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Talk overview

• Cryptographic hash functions : basic notions
• Descriptions of SHA-0 and SHA-1
• Differential attack of Chabaud and Joux on SHA-0
• Finding patterns for attacks on variants of SHA-1
• Experimental results
• Some bounds on weights of short patterns
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Cryptographic hash functions

Hash function - a function that maps binary strings of arbitrary length
to strings of fixed length,

h : {0, 1}∗ → {0, 1}n.

Cryptographic hash function - hash function with additional properties:
• fast to compute
• preimage resistant
• second preimage resistant
• collision resistant
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Properties of cryptographic hash functions

Preimage resistant : Given an output Y of the hash function it is
difficult to find any preimage - an input X such that h(X) = Y .

Second preimage resistant : Given a fixed input X to the hash function
and corresponding output h(X) it is difficult to find a second preimage
- another input X ′, X ′ 6= X such that h(X) = h(X ′).

Collision resistant : It is hard to find any pair of distinct messages
(X, X ′), X 6= X ′ such that h(X) = h(X ′).

Attack on a hash function: finding a preimage or a collision.
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Iterative hash functions from compression functions

Compression function - function that maps longer inputs to shorter
outputs f : {0, 1}n+k → {0, 1}k.

IVM1

M2

M3

h(M)

f

f

f

h0 ← IV

hi ← f(Mi−1||hi−1)

i = 1, . . . , d

h(M) := hd

If the compression function f is
secure (one-way and

collision-resistant) then the
iterative hash function h is also

secure.
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The structure of SHA : compression function

M
IV

80 steps

ex
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(A0, B0, C0, D0, E0) ← IV.

80 steps of the form

(Ai, Bi, Ci, Di, Ei)

↓

(Ai+1, Bi+1, Ci+1, Di+1, Ei+1)

Finally,

f(M, IV ) = A0 ⊞ A80||B0 ⊞ B80||

C0 ⊞ C80||D0 ⊞ D80||

E0 ⊞ E80
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The structure of SHA : step transformation

≪

≪

Ai Bi Ci Di Ei

fi

Ki

Wi

Ai+1
Bi+1

Ci+1
Di+1

Ei+1

Ai+1 = Ei ⊞ ROL5(Ai) ⊞ fi(Bi, Ci, Di)⊞

Wi ⊞ Ki,

Bi+1 = Ai,

Ci+1 = ROL30(Bi),

Di+1 = Ci,

Ei+1 = Di, i = 0, . . . , 79

fi(B, C, D) =






BC ∨ (¬B)D for 0 ≤ i ≤ 19

B ⊕ C ⊕ D for 20 ≤ i ≤ 39

BC ∨ BD ∨ CD for 40 ≤ i ≤ 59

B ⊕ C ⊕ D for 60 ≤ i ≤ 79
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The structure of SHA : message expansion process

For SHA-0:

Wi =

{

Mi for 0 ≤ i ≤ 15,

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for 16 ≤ i ≤ 79,

For SHA-1:

Wi =

{

Mi for 0 ≤ i ≤ 15,

ROL1(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) for 16 ≤ i ≤ 79,

• Note that the operation is linear in respect of ⊕
operation, so E1(M ⊕ M ′) = E1(M) ⊕ E1(M

′).

• SHA-1 differs from SHA-0 only by the rotation in the
message expansion.
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Differential attack on hash functions

Differential attacks are used for finding collisions.

Idea: Find a difference ∆ such that

h(M) = h(M ⊕ ∆)

and we know:

• how to construct M ,

or

• that we can find a suitable M among random messages with
probability higher than 2−hash length/2 (faster than generic birthday
attack)
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Differential attack : disturbance – corrections

Ki+4

Wi+4,(b+30)%32

Ki+3

Wi+3,(b+30)%32
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Wi+2,b
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Ki

Wi,b
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Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean
functions fi behave like linear operations in respect of ⊕.
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Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean
functions fi behave like linear operations in respect of ⊕.

This is true for addition when flip of the bit in the message does not
generate carries.
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Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean
functions fi behave like linear operations in respect of ⊕.

This is true for addition when flip of the bit in the message does not
generate carries.

Denote Zi = Ei ⊞ ROL5(Ai) ⊞ fi(Bi, Ci, Di) ⊞ Ki.

