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Summary

The main part of this thesis work is to develop a model for solving the problem
of finding arc- or node disjoint paths with different length- and distribution
criteria in directed networks. As one result, we present a fairly general mathe-
matical model that can incorporate a multitude of criteria, and which is suit-
able for computations. The model applies to problems that can be modeled as
directed networks and in which one wants to transport commodities of certain
sizes from sources to terminals in this directed network. The transportation
routes constitute connecting paths. Length criteria can be that connecting
paths must equal, be less than, or greater than certain lengths, or they must
have equal lengths or approximately equal lengths. The distribution criteria
include defining where the connecting paths must begin and where they must
end, defining forbidden areas, and defining mandatory areas.

Other products of this thesis work are developed algorithms for eliminating
occurrences of sub-tours in the solutions and solving large-scale programs. The
large-scale programs are decomposed into several sub-programs that are solved
separately. There are two kinds of decompositions: using separate regions or
overlapping regions. Using overlapping- instead of separate regions gives more
flexibility to the solutions. When using overlapping regions, both the number
of regions and the size of the overlap decide the behavior of the decomposition
algorithm.

A last part of this thesis work is to implement and experiment upon the
model and the developed algorithms. The level of difficulty of the problem
of finding arc- or node disjoint paths with different length- and distribution
criteria in directed networks depends on the posed criteria. Using stricter
criteria makes the problem more difficult to solve. However, the decomposition
algorithm is able to find solutions in most cases when choosing an appropriate
number of regions and size of overlap.

Keywords

Arc disjoint paths, Distribution criteria, Integer multicommodity flow, Large
scale problems, Length criteria, Named integer multicommodity flow, Node
disjoint paths, Sub-tour elimination
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Preface

This thesis is submitted as partial fulfillment of the requirements for the degree
of Master of Science in Engineering in Applied Mathematics. The work has
been carried out in the period between January 2005 and August 2005 at the
Department of Mathematics at the Technical University of Denmark.

The work reported here constitutes the theoretical part of work developed
in order to attack an industrial problem and the confidential part of the work
is reported in a separate text; the complete thesis work thus involves these
two reports. We also remark here that the theoretical work is illustrated by
examples from commodity flow in road transport problems; this only resembles
the industrial problem in its abstract mathematical form.

It is assumed that the readers of this thesis are familiar with mathematical
modeling. However, all elements of the problem are defined such that a reader
unfamiliar with the terminology in graph theory still will be able to understand
the problem. Some of the discussed problems are best understood if the reader
is acquainted with some optimization; however, such knowledge is not neces-
sary. This report is thus also written so as to provide our industrial partner
with a background for the material described in the confidential report.
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Definitions

Word Definition

active arc arc with the entire quantity of a commodity as flow
arc ordered pair of nodes (i, j)
arc capacity total amount of flow that can be assigned to an arc
arc cost price it costs to transport a commodity of quantity

1 along an arc
arc disjoint connecting connecting paths with no common arcs

paths
capacity function function that assigns an arc capacity to each arc
connecting path directed path in which the initial node is the source

and the final node is the terminal
connecting path length total cost of all arcs along a connecting path
connections specifies which sub-sources are connected to which

sub-terminals
demand nonnegative value assigned to the terminal
directed graph a node set and an arc set on these nodes
directed network directed graph together with a capacity function
directed path sequence (i1, i2, . . . , in) of nodes such that

(i1, i2), (i2, i3), . . . , (in−1, in) are arcs of a directed
graph

edge unordered pair of nodes {i, j}
Eulerian directed graph directed graph in which every node has equal in-

degree and out-degree
feasible network flow a flow in a directed network that satisfies flow con-

servation and does not exceed any arc capacity
fixed-charge network flow the problem of minimizing the total cost of some

problem active arcs while maintaining a feasible network
flow

flow nonnegative value assigned to an arc
flow balance when the sum of flows along all inward directed

arcs of a node equals the sum of flows along all
outward directed arcs of that node
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flow conservation when there is flow balance at all nodes except at
the source and the terminal, and the total amount
of flow assigned to the outward- and inward di-
rected arcs of the source and terminal, respectively,
equals the demand

forbidden area specifies which nodes and arcs some commodities
may not have, respectively, a flow through or along

inactive arc arc that is not active
in-degree number of inward directed arcs at a given node in

a directed graph
inward adjacent node node that reaches a specific node by any inward

directed arc of that node
inward directed arc arc in which a specific node constitutes the second

node in the ordered pair of nodes
mandatory area specifies which nodes and arcs some commodities

must have, respectively, a flow through or along
node point or vertex
node disjoint connecting connecting paths with no common nodes except

paths for the source, terminal, and possibly sub-sources
and sub-terminals

out-degree number of outward directed arcs at a given node
in a directed graph

outward adjacent node node that is reached by any outward directed arc
from a specific node

outward directed arc arc in which a specific node constitutes the first
node in the ordered pair of nodes

planar graph undirected graph that can be drawn in a plane so
that no edges cross each other

quantity amount of a commodity
source node with no inward adjacent nodes
sub-source node with no inward adjacent nodes except for the

source
sub-terminal node with no outward adjacent nodes except for

the terminal
terminal node with no outward adjacent nodes
total cost combined arc costs of some arcs
undirected graph a node set and an edge set on these nodes

Symbol Definition

ai,j constraint coefficient of constraint i for integer variable xj

A arc set
bi right-hand side coefficient of constraint i
C set of linear constraints
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ci objective function coefficient for integer variable xi

ci,j cost of arc (i, j)
d capacity function
di,j capacity of arc (i, j)
D number of smaller sub-programs in decomposition
δ sub-tour
∆ set of all sub-tours
E edge set
f linear objective function
−→
F k set of forbidden arcs of commodity k

Ḟ k set of forbidden nodes of commodity k
gi,j constraint coefficient of constraint i for real variable yj

G = (V, A, d) directed network
hi objective function coefficient for real variable yi

i or j node
I number of sub-sources
I(i) set of inward adjacent nodes of node i
(i, j) arc
{i, j} edge
J number of sub-terminals
k type of commodity
K number of commodities
L connecting path length when equal for all commodities
Lk connecting path length of commodity k
m number of constraints in a general MILP
−→
Mk set of mandatory arcs of commodity k

Ṁk set of mandatory nodes of commodity k
n number of integer variables in a general MILP
N set of actively named commodities
Ni,j set of actively named commodities along arc (i, j)
N set of inactively named commodities
N i,j set of inactively named commodities along arc (i, j)
O(i) set of outward adjacent nodes of node i
p number of real variables in a general MILP
qk quantity of commodity k
R

p
+ set of p-dimensional nonnegative real vectors

ρ percent of the average connecting path length
S source
si sub-source i
T terminal
tj sub-terminal j
V node set
x nonnegative integer variables
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y nonnegative real variables
Z

n
+ set of n-dimensional nonnegative integer vectors
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C h a p t e r 1

Introduction

Imagine a scenario in which an enterprise must deliver some goods to a cus-
tomer. The enterprise has a chart that illustrates cities linked together by
roads. The goods have a certain size and the roads have a possible load that
cannot be exceeded. The transportation of goods must follow these roads. The
customer demands that no two goods pass through the same location, perhaps
due to security reasons.1 There must, hence, be as many transportation routes
as goods, and no two routes may intersect. The roads also take time to travel,
and cost a certain amount. For this specific problem, referred to as the time
problem, the enterprise wishes the transport to be as cheap as possible. How-
ever, the customer demands that the enterprise must deliver the goods within
a certain time, so no route may take longer than that time. Furthermore, the
customer expects goods to arrive at approximately the same time.

An analog of this problem is often seen in telecommunication. Here the
roads correspond to cables and the cities to juncture points. In telecommuni-
cation, a data signal is split into several small packages of signals. This reduces
the risk of transmission failures. No signal may exceed the possible load ca-
pacity of a cable. Furthermore, all signals must arrive at approximately equal
times so as not to cause a too large time-delay.

Imagine another scenario with the same enterprise as in the time problem.
In this scenario, a customer needs products distributed to its factories. The
customer needs as many products as possible under the restriction that these
products may not pass through the same location on their way to the factories.2

Furthermore, the enterprise must again deliver the goods within a certain time,
so no route may take longer than that time. This problem is referred to as the
distribution problem.

The time- and distribution problem belong to a certain group of problems.

1It might be dangerous to keep two pieces of goods at the same location. Another reason
might be that the customer wants independent transportation routes. This would result in
a minimization of the importance of a failure of one transportation link.

2This could be for secrecy reasons. For example, it might be possible to determine the
end product by seeing more than one component.
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These are fixed-charge network flow problems in directed networks. However,
the problems in this thesis are special types of fixed-charge network flow prob-
lems since they also include finding routes that do not intersect and that also
satisfy other criteria. The main part of this thesis is to model these problems.
This thesis develops a fairly general mathematical model of these problems in
which a multitude of criteria can be incorporated, and which is suitable for
computations.

Furthermore, this thesis gives algorithms to solve different challenges that
the modeling gives rise to. These are how to eliminate sub-tours and how to
decompose the problem into smaller sub-problems. Finally, this thesis imple-
ments and experiments upon the modeling and the developed algorithms.

In the following section, the notation that is used is introduced, and the
problem is stated using this notation. The last section is about what has
already been done within the field of the problem.

1.1 The Problem

This thesis deals with certain types of problems that can be modeled as fixed-
charge network flow problems. This section begins by defining such problems
and then states the problem that this thesis solves.

A node is a point or vertex, and an arc is an ordered pair of nodes. A node
is usually denoted i or j, and an arc from node i to node j is denoted (i, j).
In this thesis, an arrow visualizes an arc in the way seen in Figure 1.1. Here,
node i and node j are connected by the arc (i, j).

i j

Figure 1.1: Two nodes i and j connected by the arc (i, j).

An arrow pointing both ways between node i and node j is a visualization
of the two arcs (i, j) and (j, i).

A node set V is a set of nodes and an arc set A is a set of arcs. A directed
graph (V, A) consists of a node set V and an arc set A on these nodes.

Arcs are both inward- and outward directed. Inward directed arcs of node
j are all arcs of the form (i, j). Similarly, the outward directed arcs of node i
are all arcs of the form (i, j). Note that arc (i, j) is an outward directed arc of
node i and an inward directed arc of node j.

An outward adjacent node of node i is a node j for which (i, j) is an arc.
Similarly, an inward adjacent node of node j is a node i for which (i, j) is an
arc. In Figure 1.1, node j is an outward adjacent node of node i, and node
i is an inward adjacent node of node j. A source is a node with no inward
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adjacent nodes. A terminal is a node with no outward adjacent nodes. The
directed networks in this thesis have only one source node and one terminal
node, denoted S and T , respectively. Note that these nodes may be fictive.
That is, they might not represent a location like the other nodes in the directed
network but are introduced to model the problem.

A directed path in a directed graph is a sequence (i1, i2, . . . , in) of nodes such
that (i1, i2), (i2, i3), . . . , (in−1, in) are arcs of the directed graph. A connecting
path is a directed path in which the initial node is the source and the final node
is the terminal. In this thesis, each connecting path models the transportation
of a commodity.

The flow of an arc is a nonnegative value assigned to this arc. The demand
of a graph is a nonnegative value assigned to the terminal T . For the demand
to be satisfied, the total amount of flow assigned to the inward directed arcs of
the terminal node must be greater than or equal to the demand. Flow balance
at node i is the state in which the sum of flows along all inward directed arcs of
node i equals the sum of flows along all outward directed arcs of node i. Flow
conservation is the state in which there is flow balance at all nodes except at
the source S and the terminal T , and the total amount of flow assigned to the
outward- and inward directed arcs of the source and terminal, respectively,
equals the demand of the graph.

The arc capacity of an arc is the total amount of flow that can be assigned
to that arc. A capacity function d assigns an arc capacity to each arc.

This leads to the definition of a directed network . Such network is a directed
graph together with a capacity function, and is denoted G = (V, A, d).

Seen in Figure 1.2 is an example of a directed network G = (V, A, d) with
the node set

V = {1, 2, 3, 4, S, T} ,

in which S is the source node and T is the terminal node, and the arc set

A = {(1, 2), (3, 4), (1, 3), (4, 2), (1, 4), (S, 1), (S, 3), (2, T ), (4, T )} .

The arc capacities are written next to the arcs; they are

d = (2, 4, 1, 1, 2, 3, 4, 2, 1) .

1 2

3 4

3

2

2
1 1

2

1

4

4

S T

Figure 1.2: A directed network with 6 nodes and 9 arcs.
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A given flow is a feasible network flow when
• no flow exceeds the corresponding arc capacity, and
• flow conservation is preserved.
In this thesis, we wish to model a transportation of commodities from the

source node S to the terminal node T . Each commodity has a quantity that
is the amount of that commodity. The cost of an arc is the price it costs to
transport a commodity of quantity 1 along that arc. The total cost of some
arcs is the combined arc costs of these arcs.

An arc is an active arc if it has the entire quantity of a commodity as flow,
and an inactive arc otherwise. This may be thought of as transportation of
commodities along an arc. Hence, there is no transportation along an arc when
it is inactive, and there is a transportation when the arc is active.

The fixed-charge network flow problem is to minimize the total cost of some
active arcs while maintaining a feasible network flow.

The fixed-charge network flow problem does not model routes that do not
intersect. The definitions are therefore extended as in the following. Arc
disjoint connecting paths are connecting paths with no common arcs. Node
disjoint connecting paths are connecting paths with no common nodes except
for the source S and terminal T . Node disjoint connecting paths are arc disjoint
but the converse is not true. An example of two arc disjoint connecting paths
is seen to the left in Figure 1.3. They are not node disjoint since they share
node 4. Two node disjoint paths are seen to the right in Figure 1.3. The
connecting paths are the arcs in bold; one is gray, and the other black.

T

1 2

3 4

2

2
1 1

2

1

4

4

3

S T

1 2

3 4

2

2
1 1

2

1

4

4

3

S

Figure 1.3: Arc- (left) and node disjoint connecting paths (right).

The connecting path length is the total cost of all arcs along this connecting
path. Length criteria define what these connecting path lengths must be.

A sub-source is a node with no inward adjacent nodes except for the source;
similarly, a sub-terminal is a node with no outward adjacent nodes except for
the terminal. Sub-sources and sub-terminals in a directed network may be
related to one-another. The connections of a directed network specifies which
sub-sources are connected to which sub-terminals via some connecting paths.
Furthermore, there may be forbidden- and mandatory areas in a directed
network. These specify whether there are some commodities that may not or
must have a flow through some nodes or along some arcs. Distribution criteria
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define the connections and the forbidden- and mandatory areas in a directed
network.

It is now possible to state the problem of this thesis. It is to find either
a specific demand or a maximal number of connecting paths in a directed
network such that the connecting paths satisfy a feasible network flow and are
either arc- or node disjoint. Furthermore, different length- and distribution
criteria may be imposed on the connecting paths.

1.2 Background

The problem of finding arc- or node disjoint connecting paths has a theoretical
and practical history, and has been treated in many articles. This is because
it occurs in areas such as telecommunication, transportation, and production.
In these fields, it is of great interest to have more than one connecting path.
However, the literature typically does not treat length- and distribution crite-
ria.

To explain why it is not possible to use much of this existing literature
to solve the thesis problem, we need some more definitions. An edge is an
unordered pair of nodes {i, j}. An undirected graph (V, E) consists of a node
set V and an edge set E on the nodes V .

Networks, paths, and edge- and node disjointness may each be defined as
in the directed case. Notice that an undirected network can be thought of as a
special type of directed network: the directed network has two arcs, (i, j) and
(j, i), for each edge {i, j} in the undirected network.

In the existing literature, a common problem is to find a set of edge- or
node disjoint connecting paths in undirected network, see e.g. [4, 5, 16]. This
theory is not used in this thesis since a larger class of networks are treated
here.

However, there are also many articles that treat problems concerning arc-
and node disjoint connecting paths in directed networks. An early article on
this subject is [12] from 1974; an improved version is [13] from 1984. These
articles propose an algorithm for finding the K node disjoint connecting paths
with minimal combined connecting path lengths. Several other papers have
treated this problem, see e.g. [11, 15]. However, the proposed algorithms give
the combined connecting path lengths and not the individual connecting path
lengths.

