?([0; L]) will always be though of as a space of periodic func-

tions, such that if f € L?([0;L]) then f(z) = f(x + nL) for all x € R and
n € Z.

flx—t), z,teR
f(k—3), k,jeL

)
)
)

Definition 2.2. The modulation operators:
M, : L*(R) — L*(R) : (M,f)(z) = ¥ f(x), z,w € R
M, (Z) = (Z) = (Muf)(j) = ™ f(4), j € Z,w € [0;1]
My, : L*([0; L)) — L*([0; L]) (Mkf>( )= f(2), w e [0;L), k€ Z
My : CE—CE o (Mpf) (G) = ¥R/ L f(5), jke{0,...,L —1}.

T
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The space L%([0;L]) only permit modulations with integer parameters,
because the exponential factor must have period L. The modulation operator
for 12(Z) is periodic in its parameter because e*™J = 2wtn)i for all
integers j and n. This is known as the aliasing phenomena.

Definition 2.3. Let d > 0. The dilation operators

Dg: L*(R) — L*(R) : (Dgf)(z) = Vdf(dz), Yz eR.
L L

Dy IX(0: L) = Z2(0:2]) ¢ (Dag) () = Vdg(da), x € [05]
The dilation operators are unitary operator for all d > 0, and the following
commutation relation with the translation and modulation operators holds:

(2.1) DaM,T; = Mg,T:Dg on L*(R)
(2.2) DaMyT, = MyT:Dgon L*([0; L])

Notice that the parameter of the modulation operator is unchanged in (2.2),
as opposed to (2.1). This is just an effect of the definition of the modulation
operator.

For the various Fourier transforms and the modulation and translation
operators the following commutator relations hold:

(2.3) FeM,T; = > M_,T,Fg on L*(R)
(2.4) FrM,T; = ¥ M_;T,Fz on I*(Z)
(2.5) FogMiT, = ¥ */IN Ty Fo.py on L([0; L))
(2.6) FIMT; = >k T Fr on CF

2.3. Window classes. As a convenient window class for the four different
types of Gabor frames we shall use the spaces Sy(G), known as Feichtinger’s
algebra, which can be defined for LCA-groups, [4]. For the LCA-groups
considered in this article this is the spaces So(R), I*(Z), A([0; L]) and C*.
So(R) and .A([0; L]) will be defined in the following.

Definition 2.4. A function g € L?(R) belongs to Feichtinger’s algebra Sp(R)

if
lollg, = /
So RxR

where ¢ is some window in the Schwartz-class of smooth, exponentially de-
caying functions.

/ g(t)p(t — x)e ™ dt| drdw < oo,
R

Different windows ¢ in the definition of Sy yields equivalent norms. Sp(R)
is invariant under translation, modulation, dilation and the Fourier trans-
form. Sp(R) C LP(R) for 1 < p < oo. Functions in Sy(R) are continuous.
This, along with other useful properties of Sy(R) can be found in [7] and [9].

A simple, useful condition for membership of Sy(R) is the following: If
., f, f" € LY(R), then f € So(R). This is proved in [13].

For Gabor frames on the interval [0; L] we shall use the window class
So([0; L]) = A([0; L]) of functions on the interval having an absolutely con-

vergent Fourier series, A([0; L]) = f[g,lL]ll(Z). A([0; L]) is a Banach space
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with respect to the norm

_ 1
1 Laqoszy = H]:[O;L]f 1@’

and is a Banach algebra with respect to point-wise multiplication. If g €
A([0; L]) then g is a continuous function.

2.4. Sampling, periodization and the Poisson summation formula.
The process of sampling is well-defined on Sy(R):

Definition 2.5. Let @ > 0 and a € N. The sampling operators are given by
Sa: So(R) — 11(2Z) (Saf) () = Vaf(ja), VjeZ
S, IMZ) = 1MZ) - (Suf)(§) = Vaf(ja), VjeZ
So: C([0;aL]) = C = (Saf) () = Vaf(ja), j=0,..L -1
S,:C—ct o (Suf) () =Vaf(ja), j=0,..,L—1
The fact that the sampling operator is a bounded operator from Sp(R)
into [1(Z) is proved in [7, lemma 3.2.11]. The factor y/a appearing in the

definition of the sampling operator gives the sampling operators the following
important properties:

e Composition with dilations:
(2.7) San = Sab on So(R)
(2.8) SaDp = Sap on C([0; L))
o If f € So(R), [[Safllz < C|flg, for some C' > 0 independent of c.
This is proved in [9, prop. 11.1.4].