Zi (other) : . . . 1 0 0 1 0 1
Wi (mesg) : . . . 1 1 0 → 1 0 0 1

Ai+1 (sum): . . . 0 1 0 → 1 1 1 0

Zi (other) : . . . 1 0 1 1 0 1
Wi (mesg) : . . . 1 1 0 → 1 0 0 1

Ai+1 (sum): . . . 1 0 1 → 0 1 1 0
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Differential attack : probability of success (1) : addition

Disturbance - corrections strategy works if all additions and Boolean
functions fi behave like linear operations in respect of ⊕.

This is true for addition when flip of the bit in the message does not
generate carries.

Denote Zi = Ei ⊞ ROL5(Ai) ⊞ fi(Bi, Ci, Di) ⊞ Ki.

Zi (other) : . . . 1 0 0 1 0 1
Wi (mesg) : . . . 1 1 0 → 1 0 0 1

Ai+1 (sum): . . . 0 1 0 → 1 1 1 0

Zi (other) : . . . 1 0 1 1 0 1
Wi (mesg) : . . . 1 1 0 → 1 0 0 1

Ai+1 (sum): . . . 1 0 1 → 0 1 1 0

Every bit (except for the most significant ones) adds a factor 1/2.
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Differential attack : probability of success (2) : Boolean functions

Let δf = f(x, y, z) ⊕ f(x ⊕ δx, y ⊕ δy, x ⊕ δz),
fif (x, y, z) = xy ∨ (¬x)z = xy ⊕ xz ⊕ z,
fmaj(x, y, z) = xy ⊕ xz ⊕ yz.

differences conditions to behave like XOR, i.e. δf = δfxor

δx δy δz δfxor fif Prob fmaj Prob.

1 0 0 1 y ⊕ z = 1 1/2 y ⊕ z = 1 1/2
0 1 0 1 x = 1 1/2 x ⊕ z = 1 1/2
0 0 1 1 x = 0 1/2 x ⊕ y = 1 1/2
1 1 0 0 x ⊕ y ⊕ z = 1 1/2 x ⊕ y = 1 1/2
1 0 1 0 x ⊕ y ⊕ z = 1 1/2 x ⊕ z = 1 1/2
0 1 1 0 never 0 y ⊕ z = 1 1/2
1 1 1 1 y ⊕ z = 1 1/2 always 1
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Differential attack : probability of success (2) : Boolean functions

Let δf = f(x, y, z) ⊕ f(x ⊕ δx, y ⊕ δy, x ⊕ δz),
fif (x, y, z) = xy ∨ (¬x)z = xy ⊕ xz ⊕ z,
fmaj(x, y, z) = xy ⊕ xz ⊕ yz.

differences conditions to behave like XOR, i.e. δf = δfxor

δx δy δz δfxor fif Prob fmaj Prob.

1 0 0 1 y ⊕ z = 1 1/2 y ⊕ z = 1 1/2
0 1 0 1 x = 1 1/2 x ⊕ z = 1 1/2
0 0 1 1 x = 0 1/2 x ⊕ y = 1 1/2
1 1 0 0 x ⊕ y ⊕ z = 1 1/2 x ⊕ y = 1 1/2
1 0 1 0 x ⊕ y ⊕ z = 1 1/2 x ⊕ z = 1 1/2
0 1 1 0 never 0 y ⊕ z = 1 1/2
1 1 1 1 y ⊕ z = 1 1/2 always 1

Every Boolean function different from XOR adds a factor 1/2 and we
cannot have two adjacent changes in first 16 steps
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Differential attack : from disturbance pattern to full differential

Let d denotes the pattern of disturbance bits. Then the complete
differential pattern can be obtained as

∆ = d ⊕ Delay1(ROL6(d)) ⊕

Delay2(d) ⊕

Delay3(ROL30(d)) ⊕

Delay4(ROL30(d)) ⊕

Delay5(ROL30(d)),

where Delayk(W ) means inserting k zero words before W and
discarding the last k words of W .
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Conditions for the disturbance pattern

In order to construct difference pattern ∆ (disturbance + corrections)
from a disturbance pattern d, d has to satisfy the following conditions:

