
Cryptanalysis of FORK-256 and some comments

on the state of hash functions research

Krystian Matusiewicz
kmatus@ics.mq.edu.au

Centre for Advanced Computing Algorithms and Cryptography,
Department of Computing, Macquarie University

IM PAN, 20 April 2007

Talk overview

Part I: Cryptanalysis of FORK-256

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements

Part II: Some comments on the current hash functions research

◮ Current situation in the world of hash functions

◮ NIST call for new hash functions

◮ Do we know what we want?

◮ How to deal with the situation?

PART I: Cryptanalysis of FORK-256

Joint work with Thomas Peyrin1, Olivier Billet1, Scott Contini2

and Josef Pieprzyk2.

1Network and Services Security Lab,
France Telecom Research and Development

2Centre for Advanced Computing Algorithms and Cryptography,

Department of Computing, Macquarie University

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements

Structure of FORK-256 :: four parallel branches

cvℓ

cvℓ+1

Mℓ

σ1 σ2 σ3 σ4B1 B2 B3 B4

◮ 256 bits of chaining variable cv

◮ 512 bits of message M

◮ each branch B1, B2, B3, B4 consists of 8 steps

◮ each branch uses a different permutation (σ1, σ2, σ3, σ4) of
message words M0, . . . ,M15

Structure of FORK-256 :: step transformation

g

f

≪ 9

≪ 21

≪ 5

≪ 17

δ
π

j (2
k
−

2
)

Aj,k−1 Bj,k−1 Cj,k−1 Dj,k−1

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2
k
−

1
)

Ej,k−1 Fj,k−1 Gj,k−1 Hj,k−1

Mσj (2k−2) Mσj (2k−1)

QL QR

Aj,k Bj,k Cj,k Dj,k Ej,k Fj,k Gj,k Hj,k

◮ there are 8 steps in each branch

◮ step transformation – composition of 3 simple operations
◮ addition of two different message words
◮ two parallel Q-structures
◮ rotation of registers

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements

What is a “micro-collision”?

g

f

≪ 9

≪ 21

≪ 5

≪ 17δπj(2k)

A B C D

A B C D

QL

y

z

Micro-collision: a difference in register A does not propagate to the
selected register (B,C,D).
If it does not propagate to more than one other register we have
simultaneous micro-collisions.

g

f

δπj (2k)

A B

A B

y

z

Let us denote

y = f (x), y ′ = f (x ′) z = g(x ⊞ δ), z ′ = g(x ′
⊞ δ).

We have a micro-collision in the first line if the equation

(y ⊞ B) ⊕ z = (y ′
⊞ B)⊕ z ′ (1)

is satisfied for given y , y ′, z , z ′ and some constant B .

Our aim is to find the set of all constants B for which (1) is
satisfied.

Three representations of a difference

◮ usual XOR difference:

∆⊕(z , z ′) = (z0 ⊕ z ′0, . . . , z31 ⊕ z ′31) ∈ {0, 1}32

◮ integer difference:

∂y = y ′ − y ∈ {−232 + 1, . . . , 232 − 1}

◮ singed binary difference:

∆±(y , y ′) = (y0 − y ′
0, . . . , y31 − y ′

31) ∈ {−1, 0, 1}32 ,

Two useful relationships between different representations

◮ If ∆±(y , y ′) = (r0, r1, . . . , r31) is a signed binary difference,
then the corresponding XOR difference is (|r0|, |r1|, . . . , |r31|).

◮ Having a signed binary difference we can easily recover the
(unique) corresponding integer difference:

∂y =

31∑

i=0

2i · ∆±(y , y ′)i .

Finding micro-collisions

◮ We can rewrite (y ⊞ B)⊕ z = (y ′ ⊞ B) ⊕ z ′ as
(y ⊞ B) ⊕ (y ′ ⊞ B) = z ⊕ z ′

◮ This means that the signed difference ∆±(y ⊞ B , y ′ ⊞ B) has
to have non-zero digits in those places where ∆⊕(z , z ′) has
ones.

◮ There are 2hw (∆⊕(z ,z ′)) such signed differences that “fit” into
the XOR difference.

