On differential patterns for attacks on SHA-1

Krystian Matusiewicz and Josef Pieprzyk
kmatus@ics.mq.edu.au, josef@ics.mq.edu.au

Centre For Advanced Computing, Algorithms and Cryptography, Department of Computing,

Macquarie University

Talk overview

- Cryptographic hash functions: basic notions
- Descriptions of SHA-0 and SHA-1
- Differential attack of Chabaud and Joux on SHA-0
- Finding patterns for attacks on variants of SHA-1
- Experimental results
- Some bounds on weights of short patterns

Cryptographic hash functions

Hash function - a function that maps binary strings of arbitrary length to strings of fixed length,

$$
h:\{0,1\}^{*} \rightarrow\{0,1\}^{n} .
$$

Cryptographic hash function - hash function with additional properties:

- fast to compute
- preimage resistant
- second preimage resistant
- collision resistant

Properties of cryptographic hash functions

Preimage resistant : Given an output Y of the hash function it is difficult to find any preimage - an input X such that $h(X)=Y$.

Second preimage resistant : Given a fixed input X to the hash function and corresponding output $h(X)$ it is difficult to find a second preimage - another input $X^{\prime}, X^{\prime} \neq X$ such that $h(X)=h\left(X^{\prime}\right)$.

Collision resistant : It is hard to find any pair of distinct messages $\left(X, X^{\prime}\right), X \neq X^{\prime}$ such that $h(X)=h\left(X^{\prime}\right)$.

Attack on a hash function: finding a preimage or a collision.

Iterative hash functions from compression functions

Compression function - function that maps longer inputs to shorter outputs $f:\{0,1\}^{n+k} \rightarrow\{0,1\}^{k}$.

$$
\begin{aligned}
& h_{0} \leftarrow I V \\
& h_{i} \leftarrow f\left(M_{i-1} \| h_{i-1}\right) \\
& \\
& i=1, \ldots, d \\
& h(M):= \\
& h_{d}
\end{aligned}
$$

If the compression function f is secure (one-way and collision-resistant) then the iterative hash function h is also secure.

The structure of SHA : compression function

$\left(A_{0}, B_{0}, C_{0}, D_{0}, E_{0}\right) \leftarrow I V$.
80 steps of the form
$\left(A_{i}, B_{i}, C_{i}, D_{i}, E_{i}\right)$
\downarrow
$\left(A_{i+1}, B_{i+1}, C_{i+1}, D_{i+1}, E_{i+1}\right)$

Finally,

$$
\begin{aligned}
f(M, I V)= & A_{0} \boxplus A_{80}\left\|B_{0} \boxplus B_{80}\right\| \\
& C_{0} \boxplus C_{80}\left\|D_{0} \boxplus D_{80}\right\| \\
& E_{0} \boxplus E_{80}
\end{aligned}
$$

The structure of SHA : step transformation

$$
\begin{aligned}
A_{i+1}= & E_{i} \boxplus R O L^{5}\left(A_{i}\right) \boxplus f_{i}\left(B_{i}, C_{i}, D_{i}\right) \boxplus \\
& W_{i} \boxplus K_{i}, \\
B_{i+1}= & A_{i}, \\
C_{i+1}= & R O L^{30}\left(B_{i}\right), \\
D_{i+1}= & C_{i}, \\
E_{i+1}= & D_{i}, \quad i=0, \ldots, 79
\end{aligned}
$$

$$
f_{i}(B, C, D)=
$$

$$
\begin{cases}B C \vee(\neg B) D & \text { for } 0 \leq i \leq 19 \\ B \oplus C \oplus D & \text { for } 20 \leq i \leq 39 \\ B C \vee B D \vee C D & \text { for } 40 \leq i \leq 59 \\ B \oplus C \oplus D & \text { for } 60 \leq i \leq 79\end{cases}
$$

The structure of SHA : message expansion process

For SHA-0:

$$
W_{i}= \begin{cases}M_{i} & \text { for } 0 \leq i \leq 15 \\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} & \text { for } 16 \leq i \leq 79\end{cases}
$$

For SHA-1:

$$
W_{i}= \begin{cases}M_{i} & \text { for } 0 \leq i \leq 15 \\ R O L^{1}\left(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}\right) & \text { for } 16 \leq i \leq 79\end{cases}
$$

- Note that the operation is linear in respect of \oplus operation, so $E_{1}\left(M \oplus M^{\prime}\right)=E_{1}(M) \oplus E_{1}\left(M^{\prime}\right)$.
- SHA-1 differs from SHA-0 only by the rotation in the message expansion.