On differential patterns for attacks on SHA-1 – p. 14/40



Conditions for the disturbance pattern

In order to construct difference pattern ∆ (disturbance + corrections)
from a disturbance pattern d, d has to satisfy the following conditions:

• d has to be the result of the expansion operation,
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Conditions for the disturbance pattern

In order to construct difference pattern ∆ (disturbance + corrections)
from a disturbance pattern d, d has to satisfy the following conditions:

• d has to be the result of the expansion operation,
• d has to end with five zero words (because each disturbance is

corrected in the next 5 steps, so no disturbance may occur after
the word 74),
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from a disturbance pattern d, d has to satisfy the following conditions:

• d has to be the result of the expansion operation,
• d has to end with five zero words (because each disturbance is

corrected in the next 5 steps, so no disturbance may occur after
the word 74),

• after delaying d by up to 5 words the delayed patterns
Delay1(d), . . . , Delay5(d) must also be the result of the expansion
of theirs first 16 words,
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Conditions for the disturbance pattern

In order to construct difference pattern ∆ (disturbance + corrections)
from a disturbance pattern d, d has to satisfy the following conditions:

• d has to be the result of the expansion operation,
• d has to end with five zero words (because each disturbance is

corrected in the next 5 steps, so no disturbance may occur after
the word 74),

• after delaying d by up to 5 words the delayed patterns
Delay1(d), . . . , Delay5(d) must also be the result of the expansion
of theirs first 16 words,

• d has both the minimal Hamming weight and the maximal number
of non-zero bits in position 1.
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The search for disturbance patterns for SHA-0: (1)

Wi =

{

Mi for 0 ≤ i ≤ 15

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for 16 ≤ i ≤ 79,

In SHA-0, bits in different positions are independent!

On differential patterns for attacks on SHA-1 – p. 15/40



The search for disturbance patterns for SHA-0: (1)

Wi =

{

Mi for 0 ≤ i ≤ 15

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for 16 ≤ i ≤ 79,

In SHA-0, bits in different positions are independent!

• changing bits in position k in the message words Mj will affect
only bits in position k in expanded message,
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The search for disturbance patterns for SHA-0: (1)

Wi =

{

Mi for 0 ≤ i ≤ 15

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for 16 ≤ i ≤ 79,

In SHA-0, bits in different positions are independent!

• changing bits in position k in the message words Mj will affect
only bits in position k in expanded message,

• message expansion process can be seen as 32 independent
copies of the expansion of 16 bits to 80 bits using the relation

wi = wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16 16 ≤ i ≤ 79

where wi ∈ F2.
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The search for disturbance patterns for SHA-0: (2)

• there are 216 candidates for disturbance patterns,
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The search for disturbance patterns for SHA-0: (2)

• there are 216 candidates for disturbance patterns,

• there are 211 patterns such that Delay5(d) is the result of
expansion,
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The search for disturbance patterns for SHA-0: (2)

• there are 216 candidates for disturbance patterns,

• there are 211 patterns such that Delay5(d) is the result of
expansion,

• there are 26 patterns such that Delay5(d) is the result of
expansion and pattern ends with five zero bits (63 usable
patterns, excluding all-zero) Minimal weight is 27.
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The search for disturbance patterns for SHA-0: (2)

• there are 216 candidates for disturbance patterns,

• there are 211 patterns such that Delay5(d) is the result of
expansion,

• there are 26 patterns such that Delay5(d) is the result of
expansion and pattern ends with five zero bits (63 usable
patterns, excluding all-zero) Minimal weight is 27.

• there are only 5 disturbance patterns such that there are no
adjacent ’1’ bits in first 16 bits

0001000000010010 0000001000011011 0111111011010010 0001010100101010 0010111001100000

0010001000000010 1111011000111000 0001010001000100 1001001110110011 0000111110000000

0100001010010001 1110010110000011 1000000000001100 0000110110000001 1000101101100000

0010100101000001 1111001111001100 0111111101101111 0000110001010101 1101001010000000

0001010010100000 1111100111100110 0011111110110111 1000011000101010 1110100101000000

with weights: 30, 30, 27, 39, 39.
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Pattern for differential attack on SHA-0

0 16 32 48 64 79
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Pattern for differential attack on SHA-0

0 16 32 48 64 79

⇓

differential pattern with probability 2−68
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What about SHA-1 ?

