
New trends in the design of cryptographic hash
functions

Krystian Matusiewicz

Centre for Advanced Computing Algorithms and Cryptography,
Department of Computing, Macquarie University

WKiOI, KNI KUL, 18 May 2007

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

◮ Conclusions

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

◮ Conclusions

Fundamental properties of cryptographic hash functions

hash function : H : {0, 1}∗ → {0, 1}n

Preimage resistant : Given an output Y

of the hash function it is difficult to find
any preimage - an input X such that
h(X) = Y .

H

Y

Y???

Second preimage resistant : Given a fixed
input X to the hash function and the cor-
responding output h(X) it is difficult to
find a second preimage - another input
X ′, X ′ 6= X such that h(X) = h(X ′).

H

Y

Y???

M H

Collision resistant : It is hard to find any
pair of distinct messages (X ,X ′), X 6=
X ′ such that h(X) = h(X ′). H???

?? H

The meaning of cryptographic properties

◮ preimage resistance ⇒ knowledge of a hash value does not
reveal anything about the contents of the message

◮ collision resistance ⇒ digest is “almost unique” for the
message

◮ if a message has been altered, the digest will be different
(almost always)

◮ if two digests are equal, two corresponding messages are the
same (almost for sure)

Digest can be treated as a digital “fingerprint” of a message.

Implicit properties of cryptographic hash functions

In practice quite often we require more from a cryptographic hash
function!

◮ Resistance to near-collisions : it is safe to use truncated
hashes

◮ “Random-looking” output : Generating pseudo-random
strings by hashing input data, message authentication codes
like HMAC, etc.

Some applications

◮ digital signatures

◮ password-based user identification

◮ data integrity

◮ many others...

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

How to construct a hash function from scratch?

Problem 1: The function has to accept inputs of arbitrary size (in
practice at least 264 bits).

Problem 2: The function has to be very efficient in software and
hardware

Problem 3: The function has to have desired security properties.

Solution to problem 1: Merkle-Damg̊ard iteration

Compression function - function that maps longer inputs to shorter
outputs f : {0, 1}n+k → {0, 1}k .

IVM1

M2

M3

h(M)

f

f

f

h0 ← IV

hi ← f (Mi−1||hi−1)

i = 1, . . . , d

h(M) := hd

If the compression function f

is secure (one-way and
collision-resistant) then the
iterative hash function h is

also secure.
⇓

It is enough to study
compression functions.

Solution to problem 2: Use fast processor operations

Pick those processor instructions that are executed fast and
operate on many bits at once (i.e. word-based operations)

◮ bitwise logical operations, i.e. not, and, or, xor

◮ shifts and rotations, i.e. shl, shr, rol, rot

◮ additions and subtractions, add, sub

Operations like mul or look-up tables are tempting (good source of
non-linearity) but not always efficient (mul) and require memory
(tables).

Solution to problem 3

???

◮ No solid theory, designs based on engineering intuition and
experience.

◮ Designs “evolving” over time in the environment where
cryptanalysts attack existing functions and the best ideas
from strongest functions are taken to design new ones

Compression function used by the MD family

IVn Mn

IVn+1

message expansion algorithm

iteration of the step transformation

output state

input state

input message

Step transformation

◮ The step transformation is a message-dependent permutation
of input bits.

◮ It is realised as a source-heavy Unbalanced Feistel Network.

f

Mi

Example : MD5 step transformation

f

Mi

Ki

(B and C) or ((not B) and D)

bit-wise Boolean function, e.g.

A B C D

A B C D

B xor C xor D

Message expansion algorithms

Produce enough message words to use one in each step

◮ Permutations of message words: MD4, MD5, HAVAL, RIPEMD

◮ Recurrent relation : SHA-0, SHA-1, HAS-V, etc

Example (Message expansion in SHA-1)

Wi =

{

Xi for i = 0, . . . , 15
ROL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) for i = 16, . . . , 79

W0 W15W16 W79

M0 M15

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

◮ Conclusions

Potential weaknesses: step transformation

There is a lot of freedom in each step to adjust the value of the
target register by manipulating some of the source registers and
especially the message word.

f

Mi

Ki

A B C D

A B C D

e.g. B xor C xor D

Potential weaknesses: message expansion

In all of the message expansion algorithms it is easy to find very
low weight differences.

◮ In permutation-based expansions: minimum weight of a
difference only a few bits

◮ Even in SHA-1 the lowest weight difference has only 44 bits
set

Example (Lowest weight difference in SHA-1 msg. exp.)

Situation so far...