Article [4, Section 8] proposes a way to solve the problem of finding edge
disjoint connecting paths in undirected networks. This is to write the problem
as a special type of mixed-integer linear program, namely as an integer mul-
ticommodity flow. When modeling the problem in this way, it is possible to
impose criteria on each individual undirected connecting path. Furthermore,
the problem can be optimized by general optimization routines since it is a
linear model. Integer multicommodity flow is also applied to directed network,
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see [2].
For these reasons integer multicommodity flow, which we present in the

following chapter, has been chosen as a template for the models in this thesis.
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Theory

2.1 Introduction

This chapter shows how to translate the thesis problem into a mathematical
model suitable for the application of computational methods. It presents some
general theory and demonstrates how this theory can be expanded to solve the
problem of finding arc- or node disjoint connecting paths. The general the-
ory uses mixed-integer linear programming and integer multicommodity flow.
This theory is our point of departure and is enhanced in order to solve the
problem of finding arc- or node disjoint connecting paths with length- and
distribution criteria. One extension we make is naming, which enables cri-
teria to be modeled by extra constraints to the integer multicommodity flow
program. Furthermore, we see the influences of having different objective func-
tions. Finally, we discuss the challenges that can arise: sub-tours in solutions
and NP-complete large-scale problems.

2.2 Mixed-Integer Linear Programming

The point of departure to model the problems of this thesis is to model them
as proposed in [4, Section 8]. The model proposed in [4, Section 8] is a special
type of mixed-integer linear program, denoted MILP. This section presents
MILP. Further discussions are seen in [9, Chapter I.5] and [10, Chapter 13].

A MILP (f, C) is a mathematical model composed of a linear objective
function f and a set of linear constraints C. Both the objective function
and the set of constraints contain two types of variables, namely nonnegative
integers and nonnegative reals. Throughout the following, f is linear in its
variables and the constraints C are linear inequalities. If there are n nonneg-
ative integer variables x1, . . . , xn and p nonnegative real variables y1, . . . , yp,
then set x = (x1, . . . , xn) and y = (y1, . . . , yp). Note that

x ∈ Z
n
+ and y ∈ R

p
+ ,
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where Z
n
+ denotes the set of n-dimensional nonnegative integer vectors, and

R
p
+ denotes the set of p-dimensional nonnegative real vectors. In a MILP, there

must always be at least one variable xi or yi present, so n+p ≥ 1. If there only
are integer variables present in the modeling (i.e., p = 0), then this problem is
a pure-integer program. When only real variables are present (i.e., n = 0), the
problem is a linear program. In this thesis, the problems are modeled as both
pure-integer programs and mixed-integer programs.

The linear objective function f may be any linear combination of the integer
variables x and the real variables y. That is, f can be written as

n
∑

i=1

cixi +

p
∑

i=1

hiyi ,

for real coefficients ci and hi; the objective function coefficients for integer
variable xi and real variable yi, respectively.

The set of linear constraints C can be written as

n
∑

j=1

ai,jxj +

p
∑

j=1

gi,jyj ≤ bi , ∀i ∈ {1, . . . , m} ,

for real coefficients ai,j and gi,j; the constraint coefficients of constraint i for
integer variable xj and real variable yj, respectively. Furthermore, the real
coefficients bi constitute the right-hand side of the constraints.

In a MILP, the objective function is optimized by either being maximized
or minimized.1 A general MILP can be written in the form

max / min
n

∑

i=1

cixi +

p
∑

i=1

hiyi (2.1)

s.t.

n
∑

j=1

ai,jxj +

p
∑

j=1

gi,jyj ≤ bi , ∀i ∈ {1, . . . , m} , (2.2)

x ∈ Z
n
+ , and y ∈ R

p
+ . (2.3)

The objective of the MILP is expressed in (2.1); the set of linear constraints
C is presented in (2.2); and the variables are seen in (2.3).

The set of feasible solutions to the MILP (2.1)–(2.3) are defined as those
variables x ∈ Z

n
+ and y ∈ R

p
+ satisfying all constraints (2.2). A feasible (in-

feasible) program is a program for which the set of feasible solutions is not
empty (is empty). An optimal solution is a feasible solution which minimizes
or maximizes the objective function f from (2.1). For all feasible programs,
there is at least one optimal solution.2

1The maximum of an objective function f can also be found by minimizing −f .
2There exist only a finite number of feasible solutions, so there must be an optimal

solution among them.
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2.3 Integer Multicommodity Flow

An integer multicommodity flow is a special type of mixed-integer linear pro-
gram. It can be used to model the problem in which commodities of certain
quantities must share arcs with arc capacities. This section presents the in-
teger multicommodity flow model, as presented in [2]. For further details see
also [1] and [4, pp. 159–177]. In the following, integer multicommodity flow
is denoted IMCF. Throughout this section, parallels are drawn to the time
problem in Chapter 1 when describing the model.

IMCF represents a directed network G = (V, A, d) consisting of a node set
V , an arc set A, and a capacity function d. Returning to the enterprise that has
a chart with roads linking cities together, the chart corresponds to the directed
network; the cities correspond to the node set; the connections between the
cities are described by the arc set; and the maximal load of transport along
each road corresponds to the capacity function.

The enterprise wants to transport a certain amount of goods to the cus-
tomer. In IMCF, this is represented by K commodities k ∈ {1, . . . , K}. The
goods each have a size which corresponds to commodity k having a quantity
qk.

In the example, the roads take a certain time to travel. This is equivalent
to the arcs having a cost ci,j. Furthermore, the roads have a maximal transport
load that cannot be exceeded. This is represented by the arc capacities di,j.

The above described parameters of IMCF are listed in Table 2.1.

Parameters Explanation

A arc set
ci,j cost of arc (i, j)
di,j capacity of arc (i, j)
K number of commodities
V node set
qk quantity of commodity k

Table 2.1: Parameters of IMCF.

In IMCF, the variables xk
i,j describe the flow of each commodity k along

each arc (i, j). This is obtained by representing each arc K times. Hence,
we have K variables per arc describing the flow along that arc. Figure 2.1
illustrates arc (i, j) represented K times.

1

2

K
i j i j

Figure 2.1: Arc (i, j) is represented K times.
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The variable xk
i,j is defined as follows:

xk
i,j =

{

1 if the entire quantity qk of commodity k is assigned to arc (i, j);
0 otherwise.

Note that this representation produces large-scale programs, since the num-
ber of variables is K larger than the number of arcs in the directed network.
For now, we do not consider the complexities of this mathematical model.
However, we develop an algorithm in Chapter 4 that compensates for this
representation. What is more, we see in Chapter 5 that this representation
produces sparse matrices, which also compensates for this representation.

With this representation, it is possible to model feasible flows in the directed
network G = (V, A, d). The following constraints must apply:

1. flow conservation,
2. arc capacity limitations, and
3. non-negativity of flows.
Constraint 1 preserves flow balance in all nodes except for the source S

and terminal T . We denote the set of outward adjacent nodes O(i), and the
set of inward adjacent nodes I(i). In IMCF, flow balance is then written as

∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = 0 , ∀i ∈ V \{S, T}, k ∈ {1, . . . , K} .

However, additional constraints are required to ensure positive flows along the
outward- and inward directed arcs of the source and terminal, respectively.
This is done by introducing the parameter

bk
i =







1 if i = S;
−1 if i = T ; and
0 otherwise.

(2.4)

Now the set of constraints that imposes conservation of flow can be written as

∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = bk

i , ∀i ∈ V, k ∈ {1, . . . , K} .

Constraint 2 imposes that the commodities k of quantities qk transported
along arc (i, j) do not exceed the arc capacity di,j. This is expressed in IMCF
by the inequalities

K
∑

k=1

qkxk
i,j ≤ di,j , ∀(i, j) ∈ A .

The variables are defined as xk
i,j ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ {1, . . . , K},

hence, constraint 3 is automatically satisfied.
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All in all, the following sets of constraints are given:

K
∑

k=1

qkxk
i,j ≤ di,j , ∀(i, j) ∈ A ,

∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = bk

i , ∀i ∈ V, k ∈ {1, . . . , K} , (2.5)

xk
i,j ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ {1, . . . , K} ,

where the parameters are as specified in (2.4) and Table 2.1. Throughout this
thesis, the sets of constraints (2.5) are known as the IMCF network model.

The IMCF network model (2.5) is a feasibility model since with this we are
only searching a feasible solution. What is more, also the disjointness of the
connecting paths and the length- and distribution criteria can be represented
by constraints. The following sections treat therefore only constraints, whereas
we treat objective functions afterwards.

2.4 Disjoint Connecting Paths

This section discusses how to model the problem of finding arc- or node disjoint
connecting paths in a directed network. This is relevant when no more than
one commodity may have a flow along an arc or through a node.

When we model directed networks with sub-sources and/or sub-terminals,
then the arc- and node disjointness criteria are somewhat altered. In these
cases, arc disjointness criteria do not apply to inward- and outward directed
arcs of, respectively, sub-sources and sub-terminals. Similarly, node disjoint-
ness does not apply to sub-sources and sub-terminals. This, however, com-
plicates notation, so, in this section, we choose to consider directed networks
without sub-sources and sub-terminals. Later in the chapter, we see a case in
which we include sub-terminals.

2.4.1 Arc Disjoint Connecting Paths

The IMCF network model is extended, to model arc disjoint connecting paths,
by adding the constraint that no more than one commodity may use an arc.
In other words,

K
∑

k=1

xk
i,j ≤ 1 , ∀(i, j) ∈ A . (2.6)

2.4.2 Node Disjoint Connecting Paths

It is also possible to extend the IMCF network model to find node disjoint
connecting paths. However, the extra constraint has to concern the arcs, since
it is the arcs that are represented by the variables in the IMCF network model.
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There are two ways of modeling how to find node disjoint connecting paths:
representing a node twice and imposing arc disjointness or extending the IMCF
network model with another set of constraints. If we would choose to represent
every node twice, then the first should contain the inward directed arcs and
the second the outward directed arcs. Hereafter, an extra arc is introduced
connecting the two representations. See Figure 2.2 for an illustration.

i i’’i’

Figure 2.2: One node is represented twice and an extra arc is introduced.

This is done for all nodes except for the source and terminal. It would entail
a larger model (an arc per node), so we recommend the following approach
instead. The IMCF network model (2.5) is extended with a set of constraints
ensuring that no more than one commodity has a flow along the inward- or
outward directed arcs of a node except for the source and terminal. These
constraints may be expressed as follows:

K
∑

k=1

∑

i∈I(j)

xk
i,j ≤ 1 , ∀j ∈ V \{S, T} , and (2.7)

K
∑

k=1

∑

j∈O(i)

xk
i,j ≤ 1 , ∀i ∈ V \{S, T} . (2.8)

Note that (2.7) (corresponding to inward directed arcs) implies (2.8) (corre-
sponding to outward directed arcs) and vice versa due to flow balance. In this
thesis, we model the problem of finding node disjoint connecting paths in a
directed network by imposing (2.8).

2.5 Naming

In the IMCF network model it is implicitly assumed that the directed network
has a demand which is the same as the number of commodities. However, the
directed network might not have this demand; for instance, the customer in
the distribution problem in Chapter 1 wishes an unspecified maximal number
of goods. Furthermore, the criteria that are imposed on the connecting paths
might not apply to all connecting paths. This entails a need for two certain
types of naming of the connecting paths.

Active naming entails that a certain commodity must have a positive flow
along a certain arc. The set of commodities that are actively named along arc
(i, j) are denoted Ni,j. This is modeled by setting

xk
i,j = 1 , ∀(i, j) ∈ A, k ∈ Ni,j . (2.9)
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Inactive naming forces some commodities to be inactive on specific arcs.
However, it does not decide which commodities, if any, are active. The set of
commodities that are forced to be inactive on arc (i, j) is denoted N i,j. Hence,
inactively naming the commodities k ∈ N i,j to not have a flow along arc (i, j)
is imposed by setting

xk
i,j = 0 , ∀(i, j) ∈ A, k ∈ N i,j . (2.10)

Note that active naming combined with a disjointness criterion imply that
the other commodities are inactively named along that arc.

In the IMCF network model, there must be as many connecting paths as
commodities. This is modeled from the flow conservation constraints, which
forces positive flow along the outward- and inward directed arcs of the source
and terminal, respectively. That is, the flow conservation constraints at the
source S and at the terminal T are, respectively,

∑

j∈O(S)

xk
S,j = 1 , ∀k ∈ {1, . . . , K} and

∑

j∈I(T )

xk
j,T = 1 , ∀k ∈ {1, . . . , K} . (2.11)

To avoid forcing a solution to have K connecting paths, the flow conser-
vation constraints are first excluded, and flow balance is introduced in the
model. Flow balance must be satisfied at all nodes except for the source and
the terminal:

∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = 0 , ∀i ∈ V \{S, T}, k ∈ {1, . . . , K} .

However, there may be some commodities that must have corresponding
connecting paths. This is modeled by using active naming along the outward
directed arcs of the source.3 The set of commodities that are actively named is
denoted N , which is the union of all subsets Ni,j. We force all actively named
commodities to have a flow from the source by the set of constraints:

∑

j∈O(S)

xk
S,j = 1 , ∀k ∈ N . (2.12)

Not only does (2.12) imply that there must be a connecting path for each
commodity k ∈ N , but it ensures that there is precisely one such path. This is
important when length- and distribution criteria are imposed on the connecting
paths.

3Forcing flow from the source together with flow balance imposes flow to the terminal
even though (2.11) is left out.
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Using active naming, we modify the IMCF network model to what we call
the named IMCF model :

K
∑

k=1

qkxk
i,j ≤ di,j , ∀(i, j) ∈ A ,

∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = 0 , ∀i ∈ V \{S, T}, k ∈ {1, . . . , K} ,

∑

j∈O(S)

xk
S,j = 1 , ∀k ∈ N ,

xk
i,j ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ {1, . . . , K} . (2.13)

The (non named) IMCF network model can be used when we know that the
demand of the directed network is the same as the number of commodities. In
the following, however, this may not be true, and therefore we use the named
IMCF model. To the best of our knowledge, the named IMCF model is new
for this thesis, and will prove substantial to an algorithm presented in Chapter
4. Furthermore, notice that when the objective is to minimize, then using this
approach might result in a solution only having the forced connecting paths.
Hence, the objective should also reflect the choice of model. This is something
we return to in Section 2.8.

2.6 Length Criteria

In the time- and distribution problem given in Chapter 1, the customer de-
mands that the enterprise must deliver the goods within a certain time, so
no route may take longer than that time. This corresponds to a length crite-
rion imposed on the connecting paths in the directed network. By adding sets
of constraints, we extend the named IMCF model (2.13) in order to include
different length criteria.

The connecting path length is the total cost of all arcs in a connecting path
with cost ci,j of arc (i, j). That is, the connecting path length of commodity
k is:

∑

(i,j)∈A

ci,jx
k
i,j .

This section gives three examples of length criteria. These ensure that
connecting paths have either

1. specified lengths,
2. equal length, or
3. approximately equal lengths.
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2.6.1 Specified Lengths

The named IMCF model can be extended to encompass the cases in which
goods must be delivered before, at, or after a specific time, during a specified
time period, or a mixture of all of these specified time/length cases.

By adding a set of constraints, we extend the named IMCF model to ensure
specified lengths of given connecting paths N e

sl. These constraints limit the
lengths of each connecting path to equal the specified lengths Lk:

∑

(i,j)∈A

ci,jx
k
i,j = Lk , ∀k ∈ N e

sl .

In the example from Chapter 1, the goods should be delivered before a
specific delivery time. This is modeled by extending the named IMCF in a
slightly different manner:

∑

(i,j)∈A

ci,jx
k
i,j ≤ Lk , ∀k ∈ N l

sl ,

in which N l
sl is the set of commodities with the less than length criteria Lk.

The same modeling is found in [3], in which the problem is to find node disjoint
paths for the movement of train cars under the restriction that the train cars
must arrive before certain time limits.

It is also possible to ensure connecting paths N g
sl of at least certain lengths

Lk:

∑

(i,j)∈A

ci,jx
k
i,j ≥ Lk , ∀k ∈ N g

sl .

If there is no difference between the specification of above lengths Lk, then
the constants Lk are substituted by a single constant L in the formulas.

2.6.2 Equal Length

The named IMCF model can be extended to include the length criterion en-
suring that the connecting paths corresponding to commodities k ∈ Nel have
equal lengths. With this criterion, it is not specified what length the connect-
ing paths should have, only that they must be equal. This gives the set of
constraints

∑

(i,j)∈A

ci,jx
k
i,j −

∑

(i,j)∈A

ci,jx
k′

i,j = 0 , ∀k, k′ ∈ Nel .
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2.6.3 Approximately Equal Lengths

In the time problem in Chapter 1, the customer expected the goods to arrive
at approximately equal times. This is another type of length criterion that
can be incorporated in an extended version of the named IMCF model. The
extension transforms the named IMCF model from a pure-integer program to
a mixed-integer program.

