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Abstract. In this paper, we investigate the issues in the analysis and design of provably secure mes-
sage authentication codes (MACs) Nested MAC (NMAC) and Hash based MAC (HMAC) proposed by
Bellare, Canetti and Krawczyk. First, we provide security analysis of NMAC using weaker assumptions
than stated in its proof of security. This analysis shows that, theoretically, one cannot further weaken
the assumptions in the proof of security of NMAC to obtain a secure MAC function NMAC and for a
secure MAC function NMAC, both keys must be secret. This analysis also provides a solution to an
open question in Preneel’s thesis on the security of MAC functions when the attacker has knowledge
of the key(s) in relation to NMAC and HMAC. Next, we propose a new variant to the NMAC function
by altering the standard padding used for the hash function in NMAC. This variant is slightly more
efficient than NMAC especially for short messages. The analysis and performance aspects of this variant
are compared with other efficient MAC functions based on hash functions. Next, we provide another
new variant to NMAC by altering the position of the trail key used in NMAC. This variant has some
advantages over NMAC from the perspective of key-recovery attacks. Finally, we formally show how to
convert NMAC and HMAC functions into pseudorandom functions.
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1 Introduction

One of the important applications of cryptographic hash functions is their use in the construction of efficient
message authentication codes (MACs) [3, 25–27, 30]. Hash functions based on Merkle-Damg̊ard construc-
tion [8, 22] such as SHA-1 are used with minor or no modifications in constructing MAC schemes due to
their efficiency and free availability.

The first formal security analysis for MACs based on hash functions was given by Bellare, Canetti and
Krawczyk for the nested MAC (NMAC) and hash based MAC (HMAC) functions [3]. HMAC is a practical
variant of the formally analyzed NMAC function. NMAC was proved to be secure if the compression function
with fixed length input is a secure MAC and iterated hash function with variable length inputs is a weakly
collision resistant hash function. Anyhow, not much analysis was provided for these functions based on
weaker assumptions on the hash function and compression function than stated in the proof of security of
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NMAC [3]. In this paper, we address this issue and our result shows that by reducing the assumptions on
the hash functions, NMAC becomes insecure against straight forward length extension attacks. Specifically,
we show that in order to prevent extension attacks on NMAC, both keys must be secret.

While it is known that a MAC function must be both one-way and collision resistant when the attacker
has no knowledge of the key(s), whether it has to be collision resistant or one-way when someone has
knowledge of the key(s) depends on the application in which the function is used [26, p.19]. While the
prime motivation behind the design of NMAC and HMAC functions is to authenticate information over an
insecure medium, there are some applications that may use these proposals, especially HMAC (see [15])
requiring extra protection against the insider attacks from someone who has knowledge of the secret keys.
The analysis of NMAC based on weaker assumptions on the hash functions explains the properties that one
would naturally require from the NMAC function when the attacker has knowledge of the key(s).

Next, we revisit the proof of security of NMAC and observe that the security proof and the definitions
used in the proof are independent of the padding of the hash function and the compression function used
in NMAC. We actually show why and how the proof of security of NMAC is independent of the padding of
the hash function by proposing a variant to the NMAC function called NMAC-1. The padding for the inner
and outer functions of NMAC-1 is dependent on the size of the message to be authenticated. NMAC-1 still
observes the design principle of NMAC which is to call the compression function of the hash function as a
black-box. A formal security analysis for NMAC-1 is provided.

The performance of MAC functions on short messages is important. For example, the MAC function
used in IPSec operates on 43-1500 bytes [19], message authentication of signaling operate on messages that
fit in one or two blocks [25] and the MAC function used in TLS operates on 0-17 kilobyte. There are also
applications such as entity authentication in a mobile environment where saving of one block is important.
We note that NMAC-1 is slightly more efficient than NMAC when it is used to authenticate short messages.
In addition, we compare the analysis and performance aspects of the NMAC-1 function with other efficient
MACs based on hash functions proposed in the literature.

The analysis of MAC schemes based on dedicated hash functions [3, 27–30] shows that one has to pay
attention in using the key and the hash function while designing a MAC based on the hash function. The
applicability of forgery and key-recovery attacks on MACs based on hash functions depend on how and where
one uses the key and the hash function in the MAC scheme. Following this observation, we propose a new
variant to NMAC called modified NMAC (M-NMAC) by using the trail key in NMAC as a block instead of
as an initial state for the outer compression function. The advantage of this variant over NMAC is that it
has flexibility of using larger keys up to the block size of the compression function for the trial key which
makes it much harder to perform the complete key-recovery attack on M-NMAC than on NMAC.

Finally, we note that applications such as IPSec’s Key Exchange (IKE) protocol use HMAC as a pseu-
dorandom function (PRF) to derive secret keys. Yet no explicit analysis of NMAC and HMAC functions
as PRFs appeared in the literature though it appears to be that the proof techniques of [3] can be used to
prove the pseudorandomness of these functions. In this work, we fill this gap by giving a formal analysis of
NMAC as a pseudorandom function which applies to HMAC as well1.

Related work: Several MAC functions based on dedicated hash functions [3,27–30] were analyzed. See
Appendix C for a survey on the analysis of MACs based on hash functions. Hirose [14] has shown that weakly
collision resistance of the iterated hash function in NMAC is not implied by the pseudorandomness of the
compression function. He has also shown that weakly collision resistance of the iterated hash function in
NMAC implies collision resistance of its compression function if the compression function is pseudorandom.
Patel [25] has proposed a variant to NMAC called Enhanced NMAC (ENMAC) by altering the standard
padding scheme used in the underlying hash function to improve the efficiency of NMAC for short messages.
The ISO/IEC 9797-2 [16] standard specfies a mechanism which is a variant of MDx-MAC [27] that offers
high performance for applications that process short messages of upto 256 bits. Bellare et.al [4] have shown
that the pseudorandomness of the compression function transfers to the pseudorandomness of the Merkle-
Damg̊ard iterated construction using the notion of prefix-free distinguishers.

