On differential patterns for attacks on SHA-1

Krystian Matusiewicz and Josef Pieprzyk

kmatus@ics.mq.edu.au, josef@ics.mq.edu.au

Centre For Advanced Computing, Algorithms and Cryptography, Department of Computing, Macquarie University

Talk overview

- Cryptographic hash functions : basic notions
- Descriptions of SHA-0 and SHA-1
- Differential attack of Chabaud and Joux on SHA-0
- Finding patterns for attacks on variants of SHA-1
- Experimental results
- Some bounds on weights of short patterns

Cryptographic hash functions

Hash function - a function that maps binary strings of arbitrary length to strings of fixed length,

```
h: \{0,1\}^* \to \{0,1\}^n.
```

Cryptographic hash function - hash function with additional properties:

- fast to compute
- preimage resistant
- second preimage resistant
- collision resistant

Properties of cryptographic hash functions

Preimage resistant : Given an output *Y* of the hash function it is difficult to find any *preimage* - an input *X* such that h(X) = Y.

Second preimage resistant : Given a fixed input X to the hash function and corresponding output h(X) it is difficult to find a second preimage - another input X', $X' \neq X$ such that h(X) = h(X').

Collision resistant : It is hard to find any pair of distinct messages $(X, X'), X \neq X'$ such that h(X) = h(X').

Attack on a hash function: finding a preimage or a collision.

Iterative hash functions from compression functions

Compression function - function that maps longer inputs to shorter outputs $f : \{0, 1\}^{n+k} \rightarrow \{0, 1\}^k$.

$$h_0 \leftarrow IV$$

$$h_i \leftarrow f(M_{i-1}||h_{i-1})$$

$$i = 1, \dots, d$$

$$h(M) := h_d$$

If the compression function f is secure (one-way and collision-resistant) then the iterative hash function h is also secure.

The structure of SHA : compression function

The structure of SHA : step transformation

 $A_{i+1} = E_i \boxplus ROL^5(A_i) \boxplus f_i(B_i, C_i, D_i) \boxplus$ $W_i \boxplus K_i$, $B_{i+1} = A_i,$ $C_{i+1} = ROL^{30}(B_i),$ $D_{i+1} = C_i,$ $E_{i+1} = D_i, \qquad i = 0, \dots, 79$ $f_i(B, C, D) =$ $\begin{cases} BC \lor (\neg B)D & \text{for } 0 \le i \le 19 \\ B \oplus C \oplus D & \text{for } 20 \le i \le 39 \\ BC \lor BD \lor CD & \text{for } 40 \le i \le 59 \\ B \oplus C \oplus D & \text{for } 60 \le i \le 79 \end{cases}$

The structure of SHA : message expansion process

For SHA-0:

$$W_i = \begin{cases} M_i & \text{for } 0 \leq i \leq 15, \\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} & \text{for } 16 \leq i \leq 79, \end{cases}$$

For SHA-1:

$$W_{i} = \begin{cases} M_{i} & \text{for } 0 \leq i \leq 15, \\ ROL^{1}(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}) & \text{for } 16 \leq i \leq 79, \end{cases}$$

- Note that the operation is linear in respect of \oplus operation, so $E_1(M \oplus M') = E_1(M) \oplus E_1(M')$.
- SHA-1 differs from SHA-0 only by the rotation in the message expansion.

Differential attack on hash functions

Differential attacks are used for finding collisions.

Idea: Find a difference Δ such that

 $h(M) = h(M \oplus \Delta)$

and we know:

• how to construct M,

or

 that we can find a suitable M among random messages with probability higher than 2^{-hash length/2} (faster than generic birthday attack)

Differential attack : disturbance – corrections

Disturbance - corrections strategy works if all additions and Boolean functions f_i behave like linear operations in respect of \oplus .

Disturbance - corrections strategy works if all additions and Boolean functions f_i behave like linear operations in respect of \oplus .

This is true for addition when flip of the bit in the message does not generate carries.

Disturbance - corrections strategy works if all additions and Boolean functions f_i behave like linear operations in respect of \oplus .

This is true for addition when flip of the bit in the message does not generate carries.