Differential attack on hash functions

Differential attacks are used for finding collisions.
Idea: Find a difference Δ such that

$$
h(M)=h(M \oplus \Delta)
$$

and we know:

- how to construct M,
or
- that we can find a suitable M among random messages with probability higher than $2^{- \text {hash length/2 }}$ (faster than generic birthday attack)

Differential attack : disturbance - corrections

Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean functions f_{i} behave like linear operations in respect of \oplus.

Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean functions f_{i} behave like linear operations in respect of \oplus.

This is true for addition when flip of the bit in the message does not generate carries.

Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean functions f_{i} behave like linear operations in respect of \oplus.

This is true for addition when flip of the bit in the message does not generate carries.

Denote $Z_{i}=E_{i} \boxplus R O L^{5}\left(A_{i}\right) \boxplus f_{i}\left(B_{i}, C_{i}, D_{i}\right) \boxplus K_{i}$.

Z_{i} (other) :	\ldots	1	0	0	1	0	1
W_{i} (mesg) :	\ldots	1	1	$0 \rightarrow 1$	0	0	1
A_{i+1} (sum):	\ldots	0	1	$0 \rightarrow 1$	1	1	0

Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean functions f_{i} behave like linear operations in respect of \oplus.

This is true for addition when flip of the bit in the message does not generate carries.

Denote $Z_{i}=E_{i} \boxplus R O L^{5}\left(A_{i}\right) \boxplus f_{i}\left(B_{i}, C_{i}, D_{i}\right) \boxplus K_{i}$.

Z_{i} (other) :	\ldots	1	0	0	1	0	1
W_{i} (mesg) :	\ldots	1	1	$0 \rightarrow 1$	0	0	1
A_{i+1} (sum):	\ldots	0	1	$0 \rightarrow 1$	1	1	0

Every bit (except for the most significant ones) adds a factor $1 / 2$.

Differential attack : probability of success (2) : Boolean functions

$$
\begin{aligned}
& \text { Let } \delta f=f(x, y, z) \oplus f\left(x \oplus \delta_{x}, y \oplus \delta_{y}, x \oplus \delta_{z}\right), \\
& f_{i f}(x, y, z)=x y \vee(\neg x) z=x y \oplus x z \oplus z \\
& f_{m a j}(x, y, z)=x y \oplus x z \oplus y z
\end{aligned}
$$

differences								conditions to behave like XOR, i.e. $\delta f=\delta f_{x o r}$			
δ_{x}	δ_{y}	δ_{z}	$\delta f_{\text {xor }}$	$f_{i f}$	Prob	$f_{\text {maj }}$	Prob.				
1	0	0	1	$y \oplus z=1$	$1 / 2$	$y \oplus z=1$	$1 / 2$				
0	1	0	1	$x=1$	$1 / 2$	$x \oplus z=1$	$1 / 2$				
0	0	1	1	$x=0$	$1 / 2$	$x \oplus y=1$	$1 / 2$				
1	1	0	0	$x \oplus y \oplus z=1$	$1 / 2$	$x \oplus y=1$	$1 / 2$				
1	0	1	0	$x \oplus y \oplus z=1$	$1 / 2$	$x \oplus z=1$	$1 / 2$				
0	1	1	0	never	0	$y \oplus z=1$	$1 / 2$				
1	1	1	1	$y \oplus z=1$	$1 / 2$	always	1				