1 Very recently, Bellare [2] has shown the pseudorandomness of NMAC and HMAC functions based on the pseudo-
randomness of the compression function.
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Outline: In section 2, we describe NMAC and HMAC functions. In section 3, analysis of NMAC based
on weaker assumptions than stated in its proof of security is provided. In section 4, the proof of security of
NMAC-1 is provided and in section 5, a new variant of NMAC called M-NMAC is proposed. In section 6, we
show how to convert NMAC and HMAC to pseudorandom functions and conclude the paper in section 7.

2 NMAC and HMAC functions

The first formal security analysis for MACs based on hash functions was given by Bellare, Canetti and
Krawczyk [3] in the form of NMAC and HMAC. The NMAC and HMAC functions are discussed below.

2.1 The NMAC function

NMAC algorithm including its security proof was presented in [3]. An essential design goal of NMAC is to
use the compression function of the hash function “as is”(as a black box).
The NMAC algorithm is defined as follows:
If k1 and k2 are two independent and random keys to the hash function F iterated over the compression
function f , then the MAC function NMAC on an arbitrary size message x split into blocks x1, x2, . . . , xn is
given by

NMACk(x) = Fk1
(Fk2

(x)). (1)

If the concrete realisation of NMAC uses the iterated hash function F for the inner and outer functions,
then k2 would be the IV for the inner keyed iterated hash function and k1 would be the initial state (IV) for
the outer keyed iterated hash function, which is expected to perform only one round of operation. The sizes
of both keys is the same which is equal to the length of IV of the hash function F 2. Since the two keys k1

and k2 act as IVs for the inner and outer functions respectively, it is clear that NMAC calls the compression
function f of the hash function F as a black-box as shown in Fig 1.

P
A
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x1 x2 xn

k1 k2

f fff
NMACk(x)

Fig. 1. The NMAC Construction

Since only one round of the outer function iteration is required, the compression function of the outer
hash function is invoked only once. Therefore, the outer function can be renamed f and the above NMAC
equation can be written as

NMACk(x) = fk1
(Fk2

(x)). (2)

where fk1
is the keyed compression function. In the above NMAC equation, a standard padding technique [1]

is defined for the hash function F such that the last block xn contains the binary encoded representation of
the length of the message. The output of the function Fk2

(x) is also padded using the same standard padding
operation as for the inner function, which is denoted by the PAD function in Fig 1. The PAD function is
defined as PAD(Fk2

(x)) = Fk2
(x), 1, 00 . . . 00, |Fk2

(x)| where comma indicates the concatenation operation.
HMAC is a “fixed IV” variant of NMAC and uses the hash function F as a black box. The HMAC

function that works on an arbitrary length message x is defined as:

HMACk(x) = FIV (k ⊕ opad, FIV (k ⊕ ipad, x)) (3)

2 For example, if F is a SHA-1 hash function then |k1| = |k2| = 160
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Fig. 2. The HMAC Construction

HMAC is a particular case of NMAC and both can be related as HMACk(x) = Fk1
(Fk2

(x)) where k1 =
fIV (k⊕opad), k2 = fIV (k⊕ ipad), f is the compression function of the hash function, opad and ipad are the
repetitions of the bytes 0x36 and 0x5c as many times as needed to get a b-bit block, k indicates the completion
of the key k to a b-bit block by padding k with 0’s and comma is the concatenation operation. Since the outer
function in this expression processes only one message block, it can be written as HMACk(x) = fk1

(Fk2
(x)) =

NMACk1,k2
(x). The security analysis provided for NMAC applies to HMAC under the assumption that the

compression function used to derive the keys k1 and k2 for HMAC works as a pseudorandom function [3].
The HMAC function is shown in Fig 2.

NMAC and HMAC algorithms were proved to be secure [3] given some reasonable assumptions on the
underlying hash functions. The following definitions are considered in giving the security analysis of the
NMAC function.

Definition 1. A MAC based on the keyed compression function f is an (ǫf , q, t, b)-secure MAC if any
attacker, without knowledge of the key k1 requesting q chosen messages xi (where i = 1 . . . q and max(|xi|) =
b) to the keyed compression function f , cannot break the scheme in a total time t except with probability less
than ǫf . In other words, ǫf is the maximum probability of forging fk1

.

Definition 2. A keyed iterated hash function F is an (ǫF , q, t, L)- weakly collision resistant hash function
if any attacker, without knowledge of the key k2 requesting q chosen messages xi (where i = 1 . . . q and
max(|xi|) = L) to the keyed iterated hash function F , cannot find two messages x and x′ in a total time t
such that Fk2

(x) = Fk2
(x′) with probability better than ǫF . In other words, ǫF is the maximum probability of

finding collisions for Fk2
.

3 Analysis of NMAC using weaker assumptions on the hash functions

An ideal MAC function must be both one-way and collision resistant for someone who does not know the
secret key. Whether the MAC function must be one-way or collision resistant for someone who knows the
secret key depends on the application [26, p.19], [21, p.327]. Though NMAC and HMAC functions were
shown to be secure under the assumption that the adversary who tries to forge them has no knowledge of the
key, there may be some applications where one expects these functions to satisfy some additional properties
for the protection against insiders who know the secret key. An example application based on HMAC-SHA-1
requiring extra protection from the insider attacks is given in Appendix A.

In the following, we show security analysis of NMAC and HMAC using weaker assumptions on the hash
functions. We also provide the properties that are essential for the protection of these MAC functions from
the insider attacks. Our analysis shows that theoretically NMAC as a MAC function is not always secure if
the assumptions on the hash functions are weaker than the assumptions in its original formal analysis [3].