Definition 2.6. The periodization operators are given by

Pr: So(R) — A([0;L]) : Prgle) =) glx+kL), x€|0;L]
keZ
PL:lNZ) —C" : Prg(i) =Y g +kL), j=0,...,L—1
kEZ
P o A([0; ML) — A([0;L]) : Puglz) =Y _gle+kM), x€[0;L]
keZ
Par: CME = CF o Pug(h) =) g+ kM), j=0,.,L—1
keZ
The fact that Pr, : So(R) — A([0; L]) is proved in [5] in the more general
context of LCA-groups.
The famous Poisson summation formula can now be stated as relations

between the various Fourier transforms and the sampling- and periodization
operators.

Theorem 2.7. The Poisson summation formula for the four spaces:
(2.9) Pu = FoanSimFr on So(R)

[0;
(2.10) Pu = Fi'SiymFz on ' (Z)
(2.11) Pu = FpSpFpo.r) on A([0; L])
(2.12) Pu = FifSpFr on CE
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Proof. The Sy(R) case is proved in [9, p. 105]. The other results can be
proved by careful modification of this proof. Alternatively, the result is
proved for general LCA-groups in [8] with convergence in L? . O

2.5. Frames for Hilbert spaces. Since we will deal with Gabor frames for
four different spaces, it will be beneficial to first note what can be said about
frames for general Hilbert spaces.

Definition 2.8. A family of elements {e; }j cs in a separable Hilbert space
‘H is called a frame if constants 0 < A < B < oo exist such that

2
(2.13) Allfllze < D[ Freidyl” < BIflly. Ve
JjeJ
The constants A and B are called lower and upper frame bounds.

The frame operator of a frame {e; }j ¢ for a Hilbert space H is defined by
(2.14) S:H—-H = Sf=> (fene
J

where the series defining S f converges unconditionally for all f € H.

The condition (2.13) ensures that the frame operator is both bounded and
invertible on H.

The inverse frame operator can be used to give a decomposition of any
function f € H:

(2.15) F=Y (f.5"e)e;, VfeH.
J

The frame { Sflej} is known as the canonical dual frame.
The following simple lemma [2, lemma 5.3.3] shall be used frequently.

Lemma 2.9. Let T be a unitary operator on 'H, and assume that {e;} is a
frame for H with frame operator S. Then {Te;} is also a frame for H with
the same frame bounds.

2.6. Gabor systems. Gabor systems can be defined for the four spaces
using the corresponding translation and modulation operators.

Definition 2.10. Gabor systems for each of the four spaces:
L*(R) A Gabor system (g, , 3) for L?(R) is given by

(2.16) (9, 8) = {MgTnag},p, pez »
where g € L2(R) and a, 3 > 0.
12(Z) A Gabor system (g, a, 77) for [*(Z) is given by
1
(217) <g7 a7 M) = {Mm/MTnag}m:O,...,M—l,TLEZ ’

where g € 1?(Z) and a, M € N.
L3([0;L]) A Gabor system (g, a,b) for L%([0; L]) given by

(218) (g’ a, b) = {Mmanag}meZ7n:07,,,7N_1 ’
where g € L%([0; L)), a,b,N € N and L = Na.
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ct A Gabor system for (g,a,b) for C is given by
(2.19) (9,a,0) = {MpwTrag} o.M —1.n=0. N1
where g € CY, a,b, M, N € Nand Mb= Na = L.

The decomposition formula (2.15) simplifies when the frame is a Gabor
frame, because the inverse frame operator commutes with the translation
and modulation operator. This means that the canonical dual frame also
has Gabor structure, i.e. that (Sflg,a, 5) is the canonical dual frame of
(g,, ) where v° = S~1g is known as the canonical dual window.