That the connecting paths should be of approximately equal lengths means
that no connecting path length may be very different from the average con-
necting path length. In the following, we treat the case in which this average
connecting path length is unknown. A final remark is given of how this average
connecting path length also can be specified.

When the average connecting path length is unknown, it can be defined as
the average over the actively named commodities Nael; namely, the total cost
of all connecting path lengths with actively named commodities divided by the
number of these paths. This is modeled by introducing a continuous variable
y that is to be this average and, hence, satisfy the constraint

∑

k∈Nael

∑

(i,j)∈A

ci,jx
k
i,j − |Nael|y = 0 , (2.14)

where |Nael| is the number of commodities with corresponding connecting paths
ensuring approximately equal lengths.

Another average is the total cost of all connecting path lengths divided
by the number of connecting paths K. Now, the average y must satisfy the
constraint

K
∑

k=1

∑

(i,j)∈A

ci,jx
k
i,j − Ky = 0 . (2.15)

Knowing the average, it is now possible to constrain the connecting paths
to be of lengths within some percentage from each other. The connecting path
length of connecting path corresponding to a commodity k is within ρ percent
of the average length y if it satisfies

(1 − ρ)y ≤
∑

(i,j)∈A

ci,jx
k
i,j ≤ (1 + ρ)y .

Hence, the requirement of connecting paths having approximately equal lengths
is modeled by including the sets of constraints

∑

(i,j)∈A

ci,jx
k
i,j − (1 + ρ)y ≤ 0 , ∀k ∈ Nael

∑

(i,j)∈A

ci,jx
k
i,j − (1 − ρ)y ≥ 0 , ∀k ∈ Nael , (2.16)

together with one of the average constraints (2.14) or (2.15).
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In the above model, the average y depends on the variables x. However,
the average may also be given as input, by specifying the value of y in (2.16)
and ignoring criteria (2.14) and (2.15). The connecting path lengths are then
within ρ percent of this given value.

2.7 Distribution Criteria

In the distribution problem in Chapter 1, the enterprise has to deliver goods
from a producer to factories in different cities. This is a connection distribution
criterion.

This section treats the criteria that concern distribution. Distribution cri-
teria arise in problems in which there are differences in the commodities. These
could be the origin or destination of the commodity, and also whether a com-
modity must pass through or is not allowed to pass through some areas. The
first type is a connection distribution criterion. The other two types are,
respectively, mandatory- and forbidden area distribution criteria. In the fol-
lowing, we describe and model these criteria.

2.7.1 Connections

A way to model connection distribution criteria is proposed in [1, Chapter 2,
Section 5]. The IMCF network flow model does then not impose flow balance
in all nodes except for the source and terminal, but instead it introduces the
vector

bk
i =







1 if i is a sub-source;
−1 if i is a sub-terminal; and
0 otherwise.

The model in [1, Chapter 2, Section 5] is then modeled as the IMCF network
flow model with this different definition of the right-hand side in the conserva-
tion of flow constraints. This is not the model we choose, since it assumes that
we know how much should be transported of each commodity. We propose a
more general approach in this section which uses naming.

General Model

Connection distribution criteria are modeled by defining sub-sources and sub-
terminals. This is to name the commodities. Throughout this thesis, sub-
sources are denoted si and sub-terminals tj, and I and J are the numbers of
sub-sources and sub-terminals, respectively. Since the naming might differ for
each sub-source and sub-terminal, we introduce the subsets Nsi

, N si
, Ntj , and

N tj . The commodities that must or may not leave sub-source si are included

in Nsi
and N si

, respectively. Similarly, Ntj includes the commodities that must

enter sub-terminal tj, and N tj those that may not.
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We actively and inactively name, respectively, all k ∈ Nsi
and k ∈ N si

representations of the outward directed arcs of the source. Similarly, the rep-
resentations of the arcs connecting the sub-terminals with the terminal are
actively and inactively named for all k ∈ Ntj and k ∈ N tj , respectively. The
connection distribution criteria can then be written generally as

xk
S,si

= 1 , ∀i ∈ {1, . . . , I}, k ∈ Nsi

xk
S,si

= 0 , ∀i ∈ {1, . . . , I}, k ∈ N si

xk
tj ,T = 1 , ∀j ∈ {1, . . . , J}, k ∈ Ntj

xk
tj ,T = 0 , ∀j ∈ {1, . . . , J}, k ∈ N tj .

Example

In the distribution problem in Chapter 1, the customer wanted products from
a producer delivered to some factories. Figure 2.3 is an illustration of a more
general case with eight producers and eight factories represented by dots and
double triangles, respectively. There are 8 types of commodities, in which
we define that commodities 1–3 must have a corresponding connecting path.
In this situation, there are some limitations to which commodity may enter
which factory; all commodities may enter factories 1–6 but only commodities
4–8 may enter factories 7 and 8.
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Figure 2.3: Connection distribution criterion.
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We define the producers as sub-sources and the factories as sub-terminals,
and extend the directed network by two nodes S and T and by the arcs from
S and to T . The connection distribution criterion described in Figure 2.3 is
modeled as illustrated in Figure 2.4. Here, the dark area symbolizes the part
of the directed network that connects the sub-sources with the sub-terminals.

S
s4

T

s6

s5

s8

s7

t4

s3

t6

t5

t8

t7

t3

t1

s2 t2

s1

Figure 2.4: Modeling connection distribution criterion from Figure 2.3.

We impose inactive naming of all commodities on all outward directed arcs
from the source except for the kth representation of the arcs. Furthermore,
we impose active naming of commodities 1–3 along arcs (S, s1), (S, s2), and
(S, s3), respectively. Hence,

Nsi
=

{

{i}, if i ∈ {1, 2, 3}
{}, otherwise

and N si
= {1, . . . , 8}\{i} .

Furthermore, we define where the connecting paths corresponding to each com-
modity must terminate. Sub-terminals t1–t6 are not named since all types of
commodities may have a positive flow to them. However, sub-terminals t7 and
t8 may not receive connecting paths from sub-sources s1–s3; hence, t7 and t8
have an inactive naming of commodities 1–3. Expressed in the subsets Ntj and

N tj , then all Ntj are empty, and

N tj =

{

{}, if j ∈ {1, . . . , 6}
{1, 2, 3}, otherwise

.
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The modeling using this approach is

xk
S,si

= 1 , ∀i ∈ {1, 2, 3}, k ∈ Nsi

xk
S,si

= 0 , ∀i ∈ {1, . . . , 8}, k ∈ N si

xk
tj ,T = 0 , ∀j ∈ {7, 8}, k ∈ N tj .

2.7.2 Forbidden Areas

It may be that there are locations through which the goods may not pass,
or roads on which the goods may not be transported. These correspond to
forbidden areas in the directed network. The set of forbidden arcs for com-

modity k in the directed network is denoted
−→
F k, and is imposed by the set of

constraints:
xk

i,j = 0 , ∀k ∈ {1, . . . , K}, (i, j) ∈
−→
F k .

When a certain location is forbidden, it is modeled by ensuring that no com-
modity may enter or exit the corresponding node:

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, j ∈ Ḟ k, i ∈ I(j) and (2.17)

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, i ∈ Ḟ k, j ∈ O(i) , (2.18)

where Ḟ k is the collection of nodes that are forbidden for commodity k. Note
that, due to flow balance, (2.17) and (2.18) imply one another.

2.7.3 Mandatory Areas

A mandatory area distribution criterion includes a directed network in which
a commodity must have a flow along some arcs or through some nodes. The
mandatory arcs of a certain commodity are modeled by making the corre-
sponding variables active:

xk
i,j = 1 , ∀k ∈ {1, . . . , K}, (i, j) ∈

−→
Mk ,

where
−→
Mk is the collection of arcs that are mandatory for commodity k.

Each necessary location is modeled by ensuring that the commodity with
the imposed criterion must have a flow along one inward- and one outward
directed arc of the corresponding node:

∑

i∈I(j)

xk
i,j = 1 , ∀k ∈ {1, . . . , K}, j ∈ Ṁk and (2.19)

∑

j∈O(i)

xk
i,j = 1 , ∀k ∈ {1, . . . , K}, i ∈ Ṁk , (2.20)

where Ṁk is the collection of nodes that are mandatory for commodity k. Here
as above, (2.19) and (2.20) imply one another due to flow balance.
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2.8 Combined Criteria

This section presents different objectives, and then gives examples of how we
can combine objectives and criteria.

2.8.1 Different Objectives

There are two types of objectives. One is to minimize, say cost, and the other
is to maximize, say profit. In the two problems in Chapter 1, i.e., the time-
and distribution problem, there are two different objectives. In the following,
these are given as examples.

When searching for the maximum number of node disjoint connecting
paths, the objective is to maximize the number of such paths. This may
be done in three different ways, namely to maximize one of the objective func-
tions:

K
∑

k=1

∑

j∈O(S)

xk
S,j , (2.21)

K
∑

k=1

∑

j∈I(T )

xk
j,T , or (2.22)

K
∑

k=1





∑

j∈O(S)

xk
S,j +

∑

j∈I(T )

xk
j,T



 . (2.23)

Choosing (2.21) corresponds to summing the flow along the outward directed
arcs of the source; (2.22) corresponds to the inward directed arcs of the ter-
minal; and (2.23) is to combine both. These are examples of three different
objective functions that model the same objective; maximizing the number of
connecting paths.

Example of an objective function to minimize is the total cost of all arcs.
This gives the objective

min
K

∑

k=1

∑

(i,j)∈A

ci,jx
k
i,j . (2.24)

Many other objective functions are possible; these were only some exam-
ples.

Note that if we do not impose that there must be connecting paths in
the directed network and we use a minimization objective, then the optimal
solution is with no connecting paths.
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2.8.2 Examples

It is now possible to define a mathematical model for the problems presented
in Chapter 1, i.e., the time- and distribution problem.

The Time Problem

We define the chart with cities and their relative connections as the directed
network G = (V, A, d). It is constituted by the node set V representing the
cities; the arc set A representing their connections; and the capacity function
d representing the maximal possible loads for all roads.

The enterprise transports K goods to the customer; hence, K commodi-
ties from the source node to the terminal node in the directed network G =
(V, A, d).

Here the demand is known, and there are criteria to all connecting paths.
Hence, we do not need to formulate the problem as a named IMCF model
but can model it as an IMCF network model with the extensions of node
disjointness, specified lengths, and approximately equal lengths.

We model node disjoint connecting paths because the customer demands
that no two goods pass through the same location:

K
∑

k=1

∑

j∈O(i)

xk
i,j ≤ 1 , ∀i ∈ V \{S, T} .

The customer demands that the enterprise must comply with a delivery
time L, which we model as specified lengths criteria:

∑

(i,j)∈A

ci,jx
k
i,j ≤ L , ∀k ∈ {1, . . . , K} ,

in which ci,j is the time it takes to travel the road connecting city i and city j.
Furthermore, the customer expects that the K goods arrive within a frac-

tion ρ from each other. This we model by:

K
∑

k=1

∑

(i,j)∈A

xk
i,j − Ky = 0 ,

∑

(i,j)∈A

xk
i,j − (1 + ρ)y ≤ 0 , ∀k ∈ {1, . . . , K} , and

∑

(i,j)∈A

xk
i,j − (1 − ρ)y ≥ 0 , ∀k ∈ {1, . . . , K} .

The enterprise has the objective to make transport as cheap as possible, so
we minimize all costs ci,j of all commodities k with their quantities qk. That
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is,

min

K
∑

k=1

∑

(i,j)∈A

ci,jq
kxk

i,j .

All in all, the modeling of the time problem in Chapter 1 is:

min

K
∑

k=1

∑

(i,j)∈A

ci,jq
kxk

i,j

s.t.
∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = bk

i , ∀i ∈ V, k ∈ {1, . . . , K}

K
∑

k=1

qkxk
i,j ≤ di,j , ∀(i, j) ∈ A

K
∑

k=1

∑

j∈O(i)

xk
i,j ≤ 1 , ∀i ∈ V \{S, T}

∑

(i,j)∈A

ci,jx
k
i,j ≤ L , ∀k ∈ {1, . . . , K}

K
∑

k=1

∑

(i,j)∈A

xk
i,j − Ky = 0

∑

(i,j)∈A

xk
i,j − (1 + ρ)y ≤ 0 , ∀k ∈ {1, . . . , K}

∑

(i,j)∈A

xk
i,j − (1 − ρ)y ≥ 0 , ∀k ∈ {1, . . . , K}

xk
i,j ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ {1, . . . , K} ,

where the bk
i are as specified in (2.4), i.e., bk

i = 1 for i = S; -1 for i = T ; and
0 otherwise. This is a mixed-integer linear program since it can be written in
the form of (2.1)–(2.3) with p = 1.

The Distribution Problem

The distribution problem in Chapter 1 is with the same enterprise. However,
the customer needs products distributed to its factories at different locations
from a headquarter. The modeling of this alters the definitions of the nodes.
The headquarter corresponds to the source, and the locations of the cities in
which the J factories are situated correspond to the sub-terminals tj. The
directed network is then changed, so that all outward directed arcs from the
sub-terminals are deleted. Furthermore, new arcs from the sub-terminals to a
fictive terminal node T are introduced. This gives the altered directed network
G′ = (A′, V ′, d′). Having introduced connection distribution criteria we now
model the problem as a named IMCF model with extensions.
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The customer demands that its products may not pass through the same
location on their way to the factories, which we model by imposing node dis-
joint connecting paths in all nodes except for the source, terminal, and, now
also, sub-terminals. Hence, node disjointness for the distribution problem is
modeled by the set of constraints:

K
∑

k=1

∑

j∈O(i)

xk
i,j ≤ 1 , ∀i ∈ V ′\

{

{S, T} ∪ {tj : j ∈ {1, . . . , J}}
}

.

We add specified length criteria to comply with delivery time L. That is,

∑

(i,j)∈A

ci,jx
k
i,j ≤ L , ∀k ∈ {1, . . . , K} .

The commodities that must or may not enter factory tj are included in Ntj

or N tj , respectively. Hence, we model the distribution criteria by including
the constraints

xk
tj ,T = 1 , ∀j ∈ {1, . . . , J}, k ∈ Ntj and

xk
tj ,T = 0 , ∀j ∈ {1, . . . , J}, k ∈ N tj .

The objective is to maximize number of products.4 In other words, the
objective is to find as many connecting paths as possible:

max

K
∑

k=1

∑

j∈O(S)

xk
S,j .

This leads to the modeling of the distribution problem in Chapter 1 written

4We assume that all products give equivalent profit.
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as a named IMCF model:

max
K

∑

k=1

∑

j∈O(S)

xk
S,j

s.t.
∑

j∈O(i)

xk
i,j −

∑

j∈I(i)

xk
j,i = 0 , ∀i ∈ V ′\{S, T}, k ∈ {1, . . . , K}

K
∑

k=1

qkxk
i,j ≤ di,j , ∀(i, j) ∈ A′

K
∑

k=1

∑

j∈O(i)

xk
i,j ≤ 1 , ∀j ∈ V ′\

{

{S, T} ∪ {tj : j ∈ {1, . . . , J}}
}

∑

(i,j)∈A

ci,jx
k
i,j ≤ L , ∀k ∈ {1, . . . , K}

xk
tj ,T = 1 , ∀j ∈ {1, . . . , J}, k ∈ Ntj , and

xk
tj ,T = 0 , ∀j ∈ {1, . . . , J}, k ∈ N tj

xk
i,j ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ {1, . . . , K} .

This is a pure-integer program since it can be written in the form of (2.1)–(2.3)
with p = 0.

Other Possibilities

There are many possible combinations of objectives and criteria. However,
models must include a set of constraints that impose flow balance and a set of
constraints that ensure that arc capacity limits are not exceeded. This is to
sustain a feasible network flow.

Using the named IMCF model, it is possible to impose any combination of
the following criteria, as well as many other criteria not mentioned here:

• Disjointness
– Arc disjoint connecting paths
– Node disjoint connecting paths

• Length
– Specified lengths
– Equal length
– Approximately equal lengths

• Distribution
– Connections
– Forbidden area
– Mandatory area
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2.9 Challenges

Up until now, we have seen how to represent a variety of problems mathe-
matically. However, there are two challenges that arise. These are possible
occurrences of sub-tours in solutions and that the problems in the modeling
become large-scale programs. These two challenges are discussed in this sec-
tion.

