
Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Provably secure hash functions - do we care?

Krystian Matusiewicz

Technical University of Denmark

Quo Vadis 2008, 30 May 2008

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Problems and instances

• Problem – a general question to be answered, possesing some
parameters and having a description of the expected solution.

Example: Order elements of the array A = [a1, a2, . . . , an] in
increasing order

• Instance – a particular case of the problem with all parameters
fixed to specific values

Example: Order array [3, 6, 2, 4, 8, 9]

• Algorithm – a sequence of operations that for any instance I
of the problem P yields a solution of the problem.

Example: Selection sort

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Instance size and time complexity

• Encoding scheme – a function that maps all problem instances
to strings over a fixed alphabet

Example: A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ; }, encoding of the
array: 3; 6; 2; 4; 8; 9; ;

• Instance size – number of symbols used to describe the
instance using the selected encoding function

• Time complexity of the algorithm – expresses the number of
operations needed by the algorithms as a function of input
size for all problem instances

Example: Selection sort uses at most n swaps and n(n − 1)/2
comparisons. Time complexity: T (n) = n(n − 1)/2 + n.

• Polynomial-time algorithm – algorithm with time complexity
bounded from above by a polynomial function.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Easy and impossible problems

Polynomial-time algorithms are considered to be easy. Complexity
class P: all algorithms that are solvable in polynomial-time.

However, there exist problems for which there is absolutely no
algorithm that solves them...

• Halting problem: Given a description of a program and a finite
input, decide whether the program finishes running or will run
forever, given that input.

• Hilbert’s tenth problem: Let f ∈ Z[x1, . . . , xn]. Is there
z ∈ Z

n such that f(z) = 0 ?

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Anything in-between? Hard and harder problems

There are many problems that apparently require exponential time
to solve them.

Example: SAT: Let f ∈ F2[x1, . . . , xn]. Is there z ∈ F
n
2 such that

f(z) = 0 ?

Complexity class NP : problems solvable in polynomial time by
non-deterministic algorithm. [Solutions can be verified by a
polynomial time algorithm]

NP-Complete problems: Class of problems in NP that are “the
hardest” problems in NP. [Any other problem in NP can be
polynomially reduced to one in NP-C]

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Our view of complexity classes

We assume that P 6= NP

P

NPC

NP
SAT

SORT

FACTOR

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Security proofs

We want to use difficult computational problems to our advantage.

If some computational problems seem to be hard and we want
cryptosystems to be hard to break, maybe we can use intractable
computational problems to construct cryptosystems.

Security reduction:

• If you can break the cryptosystem, you can solve this
intractable problem.

• Since so many people have studied that hard problem (and
other related ones), it is unlikely that there is an efficient
method of solving it.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Example 1: DLP-based hash function

• Proposed by Chaum, van Heijst, Pfitzman [CRYPTO’91]

• Let (g1, g2, . . . , gt) be a sequence of randomly chosen
generators of a cyclic group G of a prime order

• The function

F (x1, . . . , xt) = gx1

1 · gx2

2 · · · · · gxt

t

is collision-resistant provided that the discrete logarithm
problem in the group G is hard.

• the group can be i.e. G = F
∗

2n where p = 2n − 1 is a
Mersenne prime

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

DLP-based hash function: security reduction

Let us focus on the smallest case

F (x, y) = gx
1 · gy

2

Assume that we have an algorithm that finds collisions in that
function, i.e. finds pairs (x1, y1), (x2, y2). We have then

gx1

1 · gy1

2 = gx2

1 · gy2

2

or
gx1−x2

1 = gy2−y1

2

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

DLP-based hash: security reduction

To solve DLP instance, we want to find such α that g2 = gα
1 .

From the previous equation:

gx1−x2

1 = g
α(y2−y1)
1

But this gives us

x1 − x2 = α(y2 − y1) (mod (#G))

and we can solve this for α.

• This can be generalized for t > 2 by induction.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Example 2: Hash function as hard as factoring

• Proposed by Damg̊ard [EUROCRYPT’87]

• Let N = pq where p, q are primes ≡ 3 (mod 4)

• Compression function h : {0, 1} × SQ(N) → SQ(N) defined
as

h(x, y) = ax · y2 (mod N)

where SQ(N) is the set of quadratic residues mod N and
a0, a1 ∈ SQ(N) are randomly chosen.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Factoring-based hash f. : security reduction

If we have a collision

ax1
· y2

1 = ax2
· y2

2

it means that
ax1

· y2
1 − ax2

· y2
2 = N

and we can find a factor of N with probability 1/2 by examining

gcd(ax1
· y2

1 − ax2
· y2

2, N)

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Example 3: Lattice-based hash function

• Proposed by Goldreich, Goldwasser, Halevi ’96

• Let q ∈ Z, and A be an n × m matrix with entries from Zq.

• Let x ∈ {0, 1}m be a sequence of zeros and ones, then we
define

h(x) = A · x

In other words,

h(x) =
∑

i:xi=1

ai (mod q),

we sum all the columns of the matrix A that correspond to
ones in x.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Lattice based hash function: Security reduction

• Finding collisions means finding two vectors x, y ∈ {0, 1}m

such that A · x = A · y

• Equivalent to finding a ternary vector z ∈ {−1, 0, 1} such that
Az = 0.

• Can be described as finding an integer vector s.t. ||z||∞ = 1
in the lattice spanned by A

• lattice Shortest Vector Problem – approximating SVP in any
Lp norm is NP-hard

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Speed
Digest length
Residual structure

Problems with provably-secure constructions

• Speed

• Digest length

• Real-life security vs. theoretical security

• Structure

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Speed
Digest length
Residual structure

Speed

• Computational problems have rich, complex structure: long
integer arithmetic, matrix operations, finite field operations,
elliptic curve operations etc.

• Modern processors are not optimized towards such tasks

• Efficiency dramatically worse that dedicated designs where the
problem is tuned for the processor

Possible ways out:

• Processors evolve to include support for some
cryptography-related operations

• Researchers come up with intractable problems suitable for
fast implementations

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Speed
Digest length
Residual structure

Attack cost vs. digest length

Consider an idealised hash function (i.e. modeled as random
oracle) with n bits of output size

• we need 2n queries to find a preimage

• we need 2n/2 queries to find a collision

For dedicated designs, 280 evaluations is thought to be out of
reach for some time so the hash length can be 160 bits.

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Speed
Digest length
Residual structure

Digest lengths of constructions based on hard problems

Factoring and discrete logarithms in finite fields have
subexponential complexity.

• factoring: In 2005 RSA-200 was factored (663-bit modulus),
estimated work effort: 75 years on a single Opteron 2.2GHz

• discrete log: In 2001 discrete logs in F2607 (607 bits) were
possible on a fairly reasonable set of PCs

On the other hand, the biggest ECDLP challenge solved so far is
109-bit [2004]

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Speed
Digest length
Residual structure

Internal structure

• For an “ideal” hash function there is no structure – any two
outputs are completely unrelated

• Functions based on algorithimc problems tend to have some
residual structure

Krystian Matusiewicz Provably secure hash functions - do we care?

Computational Complexity
Provably-secure constructions

Problems with provably-secure constructions
Attempts at practical constructions

Krystian Matusiewicz Provably secure hash functions - do we care?

	Computational Complexity
	Provably-secure constructions
	Problems with provably-secure constructions
	Speed
	Digest length
	Residual structure

	Attempts at practical constructions

