Cryptanalysis of short variants of SHA-256-XOR

Krystian Matusiewicz

supervised by: Josef Pieprzyk, Huaxiong Wang

kmatus@ics.mq.edu.au

Centre For Advanced Computing, Algorithms and Cryptography,

Department of Computing,

Macquarie University

Properties of cryptographic hash functions

hash function : $H: \{0,1\}^* \to \{0,1\}^n$

Preimage resistant : Given an output *Y* of the hash function it is difficult to find any *preimage* - an input *X* such that h(X) = Y.

Second preimage resistant : Given a fixed input X to the hash function and the corresponding output h(X) it is difficult to find a second preimage - another input X', X' \neq X such that h(X) = h(X').

Collision resistant : It is hard to find any pair of distinct messages (X, X'), $X \neq X'$ such that h(X) = h(X').

Applications

digital signatures

password-based user identification

gdm:!!:13245:0:99999:7::: kmatus:\$1\$5IwJJ/.0\$9Em5P./CiGE48TVO2QWbz/:13245:0:99999:7::: bogo:\$1\$MPW3Z.Au\$SJlzrNZUA1qBa8nkUF6Ki.:13245:0:99999:7:::

• data integrity

The CD ISO image names are listed below. After downloading, you can verify the file against the file is not corrupted. A full installation will require all of the discs for the desired architecture.

For x86-compatible (32-bit):

FC5-i386-disc1.iso (sha1sum: 43546c0e0d1fc64b6b80fe1fa99fb6509af5c0a0) FC5-i386-disc2.iso (sha1sum: a85ed1ca5b63e2803f29a33ea6a6bc8eb7f63122)

many others...

Attacks on dedicated cryptographic hash functions

SHA-256

 $\Sigma_0(A) = A^{\ll 2} \oplus A^{\ll 13} \oplus A^{\ll 22} \qquad \Sigma_1(E) = E^{\ll 6} \oplus E^{\ll 11} \oplus E^{\ll 25}$ $MAJ(A, B, C) = (A \land B) \oplus (B \land C) \oplus (A \land C)$ $IF(E, F, G) = (E \land F) \oplus (\neg E \land G)$

SHA-256-XOR

If the function were linear, it would be trivial to find collisions.

Linear approximations of Boolean functions

$$\Delta x = x \oplus x', \dots, \quad \Delta \operatorname{IF} = IF(x, y, z) \oplus IF(x', y', z')$$

Δx	Δy	Δz	Δ IF	$\Delta \mathrm{MAJ}$	$\Delta \operatorname{IF} = \Delta y$
0	0	0	0	0	-
0	0	1	$x \oplus 1$	$x\oplus y$	x = 1
0	1	0	x	$x\oplus z$	x = 1
0	1	1	1	$y\oplus z\oplus 1$	-
1	0	0	$y\oplus z$	$y\oplus z$	y + z = 0
1	0	1	$x\oplus y\oplus z$	$x \oplus z \oplus 1$	$x \oplus y \oplus z = 0$
1	1	0	$x \oplus y \oplus z \oplus 1$	$x \oplus y \oplus 1$	$x \oplus y \oplus z = 0$
1	1	1	$y\oplus z\oplus 1$	1	y + z = 0

The outline of the attack

- choose linear approximations of MAJ and IF and construct a \mathbb{F}_2 -linear model of SHA-256-XOR,
- find a suitable collision-producing difference for the linearized SHA-256-XOR,
- derive a set of conditions under which the real SHA-256-XOR behaves like the linear model with respect to difference propagation
- find a message for which all the conditions (approximating equations) are satisfied.

• choose linear approximations of MAJ and IF and construct a \mathbb{F}_2 -linear model of SHA-256-XOR,

There are better and worse approximations – which are the best ones?