Denote $Z_i = E_i \boxplus ROL^5(A_i) \boxplus f_i(B_i, C_i, D_i) \boxplus K_i$.

Z_i (other) :	 1	0	0	1	0	1	
W_i (mesg) :	 1	1	$0 \rightarrow 1$	0	0	1	
A_{i+1} (sum):	 0	1	$0 \rightarrow 1$	1	1	0	
Z_i (other) :	 1	0	1	1	0	1	
W_i (mesg) :	 1	1	$0 \rightarrow 1$	0	0	1	
A_{i+1} (sum):	 1	0	$1 \rightarrow 0$	1	1	0	

Disturbance - corrections strategy works if all additions and Boolean functions f_i behave like linear operations in respect of \oplus .

This is true for addition when flip of the bit in the message does not generate carries.

Denote $Z_i = E_i \boxplus ROL^5(A_i) \boxplus f_i(B_i, C_i, D_i) \boxplus K_i$.

Z_i (other) :	 1	0	0	1	0	1	
W_i (mesg) :	 1	1	$0 \rightarrow 1$	0	0	1	
A_{i+1} (sum):	 0	1	$0 \rightarrow 1$	1	1	0	
Z_i (other) :	 1	0	1	1	0	1	
W_i (mesg) :	 1	1	$0 \rightarrow 1$	0	0	1	
A_{i+1} (sum):	 1	0	$1 \rightarrow 0$	1	1	0	

Every bit (except for the most significant ones) adds a factor 1/2.

Differential attack : probability of success (2) : Boolean functions

Let
$$\delta f = f(x, y, z) \oplus f(x \oplus \delta_x, y \oplus \delta_y, x \oplus \delta_z)$$
,
 $f_{if}(x, y, z) = xy \lor (\neg x)z = xy \oplus xz \oplus z$,
 $f_{maj}(x, y, z) = xy \oplus xz \oplus yz$.

diff	eren	ces		conditions to behave like XOR, i.e. $\delta f = \delta f_{xor}$						
δ_x	δ_y	δ_z	δf_{xor}	f_{if}	Prob	f_{maj}	Prob.			
1	0	0	1	$y \oplus z = 1$	1/2	$y \oplus z = 1$	1/2			
0	1	0	1	x = 1	1/2	$x \oplus z = 1$	1/2			
0	0	1	1	x = 0	1/2	$x \oplus y = 1$	1/2			
1	1	0	0	$x \oplus y \oplus z = 1$	1/2	$x \oplus y = 1$	1/2			
1	0	1	0	$x \oplus y \oplus z = 1$	1/2	$x \oplus z = 1$	1/2			
0	1	1	0	never	0	$y \oplus z = 1$	1/2			
1	1	1	1	$y \oplus z = 1$	1/2	always	1			

Differential attack : probability of success (2) : Boolean functions

Let
$$\delta f = f(x, y, z) \oplus f(x \oplus \delta_x, y \oplus \delta_y, x \oplus \delta_z)$$
,
 $f_{if}(x, y, z) = xy \lor (\neg x)z = xy \oplus xz \oplus z$,
 $f_{maj}(x, y, z) = xy \oplus xz \oplus yz$.

diff	eren	ces		conditions to behave like XOR, i.e. $\delta f = \delta f_{xor}$						
δ_x	δ_y	δ_z	δf_{xor}	f_{if}	Prob	f_{maj}	Prob.			
1	0	0	1	$y \oplus z = 1$	1/2	$y \oplus z = 1$	1/2			
0	1	0	1	x = 1	1/2	$x \oplus z = 1$	1/2			
0	0	1	1	x = 0	1/2	$x \oplus y = 1$	1/2			
1	1	0	0	$x \oplus y \oplus z = 1$	1/2	$x \oplus y = 1$	1/2			
1	0	1	0	$x \oplus y \oplus z = 1$	1/2	$x \oplus z = 1$	1/2			
0	1	1	0	never	0	$y \oplus z = 1$	1/2			
1	1	1	1	$y \oplus z = 1$	1/2	always	1			

Every Boolean function different from XOR adds a factor 1/2 and we cannot have two adjacent changes in first 16 steps

Differential attack : from disturbance pattern to full differential

Let d denotes the pattern of disturbance bits. Then the complete differential pattern can be obtained as

 $egin{aligned} \Delta &= d \oplus Delay^1(ROL^6(d)) \oplus \ Delay^2(d) \oplus \ Delay^3(ROL^{30}(d)) \oplus \ Delay^4(ROL^{30}(d)) \oplus \ Delay^5(ROL^{30}(d)), \end{aligned}$

where $Delay^k(W)$ means inserting k zero words before W and discarding the last k words of W.