The Gabor coefficients of an Sy-function with respect to an Sp-window
belongs to I'. The precise relation for the four spaces are as follows.

Proposition 2.11. Summability of Gabor coefficients.
So(R) Let g,v € So(R) and o, 5 > 0. Then

Z ‘(’YmeﬁTnagH < 00

mne”
147) Let g,y €1Y(Z) and a, M € N. Then
M-1
> 2 1 MyynTag)| < o0
m=0 neZ

A([0; L])  Let g,y € A([0; L]) and N,b € N with L = Na. Then

N-1
Z Z ’(77 MmanagH < o0

meZ n=0
Proof. The Sp(R) part of this proposition is proved in [9, Cor. 12.1.12] or in

[7].
The A([0; L])-part is trivial to prove, because
(v, My Thag) = ]:[O;L] (YThag)(mb).

Since both v, Thag € A([0; L]), Fo,1](7Tnag) € I*(Z), so the desired coeffi-
cients can be extracted from a finite number of I!-sequences. The I!(Z)-case
has a similar short proof, using a convolution. O

If a Gabor frame is not a Riesz basis, it has more than one dual frame. The
dual frames that have Gabor structure are characterized bye the Wexler-Raz
relations:

Theorem 2.12. Wexler-Raz. If g and v both generates Gabor systems as
in Definition 2.10 with finite upper frame bounds then they are dual windows
if and only if

L*(R) ﬁ (¥, MpmjaT0/59) = Ombn, m,n€Z

12(7) My, My jaTortg) = 6mbp, m=0,...,a—1,neZ

L2([0; L)) % %MmNTnM/Lg> =m0, meZn=0,..,b—1

crt MN (y, MyuNTur1g) = 0mbn, m=0,..,a—1,n=0,..,b—1

Proof. The original result for L?(R) and CFcan be found in [16]. More
rigorous proofs with a minimal sufficient condition appears in [10, 3]. O



GABOR FRAMES BY SAMPLING AND PERIODIZATION. 8

Lemma Lemma 2.9 shows that if one on the unitary operators Fr, Fz,
Fo.r., Fr, Da on L*(R) and Dy on L?([0; L]) is applied to each element of
Gabor frame, the result is again a frame with the same frame bounds. More-
over, because of the commutation relations (2.1), (2.2) and (2.3)-(2.6), the
result is even a Gabor frame, albeit with different parameters. Furthermore,
the canonical dual frame of such a Gabor frame has a simple expression:

Lemma 2.13. Dual Gabor frames under Fourier transforms and dilations.

Fr: Let 7 be the canonical dual window of (g, , 3), g € L?(R). The
canonical dual window of (Frg, 3, a) is Fry".

Fz: Let 7° be the canonical dual window of (g, a, ﬁ), g €1%(Z). The
canonical dual window of (Fzg, 7, a) is Fz7°.

Flo:1): Let 7 be the canonical dual window of (g,a,b), g € L%([0; L)).
The canonical dual window of (Fj.z;g,b, ) is Fio.1)7".

Fr: Let 40 be the canonical dual window of (g,a,b), g € CF. The

canonical dual window of (Frg,b,a) is Fr7°.

Dy on L?(R) :Let 7Y be the canonical dual window of (g,,3), g € L?(R).
The canonical dual window of (Dgg, %, 3d) is Dgy".

Dg on L?([0; L]) :Let +° be the canonical dual window of (g, a,b), g € L?([0; L]).
The canonical window of (Ddg, I b) is Dgv°.

Proof. The proofs can be found by direct calculation. They are very sim-
ple, and almost identical, the only difference is which of the commutation
relations (2.1), (2.2) and (2.3)-(2.6) to use. The first relation appears as [9,
6.36]. O

3. BETWEEN THE SPACES.

3.1. From L?(R) to [*(Z). By sampling the window function of a Gabor
frame for L?(R), then under certain conditions one obtains a Gabor frame
for 12(Z). These conditions will be presented and discussed in this section.

Theorem 3.1. Let g € Sy(R), M,a € N and assume that (g,a,ﬁ) is a
Gabor frame for L?(R) with canonical dual window ~°.