1. The only difference is in the message expansion algorithm, so the
idea of disturbance - corrections works also for SHA-1 - the round
structure is the same

2. how to find disturbance patterns that can give rise to corrective
patterns ?
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Properties of the message expansion in SHA-1

Wi =

{

Mi for 0 ≤ i ≤ 15

ROL1(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) for 16 ≤ i ≤ 79,

All operations are F2-linear, so we can describe the whole message
expansion process as a linear function

E1 : F
512
2 → F

2560
2

The function A producing 16 new words (Wi+1, . . . , Wi+16) out of 16
old ones (Wi−15, . . . , Wi) using the recurrence formula is a linear
bijection of space F

512
2 ,

A : F
512
2 → F

512
2 .
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Message expansion process: Relation between A and E1

If we consider a message as a bit vector m ∈ F
512
2 , we can write

E1(m) =











I512

A

A2

A3

A4











· m

Denote L =











I512

A

A2

A3

A4











for later use.
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Matrix A
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Matrix A2
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Matrix A3
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Matrix A4
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How to find disturbance patterns?

1. d has to be the result of the expansion operation,

d = E1([d0, . . . , d511]
T )

2. d has to end with five zero words (because each disturbance is
corrected in the next 5 steps, so no disturbance may occur after
the word 74),

dj = 0, for j = 2400, . . . 2559,

3. after delaying d by up to 5 words the delayed patterns
Delay1(d), . . . , Delay5(d) must also be the result of the expansion
of theirs first 16 words,

[0 . . . 0
︸ ︷︷ ︸

160 bits

d0 d1 . . . d2399]
T = E1([0 . . . 0 d0 . . . d351]

T ) .
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How to find disturbance patterns? (2)

Conditions 1– 3 imply that in fact we are looking for longer bit
sequences of 85 words such that

• the first 5 words are zero,
• the next 11 words are chosen in such a way that the rest of the

words is the result of the expansion of the first 16, and
• the last 5 words are zero again.

If we denote first 5 words with indices −5,−4, . . . ,−1 words 0, . . . 79
are the words of a disturbance pattern.

In matrix notation: we are looking for bit vectors m ∈ F
512
2 such that

• A4 · m has 5 · 32 = 160 trailing zero bits,

• A−1 · m has 5 · 32 = 160 trailing zero bits.
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How to find disturbance patterns? (3)















∗
...
∗

0
...
0















=















α0,0 . . . . . . α0,511

...
...

α351,0 α351,511

α352,0 . . . . . . α352,511

...
...

α511,0 . . . . . . α511,511















·















m0

...
m351

m352

...
m511















= A−1 · m















∗
...
∗

0
...
0
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
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








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
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
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




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


â0,0 . . . . . . â0,511

...
...

â351,0 â351,511

â352,0 . . . . . . â352,511

...
...

â511,0 . . . . . . â511,511















·















m0

...
m351

m352

...
m511















= A4 · m
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How to find disturbance patterns? (4)

We are looking for patterns d ∈ F
512
2 such that







0
...
0







=















α352,0 . . . . . . α352,511

...
...

α511,0 . . . . . . α511,511

â352,0 . . . . . . â352,511

...
...

â511,0 . . . . . . â511,511















·















m0

...
m351

m352

...
m511















Notation: A[p :: q] - matrix created by taking rows of the matrix A from
p-th row to q-th row. Then the equation above can be written as

0 = Ψ · m where

Ψ =

[

A−1[352 :: 511]

A4[352 :: 511]

]
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How to find disturbance patterns? (5)

Thus, all disturbance patterns d ∈ F
2560
2 we are looking for are created

as expansions of bit vectors m ∈ F
512
2 from the linear subspace

ker Ψ.

Experimentally we have found that

dim ker Ψ = 192.

This shows that the set of all disturbance patterns for disturbance -
corrections technique constitutes a linear code C of length 2560 and
dimension 192.
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Disturbance patterns for reduced variants of SHA-1

If we want to look for patterns suitable for SHA-1 reduced to only s
steps, we need to take a different matrix Ψ:

Ψs =

[

A−1[352 :: 511]

L[32(s − 4) :: 32s + 31]

]

where L is the matrix of the full expansion process E1.
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How to find good patterns?