In order to construct difference pattern Δ (disturbance + corrections) from a disturbance pattern d, d has to satisfy the following conditions:

• *d* has to be the result of the expansion operation,

- *d* has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),

- *d* has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),
- after delaying d by up to 5 words the delayed patterns
 Delay¹(d),..., Delay⁵(d) must also be the result of the expansion of theirs first 16 words,

- *d* has to be the result of the expansion operation,
- d has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),
- after delaying d by up to 5 words the delayed patterns
 Delay¹(d),..., Delay⁵(d) must also be the result of the expansion of theirs first 16 words,
- d has both the minimal Hamming weight and the maximal number of non-zero bits in position 1.

$$W_{i} = \begin{cases} M_{i} & \text{for } 0 \leq i \leq 15 \\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} & \text{for } 16 \leq i \leq 79, \end{cases}$$

In SHA-0, bits in different positions are independent!

$$W_{i} = \begin{cases} M_{i} & \text{for } 0 \leq i \leq 15 \\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} & \text{for } 16 \leq i \leq 79, \end{cases}$$

In SHA-0, bits in different positions are independent!

• changing bits in position k in the message words M_j will affect only bits in position k in expanded message,

$$W_{i} = \begin{cases} M_{i} & \text{for } 0 \leq i \leq 15 \\ W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16} & \text{for } 16 \leq i \leq 79, \end{cases}$$

In SHA-0, bits in different positions are independent!

- changing bits in position k in the message words M_j will affect only bits in position k in expanded message,
- message expansion process can be seen as 32 independent copies of the expansion of 16 bits to 80 bits using the relation

$$w_i = w_{i-3} \oplus w_{i-8} \oplus w_{i-14} \oplus w_{i-16} \qquad 16 \le i \le 79$$

where $w_i \in \mathbb{F}_2$.

• there are 2^{16} candidates for disturbance patterns,

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that $Delay^5(d)$ is the result of expansion,

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that $Delay^5(d)$ is the result of expansion,
- there are 2^6 patterns such that $Delay^5(d)$ is the result of expansion and pattern ends with five zero bits (63 usable patterns, excluding all-zero) Minimal weight is 27.

- there are 2^{16} candidates for disturbance patterns,
- there are 2^{11} patterns such that $Delay^5(d)$ is the result of expansion,
- there are 2^6 patterns such that $Delay^5(d)$ is the result of expansion and pattern ends with five zero bits (63 usable patterns, excluding all-zero) Minimal weight is 27.
- there are only 5 disturbance patterns such that there are no adjacent '1' bits in first 16 bits

with weights: 30, 30, 27, 39, 39.

Pattern for differential attack on SHA-0

0 1	16	32	48	64	79
• • •	• • •		• ••• ••	• • • • •	

Pattern for differential attack on SHA-0

- 1. The only difference is in the message expansion algorithm, so the idea of *disturbance corrections* works also for SHA-1 the round structure is the same
- 2. how to find disturbance patterns that can give rise to corrective patterns ?