2.9.1 Sub-tours

A main modeling challenge is that there may arise sub-tours in the solutions.
A sub-tour is a directed path that is connected to itself, i.e., in which the initial
and final nodes are the same in the sequence representing the directed path.
This means that the solution may contain a connecting path that connects the
source and terminal and has a separated sub-tour somewhere in the directed
network. It is still a feasible network flow but not what is sought for since it
does not model a solution to the problems of this thesis.

One could argue that the sub-tours could be removed from the solution
afterwards. However, a consequence is that criteria no longer are ensured to
be satisfied; removing a sub-tour changes the length of the connecting path,
and a distribution criterion is no longer certain to be satisfied.

An illustration of a directed graph with two connecting paths is seen in
Figure 2.5. The connecting paths are the arcs in bold; one is gray, and the
other is black. The two connecting paths are of equal connecting path length
since the sub-tour adds to the connecting path length of the gray connecting
path. Hence, a length criterion of equal lengths is no longer satisfied if the sub-
tour is simply removed. This is a challenge that we solve with an algorithm
presented in Chapter 4.

Figure 2.5: Directed graph with two connecting paths.

2.9.2 Large-scale Programs

Another main challenge is that the modeling gives rise to large-scale programs.
Furthermore, the problem of finding arc- or node disjoint connecting paths
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with distribution criteria is NP-complete. It is also an NP-complete problem
to find arc- or node disjoint connecting paths with equal- or approximately
equal length criteria, and with greater than specified length criteria.5 Hence,
the practical difficulty of solving these problems increases fast with respect to
the problem size, and especially with respect to the number of commodities. It
is therefore of great interest to decrease the size of the program, i.e., decrease
the number of variables. Note that since the problems are NP-complete, the
best we can do is to make specific algorithms for solving them. In Chapter 4,
we present some algorithms that deal with this issue.

2.10 Summary

The theory that is used in this thesis builds on IMCF, which is a form of MILP.
A MILP is a mathematical model written in the form seen in (2.1)–(2.3); a
linear model, in which the variables both can be integer and real numbers.

The main characteristic of IMCF is that it makes it possible to keep track
of which commodity has a positive flow along which arc. It models a directed
network by imposing conservation of flow at every node, and by restricting
flows to exceed arc capacities.

The problem of finding arc- or node disjoint connecting paths is formulated
as an IMCF network model with an extra constraint imposed. The extra
constraint depends on whether the disjoint connecting paths are arc- or node
disjoint connecting paths. When they should be arc disjoint connecting paths,
the extra constraint states that no more than one type of commodity may
share a common arc. However, node disjoint connecting paths, which implies
arc disjoint connecting paths, is modeled by imposing that no more than one
commodity may enter a node.

We saw the importance of introducing naming. This was when the number
of connecting paths with criteria was less than the number of commodities.
In these cases, we use the named IMCF model, instead of the IMCF network
model, with which we could impose different length- and distribution criteria
on the connecting paths.

The length criteria included both specific and comparisons of connecting
path lengths. The specific connecting path length criteria included imposing
connecting paths to be of less than, equal to, or greater than some connecting
path lengths. Furthermore, we are now able to model length criteria impos-
ing connecting paths to be of equal or approximately equal connecting path
lengths.

We saw three different types of distribution criteria. These were connec-
tion and forbidden- and mandatory area distribution criteria. A connection
distribution criterion defines which sub-sources are connected with which sub-

5See Appendix A for proofs hereof.
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terminals. This is used when the different commodities source from and destine
to different locations. The mandatory area criterion defines if some commodi-
ties must pass through or along some nodes or arcs. The opposite, forbidden
area criterion, defines if some commodities are not allowed to pass through or
along some nodes or arcs.

The different objectives and criteria can be combined in a number of ways
such that we now can model problems that include disjointness and length-
and distribution criteria.

The problem of finding arc- or node disjoint connecting paths with different
criteria is NP-complete. This together with the IMCF network model produces
large-scale programs is a major difficulty of the modeling. Another is that with
this modeling there may arise sub-tours in the solutions. These challenges are
dealt with in Chapter 4.

This chapter also modeled the time- and distribution problem from Chapter
1. Before discussing the challenges of sub-tours and large-scale programs, we
see different solutions to these two problems in the following chapter.



C h a p t e r 3

Tour de France

3.1 Introduction

Throughout Chapter 2, we referred to the time- and distribution problems.
Some examples of these two problems are solved in this chapter to illustrate
the appearance of solutions.

The setting takes place in France. The chart used by the enterprise is
illustrated in Figure 3.1.1 The data sets of the cities and roads are listed in
Appendix B. The node set V consists of the cities in the intersection points,
and the arc set A consists of the roads connecting the cities. There are two
oppositely directed arcs for every road; illustrated by the bold lines.

Figure 3.1: Chart of France used by the enterprise.

1The chart without the lines in bold is seen in Appendix B.
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It is assumed that the goods have a size that is less than any upper limit
of the roads. The capacities d of the roads are therefore not important since
no two goods may pass through the same location. The time and costs of
the roads are listed in Appendix B. These values have been obtained from
http://www.viamichelin.com, as has the chart.

3.2 Time Problem

Recall that the time problem consisted of transporting goods as cheap as pos-
sible under the restriction that the goods arrive within a certain time and at
approximately equal times. This problem is solved with the following criteria:

• there are 3 goods;
• Paris is the departure, and Toulouse is the destination;
• the time-limit is either 12 hours or 13 hours; and
• the margin is either 10% or 20%.
The solutions to the problems are seen in Figure 3.2. We see small varia-

tions in the node disjoint connecting paths. This is further seen in Table 3.1.
The value of the objective function is the cost of using the three connecting
paths. We see that the value of the objective function decreases when the
criteria are less severe. In other words, when we allow a fluctuation of 20%,
the cost is less than with 10%. Furthermore, having specific time-limits of
12 hours give higher costs than when we allow time-limits of 13 hours. We
explain these observations by the fact that having stricter criteria decreases
the feasible set of solutions, and therefore an optimal solution might not be
feasible with some other stricter criteria.

Figure 3.2: Solutions to time problem: for 12h and 10% (upper-left); for 12h
and 20% (upper-right); for 13h and 10% (lower-left); and for 13h and 20%
(lower-right).
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Criteria Time 1 Time 2 Time 3 Cost
12h and 10% 10h23 10h52 12h00 €354.24
12h and 20% 9h08 10h23 12h00 €337.31
13h and 10% 10h48 10h49 12h09 €353.40
13h and 20% 8h55 10h48 12h09 €334.38

Table 3.1: Summary of the solutions to time problem.

3.3 Distribution Problem

In the distribution problem, the goods are distributed to different factories
under the restriction that the goods arrive within a certain time.

This problem is solved with the following criteria:
• the departure is Paris, and the factories are in Lille, Montpeiller, Nantes,

and Strasbourg; and
• the time-limit is either 5 hours, 11 hours, or no time-limit.
The solutions to the problems are seen in Figure 3.3. We see that with the

most severe criteria, i.e., a time-limit of 5 hours, the solution only consists of
three node disjoint connecting paths: two going to Lille, and one to Nantes.
However, when we have a time-limit of 11 hours, we see that there are 6 node
disjoint connecting paths: two to Lille, two to Nantes, one to Strasbourg, and
one to Montpeiller. In the last problem, in which we have no time-limit, we
see that the connecting path from Paris to Montpeiller takes a detour. This
is because we do not model finding a shortest connecting path, but instead
model the problem of obtaining the greatest possible number of node disjoint
connecting paths.

Figure 3.3: Solutions to distribution problem: for 5h (left); for 11h (middle);
and for no time-limit (right).

3.4 Summary

We have seen the solutions to some examples of the time- and distribution
problems. Here, we saw that changing the criteria alters the solution. In
particular, we saw that with stricter criteria, e.g. a time-limit of 12 hours
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instead of 13 hours, the objective function values became poorer due to an
optimal solution to one problem might not be feasible when we restrict the
problem even more.
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Algorithms

4.1 Introduction

In Chapter 2, we saw how to model the problem of finding arc- or node dis-
joint connecting paths with different length- and distribution criteria. We
also discussed some challenges connected with this model. This chapter gives
algorithms that deal with these challenges.

One challenge of the modeling proposed in Chapter 2 is that sub-tours
may arise in the solution. We give therefore an algorithm that finds solutions
without occurrences of sub-tours. This is an essential algorithm since we are
only interested in this type of solution. It builds on the same principle as a
so-called cutting-plane algorithm.

The models will in Chapter 5 be optimized using a standard routine opti-
mization software. However, large-scale NP-complete problems will in practice
take very long time to optimize. We will see in Chapter 5 that finding solutions
to a problem without criteria is faster than finding solutions to problems with
criteria. This chapter therefore gives an algorithm that first checks whether
it is possible to find the desired number of disjoint paths before solving the
problem with criteria. Furthermore, we give an algorithm to treat large-scale
programs by reducing the size of the program. This algorithm eliminates fixed
variables and decomposes the program into smaller sub-programs. We present
two ways in which to decompose the program into smaller sub-programs. They
are both based on dividing the directed network into regions, which can be seen
as geometric regions. The first way in which we decompose the program is with
separate regions, and the second is with regions that overlap.

Throughout this chapter, we make references to Figure 4.1. It illustrates the
sets of solutions and their mutual relationships. The largest set of solutions are
those that are feasible network flows in which sub-tours may occur. Moreover,
we see that node disjoint connecting paths without sub-tours with length- and
distribution criteria constitute the smallest set of solutions. In this thesis,
we are interested in the sets of solutions that are within the black- and gray
boxes. These are solutions that are arc- or node disjoint connecting paths
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without sub-tours satisfying some length- and distribution criteria.

Node disjoint paths
with criteria

Feasible network flow without sub−tours

Arc disjoint paths without sub−tours

Node disjoint paths without sub−tours

Node disjoint paths without sub−tours

Arc disjoint paths without sub−tours

with criteria

with criteria

Feasible network flow

Arc disjoint paths

Arc disjoint paths
with criteria

Node disjoint paths

Figure 4.1: Sets of solutions and their mutual relationships.

In this chapter, we only consider finding arc- or node disjoint connecting
paths. However, the algorithms can be altered so that they apply to capaci-
tated network flow problems without the extra criterion of arc- or node disjoint
connecting paths.

4.2 Disjoint Connecting Paths with Criteria

There is a maximal number of arc- and node disjoint connecting paths in a
directed network. This maximal number might be less than the desired num-
ber of arc- and node disjoint connecting paths with length- and distribution
criteria. As seen in Figure 4.1, the set of feasible network flow solutions with
length- and distribution criteria Fcriteria is contained within the set of feasible
network flow solutions F :

Fcriteria ⊆ F .

As we will see in Chapter 5, it is faster to find the maximal number of arc- and
node disjoint connecting paths than to find arc- and node disjoint connecting
paths with length- and distribution criteria. We therefore develop an algorithm
that tests whether there are at least as many arc- or node disjoint connecting
paths as commodities with criteria. This is done before solving the problem
of finding arc- or node disjoint connecting paths with length- and distribution
criteria. This algorithm is named DisjointPathsCriteria.
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The node set V , the arc set A, and the capacity function d constitute the
directed network G = (V, A, d). It is necessary to know these pieces of infor-
mation to evaluate the maximal number of arc- and node disjoint connecting
paths, and they are, hence, given as input to DisjointPathsCriteria.

The maximal number of arc- and node disjoint connecting paths are found
by having the objective: maximize the sum of flows along the outward directed
arcs from the source. That is,

max

K
∑

k=1

∑

j∈O(S)

xk
S,j .

The objective should still be found under the restrictions that the found flow
is a feasible network flow with arc- or node disjoint connecting paths.

Knowing the maximal number of arc- or node disjoint connecting paths,
DisjointPathsCriteria either stops or continues. It stops if the maximal
number is less than the number of connecting paths with criteria, denoted |N |,
and continues if this number is greater than or equal to |N |. If DisjointPath-

sCriteria continues, it optimizes the original problem, i.e., the problem with
the different length- and distribution criteria. To decide whether to stop or to
continue, DisjointPathsCriteria also needs |N | as a piece of information.
Furthermore, we must state the length- and distribution criteria, and give these
as input. DisjointPathsCriteria returns a solution if there exist a solution
to the posed problem. The described algorithm, DisjointPathsCriteria, is
presented below as Algorithm 4.2.1.

Algorithm 4.2.1: DisjointPathsCriteria(network, criteria, |N |)

main

maximal = MaxFlow(network)
if maximal < |N |

then return (infeasible)

else

{

solution = CriteriaFlow(network, criteria)
return (solution)

endif

procedure MaxFlow(network)
maximal = find maximal number of disjoint connecting paths in network
return (maximal)

procedure CriteriaFlow(network, criteria)
solution = find disjoint connecting paths in network satisfying criteria
if feasible

then return (solution)
else return (infeasible)

endif



36 Algorithms

4.3 Sub-tour Elimination

The proposed modeling finds solutions with possible occurrences of sub-tours,
which is not what we wish.1 Sub-tours in a solution cannot simply be removed
since such a removal changes the length of the connecting path, and the solu-
tion might no longer satisfy the length- and distribution criteria. Hence, it is
necessary to resolve this challenge through another approach that eliminates
all sub-tours in the solution while still having connecting paths satisfying the
length- and distribution criteria.

A similar challenge is known from the traveling salesman problem; see [9,
pp. 9–10]. The solutions to the traveling salesman problem may also include
occurrences of sub-tours. The text [9, pp. 9–10] proposes a model with a set
of constraints that disallows sub-tours. However, this gives a huge number of
constraints. Hence, the same text proposes an iterative algorithm instead in
which constraints are added when needed. This is a so-called cutting-plane
algorithm; see [9, II.5.2].

The traveling salesman problem differs from the problems of this thesis
since the salesman must pass through all nodes in the directed or undirected
network. Hence, we cannot use the same sub-tour elimination constraints but
we use the same principle with a cutting-plane algorithm, which is described
below.

Theoretically, it is possible to impose constraints disallowing all sub-tours.
It could be done by imposing that the sum of all variables constituting a
potential sub-tour must be less than the number of arcs in that sub-tour. Let
∆ denote the set of all sub-tours. Furthermore, let |δ| be the number of arcs
in sub-tour δ ∈ ∆. Then sub-tours are disallowed in the directed network
G = (V, A, d) by the set of constraints

K
∑

k=1

∑

(i,j)∈δ

xk
i,j ≤ |δ| − 1 , ∀δ ∈ ∆ . (4.1)

There are many possible sub-tours; we give three examples in Figure 4.2.

Figure 4.2: Three examples of possible sub-tours in a solution.

To eliminate all sub-tours, there must be as many constraints as sub-tours.
However, it is in general not a practical approach. Instead, we restrict the mod-

1We defined a sub-tour to be a directed path having the same initial and final node.
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eling to find solutions without sub-tours iteratively by adding more constraints
to the model. This algorithm is the SubTourElimination algorithm.

Including the sets of sub-tour elimination constraints does not exclude any
solutions without sub-tours. This is illustrated in Figure 4.1, in which the set
of feasible network flow solutions F contains the set of feasible network flow
solutions without sub-tours Fw.o. sub-tours. That is,

Fw.o. sub-tours ⊆ F .

SubTourElimination begins by finding all sub-tours in a given solu-
tion. To do so, a solution must be given as input. The algorithm returns
the same solution as given in input if there does not exist sub-tours in the
solution. However, if there are sub-tours, SubTourElimination imposes
sub-tour elimination constraints disallowing these sub-tours. Let δ denote a
found sub-tour, and |δ| the number of arcs in that sub-tour. The constraint

K
∑

k=1

∑

(i,j)∈δ

xk
i,j ≤ |δ| − 1 (4.2)

disallows this sub-tour. In SubTourElimination, constraint (4.2) is imposed
for all found sub-tours, and the extended model is then re-solved using the
same procedure CriteriaFlow as in Algorithm 4.2.1. In order to do this,
SubTourElimination also takes the input a directed network G = (V, A, d)
and the criteria to the connecting paths.

This gives the SubTourElimination algorithm presented as Algorithm
4.3.1.