◮ They correspond to 2hw (∆⊕(z ,z ′)) integer differences that may
yield a micro-collision

◮ Integer difference is not changed by adding the constant B !

Finding micro-collisions

y + B = x100x11xx11xx0x11x1xx0xxxxxxxxxx

B

∆± = .+++-.+-+.+..+-.+.-..+..........

∆⊕ = 1111.11..11..1.11.1..1..........

∆± = +-++.--..--..+.--.-..+..........

y y ′

z ′z

the same integer difference ∂y

XOR difference → 2hw signed binary diffs → 2hw integer diffs → one of

them must be ∂y = y − y ′

Finding micro-collisions: Necessary condition

To test whether the quadruple (y , y ′, z , z ′) may yield a
micro-collision we have to check whether there exist a signed
binary representation corresponding to ∂y = y − y ′ that “fits” into
XOR difference ∆⊕(z , z ′).

This problem can be reduced to an easy (superincreasing)
knapsack problem:

Having a set of positions I = {k0, k1, . . . , km}
(determined by non-zero bits of ∆⊕(z , z ′)), decide
whether it is possible to find a binary signed
representation r = (r0, . . . , r31) corresponding to ∂y s.t.:

∂y =

m∑

i=0

2ki · rki
where rki

∈ {−1, 1} .

This test can be implemented very efficiently!

int micro_possible(WRD y1, WRD y2 , WRD dz) {

WRD tmp , delta_y , sum;

if (y2 > y1) {

tmp = y2; y2 = y1; y1 = tmp;

}

delta_y = y1 - y2;

sum = delta_y;

sum += dz;

if (sum < delta_y) {

if ((dz > >31)==0)

return 0;

}

dz <<= 1;

return ((dz|sum) == dz);

}

Finding micro-collisions: Also a sufficient condition

In fact we can prove that this condition is also sufficient: if we can
find such a representation, we can always find constants B that
make the difference “fit” into the prescribed XOR pattern.

Moreover, the analysis shows that the size of the set of good
constants B is equal to

232−hw (z⊕z ′)+1 ,

with the grey one added if the MSB of ∆⊕(z , z ′) is one.

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements

Simple differential path using micro-collisions

3

126 3 9 13

14 12 1 4

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

4 5

7

8 9

10 11

12 13

15

15

11 9

8 10

4

2 13

0 5

6 7

1

7 6

10 14

13 2

11 4

15 8

5 0

3

5 12

1 8

15 0

11

10

9 2

7 14

6

By introducing dif-
ferences in B0 and
finding simultane-
ous microcollisions
in four Q-structures
in step 4 we ob-
tain a differential
restricted to 4
registers.

Simple path: complexity analysis

◮ Once we pass through step 4, we can generate 232 pairs,

◮ To pass step 4 we have to make a few simple checks for 232

values, altogether equivalent to 232/4 of FORK evaluations,
we succeed with probability P6

d , where Pd depends on the
difference, for d = 0x00000404 we have Pd ≈ 2−3.

◮ the average cost of a single solution ≈ 1/4 · P−6
d ≈ 216.

◮ an example of a pair with output difference of weight 22:

cvn 8406e290 5988c6af 76a1d478 0eb60cea f5c5d865 458b2dd1 528590bf c3bf98a1

cv′n 8406e290 5988cab3 76a1d478 0eb60cea f5c5d865 458b2dd1 528590bf c3bf98a1

M
396eedd8 0e8c2a93 b961f8a4 f0a06fc6 9935952b e01d16c9 ddc60aa4 0ac1d8df

c6fef1d8 4c472ca6 58d9322d 2d087b65 7c8e1a26 71ba5da1 ba5d2bfc 1988f929

cvn+1 9897c70a 4e18862d b4725ac1 cfc9f92c 9aa0637d ae772570 74dd4af1 cd444dd7

cv′n+1 9897c70a 4e1880f9 1e677302 4c650966 f4792bf4 ae772570 74dd4af1 cd444dd7

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements

Finding high-level paths: idea and model

Let’s be optimistic:

◮ Assume that we can always avoid mixing
introduced by Q-structures (finding
micro-collisions is always easy).