Properties of the message expansion in SHA-1

$$W_{i} = \begin{cases} M_{i} & \text{for } 0 \leq i \leq 15 \\ ROL^{1}(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}) & \text{for } 16 \leq i \leq 79, \end{cases}$$

All operations are \mathbb{F}_2 -linear, so we can describe the whole message expansion process as a linear function

$$E_1 : \mathbb{F}_2^{512} \to \mathbb{F}_2^{2560}$$

The function A producing 16 new words $(W_{i+1}, \ldots, W_{i+16})$ out of 16 old ones (W_{i-15}, \ldots, W_i) using the recurrence formula is a linear bijection of space \mathbb{F}_2^{512} ,

$$A : \mathbb{F}_2^{512} \to \mathbb{F}_2^{512}.$$

Message expansion process: Relation between A and E_1

If we consider a message as a bit vector $m \in \mathbb{F}_2^{512}$, we can write

$$E_{1}(m) = \begin{bmatrix} \frac{I_{512}}{A} \\ \frac{A^{2}}{A^{3}} \\ \frac{A^{3}}{A^{4}} \end{bmatrix} \cdot m$$
Denote $L = \begin{bmatrix} \frac{I_{512}}{A} \\ \frac{A^{2}}{A^{3}} \\ \frac{A^{3}}{A^{4}} \end{bmatrix}$ for later use.

$\operatorname{Matrix} A$

How to find disturbance patterns?

1. d has to be the result of the expansion operation,

$$d = E_1([d_0, \dots, d_{511}]^T)$$

2. *d* has to end with five zero words (because each disturbance is corrected in the next 5 steps, so no disturbance may occur after the word 74),

$$d_j = 0$$
, for $j = 2400, \dots 2559$,

3. after delaying d by up to 5 words the delayed patterns $Delay^1(d), \ldots, Delay^5(d)$ must also be the result of the expansion of theirs first 16 words,

$$[\underbrace{0\dots 0}_{160 \text{ bits}} d_0 \ d_1 \ \dots \ d_{2399}]^T = E_1([0\dots 0 \ d_0 \dots \ d_{351}]^T) \ .$$

How to find disturbance patterns? (2)

Conditions 1– 3 imply that in fact we are looking for longer bit sequences of 85 words such that

- the first 5 words are zero,
- the next 11 words are chosen in such a way that the rest of the words is the result of the expansion of the first 16, and
- the last 5 words are zero again.

If we denote first 5 words with indices $-5, -4, \ldots, -1$ words $0, \ldots 79$ are the words of a disturbance pattern.

In matrix notation: we are looking for bit vectors $m \in \mathbb{F}_2^{512}$ such that

- $A^4 \cdot m$ has $5 \cdot 32 = 160$ trailing zero bits,
- $A^{-1} \cdot m$ has $5 \cdot 32 = 160$ trailing zero bits.

How to find disturbance patterns? (3)

How to find disturbance patterns? (4)

We are looking for patterns $d \in \mathbb{F}_2^{512}$ such that

Notation: A[p :: q] - matrix created by taking rows of the matrix A from p-th row to q-th row. Then the equation above can be written as

$$0 = \Psi \cdot m \quad \text{where}$$
$$\Psi = \left[\frac{A^{-1}[352 :: 511]}{A^4[352 :: 511]} \right]$$

How to find disturbance patterns? (5)

Thus, all disturbance patterns $d \in \mathbb{F}_2^{2560}$ we are looking for are created as expansions of bit vectors $m \in \mathbb{F}_2^{512}$ from the linear subspace

 $\ker \Psi.$

Experimentally we have found that

 $\dim \ker \Psi = 192.$

This shows that the set of all disturbance patterns for *disturbance* - *corrections* technique constitutes a linear code C of length 2560 and dimension 192.

Disturbance patterns for reduced variants of SHA-1

If we want to look for patterns suitable for SHA-1 reduced to only s steps, we need to take a different matrix Ψ :

$$\Psi_s = \left[\frac{A^{-1}[352::511]}{L[32(s-4)::32s+31]}\right]$$

where *L* is the matrix of the full expansion process E_1 .

How to find good patterns?

Finding the best pattern is equivalent to finding the minimal weight codeword in C.

This problem is NP-hard in general

However, it looks like this code is quite particular and we were able to achieve good results.