Algorithm 4.3.1: SubTourElimination(network, criteria, solution)

main

subTours = find sub-tours in solution
while subTours exist

do















constraints = SubTourConstraints(solution)
add constraints to criteria
solution = CriteriaFlow(network, criteria)
subTours = find sub-tours in solution

return (solution)

procedure SubTourConstraints(solution)
subTours = find sub-tours in solution
for i = 1 to #(subTours)

do

{

constraints(i) =
∑

(variables in subTours(i)) ≤ (length of subTours(i)) − 1
return (constraints)
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A variation of this algorithm is to include sets of sub-tour elimination
constraints for some types of sub-tours, such as the sub-tours constituted by
the smallest numbers of arcs. It is our assumption that these sub-tours are
those that occur the most frequently. This variation is used when we assess that
certain types of sub-tours are very likely to occur if they are not prohibited.

4.4 Large-scale Programs

In this thesis, we wish not only to model problems but also to optimize and
find solutions. There is no general optimal algorithm for solving large-scale
NP-complete problems. This section therefore gives two types of algorithms
used to solve large-scale programs: one preprocessing algorithm and one de-
composing algorithm. The decomposing algorithm is especially designed to
directed networks that can be thought of as geometric areas. It decomposes
the directed network into several smaller regions, and solves them separately.

There are existing algorithms for solving large-scale programs without de-
composing, such as the Augmented Lagrangian Algorithm and Column Gen-
eration; see [8] and [2, 6], respectively. However, we propose a new algorithm
since in many network problems it is possible to exploit some of its structure
to divide the directed network into smaller regions. Furthermore, as discussed
in Chapter 2, the problem of finding arc- or node disjoint connecting paths is
NP-complete. Hence, even though there exist algorithms to solve large-scale
programs, it might in practice be faster to solve several smaller sub-programs
than one large-scale NP-complete problem.

The preprocessing algorithm eliminates all fixed variables from the pro-
gram. These are the variables that describe either a mandatory- or forbidden
area.

The decomposition algorithm decomposes the program into several smaller
sub-programs. There are many possible ways to do so, and many considera-
tions to make. First we discuss how to handle criteria when decomposing the
program, and then we give two algorithms depending on the type of division
of the directed network.

4.4.1 Preprocessing

When there are mandatory- or forbidden area distribution criteria in the di-
rected network, these variables are fixed and can therefore be removed from
the program. In the following, we discuss how to make the program smaller
using this information.

Forbidden distribution criteria entail that the corresponding variables must
be inactive. With preprocessing, we eliminate these fixed variables instead of
adding constraints to the program. We saw in Chapter 2 that imposing that
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some arcs are inactive gives the set of constraints

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, (i, j) ∈

−→
F k ,

where
−→
F k is the set of all forbidden arcs for commodity k. Instead of imposing

this set of constraints, we remove the variables {xk
i,j : k ∈ {1, . . . , K}, (i, j) ∈

−→
F k}.

Similarly, when there are forbidden area distribution criteria on nodes, the
inward- and outward directed arcs for the specified commodity k can also be
removed. The set of nodes forbidden for commodity k are denoted Ḟ k. Instead
of imposing the constraints

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, j ∈ Ḟ k, i ∈ I(j) and

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, i ∈ Ḟ k, j ∈ O(i) ,

we remove the variables {xk
i,j : k ∈ {1, . . . , K}, j ∈ Ḟ k, i ∈ I(j)} and

{xk
i,j : k ∈ {1, . . . , K}, i ∈ Ḟ k, j ∈ O(i)}.
Preprocessing by using information about mandatory distribution criteria

can only be used when these criteria are imposed on the arcs. Here, we elim-

inate the variables by altering the sets of equations. Let
−→
Mk be the set of

mandatory arcs for commodity k. We saw in Chapter 2 that imposing that
the variables corresponding to these arcs are active gives the set of constraints

xk
i,j = 1 , ∀k ∈ {1, . . . , K}, (i, j) ∈

−→
Mk .

To eliminate these variables, we first subtract the variables from the right-
hand sides of the constraints containing these variables. It is then possible
to eliminate the variables from the program. However, it is important to
remember to include these variables in the solution afterwards, since they are
part of it.

This leads to the Preprocessing algorithm. It takes as input some of
the same pieces of information as DisjointPathsCriteria. These are the
structure of the directed network and the imposed criteria. Furthermore, it
gives the altered network and active variables as output. The Preprocessing

algorithm is presented as Algorithm 4.4.1.
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Algorithm 4.4.1: Preprocessing(network, criteria)

main

alteredNetwork = ForbiddenArea(network, criteria)
(alteredNetwork, activeV ariables) =

MandatoryArea(alteredNetwork, criteria)
return (alteredNetwork, activeV ariables)

procedure ForbiddenArea(network, criteria)
inactiveV ariables = find inactive variables from criteria
alteredNetwork = remove inactiveV ariables from network
return (alteredNetwork)

procedure MandatoryArea(network, criteria)
activeV ariables = find active variables from criteria
alteredNetwork = subtract and remove activeV ariables from network
return (alteredNetwork, activeV ariables)

4.4.2 Decomposition into Smaller Sub-programs

There are several aspects to consider when decomposing a program into smaller
sub-programs, such as how to handle criteria, how to choose a division, and
how to obtain one feasible solution.

The decomposition algorithms vary with respect to how the directed net-
work is divided into regions, which should be thought of as geometric regions.
We present two variations of divisions: one with separate regions and one with
overlapping regions. One feasible solution is obtained differently depending on
the type of division but criteria are handled in the same manner for the two
cases. We therefore explain how to handle the criteria first, discuss the type of
regions, and finally we give the two algorithms that decompose the program
into smaller sub-programs.

How to Handle Criteria

The main issue when dividing the directed network into smaller geometric
regions is that we might exclude possible solutions. Hence, when there are
mandatory area- or connection distribution criteria, it is important to construct
divisions that do not violate these distribution criteria.

The set of criteria must be altered when we impose equal length- or ap-
proximately equal lengths criteria. With equal length criterion, we impose this
in the first region to be solved, and then use specified equal length criteria in
the other regions with the found length from the first. Similarly, with approx-
imately equal lengths criteria, the found average connecting path length from



4.4 Large-scale Programs 41

the first region is given as input for the average connecting path length in the
other regions.

Hence, we note that not only is the division important for the feasibility
of the problem but, when we include equal- or approximately equal length
criteria, it is also important in which order we solve the different regions.

Types of Regions

There are two types of division: one where the regions separate and another
where the regions overlap. With separate regions no arcs are shared by any
two regions, whereas this is the case with overlapping regions. Figure 4.3
illustrates the two types of divisions. To the left, we see a directed graph
divided into two separate regions. The directed graph to the right is divided
into two overlapping regions. Note that the middle arcs in the directed graph
to the left are not included in any region.

A region from a division with overlapping regions contains a main part
and an overlapping part. The main part of a region is what is not shared by
any other region, whereas the overlapping part are the arcs in the overlapping
region. In Figure 4.3, the black arcs are in the main part of Region 1; the
dark gray arcs are in the main part of Region 2; and the overlapping part is
for both Region 1 and Region 2 the light gray arcs.

Region 1

Region 2

Region 1

Region 2

Figure 4.3: Separate regions (left) and overlapping regions (right).

Again, we note that with overlapping regions, the order in which we solve
the regions is important for the feasibility of the problem.

Decomposition Algorithms

The outline of a decomposition algorithm depends on the type of region divi-
sion. We propose an algorithm that uses overlapping regions. However, this
algorithm incorporates many details, so first we present the algorithm as it is
when regions are separate, since this algorithm gives a general outline of how
to decompose the program into smaller sub-programs. Hereafter, we present
the decomposition algorithm that we use in this thesis.
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The Decomposition algorithm divides the directed network into separate
regions. It begins by preprocessing the program before dividing it into several
smaller sub-programs. Decomposition then solves each sub-program sepa-
rately. This is done by reusing DisjointPathsCriteria and SubTourE-

limination. A new sub-program is solved as long as feasible solutions exist.
The algorithm stops if there are no feasible solutions to one of the smaller sub-
programs. Decomposition is presented below as Algorithm 4.4.2. Again,
this algorithm needs the same pieces of information about the directed net-
work and the criteria as DisjointPathsCriteria and, besides this, also how
many regions D it should generate.

Algorithm 4.4.2: Decomposition(network, criteria, D)

main

(network, activeV ariables) = Preprocessing(network, criteria)
(regions, criteriaRegions, |N |) = Division(network, criteria, D)
for i = 1 to D

do


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










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
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
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








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solutions(i) =
DisjointPathsCriteria(regions(i), criteriaRegions(i))

solutions(i) =
SubTourElimination(regions(i), criteriaRegions(i), solutions(i))

if solutions(i) is infeasible
then return (infeasible), STOP

endif

solutions = add activeV ariables to solutions
return (solutions)

procedure Division(network, criteria, D)
regions = divide network into D regions
criteriaRegions = divide criteria so that they correspond to all D regions
|N | = calculate number of criteria in criteriaRegions
return (regions, criteriaRegions, |N |)

Note that the Decomposition algorithm also must take into account the
issues there are about the length- and distribution criteria.

The decomposition algorithm proposed in this thesis includes some more
details than Decomposition. In particular, we use overlapping regions, and
we also make a choice as to which arc- or node disjoint paths we add to the final
solution. This algorithm is the DecompositionOverlap algorithm (Algo-
rithm 4.4.3). The description of DecompositionOverlap follows directly
after the algorithm.
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Algorithm 4.4.3: DecompositionOverlap(network, criteria, D, overlap)

main

(network, activeV ariables) = Preprocessing(network, criteria)
(regions, criteriaRegions, |N |) = Division(network, criteria, D, overlap)
for i = 1 to D

do


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solutions(i) =
DisjointPathsCriteria(regions(i), criteriaRegions(i))

solutions(i) =
SubTourElimination(regions(i), criteriaRegions(i), solutions(i))

if solutions(i) is infeasible
then return (infeasible), STOP

endif

if i = 1
then solutions(1) = keep solutions(1) that do not begin in overlap(1)
else solutions(i) = keep solutions(i) that do not begin in overlap(i)

or that do begin in overlap(1) . . . overlap(i − 1)
endif

if solutions(i) is within overlap(i)

then

{

add overlapping solutions(i) as forbidden area to
criteriaRegions for regions sharing overlap(i)

endif

solutions = add activeV ariables to solutions
return (solutions)

procedure Division(network, criteria, D, overlap)
regions = divide network into D regions with overlap
criteriaRegions = divide criteria so that they correspond to all D regions
|N | = calculate number of criteria in criteriaRegions
return (regions, criteriaRegions, |N |)

DecompositionOverlap needs the same pieces of information as De-

composition, and it also needs information about the overlap for each region.
The only new part in DecompositionOverlap is the second half of the for-
loop. Here, DecompositionOverlap determines which part of the found
solution to keep. We keep all arc- or node disjoint connecting paths beginning
in the main part, and also we keep the arc- or node disjoint connecting paths
that begin in an overlapping part if this part belongs to a region that we have
already solved. This means that for the directed graph to the right in Figure
4.3, we would solve for Region 1 and though we could find three arc- or node
disjoint connecting paths we would only keep one. However, we would keep all
the arc- or node disjoint connecting paths that we find in Region 2 since its
overlapping part is the same as Region 1: an already solved region.
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When we know which arc- or node disjoint connecting paths to keep, we
check to see whether some of these paths use arcs in the overlapping part. If
this is the case, then this becomes a forbidden area in all other regions sharing
this overlapping part. This is because the collection of connecting paths from
the different regions otherwise might neither be arc- nor node disjoint.

The reason that we can use overlapping regions in the decomposition is
because we model the problem as a named IMCF model and not as an IMCF
network flow model. Recall that with the IMCF network flow model, we as-
sumed to know which commodities must have a corresponding arc- or node
disjoint connecting path. With overlapping regions, we might in one region
have fewer arc- or node disjoint connecting paths than corresponding commodi-
ties entering in this region. This is why we only impose that the commodities
beginning in the main part or the overlapping parts of regions already solved
must have corresponding arc- or node disjoint connecting paths. Hence, these
commodities are actively named, whereas the rest are inactively named.

Furthermore, we use the distribution criterion of forbidden area when a
given solution in one region uses arcs in the overlapping part. This added
criterion depends on whether we want arc- or node disjoint connecting paths.
When the problem is to find arc disjoint connecting paths, then the already

used arcs in the overlapping region must be disallowed. Let
−→
F denote the

already used arcs in the overlapping region, and K the number of commodities,

the already used arcs (i, j) ∈
−→
F are then disallowed for all commodities by

imposing the criteria

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, (i, j) ∈

−→
F .

In the other situation, in which the problem is to find node disjoint connect-
ing paths, the already used nodes in the overlapping region must be disallowed.
That is, all inward directed arcs to these forbidden nodes are disallowed. This
is done by imposing the criteria

∑

i∈I(j)

xk
i,j = 0 , ∀k ∈ {1, . . . , K}, j ∈ Ḟ ,

where Ḟ is the collection of nodes that are already used.
However, as we mentioned in the first part of this section, we decide how to

decompose into regions. With this decision, we might exclude some possible
solutions. We denote the set of possible solutions that may be found with
a given decomposition Fdecomposition. This is a subset of the set of feasible
solutions to the problem of finding arc- or node disjoint connecting paths
without sub-tours with criteria Fw.o. sub-tours w. criteria. That is,

Fdecomposition ⊆ Fw.o. sub-tours w. criteria .

Since the two subsets Fdecomposition and Fw.o. sub-tours w. criteria are not necessarily
equal, there may be a solution to the problem even though there be no solution
in some region. So once more, the division must be chosen carefully.
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4.5 Summary

The problem of finding connecting paths with different length- and distribution
criteria is solved by using DisjointPathsCriteria. This algorithm first
checks whether there is the desired number of arc- or node disjoint connecting
paths in the directed network before solving the problem with criteria.

Furthermore, we have seen how to resolve the challenge of eliminating sub-
tours in a solution. The elimination of sub-tours was resolved by using a
cutting-plane algorithm that added constraints wherever there appeared sub-
tours. These constraints prohibited the same sub-tour from re-occurring. The
procedure was continued until no more sub-tours appeared. We noted that
this does not eliminate any of the solutions we want, i.e., solutions without
sub-tours.

A challenge with the modeling of the problems in this thesis is that we
obtain large-scale programs. We gave a decomposition algorithm that decom-
poses the large-scale program into several smaller sub-programs. This is done
by dividing the directed network into separate or overlapping regions, where
we presented an algorithm using overlapping regions. We proposed the de-
composition algorithms because it might be possible to exploit some of the
structure of the directed network, and because it might speed up the opti-
mization of the large-scale NP-complete problems. These algorithms intend to
reduce the size of the program. However, when the program is decomposed
into sub-programs, independent of which type of region separation we choose,
it is possible that we have excluded some feasible solutions by our choice.
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C h a p t e r 5

Implementation and Numerical

Experiments

5.1 Introduction

This chapter discusses some issues of the implementation and includes the
results of some numerical experiments. The given models from Chapter 2
and the algorithms from Chapter 4 are implemented using the commercial
software MatLab.1 These models are optimized using the commercial branch
& cut optimizer CPLEX.2 We use an interface that writes the matrices in
MatLab into the format that CPLEX uses. This interface is CPLEX MEX
INTERFACE version 2.1.3 The numerical experiments were executed on a
shared server using the default settings in CPLEX. We are allotted 1 CPU at
the server consisting of 48 processors UltraSparc-IIICu 900 MHz CPUs with
144 GB memory.4

The models are written in matrix-form. The reader familiar with MatLab
knows that this software is not suitable for large-scale programs. However,
MatLab suffices to make a proof of concept that both the modeling is correct
and that the algorithms work. We first discuss this representation, and then
a property of the matrix-form, namely sparsity.

The numerical experiments presented in this chapter are aimed at inves-
tigating the difficulty of the problems and the property of the Decomposi-

tionOverlap algorithm. We use a test set of 7 tests (test problem a – test
problem g) presented in Appendix C. In short, test problem a is the largest
test problem followed by test problem d, test problem g is the smallest, and
the rest are of approximately equal sizes.

1MatLab version 7.0.1 (R14); see http://www.mathworks.com/ for more details.
2ILOG CPLEX version 9.0.0; see http://www.ilog.com/ for more details.
3It is free software written by Mato Baotic and Fabio D. Torrisi. It can be downloaded

from The Hybrid System’s Group university home page: http://control.ee.ethz.ch/

~hybrid/cplexint.php. It has been slightly changed, so that it returns feasible solutions
that are not necessarily optimal.