Differential attack : probability of success (2) : Boolean functions

$$
\begin{aligned}
& \text { Let } \delta f=f(x, y, z) \oplus f\left(x \oplus \delta_{x}, y \oplus \delta_{y}, x \oplus \delta_{z}\right), \\
& f_{i f}(x, y, z)=x y \vee(\neg x) z=x y \oplus x z \oplus z \\
& f_{m a j}(x, y, z)=x y \oplus x z \oplus y z
\end{aligned}
$$

differences									conditions to behave like XOR, i.e. $\delta f=\delta f_{\text {xor }}$			
δ_{x}	δ_{y}	δ_{z}	$\delta f_{\text {xor }}$	$f_{i f}$	Prob	$f_{\text {maj }}$	Prob.					
1	0	0	1	$y \oplus z=1$	$1 / 2$	$y \oplus z=1$	$1 / 2$					
0	1	0	1	$x=1$	$1 / 2$	$x \oplus z=1$	$1 / 2$					
0	0	1	1	$x=0$	$1 / 2$	$x \oplus y=1$	$1 / 2$					
1	1	0	0	$x \oplus y \oplus z=1$	$1 / 2$	$x \oplus y=1$	$1 / 2$					
1	0	1	0	$x \oplus y \oplus z=1$	$1 / 2$	$x \oplus z=1$	$1 / 2$					
0	1	1	0	never	0	$y \oplus z=1$	$1 / 2$					
1	1	1	1	$y \oplus z=1$	$1 / 2$	always	1					

Every Boolean function different from XOR adds a factor $1 / 2$ and we cannot have two adjacent changes in first 16 steps

Differential attack : from disturbance pattern to full differential

Let d denotes the pattern of disturbance bits. Then the complete differential pattern can be obtained as

$$
\begin{aligned}
\Delta=d \oplus & \operatorname{Delay}^{1}\left(R O L^{6}(d)\right) \oplus \\
& \operatorname{Delay}^{2}(d) \oplus \\
& \operatorname{Delay}^{3}\left(R O L^{30}(d)\right) \oplus \\
& \operatorname{Delay}^{4}\left(R O L^{30}(d)\right) \oplus \\
& \operatorname{Delay}^{5}\left(R O L^{30}(d)\right),
\end{aligned}
$$

where Delay ${ }^{k}(W)$ means inserting k zero words before W and discarding the last k words of W.

Conditions for the disturbance pattern

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

Conditions for the disturbance pattern

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

- d has to be the result of the expansion operation,

Conditions for the disturbance pattern

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

- d has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),

Conditions for the disturbance pattern

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

- d has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),
- after delaying d by up to 5 words the delayed patterns Delay ${ }^{1}(d), \ldots$, Delay $^{5}(d)$ must also be the result of the expansion of theirs first 16 words,

Conditions for the disturbance pattern

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

- d has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),
- after delaying d by up to 5 words the delayed patterns Delay ${ }^{1}(d), \ldots$, Delay $^{5}(d)$ must also be the result of the expansion of theirs first 16 words,
- d has both the minimal Hamming weight and the maximal number of non-zero bits in position 1.

The search for disturbance patterns for SHA-0: (1)

$$
W_{i}=\left\{\begin{array}{l}
M_{i} \quad \text { for } 0 \leq i \leq 15 \\
W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} \text { for } 16 \leq i \leq 79
\end{array}\right.
$$

In SHA-0, bits in different positions are independent!

The search for disturbance patterns for SHA-0: (1)

$$
W_{i}=\left\{\begin{array}{l}
M_{i} \quad \text { for } 0 \leq i \leq 15 \\
W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} \text { for } 16 \leq i \leq 79
\end{array}\right.
$$

In SHA-0, bits in different positions are independent!

- changing bits in position k in the message words M_{j} will affect only bits in position k in expanded message,

The search for disturbance patterns for SHA-0: (1)

$$
W_{i}=\left\{\begin{array}{l}
M_{i} \quad \text { for } 0 \leq i \leq 15 \\
W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} \text { for } \quad 16 \leq i \leq 79
\end{array}\right.
$$

In SHA-0, bits in different positions are independent!

- changing bits in position k in the message words M_{j} will affect only bits in position k in expanded message,
- message expansion process can be seen as 32 independent copies of the expansion of 16 bits to 80 bits using the relation

$$
w_{i}=w_{i-3} \oplus w_{i-8} \oplus w_{i-14} \oplus w_{i-16} \quad 16 \leq i \leq 79
$$

where $w_{i} \in \mathbb{F}_{2}$.

