Cryptanalysis of short variants of SHA-256-XOR

Krystian Matusiewicz
supervised by: Josef Pieprzyk, Huaxiong Wang

kmatus@ics.mq.edu.au

Centre For Advanced Computing, Algorithms and Cryptography,
Department of Computing,
Macquarie University

Properties of cryptographic hash functions

hash function: $\quad H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
Preimage resistant : Given an output Y of the hash function it is difficult to find any preimage - an input X such that $h(X)=Y$.

Second preimage resistant: Given a fixed input X to the hash function and the corresponding output $h(X)$ it is difficult to find a second preimage - another input $X^{\prime}, X^{\prime} \neq$ X such that $h(X)=h\left(X^{\prime}\right)$.

Collision resistant : It is hard to find any pair of distinct messages $\left(X, X^{\prime}\right), X \neq X^{\prime}$ such that $h(X)=h\left(X^{\prime}\right)$.

Applications

- digital signatures

- password-based user identification
gdm: ! !:13245:0:99999:7::
kmatus: \$1\$5IwJJ/.0\$9Em5P./CiGE48TVO2QWbz/:13245:0:99999:7: : : bogo:\$1\$MPW3Z.Au\$SJ1ZINZUA1qBa8nkUF6Ki. :13245:0:99999:7: : :
- data integrity

The CD ISO image names are listed below. After downloading, you can verify the file against the file is not corrupted. A full installation will require all of the discs for the desired architecture.

- For x86-compatible (32-bit):

FC5-i386-disc1.iso (sha1sum: 43546c0e0d1fc64b6b80fe1fa99fb6509af5c0a0)
FC5-i386-disc2.iso (sha1sum: a85ed1ca5b63e2803f29a33ea6a6bc8eb7f63122)

- many others...

Attacks on dedicated cryptographic hash functions

Attack - showing how to find two colliding messages

SHA-256

$$
\Sigma_{0}(A)=A^{\ll 2} \oplus A^{\lll 13} \oplus A^{\ll 22} \quad \Sigma_{1}(E)=E^{\ll 6} \oplus E^{\lll 11} \oplus E^{\ll 25}
$$

$$
M A J(A, B, C)=(A \wedge B) \oplus(B \wedge C) \oplus(A \wedge C)
$$

$$
I F(E, F, G)=(E \wedge F) \oplus(\neg E \wedge G)
$$

SHA-256-XOR

If the function were linear, it would be trivial to find collisions.

Linear approximations of Boolean functions

$$
\Delta x=x \oplus x^{\prime}, \ldots, \quad \Delta \mathrm{IF}=\operatorname{IF}(x, y, z) \oplus \operatorname{IF}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

Δx	Δy	Δz	$\Delta \mathrm{IF}$	$\Delta \mathrm{MAJ}$	$\Delta \mathrm{IF}=\Delta y$
0	0	0	0	0	-
0	0	1	$x \oplus 1$	$x \oplus y$	$x=1$
0	1	0	x	$x \oplus z$	$x=1$
0	1	1	1	$y \oplus z \oplus 1$	-
1	0	0	$y \oplus z$	$y \oplus z$	$y+z=0$
1	0	1	$x \oplus y \oplus z$	$x \oplus z \oplus 1$	$x \oplus y \oplus z=0$
1	1	0	$x \oplus y \oplus z \oplus 1$	$x \oplus y \oplus 1$	$x \oplus y \oplus z=0$
1	1	1	$y \oplus z \oplus 1$	1	$y+z=0$

The outline of the attack

- choose linear approximations of MAJ and IF and construct a \mathbb{F}_{2}-linear model of SHA-256-XOR,
- find a suitable collision-producing difference for the linearized SHA-256-XOR,
- derive a set of conditions under which the real SHA-256-XOR behaves like the linear model with respect to difference propagation
- find a message for which all the conditions (approximating equations) are satisfied.

The outline of the attack : step 1

- choose linear approximations of MAJ and IF and construct a \mathbb{F}_{2}-linear model of SHA-256-XOR,

There are better and worse approximations - which are the best ones?

The choice influences

* the density of differentials,
* the probability that the system of approximating conditions is consistent

The outline of the attack : step 2

- find a suitable collision-producing difference for the linearized SHA-256-XOR,

Once the hash function is linearised it can be seen as a function

$$
S X L: \mathbb{F}_{2}^{256} \times \mathbb{F}_{2}^{512} \rightarrow \mathbb{F}_{2}^{256}
$$

linear over \mathbb{F}_{2}. Now, every bit string $\left(\Delta_{I V}, \Delta_{M}\right) \in \mathbb{F}_{2}^{256} \times \mathbb{F}_{2}^{512}$ such that

$$
S X L\left(\Delta_{I V}, \Delta_{M}\right)=0
$$

is a pseudo-collision-producing difference for the linearised version.

