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An Efficient Algorithm for the Discrete Gabor
Transform using full length Windows

Peter L. Søndergaard

Abstract

This paper extends the efficient factorization of the Gabor frame operator developed by Strohmer in [1] to the Gabor
analysis/synthesis operator. This provides a fast method for computing the discrete Gabor transform (DGT) and several algorithms
associated with it. The algorithm is used for the case when the involved window and signal have the same length.

I. INTRODUCTION

THE finite, discrete Gabor transform (DGT) of a signal f of length L is given by

c (m,n,w) =
L−1∑
l=0

f(k, w)g (l − an)e−2πiml/M . (1)

Here g is a window that localizes the signal in time and in frequency. The DGT is equivalent to a Fourier modulated filter
bank with M channels and decimation in time a, [2].

Efficient computation of a DGT can be done by several methods: If the window g has short support, a filter bank based
approach can be used. We shall instead focus on the case when g and f are equally long. In this case a factorization approach
developed by Zibulski and Zeevi in [3] for the case of the frame operator of Gabor frames for L2 (R) can be used. The method
was adapted for the finite, discrete setting by Bastiaans and Geilen in [4], and extended to cover also the analysis/synthesis
operator. A simple, but not so efficient, method was developed for the Gabor analysis/synthesis operator by Prinz in [5] and
later extended by Strohmer [1] to provide the fastest known method for computing the Gabor frame operator. This paper
extends Prinz’ and Strohmer’s method to also cover the Gabor analysis and synthesis methods on multisignals.

The advantage of the method developed in this paper as compared to the one developed in [4], is that it works with FFTs
of shorter length, and do not require multiplication by complex exponentials. The asymptotic running time of the two method
are the same.

We shall study the DGT applied to multiple signals at once. This is a common case for instance when computing a
multidimensional, separable DGT, then this can be done by applying several multisignal DGTs. The DGT defined by (1) works
on a multisignal f ∈ CL×W , where W ∈ N is the number of signals.

II. DEFINITIONS

We shall denote the set of integers between zero and some number L by

〈L〉 = 0, . . . , L− 1. (2)

The Discrete Fourier Transform (DFT) of a signal f ∈ CL is defined by

(FLf) (k) =
1√
L

L−1∑
l=0

f(l)e−2πikl/L. (3)

We shall use the · notation in conjunction with the DFT to denote the variable over which the transform is to be applied.
The folding f ∗ g of two functions f, g ∈ CL and the involution f∗ is given by

(f ∗ g) (l) =
L−1∑
k=0

f (k) g (l − k) , l ∈ 〈L〉 (4)

f∗ (l) = f (−l), l ∈ 〈L〉 . (5)

Both folding and involution has special properties with respect to the Fourier transform

f̂ ∗ g =
√

Lf̂ ĝ (6)

f̂∗ = f̂ (7)
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The Poisson summation formula in the finite, discrete setting is given by

FM

(
b−1∑
k=0

g(·+ kM)

)
(m) =

√
b (FLg) (mb), (8)

where g ∈ CL, L = Mb with b, M ∈ N.
A family of vectors ej , j ∈ 〈J〉 of length L is called a frame if constants 0 < A ≤ B exist such that

A ‖f‖2 ≤
J−1∑
j=0

|〈f, ej〉|2 ≤ B ‖f‖2
, ∀f ∈ CL. (9)

The constants A and B are called lower and upper frame bounds. If A = B, the frame is called tight. If J > L, the frame is
redundant (oversampled). Finite- and infinite dimensional frames are described in [6].

A finite, discrete Gabor system (g, a,M) is a family of functions gm,n ∈ CL of the following form

gm,n (l) = e2πilm/Mg (l − na) , (10)

for m ∈ 〈M〉 and n ∈ 〈N〉 where L = aN and M/L ∈ N. A Gabor system that is also a frame is called a Gabor frame. The
analysis operator Cg : CL 7→ CM×N associated to a Gabor system (g, a,M) is given by

c (m,n) = Cgf =
L−1∑
l=0

f(k)e−2πiml/Mg (l − an). (11)

This is exactly the DGT from (1). The adjoint operator is the Gabor synthesis operator Dγ : CM×N 7→ CL associated to a
Gabor system (γ, a, M) given by

f = Dγc =
N−1∑
n=0

M−1∑
m=0

c (m,n) e2πiml/Mγ (l − an) . (12)

In (1) it must hold that L = Na = Mb for some M,N ∈ N. Additionally, we define c, d, p, q ∈ N by

c = gcd (a,M) , d = gcd (b, N) , (13)

p =
a

c
=

b

d
, q =

M

c
=

N

d
, (14)

where GCD denotes the greatest common divisor of two natural numbers. With these numbers, the redundancy of the transform
can be written as L/ (ab) = q/p, where q/p is an irreducible fraction. It holds that L = cdpq.The Gabor frame operator
Sg : CL 7→ CL of a Gabor frame (g, a,M) is given by the composition of the analysis and synthesis operators Sg = DgCg.
The Gabor frame operator is important because it can be used to find the canonical dual window gd = S−1

g g and the canonical
tight window gt = S

−1/2
g g of a Gabor frame. The canonical dual window is important because Cg and Dgt are each others

inverses. This gives an easy way to construct the inverse transform of the DGT. Similarly, then Cgt and Dgt are each others
inverses. For more information on Gabor systems and properties of the operators C, D and S see [7], [8], [9].