The search for disturbance patterns for SHA-0: (2)

- there are 2^{16} candidates for disturbance patterns,

The search for disturbance patterns for SHA-0: (2)

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that Delay ${ }^{5}(d)$ is the result of expansion,

The search for disturbance patterns for SHA-0: (2)

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that Delay ${ }^{5}(d)$ is the result of expansion,
- there are 2^{6} patterns such that Delay ${ }^{5}(d)$ is the result of expansion and pattern ends with five zero bits (63 usable patterns, excluding all-zero) Minimal weight is 27.

The search for disturbance patterns for SHA-0: (2)

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that $\operatorname{Delay}^{5}(d)$ is the result of expansion,
- there are 2^{6} patterns such that Delay ${ }^{5}(d)$ is the result of expansion and pattern ends with five zero bits (63 usable patterns, excluding all-zero) Minimal weight is 27.
- there are only 5 disturbance patterns such that there are no adjacent ' 1 ' bits in first 16 bits

00010000000100100000001000011011011111101101001000010101001010100010111001100000 00100010000000101111011000111000000101000100010010010011101100110000111110000000 01000010100100011110010110000011100000000000110000001101100000011000101101100000 00101001010000011111001111001100011111110110111100001100010101011101001010000000 00010100101000001111100111100110001111111011011110000110001010101110100101000000 with weights: 30, 30, 27, 39, 39.

Pattern for differential attack on SHA-0

Pattern for differential attack on SHA-0

What about SHA-1 ?

1. The only difference is in the message expansion algorithm, so the idea of disturbance - corrections works also for SHA-1 - the round structure is the same
2. how to find disturbance patterns that can give rise to corrective patterns?

Properties of the message expansion in SHA-1

$$
W_{i}= \begin{cases}M_{i} & \text { for } 0 \leq i \leq 15 \\ R O L^{1}\left(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}\right) & \text { for } 16 \leq i \leq 79\end{cases}
$$

All operations are \mathbb{F}_{2}-linear, so we can describe the whole message expansion process as a linear function

$$
E_{1}: \mathbb{F}_{2}^{512} \rightarrow \mathbb{F}_{2}^{2560}
$$

The function A producing 16 new words $\left(W_{i+1}, \ldots, W_{i+16}\right)$ out of 16 old ones $\left(W_{i-15}, \ldots, W_{i}\right)$ using the recurrence formula is a linear bijection of space \mathbb{F}_{2}^{512},

$$
A: \mathbb{F}_{2}^{512} \rightarrow \mathbb{F}_{2}^{512}
$$

Message expansion process: Relation between A and E_{1}

If we consider a message as a bit vector $m \in \mathbb{F}_{2}^{512}$, we can write

$$
\left.\begin{array}{rl}
E_{1}(m) & =\left[\begin{array}{c}
\frac{I_{512}}{A} \\
\frac{A^{2}}{A^{3}} \\
A^{4}
\end{array}\right] \cdot m \\
\text { Denote } \quad L & =\left[\frac{\frac{I_{512}}{A}}{\frac{A^{2}}{A^{3}}}\right. \\
A^{4}
\end{array}\right] \quad \text { for later use. } \quad \text {. }
$$

Matrix A

Matrix A^{4}

How to find disturbance patterns?

1. d has to be the result of the expansion operation,

$$
d=E_{1}\left(\left[d_{0}, \ldots, d_{511}\right]^{T}\right)
$$

2. d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),

$$
d_{j}=0, \quad \text { for } j=2400, \ldots 2559
$$

3. after delaying d by up to 5 words the delayed patterns Delay ${ }^{1}(d), \ldots$, Delay $^{5}(d)$ must also be the result of the expansion of theirs first 16 words,

$$
[\underbrace{0 \ldots 0}_{160 \text { bits }} d_{0} d_{1} \ldots d_{2399}]^{T}=E_{1}\left(\left[\begin{array}{lllll}
0 & \ldots & d_{0} & \ldots & d_{351}
\end{array}\right]^{T}\right) .
$$

How to find disturbance patterns? (2)

Conditions 1-3 imply that in fact we are looking for longer bit sequences of 85 words such that

- the first 5 words are zero,
- the next 11 words are chosen in such a way that the rest of the words is the result of the expansion of the first 16, and
- the last 5 words are zero again.

If we denote first 5 words with indices $-5,-4, \ldots,-1$ words $0, \ldots 79$ are the words of a disturbance pattern.