◮ Assume that any two differences cancel each
other (i.e. we don’t need to worry about many
different values, either there is a difference or not
and any two differences added together
disappear).

So now we are in F2...

◮ The model is F2-linear function Lout that maps
input differences in M and cvn to output diffs.

◮ We can find the kernel of this map to get the set
of all input differences that vanish at the output.

A B C D E F G H

0 1

2 3

4 5

6 7

8 9

Finding high-level paths: example

Example

Input differences
S = (A,B ,C ,D,E ,F ,G ,H,M0, . . . ,M9).
For
S = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1) we
have Lout(S) = (0, 0, 0, 0, 0, 0, 0, 0).

A B C D E F G H

0 1

2 3

4 5

6 7

8 9

Finding high-level paths: going back to reality

The more micro-collisions we have to find and the
longer the path the smaller probability that differ-
ences in the original function will follow the path.

◮ We look for paths with as few
micro-collisions as possible (a few differences
in registers A and E)

◮ Generally, the shorter path the better.

◮ Let’s look at the registers A and E and pick
those input differences S that yield only a
few non-zero differences in A and E .

◮ Optimal paths – minimum weight words in a
linear code.

A B C D E F G H

0 1

2 3

4 5

6 7

8 9

Finding high-level paths: more general model

So far we assumed that differences in A (or E) do not propagate to
any other registers in the Q-structure. We can relax this condition.

(qB , qC , qD) = (0, 0, 0) (qB , qC , qD) = (1, 0, 1)

∆A ∆B ∆C ∆D ∆A ∆B ∆C ∆D

∆Ai+1 = ∆Ai ,

∆Bi+1 = ∆Bi + qB · ∆Ai ,

∆Ci+1 = ∆Ci + qC · ∆Ai ,

∆Di+1 = ∆Di + qD · ∆Ai .

For each Q-structure we have 23 possible configurations. This
gives 23+64 different models for FORK-256 – more freedom to look
for short differential paths.

Example of a path: Collisions for all branches

Differences in M12. Configuration of Q-structures: 13:000, 31:001,

40:000, 47:100, 50:000, 57:000

Branch 1 Branch 2 Branch 3 Branch 4

13

31

40

47

50

57

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function
◮ The differential path
◮ Complexity analysis

◮ Some improvements

◮ Conclusions

Collisions: The differential path

9

4

9

4

9

4

4

3

1

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

5

6 7

8

10 11

12 13

14 15

15

11 9

8 10

3

2 13

0 5

6 7

12 1

7 6

10 14

13 2

12

11

15 8

5 0

3

5 12

1 8

15 0

13 11

10

2

7 14

6

d = 0xdd080000 or d = 0x22f80000

◮Using a modified
path we need micro-
colls in only 3 1

3 Q-
structures.
◮Get 3 micro-
collisions in branches
3 and 4 first.
◮Using different val-
ues of M4 and M9

compute branch 1 and
hope there is a single
micro-collision in Br.
1 step 7.

◮Using d with only 13

MSB set only 108 bits

are affected.

Collisions: the principle of the attack

◮ Get three micro-collisions in branches 3 and 4.
This leaves two message words M4 and M9 free, the rest is fixed

◮ Using different values of M4 and M9 compute branch 1 and
hope that there is a single micro-collision in strand D in step
7.

◮ If a micro-collision there is found, compute the rest of the
function and check the output difference.
Note that the output differences have weights always ≤ 108

Collisions: complexity of getting close hashes

1. Compute internal registers up to 7th step. Then,
for each allowable value x , set A1,6 = x − M12,
get the corresponding H1,5 and store the result
into a hash table T .

2. For each value of M9 compute the corresponding
value of H1,5 and look for a match in T . If there
is a match, go to point 3. When all M9 are
exhausted, increment M4 and go to point 1.

3. Check. If current value of M9 leads to a single
micro-collision in the thread D1,6 → E1,7 then
return (M4, M9), else continue point 2.

Point 1: η/64 = 215.7 FORK evaluations.
Point 2: 232/64 = 226 FORK evaluations.
Since point 3 succeeds with probability 2−24.6

we get 27.4 solutions for a work effort of 226. Per
single solution: about 218.6 FORK evaluations.