Then (Slg,a, ﬁ) is a Gabor frame for 12(Z) with the same frame bounds
and canonical dual window S17°.

This result is originally proved in [11]. In the article, Janssen works with
less restrictive conditions than listed here, the so-called condition R and
condition A.

Condition R is a regularity condition, that require the function to have
some smoothness and decay around sampling points. It is much weaker
that requiring the function to be in Sy. Most remarkably, it does not re-
quire anything of the function in between the sampling points. It is the
only requirement to prove that (Slg,a, ﬁ) has the same frame bounds as
(Sg,a,47). In [12] it is proved that condition R is satisfied for all functions
in So(R) for all sampling distances.

To prove that S14° is the canonical dual, the additional Condition A is
needed. It depends on the parameters «, (3, and is in general hard to verify.
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The easiest way of satisfying it, is to require the function to be in Sy(R).
This is proved in [9].

This covers the sampling of a window function g € So(R) at the integers.
The following theorem generalizes the situation:

Theorem 3.2. Let g € So(R), o, 3 > 0 with a8 = {7 for some M,a € N,
and assume that (g,, B3) is a Gabor frame for L*(R) with canonical dual
window ~°. Then (Sa/ag,a, ﬁ) is a Gabor frame for 12(Z) with the same
frame bounds and canonical dual window Sa/a*yo.

Proof. By Lemma 2.9 and Lemma 2.13 (Da/ag,a, ﬁ) is a Gabor frame for
L?(R) with frame bounds A and B and canonical dual window D, /avo. Using
Theorem 3.1 the result follows, because by (2.7): S1Dy /09 = Sa/a9- O

The following proposition can be used to relate the expansion coefficients
c(m,n) of a function f in a Gabor frame for L?(R) with dual window 7 to
the expansion coefficients d(m,n) of the sampled function S,/ f in a Gabor
frame for I?(Z) with sampled dual window S, /,7-

Proposition 3.3. Let f,y € So(R), o, 5 > 0 with aff = 17 for some M, a €
N. With

c(m, n) = <f7 MmﬁTna7>L2 (R) b m7 n e Z?

d(m7n) = <Soz/af’ Mm/MTnaSa/a’7>l2(Z) , m=0,.M—-1neZ

then
d(m,n) = Zc(m —jM,n), Ym=0,..M —-1neZ
JEZL
Proof. By Proposition 2.11 then } .., c(m — jM,n) is convergent.
Consider

Zc(m—jM,n) = Z<f’M(m*J’M)ﬁT"O‘7>L2(R) .
JEL JEL
Using the unitarity of D/, and (2.1):

Z C(m - JM7 n) - Z <Da/af7 Mm/ijTnaDa/a’7>L2(R)
JEZ JEZ

= Z/RDa/af(Mm/MTnaDa/a’Y) (x)e2m'j$dx
JEZ

= ZfR (Da/anm/MTnaDa/afY) (.7) .
JEZL

In operator terms, the last line can be written as

Z c(m - JM7 TL) - (f[a,ll]slfR (Da/anm/MTnaDa/afY)) (0)
JEZ

Since Dq /o f Mp/nrTnaDajay € So(R), the last line can be rewritten by the
Poisson summation formula (2.9) and (2.7):
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Z c(m - jM? n) = (Pl (Da/anm/MTnaDa/a’Y)) (O)
JEL

= Z (Da/anm/MTnaDa/aV) (k)
keZ

= <Soz/af’ Mm/MTnaSa/a7>l2(Z)
= d(m,n).
O

Theorem 3.2 showed that if v is the canonical dual window of g, Sy
will also be the canonical dual window of S, /,g. This relation holds not only
for the canonical dual window, but in fact for ALL dual windows v € Sp(R).