In matrix notation: we are looking for bit vectors $m \in \mathbb{F}_{2}^{512}$ such that

- $A^{4} \cdot m$ has $5 \cdot 32=160$ trailing zero bits,
- $A^{-1} \cdot m$ has $5 \cdot 32=160$ trailing zero bits.

How to find disturbance patterns? (3)

$$
\begin{aligned}
& {\left[\begin{array}{c}
* \\
\vdots \\
* \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{0,0} & \ldots & \ldots & \alpha_{0,511} \\
\vdots & & & \vdots \\
\alpha_{351,0} & & & \alpha_{351,511} \\
\alpha_{352,0} & \ldots & \ldots & \alpha_{352,511} \\
\vdots & & & \vdots \\
\alpha_{511,0} & \ldots & \ldots & \alpha_{511,511}
\end{array}\right] \cdot\left[\begin{array}{c}
m_{0} \\
\vdots \\
m_{351} \\
m_{352} \\
\vdots \\
m_{511}
\end{array}\right]=A^{-1} \cdot m} \\
& {\left[\begin{array}{c}
* \\
\vdots \\
* \\
\hline 0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{cccc}
\hat{a}_{0,0} & \ldots & \ldots & \hat{a}_{0,511} \\
\vdots & & & \vdots \\
\hat{a}_{351,0} & & & \hat{a}_{351,511} \\
\hat{a}_{352,0} & \ldots & \ldots & \hat{a}_{352,511} \\
\vdots & & & \vdots \\
\hat{a}_{511,0} & \ldots & \ldots & \hat{a}_{511,511}
\end{array}\right] \cdot\left[\begin{array}{c}
m_{0} \\
\vdots \\
m_{351} \\
m_{352} \\
\vdots \\
m_{511}
\end{array}\right]=A^{4} \cdot m}
\end{aligned}
$$

How to find disturbance patterns? (4)

We are looking for patterns $d \in \mathbb{F}_{2}^{512}$ such that

$$
\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{352,0} & \cdots & \cdots & \alpha_{352,511} \\
\vdots & & & \vdots \\
\alpha_{511,0} & \cdots & \cdots & \alpha_{511,511} \\
\hline \hat{a}_{352,0} & \cdots & \ldots & \hat{a}_{352,511} \\
\vdots & & & \vdots \\
\hat{a}_{511,0} & \cdots & \ldots & \hat{a}_{511,511}
\end{array}\right] \cdot\left[\begin{array}{c}
m_{0} \\
\vdots \\
m_{351} \\
m_{352} \\
\vdots \\
m_{511}
\end{array}\right]
$$

Notation: $A[p:: q]$ - matrix created by taking rows of the matrix A from p-th row to q-th row. Then the equation above can be written as

$$
\begin{gathered}
0=\Psi \cdot m \quad \text { where } \\
\Psi=\left[\frac{A^{-1}[352:: 511]}{A^{4}[352:: 511]}\right]
\end{gathered}
$$

How to find disturbance patterns? (5)

Thus, all disturbance patterns $d \in \mathbb{F}_{2}^{2560}$ we are looking for are created as expansions of bit vectors $m \in \mathbb{F}_{2}^{512}$ from the linear subspace
$\operatorname{ker} \Psi$.
Experimentally we have found that

$$
\operatorname{dim} \operatorname{ker} \Psi=192
$$

This shows that the set of all disturbance patterns for disturbance corrections technique constitutes a linear code \mathcal{C} of length 2560 and dimension 192.

Disturbance patterns for reduced variants of SHA-1

If we want to look for patterns suitable for SHA-1 reduced to only s steps, we need to take a different matrix Ψ :

$$
\Psi_{s}=\left[\frac{A^{-1}[352:: 511]}{L[32(s-4):: 32 s+31]}\right]
$$

where L is the matrix of the full expansion process E_{1}.

How to find good patterns?

Finding the best pattern is equivalent to finding the minimal weight codeword in \mathcal{C}.

This problem is NP-hard in general
However, it looks like this code is quite particular and we were able to achieve good results.