3.1 Security analysis

The Remark 4.9 of [3] has motivated us to split the analysis on NMAC into three cases. In particular, by
splitting the analysis into three cases, we are able to show the main result of this analysis (case:2) that it is
the keyed application of the external function in the MAC function NMAC which prevents extension attack
but not just the plain application. Our analysis shows that, theoretically, one cannot further weaken the
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assumptions in the proof of security of NMAC to obtain a secure MAC function NMAC and to obtain a
secure MAC function NMAC, both keys must be secret. A similar analysis can be applied to HMAC. This
analysis also partially solves the open question in Preneel’s thesis [26] on the properties required from the
MAC function when the adversary has knowledge of the key(s).
Case 1: Only k1 is secret

In this case, we assume that the adversary knows the key k2 of NMAC. Hence, she can find offline collisions
on Fk2

which is easier to perform than finding collisions when the key k2 is random and secret as the attacker
needs to contact the legitimate owners of the key k2 to get collisions for Fk2

.
Once the attacker finds x and x′ such that Fk2

(x) = Fk2
(x′), this MAC function is attackable using

the chosen message attack. The attacker sends x to the NMAC oracle and gets the MAC value as response
and uses this MAC value as a forgeable value for the message x′. Once the attacker gets a collision on the
internal function, the attacker can extend the collisions on the collided pair of messages x and x′ to the
format Fk2

(x||s) = Fk2
(x′||s) where s is an arbitrary text appended to the collided messages. This attack

was observed in [3]. Hence, to attain a secure MAC function NMAC, the internal function Fk2
must be

collision resistant which implies the complexity of finding collisions on Fk2
must be at least 2|k2|/2 according

to birthday attack.
Case 2: Only k2 is secret

This case assumes that the attacker knows the key k1 used in NMAC and provides the security analysis of
the scheme against straight forward extension attacks. The analysis also assumes that the attacker can only
access the NMAC oracle as a whole though it has knowledge of the key k1. This analysis was not provided
in [3].

Hence, to forge the MAC scheme presented in this case, it seems that the attacker either has to invert
the function fk1

for the known output of the NMAC function or has to find collisions for NMAC as the
attacker cannot get the actual result of Fk2

(x) but only its value after applying fk1
. The value Fk2

(x) can
be viewed as a message dependent secret input to the function fk1

. Hence the function fk1
must be one-way

as it should be hard for the attacker to find Fk2
(x) using x and the NMAC output.

Hirose [14] has shown that the weakly collision resistance of Fk2
implies collision resistance of f used in

Fk2
under the assumption that f is a PRF. Assume that the the outer compression function f is different

from the compression function in the inner iterated hash function F . From this discussion, it seems that
naturally the function fk1

must be both one-way and collision resistant for some one who knows the key
k1. In the following analysis, we show that one cannot always attain a secure MAC function NMAC with
a security requirement weaker than than weakly collision resistance for the function Fk2

even if fk1
is both

one-way and collision resistant.

Theorem 1. A one-way and collision resistant external function fk1
(k1 is known) and a weakly-collision

resistant Fk2
inner function do not always imply a secure MAC function NMAC.

Proof of Theorem 1:

Let Fk2
: {0, 1}∗ → {0, 1}l and fk1

: {0, 1}l → {0, 1}n.
Let Gk2

: {0, 1}∗ → {0, 1}l
′

where l > l′.
Let gk1

: {0, 1}l → {0, 1}n be one-way and collision resistant.
The function Fk2

is defined as Fk2
(x) = Gk2

(x)||0l−l′ .
The function fk1

is defined as fk1
(z′||z′′) = z′||gk1

(z′′) where z′ ∈ {0, 1}l
′

. Then fk1
is also collision

resistant and one-way.
On the other hand, fk1

(Fk2
(x)) = Gk2

(x)||gk1
(0l−l′) and Gk2

(x) is obtained from the NMAC oracle.
Hence, even if the function fk1

is one-way and collision resistant, it cannot always prevent the straight-
forward extension attack as the output of fk1

gives Gk2
(x).

⊓⊔
Remarks:

1. The above analysis shows that the function Gk2
should be a secure MAC to make NMAC a secure MAC

function. The function Fk2
is also a secure MAC if Gk2

is a secure MAC. The function Gk2
will work as
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a secure MAC function only when the input messages are prefix-free as extension attacks do not work
on the hash functions based on Merkle-Damg̊ard construction for prefix-free input messages [7].

2. From the theoretical point of view, the above analysis shows that the outer function with no secrecy is
not always good enough to prevent straight forward extension attacks. Nevertheless, one can use more
“natural” fk1

and Fk2
to attain a secure MAC function to protect against the insiders who know the key

k1.
3. The above analysis also conveys that there may be still some NMAC functions that are secure even if

the underlying functions have the above stated properties.

This MAC scheme is weaker than NMAC from the perspective of complete key-recovery as it uses just one
key. Note that the NMAC function does not achieve security against the key-recovery over the combined
lengths of the keys due to the divide and conquer key recovery attack and the complexity of this attack on w
is about 2|k1| + 2|k2| [3]. Note that this attack is impractical for reasonable key sizes of k1 and k2. Anyhow,
once the attacker gets the key k2 employing this attack, the security of the NMAC function against forgery
reduces to the secret prefix scheme and there is no need for the attacker to find the key k1 to perform a
forgery.
Case 3: Both k1 and k2 are not secret

When the attacker knows both the keys k1 and k2 of NMAC, it is obvious that both functions Fk2
and fk1

must be collision resistant for a protection against insider attacks. In such a case, this scheme will provide
n/2-bit security level against extension attacks where n is the size of output in bits. This scheme is basically
the double hashing scheme proposed in [11] to obtain a higher security level against extension attacks.

4 On the proof of security of NMAC

In this section, we show that the proof of security of NMAC does not depend on padding technique used
for the hash function by specifying a new and simple padding technique for the inner and outer functions
in NMAC. That is, by proving the security of the NMAC function with the new padding technique, we
demonstrate that the security definitions and proof used in [3] for establishing the security of NMAC are
independent of the specification of padding. The NMAC function with the new specification for padding
shall be called NMAC-1, which shall mean NMAC variant 1. Since padding of the message is not part of the
compression function, NMAC-1, like NMAC uses the compression function f of the iterated hash function
F “as is”.