12

10

4

9

5

6 7

8

11

13

H1,5

step 3

step 4

step 5

step 6

step 7

allowable values

Collisions: the complexity of getting full collisions

◮ Complexity of finding a single solution: 218.6.

◮ Now, if the distribution of outputs is close to uniform, we
expect to find a collision after testing 2108 pairs.

Complexity of finding a collision: 2108 · 218.6 = 2126.6.

◮ faster than by birthday paradox
◮ using only small memory (hash table + stored

allowable values: 223 32-bit words in total)
◮ trivially parallelizable
◮ practical for obtaining near-collisions

Example of a near-collision for the compression function with weight 28
IV 6a09e667 db1bb914 3c6ef372 a54ff53a 510e527f 767b0824 66410f7d 90f7ce64

M
85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 1dcb6936 ec995db1 d2ad257b 730f5bb4

M′
85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 40c36936 ec995db1 d2ad257b 730f5bb4

diff 00000000 8c300000 1d010204 52520104 c0908122 00000000 00000000 00000000

◮ Short description of FORK-256

◮ Micro-collisions in the step transformation

◮ Simple differential path for the compression function

◮ General method of finding differential paths

◮ Collisions for the compression function

◮ Some improvements
◮ Improving efficiency using large memory
◮ Achieving collisions for the hash function

Collisions: improving efficiency using large tables

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2
k
−

2
)

E F G H

E ∗ F ∗ G ∗ H∗

QL

Problem: To what extent can we influence the values of E ∗, F ∗,
G ∗, H∗ changing only E ?

◮ We can set E ∗ to any value (bijective map),

◮ For any given pair (G ,w) we can very often find such E that
G ∗ = w .

◮ We can precompute a look-up table T that for any pair
(G ,G ∗) returns the necessary value of E , T (G ,G ∗) = E .

Collisions: improving efficiency using large tables

◮ We can use such look-up tables to significantly reduce the
time spent in branch 1

◮ Theoretical complexity of finding a single solution: 21.6.

Complexity of finding a collision: 2108 · 21.6 = 2109.6.

◮ we improved the speed by the factor of 217,
◮ but we assume we can use huge, fast memory,
◮ we use around 512 tables (family parametrized

by a), each one of size 264 32-bit words, i.e. 273

words of memory in total

Collisions for the full hash function: principle

◮ We can avoid using B0 in branch 3 either by using look-up
tables or by a smarter scheduling in branch 3 we have to have
only three IV words (F0, G0, H0) set to one of the good
constants to allow for micro-collisions in step 1 of branch 4.

◮ Probability that a random IV has all three values (F0, G0, H0)
acceptable to the algorithm is bigger than 2−3·32, in fact
around 2−65 for differences 0xdd080000 and 0x22f80000.

◮ At the cost of 265 FORK evaluations we can find a prefix
message block that after the first application of the
compression function yields IV suitable for the main part of
the attack.

Collisions for the full hash function: example

◮ For other modular differences this probability is much bigger.

◮ Using “easier” modular difference we’ve got near-collisions for
the full hash function with Hamming weight 42.
However, this modular difference is not as effective when it
comes to solving branch 1.

Example of a near-collision for the full hash function with weight 42

M
2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928
79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 4e84d457 5a6c49b6 ad1d9711 0f69afa2

M′
2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928
79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 8df0c460 5a6c49b6 ad1d9711 0f69afa2

diff 00000000 83480012 32b4070c 681a1279 648600ad 00000000 00000000 00000000

Summary

We exploited a particular weakness of the step transformation of
FORK-256 to cryptanalyse the function. We showed

◮ how to find micro-collisions efficiently,

◮ how to look for high-level differential paths,

◮ how to combine those two steps to produce near-collisions
efficiently and evaluated the complexity of getting collisions at
2126.6 using small amount of memory

◮ that using large memory we can find collisions in 2109.6,

◮ how to extend the attack to the full hash function (with
predefined IV),

◮ that using truncated versions of FORK is extremely risky.