Proposition 3.4. Let (g,c,3), g € So(R), o, 8 > 0 with a3 = 17 for some
M,a € N, be a Gabor frame for L>(R) and let v € So(R) be a dual window.
Then S, ;47 18 a dual window of (Sa/ag, a, %)

Proof. Define ¢ € 12(Z x Z) and d € I*({0,...,a — 1} x Z) by
c(m,n) = <7, Mm/aTn/ﬁg>L2(R) , m,né€Z,
d(m,n) = <5a/a%Mm/aTnMSa/ag>l2(Z)
= <81/Mﬁ'y,Mm/aTnMsl/Mﬁg>l2(Z) , m=0,..M—-—1neZ

It is well known, that if g,y € So(R), (g, , 3) and (7, «, 3) has finite upper
frame bounds, see e.g. [9, Chapter 6]. Since g, are dual windows, they
satisfy the Wexler-Raz condition for L?(R), Theorem 2.12:

—c(m,n) = 6pdp, m,n € Z.

o
We wish to show that S,/,9 and S, /,7 satisfies the Wexler-Raz condition
for 12(Z) :

M
; <81/Mﬁr7’ Mm/aTnMsl/Mﬂg>l2(Z)

M
= 4
= d(m,n)

= Onbp, m=0,.,a—1neZ

By Theorem 3.2, (S, /09, a, 77) and (S,/47, a, 77) also has finite upper frame
bounds. By Proposition 3.3:

%d(m,n) = Z Lc(m — ja,n)

JEZ af
= Z(Sm—ja(sn
JEZ
= Ombn, YVm=0,....,a—1,n¢€Z.

This shows that S, /.9 and S, /7 satisfies the Wexler-Raz condition for 12(7),
and therefore they are dual windows. O

There are two remarks on Proposition 3.4 as compared to Theorem 3.2:
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(1) In Theorem 3.2 the only assumption needed was g € Sy(R), because
this implies 7° € Sp(R). In Proposition 3.4 we need to impose this
as a separate condition.

(2) At first Proposition 3.4 seems a generalization of Theorem 3.2, but it
is not. The main strength of Theorem 3.2 (besides the frame bounds
relations) is the fact that S, /a*yo is identified as a particular dual
window of S, /.9, namely the canonical dual. This allows for efficient
approximation of canonical dual windows, like the method presented
in Section 4. Proposition 3.4 does not offer this kind of application.

3.2. From L?*(R) to L?([0;L]). The results from the previous section can
be easily extended to prove how a Gabor frame for L?([0; L]) can be obtained
from a Gabor frame for L?(R) by periodizing the window function.

Gabor frames for L?([0; L]) are not as widely studied as Gabor frames for
L?(R). From a practical point of view, they are interesting because they can
be used to model continuous phenomena of finite duration.

Interrelations between Wilson bases for L2(R) and L?([0; L]) are described
in [1, Corollary 9.3.6].

Theorem 3.5. Let g € So(R), o, 5 > 0 with aff = % for some N,b € N and

assume that (g, a, 3) is Gabor frame for L?(R) with canonical dual window

Then (Pb/ﬁg,oz,b) is a Gabor frame for L?(|0;
bounds and canonical dual window Pb/gfyo.

|) with the same frame

o

Proof. By Lemma 2.9 and Lemma 2.13, (Fg, (3, «) is also a Gabor frame for
L?(R) with frame bounds A and B and canonical dual window F~°.

Since g € Sp(R), Theorem 3.2 can be used: (Sﬁ/b}"g,b, %) is a Gabor
frame for 1?(Z) with frame bounds A and B and canonical dual window
Sﬁ/b]:’yo.

By Lemma 2.9 and Lemma 2.13, (f[a;lg}Sg/b}"g, a, b> is a Gabor frame for

L3([0; %]) with frame bounds A and B and canonical dual window ]-'[8;1% ]Sﬁ 1w FA°.