4.1 Specification of NMAC-1

An arbitrary finite length message is defined as x. The message is considered as short if it fits in one block or
less than one block. The maximum size of the block is b which is equal to 512 bits for hash functions such as
SHA-1, SHA-256 and equals 1024 bits for functions such as SHA-384 and SHA-512 [10]. In general, |b| ≥ 2n
where n is the size of chaining variable and also the size of the MAC.

The NMAC-1 function on an arbitrary length message x is defined as follows:

NMAC-1(x) = fk1
(Fk2

(x)) (4)

where Fk2
(x) is defined as follows based on the size |x| in bits of the input message x.

Fk2
(x) =







fk2
(x) if |x| = b

fk2
(x) with the input x = x||10 . . . 0 if |x| < b

iteration offk2
with the input x||10 . . . 0 if |x| > b.

For the case, |x| 6= b, the message x is padded with a bit 1 followed by 0’s (possibly none) to make x a
multiple of the block length b of the compression function. That is, when |x| = b− 1, only bit 1 is padded to
x and when |x| = b− 2, x is padded with bits 1 and 0.

The padding for the outer function fk1
is based on the size of the input message x. If |x| = b, then fk1

is
padded with 0’s else it is padded with a bit 1 followed by 0’s.
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The improvement in the efficiency of NMAC-1 over NMAC is considerably high for short messages. Note
that the total number of calls to the function f of NMAC-1 are two compared to three in NMAC when
|x| = b. See Appendix B for the performance comparison.

4.2 Security Analysis of NMAC-1

The terminology used in the proof of security of NMAC-1 shall be the same as those used in [3] for the
sake of clarity. The analytical results in this paper are given referring to chosen or adaptive chosen message
attacks. The main analytical result of NMAC-1 uses the definitions of a secure MAC and weakly collision
resistant hash function given in section 2. The analysis also uses the following definition on weakly collision
resistant compression function.

Definition 3. A keyed compression function fk2
is an (ǫ′f , q, t, b)- weakly collision resistant compression

function if any attacker, without knowledge of the key k2, requesting q chosen messages xi (where i = 1 . . . q
and max(|xi|) = b) to the the function fk2

cannot find two messages x and x′ in a total time t such that
fk2

(x) = fk2
(x′) with a probability better than ǫ′f . In other words, ǫ′f is the maximum probability of finding

collisions for fk2
.

Theorem 2. The keyed compression function f is an (ǫf , q, t, b)-secure MAC implies that the NMAC-1
function is an (ǫf + ǫF + ǫ′f , q, t, L) secure MAC under the assumption that the keyed iterated hash function
F is an (ǫF , q, t, L)-weakly collision resistant hash function and the fixed input keyed compression function
f is an (ǫ′f , q, t, b)-weakly collision resistant compression function where L ≥ b.

Proof of Theorem 2:

The parameters q,t and L for the number of queries to the NMAC-1 oracle, the total attack time t and the
maximum length L of each finite length message xi (where i = 1, 2, . . . , q) to be queried are fixed.

The attacker AN that tries to break NMAC-1 sends each message xi to the NMAC-1 oracle which gives
response NMAC-1k(xi) for every queried message xi. Finally, the attacker AN outputs the message x and its
forged tag y. The forgery is successful if x 6= xi and NMAC-1k(x) = y. Let ǫN be the maximum probability
that AN succeeds in forging NMAC-1.

Using AN , we build an attacker Af that aims to forge the MAC function fk1
, on inputs of messages

of length b by sending q queries to the oracle fk1
in time t, with a maximum probability of ǫf . The proof

model of NMAC applies to NMAC-1 because the adversary Af in NMAC processes each message xi block
after block padding the last block and computing Fk2

(xi) for every unpadded input message xi sent by AN

to the NMAC oracle. So, Af can be simulated to perform Fk2
(xi) for every message xi using the proposed

padding given for the internal function in NMAC-1. Moreover, the proof of NMAC allows the adversary
Af to choose its own messages to query the MAC function fk1

. Therefore, Af can be simulated to query
fk1

using the proposed padding scheme given for the outer function in NMAC-1. Hence, the security of the
NMAC function [3] under the given proof model is independent of the padding technique employed for the
inner keyed iterated hash function and the outer keyed compression function.

The algorithm of Af is given below:

Choose random k2

For i = 1, . . . , q perform the following steps:

1. AN → xi

2. Af computes Fk2
(xi) according to the specified padding technique

3. Af queries fk1
with Fk2

(xi) and gets fk1
(Fk2

(xi)) where Fk2
(xi) represents the padding of Fk2

(xi).

Fk2
(xi) = Fk2

(xi)||00 . . . 0 if |x| = b and Fk2
(xi) = Fk2

(xi)||10 . . . 0 if |x| 6= b.
4. AN ← fk1

(Fk2
(xi))

AN outputs (x, y) where x 6= xi

Af outputs (Fk2
(x), y)
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Let ǫF and ǫ′f be the maximum probabilities of any adversary for which Fk2
(x) = Fk2

(xi) and fk2
(x) =

fk2
(xi) respectively. The probability with which the adversary Af fails to forge fk1

is given as:

Pr[Affails] ≤ Pr[AN fails]+Pr[AN succeeds ∧ |x| ≤ b ∃i(|xi| ≤ b ∧ fk2
(x) = fk2

(xi))]+Pr[AN succeeds ∧
|x| ≥ b ∃i(|xi| ≥ b ∧ Fk2

(x) = Fk2
(xi))].