You can download our program that finds near-collisions from:

http://www.ics.mq.edu.au/∼kmatus/FORK

Part II: Some comments on the current state of hash functions
research

◮ Current situation in the world of hash functions

◮ NIST call for new hash functions

◮ Do we know what we want?

◮ How to deal with the situation?

Current situation in the world of hash functions

◮ MD5 really should not be used for applications requiring
collision resistance

◮ Colliding certificates with identical MD5 hashes [Stevens,
Lenstra, de Weger; EUROCRYPT’07]

◮ Practical attacks on APOP protocol exploiting MD5 collisions
[Sasaki, et al., Leurent; FSE’07]

◮ closer and closer to actual SHA-1 collisions
◮ automatic path-finding [De Cannière, Rechberger;

ASIACRYPT’06]
◮ colliding pairs for 70 steps of SHA-1 [De Cannière, Mendel,

Rechberger; Rump session FSE’07]

◮ SHA-256 seems to be OK so far
◮ best attacks can break ≈ 20 rounds out of 64 [FSE’06]
◮ but trust in such designs is undermined

NIST competition for new hash functions : 2007

2007 2008 2009 2010 2011 2012

1Q Publish the preliminary minimum acceptability requirements,
submission requirements, and evaluation criteria for public
comments. Present the draft minimum acceptability
requirements, submission requirements, and evaluation criteria
for candidate hash functions at the RSA Conference and at
FSE 2007.

4/27/07 Public comment period ends.

2Q Resolve comments.

3Q Finalize and publish the minimum acceptability requirements,
submission requirements, and evaluation criteria for candidate
hash functions. Request submissions for new hash functions.

NIST competition for new hash functions : 2008

2007 2008 2009 2010 2011 2012

3Q Submission deadline for new hash functions.

4Q Review submitted functions, and select candidates that meet
basic submission requirements.
Host the First Hash Function Candidate Conference to
announce first round candidates. Submitters present their
functions at the workshop. Call for public comments on the
first round candidates.

NIST competition for new hash functions : 2009

2007 2008 2009 2010 2011 2012

4Q Public comment period ends. Note: Depending on the
number and quality of the submissions, NIST may either
extend the length of the initial public comment period to
allow sufficient time for the public analysis of the candidate
algorithms, or may include additional rounds of analysis in
order to successively reduce the number of candidate
algorithms for further consideration as finalist algorithms.

4Q Hold the Second Hash Function Candidate Conference .
Discuss the analysis results on the submitted candidates.
Submitters may identify possible improvements for their
algorithms

NIST competition for new hash functions : 2010

2007 2008 2009 2010 2011 2012

1Q Address the public comments on the submitted candidates;
select the finalists. Prepare a report to explain the selection.
Announce the finalists . Publish the selection report.

2Q Submitters of the finalist candidates announce any tweaks to
their submissions. Final round begins.

NIST competition for new hash functions : 2011

2007 2008 2009 2010 2011 2012

2Q Public comment period for the final round ends.

3Q Host the Final Hash Function Candidate Conference .
Submitters of the finalist algorithms discuss the comments on
their submissions.

4Q Address public comments, and select the winner. Prepare a
report to describe the final selection(s).

Announce the new hash function(s) .

Proposed Draft Minimum Acceptability Requirements for

Candidate Algorithms

A.1 The algorithm must be publicly disclosed and available on a
worldwide, non-exclusive, royalty-free basis.

A.2 The algorithm must be implementable in a wide range of
hardware and software platforms.

A.3 The algorithm must support 224, 256, 384, and 512-bit
message digests, and must support a maximum message
length of at least 264 bits

Proposed Draft Evaluation Criteria of Candidate

Algorithms

◮ Security,

◮ Computational efficiency,

◮ Memory requirements,

◮ Hardware and software suitability,

◮ Simplicity,

◮ Flexibility, and

◮ Licensing requirements.

Evaluation Criteria : C.1 Security

◮ The actual security provided by the algorithm as compared to
other submitted algorithms (of the same hash length),
including (but not limited to) first and second preimage
resistance, collision resistance, and resistance to generic
attacks (e.g., length extension).

◮ The extent to which the algorithm output is indistinguishable
from a random oracle.

◮ The soundness of the mathematical basis for the algorithms
security.