4This server works slower but has more memory than most personal computers.
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The difficulties of the problems are investigated by comparing relaxed-,
feasible-, and optimal solutions. A relaxed solution is when we let integer
variables be real variables; it enables us to analyze the impact the criteria of
integer variables have on the solution. We make these comparisons for the
problem of finding node disjoint connecting paths while either maximizing the
number of connecting paths, in which we do not add criteria, or minimizing
the connecting path lengths, in which we add one of the following criteria:

• approximately equal lengths,
• greater than lengths, and
• less than lengths.
The DecompositionOverlap algorithm is tested with different number

of regions and sizes of overlap. These experiments are described by listing
calculation time, number of iterations, and number of times the problem is
re-solved due to sub-tours.

In short, in both investigations, we say that the less the time and the fewer
the iterations, the easier the problem was to solve.

5.2 Matrix Products and Structures

A MILP consists of linear models and can therefore be written as matrix
products. In particular, a MILP can be written in the form:

max / min cTx + hTy

s.t. Ax + Gy ≤ b

x ∈ Z
n
+ and y ∈ R

p
+ . (5.1)

The matrices A and G are the constraint matrices in which each row corre-
sponds to a constraint, and each column to a variable. Having m constraints,
n non-negative integer variables, and p non-negative real variables, the matri-
ces c, h, A, G, and b are of sizes n × 1, p × 1, m × n, m × p, and m × 1,
respectively, with p + n ≥ 1. Furthermore, all matrices have real coefficients.

There are many possible representations of variables and matrices. To
facilitate the writing of the constraint matrices in MatLab, we represent all K
variables corresponding to one arc jointly. This enables the use of kronecker
products, which is an operator that repeats a matrix in another. Denoting the
kronecker product ⊗, an example is:

(

a1,1 a1,2

a2,1 a2,2

)

⊗ A =

(

a1,1A a1,2A

a2,1A a2,2A

)

.

The kronecker product is an operator that we use extensively throughout the
implementation since many of the constraints are similar for all K representa-
tions of an arc.
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5.3 Sparsity

One challenge with writing the model as an IMCF network model or as a named
IMCF model is that this gives large-scale programs. However, a reason that we
are able to both write the models as matrices and then solve the programs is
because the constraint matrices are sparse, where sparse means that only few
of the elements in the matrices are non-zero. A way to appreciate how sparse
the constraint matrix is, is by looking at the percentage of non-zero elements:
the sparsity of the matrix. We do this on the IMCF network model by first
estimating the number of non-zero elements and then calculating the sparsity.

The sets of constraints that impose a feasible network flow are the sets
of constraints from arc capacity limitations and from flow conservation. In
the following, K is still the number of commodities, and the directed network
consists of the arc set A, the node set V , and the capacity function d. We
denote the number of arcs and nodes |A| and |V |, respectively.

Arc capacity limitations must hold for all arcs. Hence, the number of
constraints modeling arc capacity limitations #Ac is the number of arcs in the
directed network:

#Ac = |A| .

Furthermore, the number of non-zero elements in these constraints #Ae is the
number of commodities times the number of arcs:

#Ae = K|A| .

To have a feasible network flow, flow conservation must hold for all nodes.
Hence, there are

#Fc = |V |

constraints to model flow conservation.
The number of non-zero elements in each constraint depends on the number

of inward- and outward directed arcs. We simplify the estimation by assuming
that they are equal, and denote this number |O(·)|. Hence, the number of non-
zero elements from the set of constraints modeling flow conservation #Fe is
the number of commodities times the number of inward- and outward directed
arcs times the number of nodes. That is,

#Fe = 2K|O(·)||V | .

Furthermore, to estimate the sparsity we need to estimate the number of
variables #var, which is the number of commodities times the number of arcs:

#var = K|A| .

We have assumed that the number of inward- and outward directed arcs
are equal, so we can represent the number of arcs by the number of nodes. For
every node there are |O(·)| arcs, giving

|A| = |V ||O(·)| .
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Now, the sparsity of the constraint matrix modeling a feasible network flow is
the fraction of the sum of non-zero elements divided by the total number of
elements. The total number of elements is the number of variables times the
number of constraints:

#Ae + #Fe

(#Ac + #Fc)#var

=
|A|K + 2K|O(·)||V |

(|A| + |V |) · K|A|

=
|A| + 2|A|

(|A| + |V |) · |A|

=
3

|A| + |V |
.

Hence, directed networks with |A| + |V | > 300 have constraint matrices
modeling feasible network flow with sparsity of less than 1%. This is a very
low sparsity. Matrices modeling disjointness and distribution criteria also show
low sparsity, but matrices modeling length criteria do not. Figure 5.1 illustrates
a matrix modeling node disjoint connecting paths in a directed network with
approximately equal lengths and connection- and forbidden area distribution
criteria. The non-zero elements are illustrated by dots. Few elements are non-
zero except for the last few rows that model the length criterion. There are
56,256 non-zero elements out of 33,141,760 elements giving 0.17% sparsity.

0 1000 2000 3000 4000 5000 6000
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2000

2500

3000
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5000

nz = 56256

Figure 5.1: Example of a sparsity pattern for a constraint matrix.

Throughout the following, we define the matrices as being sparse, and
allocate the necessary amount of memory to the matrices before constructing
them. With this we are able to define matrices of sizes of approximately
15, 000× 60, 000. Table 5.1 gives some results of how large constraint matrices
we can construct.
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|V | |A| K Rows Columns Possible
600 2660 20 12600 53200 Yes
900 4020 15 14400 60300 Yes
900 4030 20 18900 80600 No

Table 5.1: Sizes of constraint matrices modeling a feasible network flow.

We see that the size of the directed network that we can model is limited;
the first two constraint matrices can be written, whereas the last cannot since
MatLab runs out of memory. Furthermore, it does not only depend on the size
of the directed network, i.e., how many nodes |V | and arcs |A| there are in the
directed network, but also on the number of commodities K. We restate that
MatLab is used because we make a proof of concept. These sizes suffice for
illustrating the algorithms from Chapter 4.

5.4 Experimenting with Criteria

Theoretically, the difficulty of the problem depends on the imposed criteria;
the problem with less than or equal to specified lengths criteria should be an
easier problem than problems with other length criteria.5 In the following, we
investigate whether this also holds numerically by comparing problems with
different criteria. The tests performed are given in Table 5.2.

Test Explanation
1 Objective: maximize number of connecting paths

Criteria: node disjointness
Constants: none

2 Objective: minimize average connecting path length
Criteria: node disjointness + approximately equal lengths
Constants: ρ = 0.2, ρ = 0.5, and ρ = 0.8

3 Objective: minimize connecting path lengths
Criteria: node disjointness + greater than specified lengths
Constants: L = 3 and L = 6

4 Objective: minimize connecting path lengths
Criteria: node disjointness + less than specified lengths
Constants: L = 6 and L = 10

Table 5.2: Tests with different criteria.

The results from Tests 1–4 are given in Tables 5.4–5.7 in Section 5.7.1. We
use the following notation:

5See Appendix A for details.
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• empty fields are missing values;6 and
• () and * mark, respectively, optimization time before exiting due to mem-

ory limitations and corresponding values that can therefore not be ob-
tained.

The values listed in Tables 5.4–5.7 are:

T r(s) : optimization time to calculate relaxed solution,
T ∗(s) : optimization time to calculate feasible solution,
T (s) : optimization time to calculate optimal solution,
f r : function value of the relaxed solution,
f ∗ : function value of the feasible solution,
f : function value of the optimal solution,
itr : iterations to calculate relaxed solution,
it∗ : iterations to calculate feasible solution,
it : iterations to calculate optimal solution,
6∈ Z : percentage non-integers in relaxed solution, and
δf : difference in percentage between function values of relaxed-

and optimal solutions.

Furthermore, ρ and L denote the values of the margin and specified lengths,
respectively.

The results of Test 1 are characterized by having short optimization times,
equal function values for relaxed-, feasible-, and optimal solution, and few non-
integer values in the relaxed solution. We therefore say that finding the maxi-
mal number of node disjoint connecting paths is an easy problem to solve. This
was what motivated us to create the DisjointPathsCriteria algorithm.

However, in Tests 2–4, we see completely different results. Starting with
Test 2, we see some very big differences between the relaxed- and feasible-
/optimal- solutions. Finding feasible solutions has now become very time con-
suming (it can take up to 13 hours), and we have only been able to find the
optimal solution in the smallest test problem (test problem g) for approxi-
mately equal lengths with a margin of 80% even though there evidently must
be optimal solutions in all cases.7 However, finding relaxed solutions is still
fast. Furthermore, the optimization of the relaxed solutions is not affected by
the value of the margin (neither optimization times nor function values) but we
see a big increase in optimization times with narrower margins for the feasible
solutions. In Test 2, there are few non-integers in the relaxed solution. How-
ever, these few variables have great impact on the solution; for test problem
g with a margin of ρ = 0.8, it takes 755 seconds to find an optimal solution

6We experienced problems in the optimization such as the server being down for a week.
That, combined with some results taking 5 days, made it impossible to obtain all values
within the deadline of the report.

7We find feasible solutions in all cases, and since there only is a finite number of feasible
solutions, there must be an optimal solution among them.
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compared to 1 second for a relaxed solution, and there is a 21% difference
in the function values. All in all, we can say that Test 2 with small margin
values is a difficult problem to solve, and, independently of the margin values,
requesting an integer solution makes the problem drastically more difficult.

Tests 3 and 4 behave in likewise manners. We see that the results from
finding greater than specified lengths of 3 are almost the same as the results
from finding less than specified lengths of 10; optimization times are very fast,
and the function values are identical except for test problem g in which there is
a slight difference. What is more, the few non-integers in the relaxed solution
do not affect the function values with much. Hence, we conclude that these
two problems are easy problems to solve. However, with specified lengths of 6,
the optimization times suddenly take long, and, in the cases in which we have
been able to find an optimal solution, there are now quite large differences in
the function values of the relaxed- and optimal solutions. Hence, we see how
the problems suddenly have become difficult to solve.

From Tests 1–4 we conclude that there are few non-integers in the relaxed
solution, which is an easy solution to find. However, these few variables alter
the difficulty of the problem drastically. In particular, when the feasible set of
solutions is small, the increase in difficulty is at its largest.

5.5 Experimenting with Decomposition

The DecompositionOverlap algorithm presented in Chapter 4 is intended
to make the problems easier to solve. In the following, we compare different
parameter choices of the number of regions D and the size of the overlap O.
The tests (numbered Tests I–IV) are listed in Table 5.3. The size of the overlap
denotes how wide the overlapping part is measured in nodes.

Test Regions Overlap
I 2 3
II 2 6
II 4 3
IV 4 6

Table 5.3: Tests with different parameter choices.

These settings are tested on Test 2 from Table 5.2, i.e., the problem of find-
ing the minimal average connecting path length with node disjoint connecting
paths of approximately equal lengths ρ = 0.2, ρ = 0.5, and ρ = 0.8. In all
tests, we re-solve the problem until there are no more sub-tours in the solution.
We use the following notation:

• empty fields are missing values; and
• - marks an infeasible solution.
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Furthermore, the following values are registered:

T (s) : optimization time to calculate solution,
it : iterations to calculate solution,
|∆| : times problem was re-solved, and
f : function value of solution.

We give the values for each different region and the sum for all regions. The
function value is the value obtained in the first region. All results are listed in
Appendix C. In this chapter, we have extracted some results that give a good
comprehension of the DecompositionOverlap algorithm. The results are
listed in Tables 5.8–5.10 in Section 5.7.2.

Table 5.8 gives an overview of whether a parameter choice entails feasible-
or infeasible solutions. In the cases with an infeasible solution, we have marked
in which region infeasibility appeared. Furthermore, when the problem was
feasible, we have denoted the optimization time. The last column marks in
which test cases we were able to find a feasible solution: ’x’ marks feasible and
’-’ marks infeasible.

In all cases in which we find feasible solutions with an overlap of 3, we find
feasible solutions with an overlap of 6 but it will usually take longer with an
overlap of 6. Hence, with an increased problem size, the optimization will be
slower. There are also cases in which no feasible solution is found with an
overlap of 3 but a feasible solution is found with an overlap of 6. Hence, we
increase the feasible set of solutions by increasing the overlap.

Furthermore, we see that the optimization times are usually the same for a
decomposition into 2 or 4 regions, when using an overlap of 3 nodes. However,
with an overlap of 6 nodes it is very much faster to use 4 regions instead of
2. If we compare solution times with Test 2 without decomposition, we see
that for the largest test problem (test problem a), the decomposition algo-
rithm shows impressive optimization times for both margins of 50% and 80%.
Recall that these times also include sub-tour eliminations. Hence, we conclude
that decomposition improves optimization times but it does not imply that
optimization is faster in smaller regions.

We can conclude that increasing the feasible set of solutions by increasing
the size of the problem (having an overlap of 6 and not of 3) will slow the
optimization but also give better chances of finding a solution. Furthermore,
using 4 instead of 2 regions made optimization times faster using an overlap
of 6 nodes but did not change optimization times using an overlap of 3 nodes.
This illustrates that the behavior of the DecompositionOverlap algorithm
is a complex interaction of the two parameters number of regions and size of
overlap.

The results listed in Tables 5.9 and 5.10 include the details of different
decompositions of Test 2 with a margin of 50%. It is interesting to notice
that the number of times the problem is re-solved due to sub-tours are many
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more in Region 1 than in the following regions. Hence, it might be a good
idea to impose more sub-tour constraints from the start in Region 1. In Tests
1–4 there was a correlation between the optimization time and the number
of iterations. However, we see that the optimization times of the different
regions in these tests (Tests I–IV) is not related to the number of iterations,
which implies that some iterations take longer than others. In particular, the
iterations in Region 1 take the longest to solve. This could imply that finding
approximately equal lengths in which the average connecting path length is
not given is more difficult than given an average connecting path length.8

5.6 Summary

We use the commercial software MatLab to make a proof of concept that the
models from Chapter 2 and the algorithms from Chapter 4 work as supposed.
The models are constructed as sparse matrices with sparsity of less than 1%.

We saw that finding a maximal number of arc- or node disjoint connecting
paths without criteria was an easy problem to solve. Test 2 showed that stricter
criteria (decreasing the feasible set of solutions) entail more difficult problem,
and optimization times increased drastically when imposing approximately
equal lengths using margins of 20% instead of 80%. Furthermore, the level of
difficulty did, in practice, not depend on whether the imposed criteria were less
than or greater than specified length criteria but on the value of the specified
lengths. Finding node disjoint connecting paths of length greater than 3 was as
easy a problem as finding such paths with length less than 10, and the problems
were equally difficult with specified lengths of 6. The relaxed problem was an
easy problem in all tests. Hence, we concluded that when the feasible set of
solutions is small the importance of the few non-integers in the relaxed solution
have drastic influence on the difficulty of the problem.