That is, 1− ǫf ≤ 1− ǫN + ǫ′f + ǫF

⇒ ǫf ≥ ǫN − ǫ′f − ǫF .
⇒ ǫN ≤ ǫf + ǫ′f + ǫF .
Hence, the probability of forging NMAC-1 is at most sum of the maximum probabilities of finding collisions
for the inner keyed compression function and the keyed iterated hash function and forging the outer keyed
compression function. ⊓⊔

4.3 Comparison of NMAC-1 with other efficient MACs based on hash functions

Patel [25] has proposed Enhanced NMAC (ENMAC) to improve the efficiency of NMAC for short messages.
A short message was defined as a message with size |x| in bits less than or equal to |b− 2|. ENMAC function
is defined as below:

ENMACk(x) =







fk1
(x) with the input x = x||11 if |x| = b− 2

fk1
(x) with the input x = x||10 . . . 01 if |x| < b− 2

fk1
(xpref , Fk2

(xsuff ), 0) if |x| > b− 2.
where xpref contains the bits from 1 to b − n − 1 and xsuff contains bits from b − n to |x|. They are

represented as xpref = x1, . . . , xb−n−1 and xsuff = xb−n, . . . , x|x|.

When |x| ≤ b − 2, a unique padding technique is employed by appending x with a compulsory bit 1
followed by necessary 0 bits to make the size of x equal to the size of b. In this case, the last bit is always set
to 1 and the concatenation of 0 bits depends on whether |x| < b− 2. The last bit indicates whether ENMAC
is used to process single message block. For example, to authenticate a short message say 500 bits, ENMAC
based on SHA-1 requires just one call to the compression function f of SHA-1 whereas NMAC requires three
calls and NMAC-1 requires two calls to the function f .

When |x| > b − 2, the message x is split into two parts, prefix (xpref ) and suffix (xsuff ). ENMAC
first processes the xsuff using the internal function Fk2

and then the prefix part xpref using the output of
Fk2

(xsuff ). For example, see SHA-1-ENMAC discussed in [25]. In this case, if xsuff begins at a non-word
border, all words in xsuff need to be re-aligned. To overcome such problems, a practical variant for ENMAC
was proposed in [25] and is defined as follows:

ENMACk(x) =







fk1
(x) with the input x = x||11 if |x| = b− 2

fk1
(x) with the input x = x||10 . . . 01 if |x| < b− 2

fk1
(Fk2

(xpref ), xsuff , 0) if |x| > b− 2.

where xpref = x1, . . . , x|x|−(b−n−1) and xsuff = x|x|−(b−n), . . . , x|x|.

Assume3 a standard padding technique employed for both xpref and xsuff to obtain a secure MAC
function ENMAC. Now this variant of ENMAC requires knowledge of length of x to calculate xpref and
xsuff as length of the message x determines the content in the last two blocks of xpref where the last block
of xpref is the padded block. The knowledge of the length of the message x is required even if the message
x is padded with a bit 1 followed by 0’s as the specification for xpref has |x| as an argument. In general, the
length of data to be hashed is known ahead of time in many applications and in rare situations it is not [9].

In general, any MAC function based on a hash function used to protect the authenticity and integrity of
the communicated data does not know the length of the message in advance. However, a machine evaluating
the ENMAC function to generate authentication codes for the communicated data, must know the length

3 The padding employed on xpref and xsuff is not specified in the specification of ENMAC or its variant in [25]
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of x in advance to find the content of xpref . The machine may also perform the ENMAC computation as
follows: when it receives the authentication tag attached to the message (specifically, to the last block), it has
to look at the intermediate MAC value obtained at the previous one or two blocks before the final block of x
and has to re-compute xpref accordingly taking into account the padding for xpref . Then it has to evaluate
the outer function of ENMAC. In this case, when ENMAC is used to process large data, there would be a
slight performance inefficiency due to the above process. This problem can be solved using a special code [9]
to tell the ENMAC routine that the total length of xpref is not known when the processing of data is begun
and that it will be input with the final chunk of data for xpref and the xsuff follows xpref . The special code
used for this purpose needs to be clearly different from the valid total length code which appears in the last
block so that correct processing of ENMAC function can be done.

We note that prior knowledge of the message or any special code is not essential to evaluate tags on
messages of more than a block using NMAC, HMAC and NMAC-1 functions. They only require to know the
length encoding of the message in the last block (if length encoding is used as part of the padding) or the
authentication tag attached to the last block to indicate the end of data stream for that particular session
in the communication channel.

The security treatment of NMAC and NMAC-1 take into account the maximum length L of the message
to be processed as a security parameter. During the chosen messgae or adaptive chosen message attack on
any of these functions, their respective oracles return response to a query of arbitrary length in one step.
However, this is not realistic measure. Hence, it is reasonable to assume that the processing time of a MAC
is proportional to the length of the message and the length of the message to be processed must be a security
parameter. We observe that the analysis of ENMAC and its variants do not consider length of the message
as a security parameter.

As observed in [3], one can convert NMAC into a hybrid MAC function using two different functions
as long as the assumptions stated in the proof of security of NMAC hold. This holds for NMAC-1 too. For
example, one can use SHA-256 for the internal function of NMAC-1 and a block cipher in the CBC mode
for the external function of NMAC-1. In this sense, the result of NMAC-1 is more general than stated in
the proof. In addition, one can use the wide-pipe hash [20] (e.g, SHA-512 and truncating half of the output
bits) for the inner function and the compression function of SHA-256 for the external function in NMAC
and NMAC-1. We note that design of such hybrid schemes using ENMAC poses penalty on the performance
as the second function used in ENMAC not only uses the output of the first function but also part of the
message to be authenticated.

Finally, the ISO/IEC 9797-2 [16] standard specfies a mechanism which is a variant of MDx-MAC [27]
that offers high performance for applications that process short messages of upto 256 bits. MDx-MAC
unlike NMAC and its variants, calls complete hash function once but it makes a small modification to the
compression function by adding a key to the additive constants in the compression function. In addition,
MDx-MAC and its variant were not formally analysed as the analysis of NMAC and its variants.

5 A new variant of NMAC

As pointed out in [3], keying the IVs of the hash functions as was done in NMAC and HMAC functions allows
for a better modeling of the keyed hash functions with some significant analytical advantages. However, the
question is how it differs from using the keys as data blocks which is the other common way of designing
keyed hash functions. In this section, we shall explore this concept further and see what advantages we can
get by doing so.