Algorithm: modification of [J.S. Leon, F. Chabaud]

- permute the columns of the generating matrix randomly
- apply a gaussian elimination on the rows of the matrix to get

$$
G=(I \mid Z)
$$

- search for combinations of up to p rows of Z that lead to codewords with small weight

steps	$w t$	$w t_{20+}$	steps	$w t$	$w t_{20+}$	steps	$w t$	$w t_{20+}$
32	9	2	50	35	14	68	>122	>78
33	9	2	51	35	15	69	>127	>81
34	9	2	52	35	16	70	>142	>80
35	28	4	53	35	16	71	>157	>94
36	24	5	54	78	36	72	>163	>93
37	25	5	55	80	39^{*}	73	>139	>111
38	30	8	56	79	41	74	>139	>98
39	39	8^{*}	57	72	42	75	>142	>90
40	41	11	58	73	42	76	>187	>111
41	41	12	59	91	51	77	>184	>108
42	41	13	60	66	44	78	>198	>115
43	41	17	61	66	44	79	>173	>115
44	50	15	62	66	45	80	>172	>106
45	45	15	63	107	64	81	>255	>117
46	56	23	64	>101	>60	82	>242	>142
47	56	24^{*}	65	>113	>66	83	>215	>163
48	35	14	66	>98	>58	84	>161	>101
49	35	14	67	>127	>69	85	>340	>177

Results: best Hamming weights for different lengths
H.wt. of full codewords
ignoring first 20 steps

A few examples of patterns

Message expansion backward

The message expansion can be applied "from the end" and then has the form

$$
W_{i}=W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus R O R^{1}\left(W_{i+16}\right), \quad 0 \leq i<64
$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

Message expansion backward

The message expansion can be applied "from the end" and then has the form

$$
W_{i}=W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus R O R^{1}\left(W_{i+16}\right), \quad 0 \leq i<64
$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

- rotation is applied to only one word distant by 16 steps !

Message expansion backward

The message expansion can be applied "from the end" and then has the form

$$
W_{i}=W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus R O R^{1}\left(W_{i+16}\right), \quad 0 \leq i<64
$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

Message expansion backward

The message expansion can be applied "from the end" and then has the form

$$
W_{i}=W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus R O R^{1}\left(W_{i+16}\right), \quad 0 \leq i<64
$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

Message expansion backward

The message expansion can be applied "from the end" and then has the form

$$
W_{i}=W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus R O R^{1}\left(W_{i+16}\right), \quad 0 \leq i<64
$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

Minimum weight unrestricted pattern

Minimum weight of the expanded message we could find: 44.

- found in the following way: change one bit in word 44 and expand the segment $44-60$ backward-forward
- independently found as a candidate for the minimal weight codeword in unrestricted code

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_{1} - set of bits in the same position as the last nonzero bit
- S_{2} - set of bits in other positions (right from the initial position)

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_{1} - set of bits in the same position as the last nonzero bit
- S_{2} - set of bits in other positions (right from the initial position)

It's easy to estimate the size of S_{1} : bits in the same position are generated by the recurrence formula

$$
w_{i}=w_{i+2} \oplus w_{i+8} \oplus w_{i+13}
$$

Minimal weights of such sequences can be easily found (only 2^{16} possibilities).

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_{1} - set of bits in the same position as the last nonzero bit
- S_{2} - set of bits in other positions (right from the initial position)

It's easy to estimate the size of S_{1} : bits in the same position are generated by the recurrence formula

$$
w_{i}=w_{i+2} \oplus w_{i+8} \oplus w_{i+13}
$$

Minimal weights of such sequences can be easily found (only 2^{16} possibilities).

We can't say much about the size of the second set, only that $\left|S_{2}\right| \geq 1$ for patterns longer than 16.

Bounds : 34-step pattern is optimal

steps	$32-34$	$35-38$	39,40	41	42,43	$44-47$	48,49	50	51
min. wt	8	9	11	13	11	14	16	17	16
steps	52,53	$54-56$	$57-64$	$65-67$	$68-71$	72	$73-75$	76,77	$78-85$
min. wt	17	18	19	23	22	26	24	29	30

34 steps case: minimal size of $S_{1}-8$, minimal size of $S_{2}-1$.
Actual weight : 9

Future work

- Can we use

- Can we use

- Can we construct complete differences in a different way than using disturbance-corrections strategy?

The End

Thank you!