◮ MD5 totally destroyed

◮ SHA-1 broken theoretically and up to 70 out of 80 steps in
practice

◮ other hashes of similar structure are believed to be susceptible
to attacks similar to Wang’s

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

Alternative approaches

◮ Strive for provable security

◮ Use something solid and well-tested

◮ Try something completely new

In search for provable security

Provable security – the hardness of breaking the function is related
to some well-studied hard problem in mathematics/computer
science.

The best approach, but there are difficulties:

◮ very difficult to design!

◮ less efficient implementations

◮ usually longer hashes are needed to achieve security

Example (VSH - Very Smooth Hash)

A hash function with provable collision resistance (only!). If one
could find collisions for this hash efficiently, it would be possible to
speed up the number field sieve and thus factorise numbers much
faster.

Use something well-studied and well-understood

AES is probably the most studied modern block cipher.

Base the hash function on AES-like structure:

◮ Whirlpool – a hash function using cipher W (very similar to
AES) in Preneel-Miyaguchi mode of hasing.

◮ Grindahl-256 – a new proposal that reuses some parts of AES
to build a compression function that can be used in different
modes

Try something completely different

◮ Very risky to use such designs in practice (so more of
academic interest)

◮ Very interesting – it can be a beginning of a new trend that
can mature and give rise to new constructions

B.Schneier in his blog (Nov,1,2005):

We simply don’t know enough about designing hash

functions. What we need is research, random research all

over the map. Designs beget analyses beget designs

beget analyses.... Right now we need a bunch of

mediocre hash function designs. We need a posse of

hotshot graduate students breaking them and making

names for themselves. We need new tricks and new tools.

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: RC4Hash and LASH

◮ Conclusions

Two new designs: a challenge to a cryptanalyst

The reasons why they seem interesting:

◮ They are very different from MD functions

◮ They have nice mathematical formulations

◮ They don’t have rigorous security proofs

RC4Hash

◮ Presented by Donghoon Chang, Kishan Chand Gupta, Mridul
Nandi at INDOCRYPT 2006.

◮ Inspired by the design of RC4 stream cipher

◮ Permutation-based primitive

Three main parts of the algorithm:

◮ Message padding

◮ Iteration of the compression-like function

◮ Post-processing

RC4Hash : Message padding

INPUT: M – initial message,
ℓ ∈ {16, . . . , 64} – length of the hash in bytes,

OUTPUT: M1,M2,. . . ,Mt – 512-bit blocks of the padded msg

The padded message is first produced as

pad(M) := bin8(ℓ) ||M || 1 || 0
k || bin64(|M|)

where bin8(·) returns 8-bit binary representation of the argument
and bin64(·) returns 64-bit binary representation of the argument
and k is the smallest non-negative integer s.t.
8 + |M|+ 1 + k + 64 is a multiple of 512.

Next, the padded message pad(M) (which has length 512 · t) is
split into 512-bit blocks M1, M2,. . . ,Mt .

RC4Hash: Iteration of the compression function C

The function is defined as

C : Perm × {0..255} × {0, 1}512 → Perm× {0..255}

where Perm is the family of all permutations on the set
{0, . . . , 255}. (Basically, Perm=S256({0, 1, . . . , 255})).
The internal state is a permutation of bytes plus an index (one
byte).
The iteration works as follows:

(S0, j0) := (S IV , 0)

(Sm, jm) := C (Sm−1, jm−1,Mm) for m = 1, . . . , t

The compression function C

INPUT: (S , j) – compression state,
X [0..63] – 512 bits of the message block seen as 64 bytes

OUTPUT: (S , j) – new compression state,

for i=0 to 255 do

j ← (j + S [i] + X [r(i)]) mod 256
Swap(S , i , j)

end for

return (S , j)

Here r : {0..255} → {0..64} is a function that plays the role of
message byte reordering.

Note that in fact this procedure multiplies the initial permutation
by a number of transpositions!

RC4Hash: post-processing

◮ Compute St+1 ← S0 ◦ St and jt+1 ← jt ,

◮ The final hash value h is

h← HBGℓ(OWT (St+1, jt+1))

where OWT (One-Way Transformation) and HBG (Hash
Byte Generation) are two functions.

OWT (S , j)

Temp1← S

for i = 0 to 511 do

j ← (j + S [i mod 256]) mod 256
Swap(S , i , j)

end for

Temp2← S

S ← Temp1 ◦ Temp2 ◦ Temp1
return (S , j)

HBGℓ(S , j)

for i = 1 to ℓ do

j ← (j + S [i]) mod 256
Swap(S , i , j)
Out[i]← S [(S [i]+S [j])
mod 256]]

end for

return Out

Why is it interesting?