◮ Other security factors raised by the public during the
evaluation process ...

Do we really know what we want?

Typical definition:

Collision resistance – it must be computationally
infeasible to find x1 6= x2 such that h(x1) = h(x2).

In theory: we define it in complexity theory model using infinite
families of functions [Damg̊ard, EUROCRYPT’87] or concrete
security setting using finite families and advantage of adversary in
computational games [Rogaway, Shrimpton, FSE’04]

In practice: we usually have only a single fixed instance of the
function and the only security notion we can speak of is “human
ignorance” model [Rogaway, VIETCRYPT’06]

There is a serious gap between theory and practice

Do we really know what we want?

Federal register specs. C.1. :

The extent to which the algorithm output is
indistinguishable from a random oracle.

But what does it mean? Any fixed function is trivially
distinguishable from a random oracle...

Intuitively, the output should “look random”, but more precise
definition is necessary.

How to deal with the situation : a suggestion

◮ Look at the applications and extract precise security
requirements (there will be more than 3!)

◮ password hashing
◮ commitments
◮ deterministic message hashing for signatures
◮ randomized message hashing for signatures
◮ HMAC
◮ FIPS-186 PRG
◮ ...

◮ Express those security requirements in a formal (but realistic)
way (concrete security setting seem to be suitable)

◮ Design appropriate function families that satisfy required
properties

◮ Looks like the approach “one hash to fit them all” is unrealistic
◮ Some protocols may need to be fixed

How to deal with the situation : discussion

Advantages:

◮ bridging the gap between theory and practice

◮ sound security notions in practice

◮ not relying on “human ignorance” only – we may prove
security reductions

Problems:

◮ no single, simple solution “SHA replacement”

◮ in some situations more complex designs (keyed families)

◮ some protocols may need modification - high cost,
compatibility issues

If we want to change our approach, this is the right time!

Thank you!

Additional slides
[just in case of questions about details]

Functions f and g

f (x) = x ⊞ (x≪7 ⊕ x≪22) ,

g(x) = x ⊕ (x≪13
⊞ x≪27)

Results of the search

Scenario Branches m Differences in active Q-structures

Pseudo-collisions 1,2,3,4 5 H0, M2, M11 12:000, 25:000, 35:001,
41:001, 51:010

Collisions 1,2,3,4 6 M12 13:000, 31:001, 40:000,
47:100, 50:000, 57:000

Pseudo-collisions 1,2,3 2 B0, M12 8:100, 24:000

1,2,4 3 H0, M11 3:000, 51:010, 60:000

1,3,4 3 H0, M2 35:001, 44:000, 51:000

2,3,4 3 D0, M9 36:010, 43:000, 52:000

Collisions 1,2,3 3 M0, M3, M9 1:001, 20:010, 39:100

1,2,4 4 M1, M2 2:001, 9:000, 25:100, 51:000

1,3,4 5 M9 10:000, 39:001, 42:001
43:010, 59:000

2,3,4 5 M3, M9 20:010, 27:000, 39:000
57:000, 59:010

Legend: 47:100 means that the 47-th Q-structure is modelled with

coefficients (qB , qC , qD) = (1, 0, 0).

Collisions: improving efficiency using large tables

We can use such precomputed tables to speed up the algorithm.

◮ In branch 3 we can use one to control the
thread C3,1 → D3,2 through M10

◮ In branch 1 we use a family of such tables
Ta for some (best) allowable values a. For
a fixed a, Ta(G1,4,M11 + E1,5) returns the
value of M9 that gives us A1,6 = a − M12

◮ For that allowable value a we get a
micro-collision with probability 2−8 ∼ 2−9.
So after 512 lookups we expect to get a
micro-collision.

◮ If 1 look-up = 1 op (e.g. ADD) then this
takes 1/2 FORK and we have ≈ 3/2 FORK

per single solution.

12

10

4

9

5

6 7

8

11

13

step 3

step 4

step 5

step 6

step 7

allowable values a

G1,4

A1,6

E1,5 + M11

	Overview
	Description of FORK-256
	Micro-collisions in the step transformation
	Simple differential path
	General method of path-finding
	Collisions for the compression function
	Summary