Furthermore, we saw that the DecompositionOverlap algorithm showed
different behavior depending on the number of regions and of the overlap.
Using a larger overlap increased the feasible set of solutions but also the op-
timization times. We saw that the number of regions was a more complex
parameter showing different results depending on the overlap; there were no
big differences in using 2 or 4 regions with an overlap of 3 but big differences
with an overlap of 6, in which decomposition into 4 sub-programs was consid-
erably faster to solve. What is more, the behavior of the algorithm, depended
also largely on the test problem. When we solved test problem a with node
disjoint connecting paths of approximately equal lengths with an 80% margin,
we saw that it was almost 30 times faster to use the DecompositionOver-

lap algorithm than to solve the problem in one piece. What is more, with

8Recall that when we use approximately equal lengths, the average connecting path
length found in Region 1 is given as average connecting path length to the following regions.
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the DecompositionOverlap algorithm, we are guaranteed that there be no
sub-tours in the solution.
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5.7 Tables

5.7.1 Results from Tests 1–4

# T r(s) T ∗(s) T (s) f r f ∗ f itr it∗ it 6∈ Z δf
1a 2 9 9 15 15 15 1,869 2,818 2,818 0.1% 0%
1b 1 1 1 7 7 7 600 615 615 1% 0%
1c 2 4 4 8 8 8 1,351 926 926 1% 0%
1d 2 4 4 15 15 15 1,537 1,597 1,597 1% 0%
1e 1 1 1 10 10 10 710 428 428 1% 0%
1f 1 3 3 10 10 10 324 955 955 0% 0%
1g 1 1 1 7 7 7 489 216 216 2% 0%

Table 5.4: Test 1. Maximize without length criteria.
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# ρ T r(s) T ∗(s) T (s) f r f ∗ f itr it∗ it 6∈ Z δf
2a 0.2 13 47,243 (518,400) 4.83 7.40 * 4,306 4,603,300 * 0.5% *
2b 0.2 3 913 (75,600) 2.00 7.62 * 1,402 244,059 * 1% *
2c 0.2 3 346 (75,600) 2.96 6.53 * 1,650 59,230 * 1% *
2d 0.2 8 42,983 3.47 6.70 2,519 3,731,460 0.5%
2e 0.2 3 17,951 0.51 6.35 1,744 4,300,896 1%
2f 0.2 5 213 (518,400) 0.19 4.85 * 3,149 13,392 * 1% *
2g 0.2 1 85 3.68 6.64 1,182 15,815 2%
2a 0.5 18 15,976 (68,400) 4.83 5.40 * 4,330 21,398 * 0.4% *
2b 0.5 2 108 2.00 5.36 1,325 11,607 1%
2c 0.5 3 117 2.96 5.75 1,712 3,894 1%
2d 0.5 6 1,496 3.47 4.69 2,330 69,142 0.3%
2e 0.5 3 143 0.51 3.81 1,822 16,681 1%
2f 0.5 6 10 0.19 5.48 3,157 3,757 1%
2g 0.5 1 13 3.66 4.48 865 2,165 1%
2a 0.8 13 501 (75,600) 4.83 6.09 * 4,243 7,821 * 0.2% *
2b 0.8 3 31 2.00 5.63 1,320 4,138 1%
2c 0.8 3 4 2.96 5.94 1,623 1,984 0.6%
2d 0.8 6 38 3.47 4.36 2,333 4,532 0.3%
2e 0.8 3 55 (424,800) 0.51 3.80 * 1,823 4,851 * 1% *
2f 0.8 7 11 (180,000) 0.19 4.83 * 3,156 3,852 * 1% *
2g 0.8 1 3 755 3.66 5.04 4.44 759 1,157 726,101 1% 21%
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# L T r(s) T ∗(s) T (s) f r f ∗ f itr it∗ it 6∈ Z δf
3a 3 5 7 7 96.0 96.0 96.0 3,231 3,141 3,141 0% 0%
3b 3 2 2 2 43.0 43.0 43.0 1,910 2,219 2,219 0.2% 0%
3c 3 1 2 2 54.0 54.0 54.0 1,469 1,511 1,511 0.5% 0%
3d 3 2 4 4 77.0 77.0 77.0 1,910 2,219 2,219 0.1% 0%
3e 3 1 1 1 51.0 51.0 51.0 1,102 975 975 0.3% 0%
3f 3 1 2 2 61.0 61.0 61.0 1,303 1,223 1,223 0.1% 0%
3g 3 1 1 1 38.1 39.0 39.0 640 587 587 0.9% 2%
3a 6 17 834 3,106 98.1 131 102 8,357 48,185 347,347 0.3% 4%
3b 6 2 21 1,235 44.6 57.0 48.0 2,939 3,737 346,431 0.8% 8%
3c 6 3 6 855 54.0 72.0 56.0 3,364 3,028 293,850 1% 4%
3d 6 23 1,495 91.9 126 9,310 80,873 1%
3e 6 4 477 61.1 100 4,398 30,155 1%
3f 6 5 1,253 (75,600) 64.2 87.0 * 4,528 32,392 * 1% *
3g 6 2 214 (75,600) 45.1 67.0 * 2,537 18,221 * 2% *

T
ab

le
5.6:

T
est

3.
M

in
im

ize
w

ith
greater

th
an

len
gth

criteria.



6
0

Im
p
le

m
e
n
ta

tio
n

a
n
d

N
u
m

e
ric

a
l
E
x
p
e
rim

e
n
ts

# L T r(s) T ∗(s) T (s) f r f ∗ f itr it∗ it 6∈ Z δf
4a 6 13 (518,400) (518,400) 4.83 * * 4,306 * * 0.5% *
4b 6 1 341 570 43.7 62.0 52.0 1,289 107,009 239,589 0.9% 19%
4c 6 3 124 56.0 66.0 2,605 14,985 1%
4d 6 2 81 77.0 89.0 1,952 4,757 0.2%
4e 6 1 2 51.0 59.0 895 1,087 0.4%
4f 6 2 24 61.8 78.0 1,898 2,891 0.5%
4g 6 1 13,277 13,788 38.0 42.0 42.0 543 14,795,520 14,795,520 0.6% 11%
4a 10 4 15 15 96.0 96.0 96.0 3,315 3,373 3,373 1% 0%
4b 10 1 2 2 43.0 43.0 43.0 946 914 914 0.6% 0%
4c 10 1 2 2 54.0 54.0 54.0 1,378 1,629 1,629 0% 0%
4d 10 2 3 3 77.0 77.0 77.0 2,052 1,967 1,967 0.2% 0%
4e 10 1 1 1 51.0 51.0 51.0 822 928 928 0.2% 0%
4f 10 1 1 1 61.0 61.0 61.0 1,220 1,148 1,148 0.2% 0%
4g 10 1 1 1 38.0 38.0 38.0 495 501 501 0% 0%
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IV

D = 2 and O = 3 D = 2 and O = 6 D = 4 and O = 3 D = 4 and O = 6
# ρ infeasible feasible infeasible feasible infeasible feasible infeasible feasible Feasible?

2a 0.2 Region 2 Region 4 - -

2b 0.2 6,599 3,861 Region 3 3,475 xx-x

2c 0.2 Region 2 Region 2 Region 3 Region 3 ----

2d 0.2 Region 2 Region 2 Region 2 - --

2e 0.2 Region 2 Region 2 Region 2 - --

2f 0.2 Region 2 Region 2 - -

2g 0.2 102 24,657 Region 2 Region 2 xx--

2a 0.5 52 6,517 808 xxx

2b 0.5 180 575 3 29 xxxx

2c 0.5 Region 2 3,401 4 15 -xxx

2d 0.5 583 31 x x

2e 0.5 Region 2 46,622 Region 2 -x-

2f 0.5 Region 2 304,870 Region 3 -x-

2g 0.5 2 1,533 48 21 xxxx

2a 0.8 18 471 10 xxx

2b 0.8 4 151 3 xxx

2c 0.8 9 3,008 5 xxx

2d 0.8 697 2,490 Region 3 xx-

2e 0.8 199 70,491 Region 3 xx-

2f 0.8 9 20,051 Region 3 xx-

2g 0.8 4 281 2 57 xxxx
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Region 1 Region 2 Sum
# O T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 3 24 1,617 5 27 15,091 0 6.44 52 16,708 5
2b 3 180 717 64 1 82 0 6.41 180 799 64
2c 3 3 1,862 0 - - - 6.21 47 2,034 0
2d 3 578 3,261 7 6 1,416 2 7.40 583 4,677 9
2e 3 193 4,986 16 - - - 4.79 193 5,204 16
2f 3 95 2,381 17 - - - 5.79 285 2,470 17
2g 3 1 929 0 1 1,192 0 5.13 2 2,121 0
2a 6 6,081 2,324 59 436 64,607 2 6.44 6,517 66,931 61
2b 6 574 3,709 109 1 218 0 6.37 575 3,927 109
2c 6 3,387 5,809 69 14 4,194 2 6.35 3,401 10,003 71
2d 6
2e 6 46,621 15,842 96 1 594 0 6.12 46,622 16,436 96
2f 6 304,870 9,302 210 1 239 0 8.09 304,870 9,541 210
2g 6 1,533 3,156 83 1 177 0 5.39 1,533 3,333 83
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Region 1 Region 2 Region 3 Region 4 Sum
# O T (s) it |∆| T (s) it |∆| T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 3 3 844 3 2 807 1 1 378 0 801 1,238,553 0 6.60 808 1,240,582 4
2b 3 2 272 3 1 149 1 1 117 0 1 92 0 8.08 3 630 4
2c 3 1 187 0 3 321 5 1 474 0 1 402 0 7.00 4 1,384 5
2d 3 19 5,780 0 1 953 0 6 667 4 5 2,837 0 6.00 31 10,237 4
2e 3 2 1,198 0 - - - - - - - - - 4.26 6,536 1,305 0
2f 3 5 522 3 2 1,242 0 - - - - - - 7.06 9 2,045 3
2g 3 45 1,248 13 1 270 1 1 558 2 1 22 0 6.11 48 2,098 16
2a 6
2b 6 6 740 3 12 1,130 5 11 427 8 1 87 0 10.7 29 2,384 16
2c 6 7 500 3 3 821 1 5 1,205 2 1 581 0 7.81 15 3,107 6
2d 6
2e 6
2f 6
2g 6 14 164 2 6 1,605 4 1 1,445 1 1 57 0 7.17 21 3,271 7
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C h a p t e r 6

Conclusion

In this thesis, we develop a specific type of the IMCF network model: the
named IMCF model. It is to the best of our knowledge a new model used
to model the problem of finding arc- or node disjoint connecting paths with
length- and distribution criteria. Finding arc- or node disjoint connecting
paths with length- and distribution criteria are problems within areas such as
telecommunication, transportation, and production. As an example, a solution
to a transportation problem could be as seen in Figure 6.1. It illustrates the
three cheapest roads connecting Paris with Toulouse under the criteria that no
two roads intersect; no road takes more than 13 hours; and all roads are within
20% from their average length. This is only one example of the multitude of
criteria we can incorporate in the named IMCF model (or the IMCF network
model).

Figure 6.1: Solution to a transportation problem.

There are some challenges with the modeling such as sub-tours in the so-
lutions and NP-complete large-scale problems. Algorithms to overcome these
challenges are the DisjointPathsCriteria which checks whether there are
sufficiently many arc- or node disjoint connecting paths before solving the
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problem with length- and distribution criteria; the SubTourElimination (a
cutting-plane algorithm) that enforces constraints where there arise sub-tours;
and the Decomposition and DecompositionOverlap which overcome the
challenge of large-scale problems. We recommend the DecompositionOver-

lap algorithm since it is the most flexible of the two. It represents the directed
network in smaller regions thought of as geometric regions. Each region con-
stitutes the directed network of a separately solved sub-problem. The regions
overlap which entails that some parts of the large directed network are solved
more than once. However, this is also that which gives flexibility to the algo-
rithm. Having overlapping regions is made possible by using the named IMCF
model.

Using the DecompositionOverlap algorithm, we cannot guarantee an
optimal solution since choices are made. In particular, the more sub-programs,
the more limitations to the feasible set of solutions. However, it is rarely
possible to achieve optimality due to a limited amount of memory; hence, this
gives more motivation to use the DecompositionOverlap algorithm.

The level of difficulty depends in theory on the imposed criteria. It should
be an easier problem to find arc- or node disjoint connecting paths with less
than or equal to specified length criteria than to find such paths with e.g.
approximately equal to or greater than specified length criteria. However,
in practice this does not hold. Finding node disjoint connecting paths of
connecting path lengths greater than 3 is as easy a problem to solve as that
of connecting path lengths smaller than 10. It seems that it depends more on
the size of the feasible set of solutions. For instance, the problem of finding
node disjoint connecting paths of connecting path lengths greater than (or
smaller than) 6 has feasible solutions as sub-sets to the feasible solutions of
the above mentioned problems, and they are two difficult problems. Another
test result that confirmed this is finding node disjoint connecting paths with
approximately equal lengths. Here, imposing a narrow margin (of 20%) is a
much more difficult problem than with a wider margin (of 80%). Again, the
feasible solutions to the difficult problem (with a margin of 20%) is a sub-set
of the feasible solutions to the less difficult problem (with a margin of 80%).

Finding a maximal number of arc- or node disjoint connecting paths with-
out criteria proves to be an easy problem to solve. Hence, it is better to
check whether there is a sufficient number of connecting paths in the directed
network before solving a problem including length criteria. This will not in-
crease optimization time by much but it might instead prevent unnecessary
work. The SubTourElimination algorithm works as supposed. It re-solves
the problem prohibiting the found sub-tours in the proceeding solution. This
sometimes involves many iterations but is always a finite process.

Furthermore, the DecompositionOverlap algorithm gives different re-
sults depending on the number of regions, on the size of the overlap, and also
largely on the test problem. We have an example in which it is almost 30 times
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faster to use the DecompositionOverlap algorithm, and in which there are
guaranteed to be no sub-tours in the solution. This was for the problem of
finding node disjoint connecting paths of approximately equal lengths with a
margin of 80%. There are examples of when the DecompositionOverlap

algorithm failed to find a feasible solution even though there existed such so-
lutions. However, by altering either the number of regions or the size of the
overlap, it is possible to find solutions in most cases. It is therefore our be-
lief that the DecompositionOverlap algorithm is a very flexible and useful
algorithm which is able to solve the named IMCF model, a model that can
incorporate a great multitude of criteria.

Future Work

The optimization software CPLEX has a variety of parameters. We have
always used the default settings, except when finding only a feasible solution.
It would be very interesting to see whether changing any of these parameters
would improve the solution times.

Furthermore, it would be interesting to test the DecompositionOverlap

algorithm on a larger group of test problems, to see how flexible an algorithm
it is. These test problems could be from application areas such as VLSI layout,
telecommunication, designing train traffic, and possibly other areas.
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A p p e n d i x A

Existing and Developed Theory

We present some existing theory, and explain why this does not apply to the
problems of this thesis. Hereafter, we develop theory that does apply.

A.1 Existing Theory

As mentioned in Chapter 1, we use the model presented in [4, Section 8] as our
point of departure. What is more, this paper discusses some properties of the
problem of finding arc- and edge disjoint connecting paths in, respectively, di-
rected and undirected networks. These properties include the level of difficulty
of finding solutions, and also necessary and sufficient criteria for the existence
of a solution. The properties apply to some special types of networks, which
are first defined and hereafter discussed.

The number of inward directed arcs at a given node in a directed graph is
called the in-degree. The out-degree is the number of outward directed arcs at
a given node in a directed graph. A directed graph is Eulerian if and only if
it is connected and every node has equal in-degree and out-degree.

An undirected graph is planar if it can be drawn in a plane without edges
crossing. An undirected graph is planar if and only if it does not contain within
it any graph that is a graph expansion of the complete graph K5 or the utility
graph K3,3. Figure A.1 illustrates, to the left, the complete graph K5 and, to
the right, the utility graph K3,3. Here, a line represents an edge.
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Figure A.1: The complete graph K5 (left), and the utility graph K3,3 (right).

Two operations are allowed when determining whether a graph contains
within it an undirected graph that is a graph expansion of K5 or K3,3. These
are to delete edges, and merge nodes that are connected by an edge.

An acyclic directed graph is a directed graph containing no directed cycles.
That is, it cannot contain a directed path in which the initial node equals the
final node. Every acyclic directed graph has at least one node of out-degree 0.

With the graphs defined, it is now possible to look at their properties.
There are two main categories of problems when discussing their difficulties:
one includes problems that in general can be solved in polynomial time; and
the other are NP-complete problems that cannot at present. Problems from
this second class are considered computationally difficult to solve. For further
details, see [9, Section I.5.6].

Two theorems in [4, Section 8] discuss necessary and sufficient criteria for
finding arc disjoint connecting paths. However, they make some assumptions
of the type of graph: Theorem 8.30 [4] assumes that the directed graph is
Eulerian; and Theorem 8.31 [4] assumes that the directed graph is planar and
acyclic. Two other interesting theorems are Theorem 8.32 [4] and Theorem
8.35 [4]. The first states that finding arc disjoint connecting paths in an acyclic
directed graph can be solved in polynomial time if the number of arc disjoint
connecting paths sought for is fixed. The second states what maximum number
of arc disjoint connecting paths connecting sub-sources and sub-terminals is
possible to find. However, it is only applicable for an Eulerian directed graph.

The graphs of this thesis are not limited to graphs that are either Eulerian,
acyclic, or planar. Hence, we cannot apply the described theorems.
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A.2 Developed Theory

Theorem 8.29 in [4] states that the arc disjoint connecting paths problem with
or without distribution criteria is NP-complete for K = 2. Based on this theo-
rem, we prove that the arc disjoint connecting paths problem with or without
distribution criteria is NP-complete for any value of K; NP-complete for some
length criteria; and that also the node disjoint connecting paths problem is
NP-complete; see [14].

Theorem 1. The arc disjoint connecting paths problem with or without dis-
tribution criteria is NP-complete for any fixed value of K, with K ≥ 2.

Proof. Supposing we can solve the arc disjoint connecting paths problem with
or without distribution criteria for some value of K by some algorithm . This
algorithm can then be used to also solve the arc disjoint connecting paths
problem with or without distribution criteria in the directed graph (V, A) for
K = 2 by expanding (V, A) with K−2 arcs connecting the source and terminal.
As finding arc disjoint connecting paths problem with or without distribution
criteria is NP-complete for K = 2, it follows that the above problem is NP-
complete too, because it is at least as difficult.