Instead of using the second key k1 as an IV to the external function f in NMAC, we use it as a block
and use the output of Fk2

as the IV to the external function f . We call this variant as M-NMAC which shall
mean modified-NMAC as shown in Fig 3 and is defined as below:

M-NMACk(x) = fFk2
(x)(k1). (5)

M-NMAC can also be seen as a kind of envelope MAC scheme [27–29] except that it uses the key k2

as an IV instead of as a block. k1 denotes the key k1 made to a block size b of the compression function

9



x1 x2 xn k1

k2
f fff

M-NMACk(x)

Fig. 3. The M-NMAC Construction

f . That is, if the function f is the compression function of SHA-1 then the length |k1| of the key k1 is at
most 512 bits. It is recommended that |k1| ≥ |k2| and k1 is completed to size b by appending 0’s if |k1| < b.
The length of message x after padding must be a multiple of block length b of the compression function f
as in NMAC. The proof of security of M-NMAC follows from NMAC under the assumption that the keyed
function Fk2

is a weakly collision resistant hash function and the external function fy(k1) is a secure MAC
where y = Fk2

(x).
We note that birthday attack is the best known forgery attack on M-NMAC. The advantage of M-NMAC

over NMAC is the flexibility in using variable key lengths as large as size b of the block for the trail key k1.
Note that HMAC has also the provision of using larger keys upto size of the block b. While the maximum
lengths of both the keys k1 and k2 in NMAC depends on the sizes of the initial states of the functions
F and f used in NMAC, only size of the key k2 is dependent on the initial state of the function F . The
total complexity of divide and conquer complete key recovery attack [27–29] on M-NMAC (which applies to
NMAC [3]) is about 2|k1| + 2|k2|. If |k1| > |k2|, then this total cost approximates to 2|k1|. Since the key k1 is
used in a separate block independent of the message, the slice by slice trail key recovery attack [28,29] does
not work against M-NMAC as this attack requires the trial key to be split across the blocks. Anyhow, due
to the divide and conquer key recovery attack on M-NMAC, once the attacker finds the key k2, the security
of M-NMAC against forgery, like NMAC, reduces to the secret prefix MAC scheme [27].

6 On the pseudorandomness of NMAC and HMAC

It is well known that any pseudorandom function would work as a MAC and the security reduction is
standard [5, 6, 12, 13]. However, it is not the other way round. A MAC function may not work as a PRF.
Nevertheless, HMAC with SHA-1 is used as pseudorandom function to derive keys in applications such as
PKCS #5 [18] and IPSec’s Key Exchange (IKE) protocol. Though it has been pointed out that [18] security
analysis given for HMAC as a MAC function [3] can be modified to accommodate the requirements of a PRF
using strong security assumptions, no explicit security analysis of NMAC and HMAC as PRFs has appeared
in the literature. In this section, we provide the security analysis of NMAC as a PRF, and it applies to
HMAC as well.

6.1 Security analysis

The terminology used in this section shall be the same as those used in [3, 4] for the sake of clarity. The
analytical result of NMAC as a PRF is given referring to chosen or adaptive chosen message attacks. The
result uses the definition of weakly collision resistant hash function given in section 2. In addition, the analysis
uses the definition on fixed-length input-pseudorandom function (FI-PRF) families following [4].

Informally, a pseudorandom function is a family of functions with the property that the input-output
behaviour of a random member of the family is computationally indistinguishable from that of a random
function. Let F ′ : {0, 1}b × {0, 1}l → {0, 1}l be a family of keyed compression functions or FI-PRF family
where l is the length of the key k. That is, there is a set of keys and each key k of length l names a function
from the family F ′. This is denoted by F ′k or f . Let R : {0, 1}b → {0, 1}l be a family of all functions with
the distribution being uniform; that is picking a function at random from this family just means drawing a
random function of {0, 1}b to {0, 1}l. If S is a probability space then picking a string x from S is denoted

by x
$
← S.
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Now F ′ is said to be a pseudorandom function if the input-output behaviour of a random member of
this family is computationally indistinguishable from the behaviour of a function picked at random from the
family R. This is formalized using the notion of distinguishers [4]. A distinguisher is given an oracle for the
function f chosen at random from one of the two families and is allowed to decide the family from which f
is chosen. Formally, to any such distinguisher a number between 0 and 1 called prf-advantage is associated
and is defined as,

Advprf
F ′ (D) = Pr

f
$
←F ′

[Df = 1]− Pr
f

$
←R

[Df = 1]

with the probabilities taken over the choices of f and the coin tosses of D.
The security of the family F ′ as a pseudorandom function depends on the resources that D uses that include
running-time and number and length of oracle queries. The running-time t includes the time taken to execute

f
$
← F ′, time taken to compute responses to oracle queries made by D and the memory which includes the

size of the description of D. The distinguisher D(t, q, b, ǫ∗) distinguishes F ′ from R if it runs for time t,

makes q oracle queries each of block of length b bits and Advprf
F (D) ≤ ǫ∗ where ǫ∗ is called the distinguishing

probability. This is defined below:

Definition 4. A family of fixed-length input keyed compression functions {F ′t} is (ǫ∗, q, t, b)-FI-PRFs if any
distinguisher that is not given the key k, is limited to spend total time t and sees the outputs of the given
function f computed on q distinct inputs each of size b bits, cannot distinguish the function f from a random
function of the family R except with a probability less than ǫ∗.

Now we state the main analytical result on NMAC as a PRF. The analysis uses Definitions 2 and 4.

Theorem 3. Suppose F ′ : {0, 1}b × {0, 1}l → {0, 1}l be a fixed-length input function family where l is the
length of the key. Suppose F ′ is an (ǫ∗, q, t, b)-pseudorandom on inputs of length b bits. Let {Fk} be a family
of (ǫF , q, t, L)-weakly collision resistant keyed hash functions where L ≥ b. Let NMAC : {0, 1}L × {0, 1}l →
{0, 1}l be a function family where l is the length of each key k1 and k2 and L ≥ b. Then the NMAC function
is (ǫ∗ + ǫF , q, t, L)-pseudorandom.