◮ Nice formulation in terms of operations in the symmetric
group S256

◮ Properties of such transformations are not yet studied (e.g.
similar VMPC transformation)

◮ Can we break it or show some security properties in a formal
way?

LASH hash function

LASH-x is a family of hash functions producing x bit digest where
x = 160, 256, 384, 512.
The key parameter is n = 640, 1024, 1536, 2048 (basically,
n = 4 · x). Then we define m = n/16.

The algorithm can be divided into three parts.

◮ Message padding

◮ Iteration of the compression function

◮ Final transformation

LASH message padding

◮ Initial message M, |M| = l is padded by a single ’1’ bit and
enough zeros to obtain the total length equal to a multiple of
8 ·m bits.

◮ Padded message is split into k = ⌈l/8m⌉ blocks

◮ an extra block is appended that contains the original lengh of
the message l

◮ blocks are fed to the compression function one by one

LASH: Iteration of the compression function

Message blocks M1,M2, . . . ,Mk ,Mk+1 are processed as follows

r0 ← [0, 0, . . . , 0]

ri ← f (ri−1,Mi) for i = 1, . . . , k + 1

LASH compression function

Let r , s ∈ Z
m
256 be two vectors of bytes. Define

rep(·) : Z
m

256 → Z
8m
256

as the function that returns binary representation (i.e. sequence of
0’s and 1’s) of the bytes provided as the argument. For example,

rep([255, 1, 128]) = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

LASH compression function

The compression function f : Z
2m
256 → Z

m
256 is defined as

f (r , s) = (r ⊕ s) + H · (rep(r)||rep(s))T

where

◮ ⊕ means byte-wise XOR (i.e. [255, 1] ⊕ [127, 3] = [128, 2],

◮ + denotes byte-wise addition modulo 256
(i.e. [255, 1] + [127, 3] = [126, 4])

◮ rep(·) is the representation function defined before,

◮ || means concatenation of vectors,

◮ H is a special circulant matrix of dimensions m × n.

LASH: matrix H

H =

a0 an−1 an−2 . . . a2 a1

a1 a0 an−1 . . . a3 a2

a2 a1 a0 . . . a4 a3
...

...
...

...
...

am−1 am−2 am−3 . . . am+1 am

Values a0. . . ,an−1 are residues modulo 256 of numbers
y0, . . . , yn−1 generated using “Pollard rho” PRNG

y0 = 54321

yi = (y2
i−1 + 2) mod (231 − 1) for i = 1, . . . , n − 1

Example (mini compression function of LASH)
Minimal example: assume bytes have 4 bits and we compress four
such minibytes r = (15, 12), s = (11, 1) to two-minibyte output:

f (r , s) = ([15, 12] ⊕ [11, 1]) +

„

1 6 11 10 15 13 7 4
4 1 6 11 10 15 13 7

«

·

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
1
1
1

1
1
0
0

1
0
1
0

0
0
0
1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

LASH: final transformation

After processing the last block and getting as a result the final
block of m bytes the digest is obtained by taking only 4 most
significant bits of each byte.

For example, when n = 640 the state of the function is 40 bytes
and the final digest is 20 bytes = 160 bits long.

Why is it interesting?

◮ Finding collisions for the matrix multiplication part, i.e.

H · [rep(r)||reps(s)]T

is proved to be very difficult (as difficult as worst instances of
some NP-hard problems)

◮ But there is that “mode of operation” added and the hash is
chopped at the end, so maybe it’s not as secure as the
underlying problem?

◮ Nice mathematical theory behind it (lattice reduction
problems - geometry of numbers!)

Agenda

◮ Introduction to hash functions

◮ Dedicated hashes from the MD family

◮ Potential weaknesses of the MD family

◮ Some alternative approaches

◮ New designs: LASH and RC4Hash

◮ Conclusions

NIST competition for hash functions

National Institute of Standards and Technology announced a
public competition for the new hashing algorithms similar to the
one that was used to select AES.

◮ Planned deadline for submission of new hashes: 3rd quarter of
2008.

◮ The winner is planned to be announced in 4th quarter of 2011

Hash functions researchers have a lot of work (and fun) before
them!

Conclusions

◮ Cryptographic hash functions have many applications

◮ Designing secure hash functions seems to be a formidable task

◮ Much more research into hashing is nedeed

◮ Breaking ad hoc designs is fun!

◮ With the current NIST competition hash function research is
going to be a realy hot topic in the next few years

Thank you!

	Introduction to hash functions
	Dedicated hashes from the MD family
	Potential weaknesses
	Some alternative approaches
	New designs
	Conclusions