The following theorem proves that it is still NP-complete to find arc dis-
joint paths of equal- and approximately equal lengths, or greater than specified
lengths. In the proof, we assume that all arc costs are 1. However, we can still
apply this proof to directed graphs with different arc costs.

Theorem 2. The arc disjoint connecting paths problem with or without dis-
tribution criteria and with equal- and approximately equal length criteria, or
greater than specified length criteria is NP-complete.

Proof. Supposing we can solve the arc disjoint connecting paths problem with
the above criteria by some algorithm. This algorithm can then be used to also
solve the arc disjoint connecting paths problem with or without distribution
criteria in the directed graph (V, A) for K = 2 by altering (V, A) such that
for each arc, we add arcs of length 2, 3, . . .. Additionally to the internal repre-
sentations at a node, every node only has either one inward- or one outward
adjacent node such that if merging all representations of every node, then we
would again have the original graph. This transformation is polynomial in
the number of arcs. As finding arc disjoint connecting paths problem with
or without distribution criteria is NP-complete for K = 2, it follows that the
above problem is NP-complete too, because it is at least as difficult.

Theorem 3. The arc disjoint connecting paths problem with or without dis-
tribution criteria and with equal to or less than specified length criteria Lk is
not NP-complete when K is fixed.
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Proof. An algorithm to solve this problem is to make a set of all directed
paths of length Lk with any sub-source as its initial node. Then these directed
paths are compared to see if there are K arc disjoint connecting paths. This
algorithm is polynomial in time.

Article [7] proves that finding a maximum number of vertex disjoint paths
of length L is NP-complete for equal to specified lengths larger than 3, and for
less than specified lengths larger than 4. Hence, fixing K alters the difficulty
of the problem drastically.
Theorem 4. The node disjoint connecting paths problem with or without dis-
tribution criteria is NP-complete for K = 2.

Proof. Supposing we can solve the node disjoint connecting paths problem
with or without distribution criteria for K = 2 by some algorithm. This
algorithm can then be used to also solve the arc disjoint connecting paths
problem with or without distribution criteria in the directed graph (V, A) for
K = 2 by altering (V, A) such that each node is represented as many times as
the sum of the in- and out-degree. All representations of node i are connected
with all other representations of node i. This transformation is polynomial
in the number of arcs. As finding arc disjoint connecting paths problem with
or without distribution criteria is NP-complete for K = 2, it follows that the
above problem is NP-complete too, because it is at least as difficult.

All in all, depending on the length criteria this problem is more or less
difficult to solve.



A p p e n d i x B

Data of France

Table B.1 presents the numbering of cities. The chart of France is seen in
Figure B.1. The numbers on the chart correspond to the numbering of the
cities in Table B.1. Table B.2 presents the costs, time to travel, distances of
the roads of the chart, and corresponding arcs. We only list one direction
between two cities because the other includes the same data. All information
is obtained from http://www.viamichelin.com.

Node City Node City

1 Ablis 20 Montpeiller
2 Amiens 21 Mulhouse
3 Angers 22 Nancy
4 Auxerre 23 Nantes
5 Bayonne 24 Nice
6 Besançon 25 Nîmes
7 Bordeaux 26 Niort
8 Brest 27 Orléans
9 Brive-la-Gaillarde 28 Paris

10 Caen 29 Reims
11 Clermont-Ferrand 30 Rennes
12 Dijon 31 Rouen
13 Grenoble 32 Sens
14 Langres 33 Sisteron
15 Le Mans 34 Strasbourg
16 Lille 35 Toulouse
17 Lyon 36 Tours
18 Marseilles 37 Troyes
19 Metz 38 Vierzon

Table B.1: Numbering of cities.
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Figure B.1: Chart of France that the enterprise has.

Connection Cost Time Distance Arc

Ablis→Le Mans: €20.08 1h25 150 km (1,15)
Ablis→Orléans: €9.37 0h50 76 km (1,27)
Ablis→Paris: €6.79 0h53 66 km (1,28)
Amiens→Paris: €14.45 1h37 133 km (2,28)
Amiens→Rouen: €12.22 1h14 124 km (2,31)
Angers→Le Mans: €11.94 0h58 96 km (3,15)
Angers→Nantes: €12.63 1h03 87 km (3,23)
Angers→Tours: €12.89 1h32 126 km (3,36)
Auxerre→Dijon: €15.97 1h26 150 km (4,12)
Auxerre→Orléans: €12.29 1h49 153 km (4,27)
Auxerre→Paris: €17.77 1h51 169 km (4,28)
Auxerre→Sens: €8.02 0h52 74 km (4,32)
Bayonne→Bordeaux: €14.11 2h00 185 km (5,7)
Bayonne→Toulouse: €33.54 2h51 297 km (5,35)
Besançon→Dijon: €11.30 1h04 98 km (6,12)
Besançon→Mulhouse: €16.85 1h31 139 km (6,21)
Bordeaux→Brive-la-Gaillarde: €23.06 2h15 196 km (7,9)
Bordeaux→Niort: €23.30 2h01 187 km (7,26)
Bordeaux→Toulouse: €29.88 2h26 245 km (7,35)
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Brive-la-Gaillarde→Clermont-Ferrand: €16.58 2h01 166 km (9,11)
Brive-la-Gaillarde→Toulouse: €24.43 2h01 200 km (9,35)
Brive-la-Gaillarde→Vierzon: €16.35 2h32 272 km (9,38)
Caen→Rennes: €11.05 1h50 184 km (10,30)
Caen→Rouen: €14.80 1h19 128 km (10,31)
Clermont-Ferrand→Lyon: €18.00 2h05 177 km (11,17)
Clermont-Ferrand→Montpeiller: €24.95 3h15 334 km (11,20)
Clermont-Ferrand→Vierzon: €27.37 2h04 216 km (11,38)
Dijon→Langres: €7.82 0h55 79 km (12,14)
Dijon→Lyon: €23.50 1h57 195 km (12,17)
Grenoble→Lyon: €15.10 1h18 107 km (13,17)
Grenoble→Sisteron: €10.28 2h01 143 km (13,33)
Langres→Nancy: €14.46 1h32 141 km (14,22)
Langres→Troyes: €13.95 1h17 123 km (14,37)
Le Mans→Rouen: €15.03 2h41 204 km (15,31)
Lille→Paris: €25.85 2h21 221 km (16,28)
Lille→Reims: €24.59 2h03 200 km (16,29)
Lyon→Nîmes: €32.58 2h29 258 km (17,25)
Marseilles→Nice: €25.02 2h14 194 km (18,24)
Marseilles→Nîmes: €12.27 1h22 123 km (18,25)
Marseilles→Sisteron: €15.45 1h23 132 km (18,33)
Metz→Nancy: €3.46 0h42 58 km (19,22)
Metz→Reims: €23.10 1h48 192 km (19,29)
Metz→Strasbourg: €20.43 1h37 164 km (19,34)
Montpeiller→Nîmes: €5.74 0h43 54 km (20,25)
Montpeiller→Toulouse: €32.33 2h22 249 km (20,35)
Mulhouse→Strasbourg: €6.95 1h15 116 km (21,34)
Nantes→Niort: €16.48 1h37 145 km (23,26)
Nantes→Rennes: €6.57 1h21 110 km (23,30)
Nice→Sisteron: €12.02 2h45 180 km (24,33)
Niort→Tours: €24.54 1h43 174 km (26,36)
Orléans→Tours: €16.52 1h11 117 km (27,36)
Orléans→Vierzon: €11.32 0h55 87 km (27,38)
Paris→Reims: €17.31 1h28 143 km (28,29)
Paris→Rouen: €19.22 1h35 132 km (28,31)
Paris→Sens: €12.23 1h24 125 km (28,32)
Reims→Troyes: €15.39 1h21 125 km (29,37)
Sens→Troyes: €5.90 0h53 67 km (32,37)
Tours→Vierzon: €11.73 1h28 124 km (36,38)

Table B.2: Costs, time to travel, distances, and arcs.
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A p p e n d i x C

Test Problems and Results

C.1 Test Problems

The test problems used in this report are listed in Table C.1. Rows and
Columns are the number of rows and columns, respectively, in the constraint
matrix used to model the problem of finding a maximum of node disjoint
connecting paths.

# |V | |A| K Rows Columns
a 596 2,628 15 12,211 40,770
b 365 1,576 7 4,317 11,326
c 365 1,578 8 4,725 13,008
d 332 1,444 15 7,193 23,010
e 266 1,138 10 4,156 11,980
f 354 1,540 10 5,457 16,000
g 218 920 7 2,729 6,734

Table C.1: The test problems used in this report.

We see that test problem a is the largest test problem followed by test
problem d, whereas test problem g is the smallest.

C.2 Results from Tests I-IV

Tables C.2–C.5 gives the results from testing the DecompositionOverlap

algorithm.



7
8

T
e
st

P
ro

b
le

m
s

a
n
d

R
e
su

lts

Region 1 Region 2 Sum
# ρ O T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 0.2 3 3,467 6,509 3 - - - 6.11 3,519 7,404 3
2b 0.2 3 6,599 1,448 122 1 55 0 6.91 6,599 1,503 122
2c 0.2 3 5 1,864 1 - - - 6.04 6 2,043 1
2d 0.2 3 1,603 9,254 2 - - - 5.90 26,891 12,477 2
2e 0.2 3 2,524 170,795 5 - - - 5.89 2,525 170,937 5
2f 0.2 3 8,377 54,816 11 - - - 6.16 8,378 55,074 11
2g 0.2 3 101 5,561 3 1 515 0 6.80 102 6,076 3
2a 0.5 3 24 1,617 5 27 15,091 0 6.44 52 16,708 5
2b 0.5 3 180 717 64 1 82 0 6.41 180 799 64
2c 0.5 3 3 1,862 0 - - - 6.21 47 2,034 0
2d 0.5 3 578 3,261 7 6 1,416 2 7.40 583 4,677 9
2e 0.5 3 193 4,986 16 - - - 4.79 193 5,204 16
2f 0.5 3 95 2,381 17 - - - 5.79 285 2,470 17
2g 0.5 3 1 929 0 1 1,192 0 5.13 2 2,121 0
2a 0.8 3 10 1,472 4 7 3,125 0 6.00 18 4,597 4
2b 0.8 3 4 818 2 1 134 0 6.87 4 952 2
2c 0.8 3 8 2,052 3 1 885 0 5.87 9 2,937 3
2d 0.8 3 690 3,631 21 7 5,119 0 5.60 697 8,750 21
2e 0.8 3 198 5,115 52 1 543 0 5.27 199 5,658 52
2f 0.8 3 9 2,321 1 1 266 0 5.79 9 2,587 1
2g 0.8 3 4 945 3 1 220 0 5.13 4 1,165 3
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Region 1 Region 2 Region 3 Region 4 Sum
# ρ O T (s) it |∆| T (s) it |∆| T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 0.2 3 2 1,178 0 1 579 0 22 21,942 1 - - - 6.00 27 24,521 1
2b 0.2 3 3 269 4 1 956 1 - - - - - - 6.15 5 1,281 5
2c 0.2 3 2 140 3 83 4,184 10 - - - - - - 5.67 85 4,402 13
2d 0.2 3 37 1,721 8 - - - - - - - - - 4.40 38 1,771 8
2e 0.2 3 78 4,578 4 - - - - - - - - - 4.43 79 4,775 4
2f 0.2 3 125 3,524 6 - - - - - - - - - 5.43 156 4,108 6
2g 0.2 3 145 127 17 - - - - - - - - - 5.44 146 180 17
2a 0.5 3 3 844 3 2 807 1 1 378 0 801 1,238,553 0 6.60 808 1,240,582 4
2b 0.5 3 2 272 3 1 149 1 1 117 0 1 92 0 8.08 3 630 4
2c 0.5 3 1 187 0 3 321 5 1 474 0 1 402 0 7.00 4 1,384 5
2d 0.5 3 19 5,780 0 1 953 0 6 667 4 5 2,837 0 6.00 31 10,237 4
2e 0.5 3 2 1,198 0 - - - - - - - - - 4.26 6,536 1,305 0
2f 0.5 3 5 522 3 2 1,242 0 - - - - - - 7.06 9 2,045 3
2g 0.5 3 45 1,248 13 1 270 1 1 558 2 1 22 0 6.11 48 2,098 16
2a 0.8 3 6 860 5 1 512 1 2 573 1 1 855 0 6.00 10 2,800 7
2b 0.8 3 1 360 0 2 141 5 2 117 0 1 92 0 9.15 3 710 5
2c 0.8 3 2 114 6 1 271 0 2 749 3 1 478 0 7.67 5 1,612 9
2d 0.8 3 42 1,421 8 1 578 0 - - - - - - 11.7 43 1,999 8
2e 0.8 3 43 2,589 5 17 752 1 - - - - - - 6.85 45 3,868 6
2f 0.8 3 238 1,803 17 5 1,403 1 - - - - - - 7.35 243 3,877 18
2g 0.8 3 1 230 0 1 204 0 1 146 0 1 27 0 8.44 2 607 0
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Region 1 Region 2 Sum
# ρ O T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 0.2 6
2b 0.2 6 3,861 5,588 59 1 458 0 6.04 3,861 6,046 59
2c 0.2 6 30,051 599,505 27 - - - 6.21 30,052 599,745 27
2d 0.2 6
2e 0.2 6
2f 0.2 6
2g 0.2 6 24,657 5,036 87 1 184 0 6.78 24,657 5,220 87
2a 0.5 6 6,081 2,324 59 436 64,607 2 6.44 6,517 66,931 61
2b 0.5 6 574 3,709 109 1 218 0 6.37 575 3,927 109
2c 0.5 6 3,387 5,809 69 14 4,194 2 6.35 3,401 10,003 71
2d 0.5 6
2e 0.5 6 46,621 15,842 96 1 594 0 6.12 46,622 16,436 96
2f 0.5 6 304,870 9,302 210 1 239 0 8.09 304,870 9,541 210
2g 0.5 6 1,533 3,156 83 1 177 0 5.39 1,533 3,333 83
2a 0.8 6 391 2,605 21 80 32,950 1 6.04 471 35,555 22
2b 0.8 6 151 3,969 45 1 227 0 6.87 151 4,196 45
2c 0.8 6 3,005 6,062 79 3 570 1 8.27 3,008 6,632 80
2d 0.8 6 2,486 26,919 10 4 1,518 0 5.83 2,490 28,437 10
2e 0.8 6 70,490 14,852 169 1 497 0 8.12 70,491 15,349 169
2f 0.8 6 20,050 7,539 69 1 186 0 7.87 20,051 7,725 69
2g 0.8 6 281 3,387 29 1 178 0 6.89 281 3,565 29

T
ab

le
C

.4:
T
est

2;
m

in
im

izin
g

w
ith

ap
p
rox

im
ately

eq
u
al

len
gth

s.



C
.2

R
e
su

lts
fro

m
T
e
sts

I-IV
8
1

Region 1 Region 2 Region 3 Region 4 Sum
# ρ O T (s) it |∆| T (s) it |∆| T (s) it |∆| T (s) it |∆| f T (s) it |∆|
2a 0.2 6
2b 0.2 6 3,308 4,305 52 159 7,753 18 8 4,522 2 1 102 0 6.12 3,475 16,682 72
2c 0.2 6 151 596 37 14,835 3,022 53 - - - - - - 5.62 14,987 4,058 90
2d 0.2 6 35,023 99,683 108 - - - - - - - - 4.43 35,025 100,072 108
2e 0.2 6 38,390 2,047 72 - - - - - - - - - 4.35 38,393 2,907 72
2f 0.2 6
2g 0.2 6 1,546 6,353 42 - - - - - - - - - 5.00 1,602 6,631 42
2a 0.5 6
2b 0.5 6 6 740 3 12 1,130 5 11 427 8 1 87 0 10.7 29 2,384 16
2c 0.5 6 7 500 3 3 821 1 5 1,205 2 1 581 0 7.81 15 3,107 6
2d 0.5 6
2e 0.5 6
2f 0.5 6
2g 0.5 6 14 164 2 6 1,605 4 1 1,445 1 1 57 0 7.17 21 3,271 7
2a 0.8 6
2b 0.8 6
2c 0.8 6
2d 0.8 6
2e 0.8 6
2f 0.8 6
2g 0.8 6 9 291 6 48 553 21 1 282 1 1 84 0 6.17 57 1,210 28
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