The choice influences

- * the density of differentials,
- the probability that the system of approximating conditions is consistent

 find a suitable collision-producing difference for the linearized SHA-256-XOR,

Once the hash function is linearised it can be seen as a function

 $SXL: \mathbb{F}_2^{256} \times \mathbb{F}_2^{512} \to \mathbb{F}_2^{256}$

linear over \mathbb{F}_2 . Now, every bit string $(\Delta_{IV}, \Delta_M) \in \mathbb{F}_2^{256} \times \mathbb{F}_2^{512}$ such that

 $SXL(\Delta_{IV}, \Delta_M) = 0$

is a pseudo-collision-producing difference for the linearised version.

 find a suitable collision-producing difference for the linearized SHA-256-XOR,

Out of all possible differentials $(\Delta_{IV}, \Delta_M) \in \text{Ker}(SXL)$ we want to choose those that generate the smallest amount of differences in registers.

- Each register is a linear function of (Δ_{IV}, Δ_M)
- The state of all registers can be represented as a matrix with rows

 $[A_0|E_0|A_1|E_1|\dots|A_n|E_n]$

 look for combinations of rows with small weights - finding low weight codewords in linear codes

 derive a set of conditions under which the real SHA-256-XOR behaves like the linear model with respect to difference propagation

For each non-zero input difference to a Boolean function we have one equation on the values of inputs to that function.

Collect them all and reduce. Hopefully, the system is consistent.

$$A_{3,2} = A_{2,2}$$

$$A_{3,2} = A_{2,2}$$

$$E_{3,2} = E_{2,3} + E_{1,2}$$

$$E_{3,20} = 1$$

$$A_{3,20} = A_{2,20}$$

$$E_{3,21} = 1$$

$$A_{3,22} = A_{2,22}$$

$$E_{3,22} = E_{2,23} + E_{1,22}$$

$$A_{3,23} = A_{1,23} + 1$$

$$E_{3,23} = E_{2,23}$$

 find a message for which all the conditions (approximating equations) are satisfied.

Adjust the values of registers A and E by flipping some bits of the message.

 $\Delta A_{i,b} = \Delta T \mathbf{1}_{i,b} \oplus \Delta T \mathbf{2}_{i,b}$ $\Delta E_{i,b} = \Delta A_{i-4,b} \oplus \Delta T \mathbf{2}_{i,b}$

 $T1_{i,b} = \mathcal{L}_{MAJ}(\Delta A_{i-1,b}, \Delta A_{i-2,b}, \Delta A_{i-3,b}) \oplus$ $\Delta A_{i-1,(b+2) \mod 32} \oplus \Delta A_{i-1,(b+13) \mod 32} \oplus \Delta A_{i-1,(b+22) \mod 32}$ $T2_{i,b} = \mathcal{L}_{IF}(\Delta E_{i-1,b}, \Delta E_{i-2,b}, \Delta E_{i-3,b}) \oplus$ $\Delta E_{i-1,(b+6) \mod 32} \oplus \Delta E_{i-1,(b+11) \mod 32} \oplus \Delta E_{i-1,(b+25) \mod 32} \oplus$ $\Delta E_{i-4,b} \oplus \Delta W_{i-1,b}$

Example

step	A	E
0	00000000	00000000
1	25008048	25008048
2	00813d2a	098115a8
3	08008400	4084e709
4	00000000	20915c0e
5	08000000	25000448
6	00000000	02817d0a
7	00000000	00008400
8	00000000	00000000
9	00000000	08000000
10	00000000	00000000
11	00000000	00000000
12	00000000	00000000
13	00000000	00000000
14	00000000	00000000
15	00000000	00000000
16	00000000	00000000
17	00000000	00000000

 $N=18 {\rm\ steps}$

IF $\approx z$, MAJ $\approx y$.

total weight of the differential: 312

number of equations: 172

Discussion

Strengths:

- the idea works for all similarly designed hash functions
- nice mathematical model

Problems:

- Finding good differentials is hard
- for SHA-256-XOR we can attack variants with with 20-22 steps
- Any better algoritms for finding messages satisfying conditions?

Related work:

F.Mendel, N.Pramstaller, C.Rechberger, and V.Rijmen, Analysis of Step-Reduced SHA-256, Proc. FSE'2006, Gratz, Austria