Algorithm: modification of [J.S. Leon , F. Chabaud]

- permute the columns of the generating matrix randomly
- apply a gaussian elimination on the rows of the matrix to get

$$G = (I \mid Z)$$

 search for combinations of up to p rows of Z that lead to codewords with small weight

Results	steps	wt	wt_{20+}	steps	wt	wt_{20+}	steps	wt	wt_{20+}
	32	9	2	50	35	14	68	> 122	> 78
	33	9	2	51	35	15	69	> 127	> 81
	34	9	2	52	35	16	70	> 142	> 80
	35	28	4	53	35	16	71	> 157	> 94
	36	24	5	54	78	36	72	> 163	> 93
	37	25	5	55	80	39*	73	> 139	> 111
	38	30	8	56	79	41	74	> 139	> 98
	39	39	8*	57	72	42	75	> 142	> 90
	40	41	11	58	73	42	76	> 187	> 111
	41	41	12	59	91	51	77	> 184	> 108
	42	41	13	60	66	44	78	> 198	> 115
	43	41	17	61	66	44	79	> 173	> 115
	44	50	15	62	66	45	80	> 172	> 106
	45	45	15	63	107	64	81	> 255	> 117
	46	56	23	64	> 101	> 60	82	> 242	> 142
	47	56	24*	65	> 113	> 66	83	> 215	> 163
	48	35	14	66	> 98	> 58	84	> 161	> 101
	49	35	14	67	> 127	> 69	85	> 340	> 177

Results: best Hamming weights for different lengths

On differential patterns for attacks on SHA-1 - p. 33/40

A few examples of patterns

The message expansion can be applied "from the end" and then has the form

$$W_i = W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus ROR^1(W_{i+16}), \quad 0 \le i < 64,$$

The message expansion can be applied "from the end" and then has the form

$$W_i = W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus ROR^1(W_{i+16}), \quad 0 \le i < 64,$$

where the last 16 words W_{64}, \ldots, W_{79} are fixed.

• rotation is applied to only one word distant by 16 steps !

The message expansion can be applied "from the end" and then has the form

 $W_i = W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus ROR^1(W_{i+16}), \quad 0 \le i < 64,$

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

The message expansion can be applied "from the end" and then has the form

 $W_i = W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus ROR^1(W_{i+16}), \quad 0 \le i < 64,$

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

The message expansion can be applied "from the end" and then has the form

 $W_i = W_{i+2} \oplus W_{i+8} \oplus W_{i+13} \oplus ROR^1(W_{i+16}), \quad 0 \le i < 64,$

- rotation is applied to only one word distant by 16 steps !
- much worse avalanche effect

Minimum weight unrestricted pattern

Minimum weight of the expanded message we could find: 44.

- found in the following way: change one bit in word 44 and expand the segment 44 – 60 backward-forward
- independently found as a candidate for the minimal weight codeword in unrestricted code

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_1 set of bits in the same position as the last nonzero bit
- S_2 set of bits in other positions (right from the initial position)

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_1 set of bits in the same position as the last nonzero bit
- S_2 set of bits in other positions (right from the initial position)

It's easy to estimate the size of S_1 : bits in the same position are generated by the recurrence formula

 $w_i = w_{i+2} \oplus w_{i+8} \oplus w_{i+13}$

Minimal weights of such sequences can be easily found (only 2^{16} possibilities).

Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two groups:

- S_1 set of bits in the same position as the last nonzero bit
- S_2 set of bits in other positions (right from the initial position)

It's easy to estimate the size of S_1 : bits in the same position are generated by the recurrence formula

 $w_i = w_{i+2} \oplus w_{i+8} \oplus w_{i+13}$

Minimal weights of such sequences can be easily found (only 2^{16} possibilities).

We can't say much about the size of the second set, only that $|S_2| \ge 1$ for patterns longer than 16.

Bounds : 34-step pattern is optimal

steps	32–34	35–38	39,40	41	42,43	44–47	48,49	50	51
min. wt	8	9	11	13	11	14	16	17	16
steps	52,53	54–56	57–64	65–67	68–71	72	73–75	76,77	78–85
min. wt	17	18	19	23	22	26	24	29	30

34 steps case: minimal size of S_1 - 8, minimal size of S_2 - 1. Actual weight : 9

Future work

Can we use

• Can we use

• Can we construct complete differences in a different way than using *disturbance-corrections* strategy?

The End

Thank you!