Proof of Theorem 3:

The parameters q,t and L for the number of queries to the NMAC oracle, the total attack time t and the
maximum length L of each finite length message xi (where i = 1, 2, . . . , q) to be queried are fixed.
Let R : {0, 1}b×{0, 1}l → {0, 1}l be a family of all functions with a uniform distribution. Let G : {0, 1}L →
{0, 1}l be a family of all functions with a uniform distribution.

Let AN be the distinguisher that tries to break NMAC as a PRF. Namely, AN is given an oracle of the
function g chosen at random from one of the two families; NMAC or G. AN ’s task is to distinguish the
function g from a random function. AN queries the oracle g with xi and gets the response g(xi) for every
queried message xi where i ranges from 1 to q. Finally, AN succeeds if it distinguishes NMAC from G after
looking at q input-output examples of g in time t. Let ǫN be the probability of success of AN . After querying
the oracle of the function g with q queries, AN outputs a bit 0 or 1. The output is 1 if AN succeeds in
correctly distinguishing NMAC from G and the output is 0 if AN fails in distinguishing NMAC from G.
Using AN , we build an attacker Af that aims to tell whether the function f belongs to F ′ or R on inputs
of messages of length b by sending q queries to the oracle of the function f in time t with a maximum
probability of ǫ∗. That is, the goal of Af is to distinguish the family F ′ from the random function family R.

The algorithm of Af is given below:

Choose random k2

For i = 1, . . . , q perform the following steps:

1. AN → xi

2. Af computes Fk2
(xi)
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3. Af queries f with Fk2
(xi) and gets f(Fk2

(xi)) where Fk2
(xi) denotes the padding of Fk2

(xi).

4. AN ← f(Fk2
(xi))

AN outputs its decision, a bit 0 or 1.
Af outputs its decision, a bit 0 or 1.

Analysis of success probabilities

Now we analyze the success probability ǫ∗ of the distinguisher Af in distinguishing fk1
from a truly random

function. Let ǫF be the maximum probability that there exists at least one collision in Fk2
when AN queries

the NMAC function. The distinguisher Af fails:

1. whenever AN fails to distinguish NMAC from G and outputs a bit 0.
2. whenever AN outputs a bit 1 and the inner function Fk2

is not weakly collision resistant i.e Fk2
(xp) =

Fk2
(xq) for distinct p and q. In this case, the answer of AN is not useful to tell whether the outer function

fk1
belongs to F ′ or R because g(xp) = g(xq) for both fk1

and a truly random function.

If Fk2
is weakly collision resistant then the probability that there exists p and q such that Fk2

(xp) =
Fk2

(xq) is negligible. Then, the answer of AN is useful to tell whether the outer function is fk1
or a truly

random function because the inputs to the outer function are almost always distinct.

Hence, Pr[Af fails] ≤ Pr[AN fails] + Pr[AN succeeds ∧ ∃p, q (p 6= q ∧ Fk2
(xp) = Fk2

(xq))]

⇒ 1− ǫ∗ ≤ 1− ǫN + ǫF

⇒ ǫN ≤ ǫ∗ + ǫF

Hence, the probability of breaking NMAC as a PRF is at most sum of the maximum probabilities of finding
collisions for the inner keyed compression function and distinguishing the outer function from that of a
random function. ⊓⊔
Remarks:

1. Let ǫmax = max(ǫ∗, ǫF )
⇒ ǫN ≤ ǫmax + ǫmax

⇒ ǫN ≤ 2.ǫmax

⇒ ǫmax ≥ (1/2).ǫN .
That is, given an adversary that distinguishes the NMAC function from a random function, one can
explicitly show an algorithm that using the same resources breaks the underlying hash function with at
least half of that probability.

7 Conclusion

In this paper, we have considered some issues in the design and analysis of NMAC and HMAC functions
that were not covered in [3]. The first result of this paper is analysis of these MAC functions using weaker
assumptions than stated in their proofs of security. Next, we have proposed an efficient variant to NMAC
called NMAC-1 which has some advantages over other efficient MACs based on hash functions. We have
also proposed a variant to the NMAC function which has some additional advantages over NMAC from the
perspective of complete key-recovery attack. Finally, we have formally analysed the pseudorandomness of
NMAC and HMAC functions.
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A Application based on HMAC-SHA-1

Consider the vehicle to remote database application of ISO 15764 (Road Vehicles: Extended Data Link
Security) [15]. This application uses HMAC-SHA-1 for entity authentication and data integrity security
services to prevent replay attacks. The link between the vehicle and the external test equipment is local
to the terminal. It is therefore under the control of the user who will be identified to the server before
secure information is processed. The communication chain requires the following security services: entity
authentication and data integrity to prevent replay attack, confidentiality to prevent eavesdropping and
non-repudiation to prevent the user later denying establishing the link, thereby linking the user to the audit
trail. If the HMAC-SHA-1 for authentication and integrity services is not one-way and collision resistant
for the user knowing the key, then signing the final message with the RSA private key will not provide
non-repudiation for the entire message stream [24]. Considering the recent attacks on SHA-1 [31, 32], one
would require the collision resistance property of the underlying hash function in the MAC schemes like
HMAC and NMAC to provide additional protection to the application against insiders. Note that this is not
the motivation behind the proposals NMAC and HMAC. Nevertheless, as pointed out by Preneel [26, p.20],
if some additional protection against insider attacks is obtained from the protection of the MAC, the MAC
function must be naturally collision resistant.

B Performance aspects

In this section, we give performance comparison of NMAC-1 against NMAC in terms of number of calls to
the compression function for various message sizes when hash functions from the MDx family are chosen as
the underlying algorithms for NMAC and NMAC-1. A similar performance comparison between NMAC and
ENMAC is given in [25].