By the Poisson summation formula (2.9), F -, SgF = Py/3 and from

1
[0 5]
this the result follows. O

Proposition 3.6. Let f,v € So(R), a, 8 > 0 with aff = % for some N,b €
N. With

c(m, TL) = <f7 MmﬁTna’7>L2(R) , m,n€z
d(m’n) = <Pb/ﬁfa Mmana,Pb/ﬁ'7>L2([0;%D, meZ,n=0,...N —1
then

d(m,n) = Zc(m,n —jN), Vme€Zn=0,..,N —1.
JEZL
Proof. By Proposition 2.11 then ZjeZ c¢(m,n — jN) is convergent.
Consider

Z c(m,n —jN) = Z <fa MmBT(n*jN)a7>L2(R) )

JEZ jJEL
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Using the unitarity of D, /, and (2.1):

Z c(m,n—jN) = Z (Dysf, Mman/N—ij/m>Lz(R)
jez jez

= <Db/5f, My TN Z Tij/m>
L2(R)

JEZ

= /Db/ﬁmean/N ZT—ij/g’Y (z)dz.
R =/

The function M7, /N (zjeZ T_ij/ﬁfy) is periodic with period 1 and
bounded because D57 € So(R). Since Dy5f € L'(R) also

Dyygf Mo Toyn | Y T-iDyya7v | € L'(R),
jez

and it is therefore legal to split the outermost integration in parts and inter-
change summation and integration:

Zc(m,n—jN)

JEZ

1
= Z/O Dy f MyTyy /N ZT—ij/g’Y (x —k)dx

kez jez
b b . b
2 1G5 Ek)) e S (o= 5 (-3 )

b /1 (
B Jo kEZ jez

_ /0g (Zf(x— %k)) ezmimpz 3 (x— % (% —j))dw

keZ JEL

= <Pb/ﬂf7 Mmanoz,Pb/ﬂ’Y>L2([0;%]) .
O

Proposition 3.7. Let (g,a,3) g € So(R), a, B > 0 with aff = % for some
N,b € N, be a Gabor frame for L?>(R) and let v € So(R) be a dual window.
Then Py/3 is a dual window of (Pb/ﬁg,a,b).

Proof. The proof has the same structure as that of Proposition 3.4, using
Proposition 3.6 as the main ingredient. U

3.3. From L%([0; L]) to C'. A Gabor frame for C* can be obtained by
sampling the window function of a Gabor frame for L?([0; L]). The proofs
are very similar to the proofs presented in section 3.1 for the L?(R) — [?(Z)
case.
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Theorem 3.8. Let g € A([0;L]), L,M,N,a,b € N with L = Mb = Na
and assume that (g,a,b) is a Gabor frame for L?([0; L]) with canonical dual
window ~°.

Then (S1g,a,b) is a Gabor frame for CI with the same frame bounds and
canonical dual window S17°.

Proof. The proof can be found by carefully modifying the proof in [11] for
the L?(R)-case. The modifications consists in replacing integration over R
with integrations over [0; L] and similar changes. O

This covers the sampling of a window function g € A([0; L]) at the inte-
gers. The following theorem generalizes the situation:

Theorem 3.9. Let g € A([0; L1]), L2, M,N,a2,b € N with L1 = Na; and
Ly = Mb = Nay. Assume that (g,a1,b) is a Gabor frame for L?([0; L1])
with canonical dual window ~°.

Then (SLI/LQQ, as, b) is a Gabor frame for C*2 with the same frame bounds
and canonical dual window SLI/LQ*)/O.

Proof. By Lemma 2.9 and Lemma 2.13, (DLl/LQg,ag,b) is a Gabor frame
for L2([0; Ly]). From (2.8) and Theorem 3.8 the result follows. O

Proposition 3.10. Let f,~v € A([0; L1]), La, M, N,as,b € N with L1 = Nay
and Ly = Mb = Nay. With

C(man) = <fa Mmanal’Y>L2([0;L1]) , meZ,n=0,..,N—-1
dim,n) = <SL1/L2faMmanaQSLl/L27>CL, m=0,..M—1n=0,.,.N—1
then

d(m,n) = Zc(m —jM,n), ¥Ym=0,..M —-1,n=0,..,N—1
JEL
Proof. The proof is very similar to that of Proposition 3.10, using a different
version of the Poisson summation formula, (2.11). O

Proposition 3.11. Let (g,a1,b) g € A([0; L1]), L2, M, N,a2,b € N with
L1 = Nay and Ly = Mb = Nay, be a Gabor frame for L*([0; L1]) and
let v € A([0; L1]) be a dual window. Then Sp, /1,7 is a dual window of

(SLl/L2g7a27b)'

Proof. The proof has the same structure as that of Proposition 3.4, using
Proposition 3.10 as the main ingredient. O

3.4. From [%(Z) to C*. Similarly to the results presented in the previous
sections, one can obtain a Gabor frame for C! by periodizing the window
function of a Gabor frame for 1?(Z).

