
Hacking hash functions or how to find a needle in a haystack
Krystian Matusiewicz and Josef Pieprzyk
Centre for Advanced Computing, Algorithms and Cryptography,

Department of Computing, Macquarie University

Summary

Most of the people don’t realise how often they are using crypto-
graphic hash functions. In spite of their ubiquity and importance,
designing secure hash functions has been more of an art than of
science.

This project aims at developing new cryptanalytical techniques to
assess the security of existing designs and acquire knowledge nec-
essary to design next-generation hash functions, with solid secu-
rity rationale.

What are hash functions?

Hash functions are algorithms that for input bit-streams of any
length return the output of fixed length. This means that the hash
of a few letters or a whole CD-ROM of data has the same length.

Cryptographic hash functions are very special hash functions that
satisfy three additional security properties.

• Preimage resistant : Given an output Y of the hash function h it
is difficult to find any preimage - an inputX such that h(X) = Y .

H

Y

Y???

Preimage resistance assures us that the knowledge of the hash
value does not reveal anything about the contenst of the mes-
sage.

• Second preimage resistant : Given a fixed input X to the hash
function and the corresponding output h(X) it is difficult to find
a second preimage - another input X ′, X ′ 6= X such that h(X) =
h(X ′).

H

Y

???

M H

•Collision resistant : It is hard to find any pair of distinct mes-
sages (X,X ′), X 6= X ′ such that h(X) = h(X ′).

H???

?? H

Second preimage resistance and collision resistance implies that
the digest is “almost unique” for the message. If the message
has been altered, the digest will be different (almost always). If
two digests are equal, two correspondingmessages are the same
(almost for sure).

Those properties enable us to treat cryptographic hashes as digital
“fingerprints” of messages.

Breaking a hash function: finding a collision or a preimage. The
focus is usually on finding collisions. How hard is it? For a per-
fect hash function producing 160-bit digests, we need 280 compu-

tations. Anything less than the theoretical bound of 2n/2 is a sign
of a weakness of the design.

Applications: why do we care?

Digital signatures In digital signatures we don’t sign a document
but rather its hash. If we can find second preimages for the hash
function, we can forge signatures. If we can find collisions, we can
trick another person to sign a document and replace it with our
version.

Password-based used identification If we can find second preim-
ages for the hash function used by the system, we can circumvent
security of password-based login authentication.

In many Linux distributions, passwords in /etc/shadow are stored as MD5 hashes

Data integrity verification Message digests are widely used as a
means of verifying data integrity. Again, if we can break the hash
function in use, we could trick users into installing malicious mu-
tations of linux packages or windows programs.

Identifying data in P2P networks Most of P2P networks identify
files using hashes. If we can produce collisions for the hash func-
tion used by P2P network, we can “poison” it introducing bogus
files that cannot be distinguished from real ones (see the case of
UUHash and Kazaa network).

The MD family

Most of the hash function published in the last 15 years closely
follow the design principles of MD4. They are called the “MD”
family of hashes and include such popular designs as MD5, SHA-
1 and SHA-256. They all exhibit the general structure presented
below. Each of a few rounds consists of a number of steps which
are message dependent permutations of register bits.

round 1

round 2

round 3

= IVA B CD

M

σ1

σ2

M
es
sa
g
e
w
o
rd
s

X
0
,.

..
,X

1
5

A B CD

A B CD

≪

Xi

ci

A B CD

A B CD

Big goal: analysis of SHA-256

After successful practical attacks on MD5 and theoretical attacks
on the U.S. standard SHA-1 the question of security of the im-
proved version called SHA-256 is very interesting. This function
is much more complex and we need to learn a lot to be able to
fully attack it. As the first step, we analysed different simplified
variants to get the feeling how different components influence the
behaviour of the function.

Step transformation of SHA-256 is very complex comparing to MD4 or MD5.

Σ0

Maj

Σ1

Ch

Ki

Wi

A B C D E F G H

A B C D E F G H

Message expansion process is a non-linear feedback shift register.

σ0σ1

W0 W15

Cryptanalysis of a variant without Σ0, Σ1, σ0 , σ1 Without those
components which are F2-linear, we approximated the function by
a model linear over Z232. We had to deal with Boolean functions.
We found collision differentials over Z232 working for a fully lin-
earizedmodel andwe picked the onewith small XORweights and
approximated Boolean functions.

For this variant, we were able to show that Pr[collision] = 2−64.

Cryptanalysis of short variants of SHA-256-XOR Our other direc-
tion was to investigate SHA-256 with additions replaced by XORs.
This time the main obstacle are Boolean functions.

The outline of our approach can be summarized as follows:

• choose linear approximations of MAJ and IF and construct a F2–
linear model of SHA-256-XOR,

• find a suitable collision-producing difference for the linearized
SHA-256-XOR,

• derive a set of conditions under which the real SHA-256-XOR
behaves like the linear model with respect to difference propa-
gation,

• find amessage forwhich all the conditions (approximating equa-
tions) are satisfied.

Strengths: this framework works for all similarly designed hash
functions, we can try to apply them to many designs of the MD
family.

Problems to solve: Finding good differentials is hard. We need
more efficient algoritms for findingmessages satisfying conditions.

For SHA-256-XOR we can attack variants with with 20-22 steps.

Analysis of alternatives: FORK-256

FORK-256 is a recently proposed alternative for SHA-256. Instead
of one long run it consists of four short, parallel branches. Each
branch is built of eight step transformations which use two mes-
sage words in different order.

Step transformation consists of the addition of message words,
two structures QL and QR, depicted on the right, and a rotation
of registers.

Step transformation of FORK-256

QL QR

Mσj(2i) Mσj(2i+1)

A B C D E F G H

A B C D E F G H

QL-structure

g

f

ROL9

ROL21

ROL5

ROL17δ

A B C D

A B C D

Microcollisions in QL and QRWe discovered a way of finding dif-
ferences in registers A and E that don’t spread to other registers –
inside of the step transformation differences coming from function
f are cancelled out by output differences of g.

g

f

ROL9

ROL21

ROL5

ROL17δ

A B C D

A B C D

Collisions for two branches of FORK-256 Combining microcol-
lision differentials with easy differentials when the difference is
present in registers B, C,D and F , G,H only, we were able to find
differential paths that easily yield chosen-IV collisions for FORK-
256 reduced to two branches.

We expect to improve our results and extend them to versions of
FORK-256 with more branches.

About the authors

Krystian Matusiewicz is a PhD student in De-
partment of Computing. His main interest are
mathematical methods of cryptanalysis, he is
working on the analysis and design of crypto-
graphic hash functions.

Josef Pieprzyk is the director of the Centre for
Advanced Computing, Algorithms and Cryp-
tography. His research interests span across
many areas of cryptography, one of them is
the design and analysis of cryptographic hash
functions.