The outline of the attack : step 2

- find a suitable collision-producing difference for the linearized SHA-256-XOR,

Out of all possible differentials $\left(\Delta_{I V}, \Delta_{M}\right) \in \operatorname{Ker}(S X L)$ we want to choose those that generate the smallest amount of differences in registers.

- Each register is a linear function of $\left(\Delta_{I V}, \Delta_{M}\right)$
- The state of all registers can be represented as a matrix with rows

$$
\left[A_{0}\left|E_{0}\right| A_{1}\left|E_{1}\right| \ldots\left|A_{n}\right| E_{n}\right]
$$

- look for combinations of rows with small weights - finding low weight codewords in linear codes

The outline of the attack : step 3

- derive a set of conditions under which the real SHA-256-XOR behaves like the linear model with respect to difference propagation

For each non-zero input difference to a Boolean function we have one equation on the values of inputs to that function.

Collect them all and reduce. Hopefully, the system is consistent.

$$
\begin{aligned}
A_{3,2} & =A_{2,2} \\
A_{3,2} & =A_{2,2} \\
E_{3,2} & =E_{2,3}+E_{1,2} \\
E_{3,20} & =1 \\
A_{3,20} & =A_{2,20}
\end{aligned}
$$

$$
\begin{aligned}
& E_{3,21}=1 \\
& A_{3,22}=A_{2,22} \\
& E_{3,22}=E_{2,23}+E_{1,22} \\
& A_{3,23}=A_{1,23}+1 \\
& E_{3,23}=E_{2,23}
\end{aligned}
$$

The outline of the attack : step 4

- find a message for which all the conditions (approximating equations) are satisfied.

Adjust the values of registers A and E by flipping some bits of the message.

$$
\begin{aligned}
\Delta A_{i, b} & =\Delta T 1_{i, b} \oplus \Delta T 2_{i, b} \\
\Delta E_{i, b} & =\Delta A_{i-4, b} \oplus \Delta T 2_{i, b}
\end{aligned}
$$

$$
\begin{aligned}
T 1_{i, b}= & \mathcal{L}_{M A J}\left(\Delta A_{i-1, b}, \Delta A_{i-2, b}, \Delta A_{i-3, b}\right) \oplus \\
& \Delta A_{i-1,(b+2) \bmod 32} \oplus \Delta A_{i-1,(b+13) \bmod 32} \oplus \Delta A_{i-1,(b+22) \bmod 32} \\
T 2_{i, b}= & \mathcal{L}_{I F}\left(\Delta E_{i-1, b}, \Delta E_{i-2, b}, \Delta E_{i-3, b}\right) \oplus \\
& \Delta E_{i-1,(b+6) \bmod 32} \oplus \Delta E_{i-1,(b+11) \bmod 32} \oplus \Delta E_{i-1,(b+25) \bmod 32} \oplus \\
& \Delta E_{i-4, b} \oplus \Delta W_{i-1, b}
\end{aligned}
$$

Example

step	A	E	
0	00000000	00000000	
1	25008048	25008048	$N=18$ steps
2	00813 d2a	$098115 a 8$	
3	08008400	$4084 e 709$	IF $\approx z$, MAJ $\approx y$.
4	00000000	$20915 c 0 e$	
5	08000000	25000448	total weight of the differential: 312
6	00000000	02817 d0a	
7	00000000	00008400	
8	00000000	00000000	number of equations: 172
9	00000000	08000000	
10	00000000	00000000	
11	00000000	00000000	
12	00000000	00000000	
13	00000000	00000000	
14	00000000	00000000	
15	00000000	00000000	
16	00000000	00000000	
17	00000000	00000000	

Discussion

Strengths:

- the idea works for all similarly designed hash functions
- nice mathematical model

Problems:

- Finding good differentials is hard
- for SHA-256-XOR we can attack variants with with 20-22 steps
- Any better algoritms for finding messages satisfying conditions?

Related work:
F.Mendel, N.Pramstaller, C.Rechberger, and V.Rijmen, Analysis of Step-Reduced SHA-256, Proc. FSE’2006, Gratz, Austria