III. THE METHOD

We wish to make an efficient calculation of all the coefficients of the DGT. Using (1) literally to compute all coefficients
c (m,n,w) would require 8MNLW flops.

To derive a faster DGT, an approach would be to consider the analysis operator Cg as a matrix, and derive a faster algorithm
through unitary matrix factorizations of this matrix. This is indeed the approach taken by [10], [1]. Unfortunately, this approach
tends to introduce many permutation matrices and Kronecker product matrices, so in this paper we have chosen to derive the
algorithm by directly manipulating the sums of the definition.

To find more efficient algorithms, the first step is to recognize that the summation and the modulation term in (1) can be
expressed as a DFT:

c (m,n,w) =
√

LFL

(
f(·, w)g (· − an)

)
(mb) . (17)

We can improve on this because we do not need all the coefficients computed by the Fourier transform appearing in (17), only
every b’th coefficient. Therefore, we can rewrite by the Poisson summation formula (8):

c (m,n,w)

=
√

MFM

(
b−1∑
m̃=0

f(·+ m̃M,w)g (·+ m̃M − an)

)
(m)

= (FMK (·, n, w)) (m) , (18)
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Algorithm 1 Multisignal DGT by matrix/matrix products.
We wish to compute the DGT c (m,n,w) ∈ CM×N×W of f ∈ CL×W using the window g ∈ CL and lattice determined by a
and M .

1) Define Ψf
r,s (k, l) ∈ Cp×qW and Φg

r,s (k, l) ∈ Cp×q for r ∈ 〈c〉, s ∈ 〈d〉 and w ∈ 〈W 〉 by

Ψ̃f
r,s̃ (k, l + qw)

= f (r + kM + s̃pM − lhaa,w) ,

Φ̃g
r,s̃ (k, l)

=
√

Mdg (r + kM + s̃pM − la) .

2) Compute their DFTs along s̃:

Ψf
r,s (k, l + qw) = Fd

(
Ψ̃f

r,· (k, l + qw)
)

(s) ,

Φg
r,s (k, l) = Fd

(
Φ̃g

r,· (k, l)
)

(s) .

3) Multiply the matrices for each r, s:

Υr,s =
(
Φg

r,s

)∗ Ψf
r,s

4) Compute the inverse DFT of Υr,s along s:

Υ̃r,s̃ (u, l + wq) = F−1
d (Υr,· (u, l + wq)) (s̃) .

5) Compute K ∈ CM×N×W as:
K (r + lc, u + s̃q − lha, w) = Υ̃r,s̃ (u, l + wq) (15)

6) Finally, the result is given by a DFT of K along the first dimension:

c (m,n,w) = FM (K (·, n, w)) (m) . (16)

where

K (j, n, w) =
√

M

b−1∑
m̃=0

f (j + m̃M,w) g (j + m̃M − na) , (19)

for j ∈ 〈M〉 and n ∈ 〈N〉. From (18) it can be seen that computing the DGT of a signal f can be done by computing K
followed by a DFT along the first dimension of K.

We split j as j = r + lc with r ∈ 〈c〉, l ∈ 〈q〉 and introduce ha, hM ∈ Z such that the following is satisfied:

c = hMM − haa. (20)

The two integers ha, hM can be found by the extended Euclid algorithm for computing the GCD of a and M .
Using (20) and the splitting of j we can express (19) as

K (r + lc, n, w)

=
√

M

b−1∑
m̃=0

f (r + lc + m̃M,w)×

×g (r + l (hMM − haa) + m̃M − na) (21)

=
√

M

b−1∑
m̃=0

f (r + lc + m̃M,w)×

×g (r + (m̃ + lhm) M − (n + lha) a) (22)

We set m̃′ = m̃ + lhm and n′ = n + lha and get

K (r + lc, n′ − lha, w)

=
√

M

b−1∑
m̃′=0

f (r + lc + (m̃′ − lhm) M,w)×

×g (r + m̃′M − n′a) (23)
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=
√

M

b−1∑
m̃′=0

f (r + m̃′M + l (c− hmM) , w)×

×g (r + m̃′M − n′a) (24)

For simplicity, we continue without the primes in (24). We split m̃ = k + s̃p with k ∈ 〈p〉 and s̃ ∈ 〈d〉 and n = u + sq with
u ∈ 〈q〉 and s ∈ 〈d〉 and use that M = cq, a = cp and c− hmM = −haa:

K (r + lc, u + sq − lha, w)

=
√

M

p−1∑
k=0

d−1∑
s̃=0

f (r + kM + s̃pM − lhaa,w)×

×g (r + kM − ua + (s̃− s) pM) (25)