Theorem 3.12. Let g € I*(Z), M,N,a,b € N with Mb = Na = L and

assume that (g, a, ﬁ) is a Gabor frame for 1?(7) with canonical dual window

70

Then (Prg,a,b) is a Gabor frame for C* with the same frame bounds and
canonical dual window PrA°.
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Proof. By Lemma 2.9 and Lemma 2.13, (Fzg,b,a) is a Gabor frame for
L?(]0;1]) with frame bounds A and B and canonical dual window F77°, and
since g € ['(Z) then Fzg € A([0;1]).

Using Theorem 3.9, (Sl/L}"Zg,b, a) is a Gabor frame for CL with frame
bounds A and B and canonical dual window Sy, L Fz°.

By Lemma 2.9 and Lemma 2.13, (fngl/L]-"Zg, a, b) is a Gabor frame for
C! with frame bounds A and B and canonical dual window .7-"L_181 / L Fz7°.

Using the Poisson summation formula (2.10), F, s, /Fz9 = Prg and
similarly fglsl/LfZWO =Pry°. O

Proposition 3.13. Let f,v € I'(Z), M,N,a,b € N with Mb = Na = L.
With

c(myn) = (f, Mmanafy>lg(Z) , m=0,...M—-1,neZ
dm,n) = (Prf, MypTnaPrY)cr, m=0,...M —1,n=0,..,N —1,
then
d(m,n) = Zc(m,n —jN), VYm=0,.,M —-1,n=0,..,N—1
JEL
Proof. The proof closely follows that of Proposition 3.6. O

Proposition 3.14. Let (g,a,ﬁ) g € IYZ), M,N,a,b € N with Mb =
Na = L, be a Gabor frame for I*(Z) and let v € I1*(Z) be a dual window.
Then Pry is a dual window of (Prg,a,b).

Proof. The proof has the same structure as that of Proposition 3.4, using
Proposition 3.13 as the main ingredient. O

3.5. From L%(R) to C". With the results from the previous sections, any
Gabor frame for L2(R), (g,a, ) with g € So(R) and rational sampling,
af € Q, can be sampled and periodized to obtain a Gabor frame for C¥
with corresponding sampled and periodized canonical dual window:

:%ande:Na:Lwith

Theorem 3.15. Let g € So(R), aff = 7
) is a Gabor frame for L*(R) with

a,b, M,N,L € N and assume that (g, c, 3
canonical dual window ~°.

Then (PLSa/ag, a, b) is a Gabor frame for C¥ with the same frame bounds
and canonical dual window PLSa/afyO.

Proof. Combine Theorem 3.2 and Theorem 3.12. Fully written out

(PLSasa) 9(7) = \/gz_q (SG=kL))s G=0,0L—1.
keZ

Under the assumptions on the parameters, then PrS,/q = Sp/5/1Pp/p on
So(R). This shows that both ways on figure 1.1 produce the same result, so
an alternative proof is to use Theorem 3.5 and Theorem 3.9. O

Similarly, the coefficients of a function f in a Gabor frame for L?(R) can be
approximated by sampling and periodizing f and calculating the coefficients
in a Gabor frame for C*:
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Proposition 3.16. Let f,v € So(R), o, 8 > 0 with a3 = 17 = %, L =
Mb= Na with a,b, M, N, L € N. With

c(m,n) = <f,Mm5Tna7>L2(R), m,n €7
d(m,n) = (PrSajafs MmbTnaPrSasa¥)er » m =0, M =1,n=0,...,N —
then
d(m,n) = Z ¢clm —kM,n—jN), ¥V=0,...M —1,n=0,...,N —1.
J,k€EZ

Proof. Combine Prop. 2.11 and Prop. 3.3, or alternatively Prop. 3.6 and
Prop. 3.10. U

As with Theorem 3.15, the following proposition can be proved by com-
bining the previous results.