The efficiency improvement of NMAC-1 over NMAC is calculated using the formula.

%Efficiency improvement = [(#(f) in NMAC−#(f) in NMAC-1)/#(f) in NMAC]100

14



Table 1. Efficiency improvement of NMAC-1 with respect to NMAC

x in 32 byte increments #(f) in NMAC #(f) in NMAC-1 %Efficiency improvement

32 2 2 0
64 3 2 33
96 3 3 0
128 4 3 25
160 4 4 0
192 5 4 20
224 5 5 0
256 6 5 17

From Table 1, we can clearly see that for messages of exactly one block length (b = 512 bits) and those that
fall in the closed set [n ∗ 447, n ∗ b] and with n = 1 (n ∈ {1, 2, . . .}), the efficiency of NMAC-1 is 33% over
NMAC. The efficiency improvement decreases for the messages falling in the set [n ∗ 447, n ∗ b] and with
n ≥ 2.

C Survey of attacks on MACs based on hash functions

The following are some known generic attacks on MAC schemes [21, 27]. Here, the secret key k is used in
computing an n-bit MAC value h for a message x. It is assumed that the adversary that attacks the MAC
function does not possess the secret key k.

– MAC forgery: An adversary generates a new message-MAC pair (x,h) such that MACk(x) = h. If the
message x is an arbitrary message then this is an existential forgery. If the message x is a particularly
chosen message then this a selective forgery. For an ideal MAC, the complexity of these attacks is
O(2min(|k|,n)). Either guessing h for a given x or guessing x for a given h, has a success probability of
2−n. It should be noted that the adversary may somehow, possibly by interacting with the sender or
the receiver, determines the validity of the forged (x, h) pairs. Of course, the adversary cannot verify the
forged pairs even with known text-MAC pairs without interacting with the sender or receiver. A formal
definition on MAC security is given in section 4.

– Key recovery: Using a single known text-MAC pair, an attacker finds the correct key k used in com-
puting the MAC value. For an ideal MAC, the complexity of the key recovery attack should be same as
the exhaustive key search attack over the entire key space which is O(2|k|). It requires |k|/n text-MAC
pairs to verify this attack. Key recovery attack allows selective forgery of the MAC function.

Attacks on different MAC schemes based on cryptographic hash functions are presented below. It should
be noted that the hash function F used in constructing MACs follows the Merkle-Damg̊ard construction [8,
22]. The function F processes a message of arbitrary finite length in successive blocks of fixed equal length
using the compression function f . It is assumed that the length of the chaining value, hash value and the
MAC value (authentication tag) is n bits. For the working procedure on Merkle-Damg̊ard hash functions
see [3, 21].

– Attack against the secret prefix method: In the secret prefix method, the secret key k is prepended
to the message for which MAC has to be computed [27, 30]. MAC computed on a message x using this
method is given as MACk(x) = F (k||x). This scheme is weak against extension attacks as one can use this
MAC value to compute the MAC of a new message x||x′ by appending x′ to x. The iterative structure
of F allows extension attacks to happen. Moreover, any type of padding scheme employed for x initially
do not prevent extension attacks as an attacker can cleverly choose x′ related to the length of x and its
padding.
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– Attack against the secret suffix method: MACk(x) = F (x||k) is the secret suffix method [27, 30]
where key k is appended to the message x. An off-line collision attack against the function F can result
in two messages x and x′ such that F (x) = F (x′). For an ideal hash function F with an n-bit hash
value, this requires at least 2n/2 off-line operations according to the Birthday attack. Once this is found,
the attacker can append text y to x and get the chosen text x||y and request the MACk function to get
MACk(x||y||k). Using the MAC value MACk(x||y||k), the attacker can perform selective forgery (forgery
for the message of its choice) on the message x′||y||k to get MACk(x′||y||k). Again the attacker does not
have to know the secret key k to perform this attack as it is appending of the key k to the message that
results in the attack.

– Attacks against the Envelope method: Envelope method is a combination of prefix and suffix
methods. In this method, one key k1 is prepended to the message x and the other key k2 is appended to
the message x as given by MACk(x) = F (k1||x||k2).
Preneel and van Oorschot [3, 27–29] observed divide and conquer exhaustive search key recovery attack
on such a scheme where both keys k1 and k2 can be recovered in a time around (2|k1| + 2|k2|)(where
|k1| = |k2| =n) by first recovering key k1 and then k2. This attack needs about 2(n+1)/2 known message-
MAC pairs of equal length to find an internal collision(collision before last block gets hashed)on the
chaining variables. The attacker then performs an exhaustive key search for k1 with the effort about 2|k1|

which results in a small set of possible keys for k1 and determines the correct key k1 with a few chosen
messages thus reducing the security of the envelope method to the secret suffix method. The attacker
then finds key k2 with the effort 2|k2|.
Preneel and van Oorschot [28] described a new divide and conquer key recovery attack to recover the
trailing key k2 in the envelope method. This is also called as slice by slice key recovery of trail key in
envelope method [29]. This attack includes the case k1 = k2 of the envelope method which was proposed
in RFC 1828 [23] and in [17]. This attack exploits the padding procedure of the hash functions such as
MD5 used in the envelope scheme. This attack relies on the trial key k2 being split across the blocks.
For example, to find 64 bits of a 128-bit key k2 in 4-bit slices (24 steps), the attack requires 264.5 known
texts at each step to get an internal collision (in total 268.5 known texts) and 26 chosen texts at each step
to identify the correct key bits (in total 210 chosen texts). The attack works when the last before block
contains 1 to 64 bits of the key k2 and known messages have the same number of blocks. Exhaustive key
search is then performed to recover the remaining 64 key bits of k2. Hence the overall time complexity of
the attack to recover 128-bit key k2 in 4-bit slices is on the order of 268.5 known text-MAC pairs instead
of 2128. Finding key k1 then takes 2|k1| effort. But if one knows k2, the security of the envelope scheme
reduces to secret prefix method.
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