Define

Ψ̃f
r,s̃ (k, l + wq) = f (r + kM + s̃pM − lhaa,w) , (26)

Φ̃g
r,s̃ (k, u) =

√
Mg (r + kM + s̃pM − ua) , (27)

We can then write (25) as

K (r + lc, u + sq − lha, w)

=
p−1∑
k=0

d−1∑
s̃=0

Ψ̃f
r,s̃ (k, l + wq) Φ̃g

r,s̃−s (k, u) (28)

The sum over s̃ can be seen as a special form of convolution. The combination (6) and (7) yields

(f ∗ g∗) (l) =
L−1∑
k=0

f (k) g (k − l) (29)

f̂ ∗ g∗ =
√

Lf̂ ĝ, (30)

and it is the kind of convolution as in (29) the we shall use. Fully written out (30) is

(f ∗ g∗) (l) =
√

LF−1
L

(
f̂ (·) ĝ (·)

)
(l) .

Define the Fourier transforms along s̃ of Ψ̃ and Φ̃ by

Ψf
r,s (k, l) =

(
FdΨ̃f

r,· (k, l)
)

(s) (31)

Φg
r,s (k, u) =

(
FdΦ̃g

r,· (k, u)
)

(s) (32)

Using (30) we can now write (28) as

K (r + lc, u + s̃q − lha, w)

=
√

d

p−1∑
k=0

F−1
d

(
Ψf

r,· (k, l + wq) Φg
r,· (k, u)

)
(s̃) (33)

=
√

dF−1
d

(
p−1∑
k=0

Ψf
r,· (k, l + wq) Φg

r,· (k, u)

)
(s̃) (34)

If we consider Ψf
r,s and Φg

r,s as matrices for each r and s, then sum over k in the last line can be written as matrix products.
Algorithm 1 follows from this.

IV. EXTENSIONS

The algorithm just developed can also be used to calculate the synthesis operator Dγ . This is done by applying Algorithm
1 in the reverse order and inverting each step in the algorithm. All the steps can be trivially inverted except step 3, which
becomes

Ψf
r,s =

(
Φγ

r,s

)
Υr,s. (35)

If the matrices Φγ
r,s are all left-inverses of the matrices Φg

r,s then (35) will invert step 3 in Algorithm 1. This is the case if γ is
a dual Gabor window of the Gabor frame (g, a,M). It also holds that all dual Gabor windows γ of a Gabor frame (g, a,M)
must satisfy that Φγ

r,s are left-inverses of Φg
r,s. This criterion was reported in [11], [12].
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A special left-inverse in the Moore-Penrose pseudo-inverse. Taking the pseudo-inverses of Φg
r,s yields the factorization

associated with the canonical dual window of (g, a,M), [13]. Taking the polar decomposition of each matrix in Φg
r,s yields

a factorization of the canonical tight window (g, a,M). For more information on these methods, as well as iterative methods
for computing the canonical dual/tight windows, see [14].

V. SPECIAL CASES

We shall consider some special cases of the algorithm:
1) Integer oversampling. When the redundancy is an integer then p = 1. Because of this we see that c = a and d = b. This

gives (20) the appearance
a = hMqa− haa,

indicating that hM = 0 and ha = −1 solves the equation for all a and q. The algorithm simplifies accordingly, and
reduces to the well known Zak-transform algorithm for this case, [15].

2) Short time Fourier transform. In this case a = b = 1, M = N = L, c = d = 1, p = 1, q = L and as in the previous
special case hM = 0 and ha = −1. In this case the algorithm reduces to the very simple, and well known algorithm,
for computing the STFT.

VI. EFFICIENT IMPLEMENTATION

The reason for defining the algorithm on multisignals, is that the multiple signals can be handled at once in the matrix
product in step 3. This is a matrix product of two matrices size q× p and p× qW , so the second matrix grows when multiple
signals are involved. Doing it this way reuse the Φg

r,s matrices as much as possible, and this is an advantage on standard,
general purpose computers with a deep memory hierarchy, see [16], [17].

The are several ways to execute Algorithm 1. One is of course two execute the steps in the order as they are written. Another
possibility comes from the fact that step 1 - 5 can be done in parallel over the variable r. This may be exploited as follows:

1) The algorithm can be split such that each processor on a parallel machine handles step 1-5 for a specific range of values
for r.

2) One may loop over step 1-5 for each value of r. This lowers the memory requirement because only a subset of the
matrices Ψf

r,s and Φg
r,s needs to be kept in memory at once.

3) One may do the algorithm as it is written, doing the loop over r as the innermost loop. This make the memory access
more efficient, because the values indexed by r are stored consecutively in memory. On typical computing machinery,
elements stored in consecutive memory locations can be loaded much faster than scattered elements.

Any combination of the above three methods can be done, depending on the number of processors and memory that is available
on the machine.

Implementations of the algorithms described in this paper can be found in the Linear Time Frequency Toolbox (LTFAT)
available from http://www.univie.ac.at/nuhag-php/ltfat/.
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