Proposition 3.17. Let (g,a83), a8 = {7 = % and Mb = Na = L with
a,b,M,N,L € N, be a Gabor frame for L?>(R) and let v € So(R) be a dual
window. Then PLS,;q7 15 @ dual window of (PLSa/ag, a, b).

4. AN APPLICATION.

As an application of Proposition 3.16 one can calculate approximations
to the canonical dual window ~° of a Gabor frame (g, o, 3) for L?(R) using
finite-dimensional methods. The idea is to use Theorem 3.15 describing the
relationship between 7” and the canonical dual window PrS, /a'yo e CL of
a Gabor frame (PLSa /ag,a,b) for CF. This will give sampled values of a
periodization of the canonical dual window ~°.

To obtain a continuous function 7%17 N approximating +? from the finite
sequence PrS, /awo, some kind of interpolation scheme is needed. In [12],
Norbert Kaiblinger uses B-splines and shows that this is sufficient to get
convergence in Sy (and therefore also L?(R).

The following results uses another simple interpolation scheme: Using the
Gabor frame (g, a, 3) itself.

The result is presented only for M, N being even. The extension to odd
M, N is trivial.

Theorem 4.1. Let g € So(R), o, 3 > 0 with a3 = {5 and assume that

(g,c, ) is a Gabor frame for L*(R) with canonical dual window ~°.
For each even M, N € N such that L = Mb= Na with a,b, L € N denote
the canonical dual window of (PLSa/ag, a, b) by onm,n. Define dy N € CMxN

by darn(m,n) = (err N, My Traorm,n)cr and 73,y € So(R) by
N/2-1  M/2—1

(4.1) 7?4,N = Z Z dM,N(myn)MmﬁTnag-
n=—N/2m=—M/2

Then VR/I,N — Y as M, N — oco.

Proof. Define ¢ € I*(Z x Z) by c¢(m,n) = (7°, My,3T0a°)

4.2 S c(m,n)M,3Thag.
Y B

m,neZ

L2(R)" Then
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This is the standard frame expansion, since 7° and ¢ are dual windows.
By (4.1) and (4.3) both 4% and 7?/1,]\/ can be written using the frame
(g, v, ). Subtracting them gives

A0 — Wg/f,N = Z N (m, 1) My Thag,
mynEZ
where
M M
c(m, n) otherwise
By Proposition 3.16,
(4.3) dyn(m,n) = Z c(m —kM,n — jN),

7,kEZ
for all —% <m< % — 1 and —% <n< % — 1. This gives the following
expression of the residual 7:

rar,n(m,n)

and

NS

_ ZjvkEZ\{o} cuN(m —kM,n — jN)

c(m,n) otherwise

Since the translation and modulation operators are unitary, we get the
following estimate.

17 =Renll < lgll DY Irann(m,n)
m,ne’
N/2—-1 M/2-1

ol > > > lemn(m—kM,n—jN)|[+

n=—N/2 m=—M/2 j,keZ\{0}

+ llgll > > |c(m, n)]
mé{—%,...,%—l} né{—%,...,%—l}
In the last term, only the coefficients outside the rectangle indexed by m €
~Y 4 -1} and n € {—&,.., & — 1} appears, and they all appear
twice. From this

IN

7 =n] < 219l > > le(m,n)
mé{—%,...,%—l} né{—%,...,%—l}
When M, N — oo, the last term goes to zero. (I

The trivial change needed for odd M or N consist in replacing —% by
—% and % — 1 by % and similarly for V.

Since each 7%4,  1s afinite linear combination of Gabor atoms from (g, o, 3),
they inherit properties from g: Since g € Sy(R) then each fyRL N € So(R).
Similarly, if g or § has exponential decay, then so does 7347 N Or ’yg% N-
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To use this method, the two main numerical calculations to be carried out
are the inversion of the frame operator for (g n,a,b) and the calculation
of the coefficients dy;,n € CMxN Algorithms based on FFTs and matrix-
factorisations can be found in [14]. These calculations can be performed in
O (Lq) + O (NM log M), where % is the oversampling factor written as an
irreducible fraction.
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