Finding the best pattern is equivalent to finding the minimal weight
codeword in C.

This problem is NP-hard in general .....

However, it looks like this code is quite particular and we were able to
achieve good results.

Algorithm: modification of [J.S. Leon , F. Chabaud]
• permute the columns of the generating matrix randomly
• apply a gaussian elimination on the rows of the matrix to get

G = ( I | Z )

• search for combinations of up to p rows of Z that lead to
codewords with small weight
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Results steps wt wt20+ steps wt wt20+ steps wt wt20+

32 9 2 50 35 14 68 > 122 > 78

33 9 2 51 35 15 69 > 127 > 81

34 9 2 52 35 16 70 > 142 > 80

35 28 4 53 35 16 71 > 157 > 94

36 24 5 54 78 36 72 > 163 > 93

37 25 5 55 80 39* 73 > 139 > 111

38 30 8 56 79 41 74 > 139 > 98

39 39 8* 57 72 42 75 > 142 > 90

40 41 11 58 73 42 76 > 187 > 111

41 41 12 59 91 51 77 > 184 > 108

42 41 13 60 66 44 78 > 198 > 115

43 41 17 61 66 44 79 > 173 > 115

44 50 15 62 66 45 80 > 172 > 106

45 45 15 63 107 64 81 > 255 > 117

46 56 23 64 > 101 > 60 82 > 242 > 142

47 56 24* 65 > 113 > 66 83 > 215 > 163

48 35 14 66 > 98 > 58 84 > 161 > 101

49 35 14 67 > 127 > 69 85 > 340 > 177
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Results: best Hamming weights for different lengths

H.wt. of full codewords

ignoring first 20 steps

32 40 48 64 80
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A few examples of patterns

34 steps (9/2) 53 steps (35/16)

80 steps (172/120) (wt/wt20+)
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Message expansion backward

The message expansion can be applied “from the end” and then has
the form

Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ ROR1(Wi+16), 0 ≤ i < 64,

where the last 16 words W64,. . . ,W79 are fixed.
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The message expansion can be applied “from the end” and then has
the form

Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ ROR1(Wi+16), 0 ≤ i < 64,

where the last 16 words W64,. . . ,W79 are fixed.

• rotation is applied to only one word distant by 16 steps !

On differential patterns for attacks on SHA-1 – p. 35/40



Message expansion backward

The message expansion can be applied “from the end” and then has
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• rotation is applied to only one word distant by 16 steps !
• much worse avalanche effect
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Minimum weight unrestricted pattern

Minimum weight of the expanded message we could find: 44.

• found in the following way: change one bit in word 44 and expand
the segment 44 – 60 backward-forward

• independently found as a candidate for the minimal weight
codeword in unrestricted code
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Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two
groups:

• S1 – set of bits in the same position as the last nonzero bit
• S2 – set of bits in other positions (right from the initial position)
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It’s easy to estimate the size of S1 : bits in the same position are
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wi = wi+2 ⊕ wi+8 ⊕ wi+13

Minimal weights of such sequences can be easily found (only 216

possibilities).
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Bounds on the weight of short patterns

To estimate weight of a differential pattern we can divide it into two
groups:

• S1 – set of bits in the same position as the last nonzero bit
• S2 – set of bits in other positions (right from the initial position)

It’s easy to estimate the size of S1 : bits in the same position are
generated by the recurrence formula

wi = wi+2 ⊕ wi+8 ⊕ wi+13

Minimal weights of such sequences can be easily found (only 216

possibilities).

We can’t say much about the size of the second set, only that |S2| ≥ 1
for patterns longer than 16.
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Bounds : 34-step pattern is optimal

steps 32–34 35–38 39,40 41 42,43 44–47 48,49 50 51

min. wt 8 9 11 13 11 14 16 17 16

steps 52,53 54–56 57–64 65–67 68–71 72 73–75 76,77 78–85

min. wt 17 18 19 23 22 26 24 29 30

34 steps case: minimal size of S1 - 8, minimal size of S2 - 1.
Actual weight : 9
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Future work

• Can we use

• Can we use

• Can we construct complete differences in a different way than
using disturbance-corrections strategy?
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The End

Thank you!
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