
Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Extending FORK-256 Attack to the Full Hash
Function

Scott Contini Krystian Matusiewicz Josef Pieprzyk

Centre for Advanced Computing Algorithms and Cryptography,
Department of Computing, Macquarie University

ICICS 2007, 12 December 2007

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Introduction

• FORK-256 is a dedicated cryptographic hash function
designed by Hong et al. and presented during second
NIST hash workshop and FSE 2006.

• Heuristic design, but with some unorthodox design
choices.

• Meant as a possible replacement for SHA-256 (compatible
interface, better speed).

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

History of cryptanalysis of FORK-256

Received considerable cryptanalytic attention since it was
proposed in 2006.

• Matusiewicz, Contini, Pieprzyk – IACR ePrint 2006/317
cryptanalysis of reduced variants

• Mendel, Lano, Preneel – CT-RSA 2007
cryptanalysis of reduced variants

• Matusiewicz, Peyrin, Billet, Contini, Pieprzyk – FSE 2007
cryptanalysis of the full compression function

Our current contribution: Extending the attack to the full hash
function (actually, with any predefined IV).

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

FORK-256

cvℓ

cvℓ+1

Mℓ

σ1 σ2 σ3 σ4B1 B2 B3 B4

• 256 bits of chaining variable cv

• 512 bits of message M

• each branch uses a different permutation (σ1, σ2, σ3, σ4) of
message words M0, . . . , M15

• each branch B1, B2, B3, B4 consists of 8 steps

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Structure of FORK-256 : step transformation

g

f

≪ 9

≪ 21

≪ 5

≪ 17

δ
π

j (2k
−

2
)

Aj,k−1 Bj,k−1 Cj,k−1 Dj,k−1

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2k
−

1
)

Ej,k−1 Fj,k−1 Gj,k−1 Hj,k−1

Mσj (2k−2) Mσj (2k−1)

QL QR

Aj,k Bj,k Cj,k Dj,k Ej,k Fj,k Gj,k Hj,k

• there are 8 steps in each branch
• step transformation – composition of 3 simple operations

• addition of two different message words
• two parallel Q-structures
• rotation of registers

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Functions f and g

f (x) = x +
(

x≪7 ⊕ x≪22
)

g(x) = x ⊕
(

x≪13 + x≪27
)

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Micro-collisions in the step transformation

g

f

≪ 9

≪ 21

≪ 5

≪ 17δπj(2k)

A B C D

A B C D

QL

y

z

Micro-collision: a difference in register A does not propagate to
the selected register (B,C,D).
If it does not propagate to more than one other register we have
simultaneous micro-collisions.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Micro-collisions

g

f

≪ 9
≪ 21

≪ 5
≪ 17δπj (2k)

A B C D

A B C D

QL

y

z

• Let us fix a modular difference d . Having a value a of
register A and a′ = a + d , we can efficiently determine sets
Ba, Ca, Da of values of B, C, D such that simultaneous
micro-collisions appear in all three lines.

• If sets Ba, Ca, Da are non-empty, we call such a an
allowable value (meaning we can achieve micro-collisions
for that value of a)

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Using micro-collisions in a differential path

9

4

9

4

9

4

4

3

1

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

5

6 7

8

10 11

12 13

14 15

15

11 9

8 10

3

2 13

0 5

6 7

12 1

7 6

10 14

13 2

12

11

15 8

5 0

3

5 12

1 8

15 0

13 11

10

2

7 14

6

d = 0xdd080000 or d = 0x22f80000

We need
microcollisions in
only three and 1/3
Q-structures.

Only four output
registers are
influenced by the
differential.

Using a difference
with only 13 MSB
set we reduce this
to 108 bits.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Collisions: the principle of the attack

• Get three micro-collisions in branches 3 and 4.
This leaves two message words M4 and M9 free, the rest is fixed

• Using different values of M4 and M9 compute branch 1 and
hope that there is a single micro-collision in strand D in
step 7.

• If a micro-collision there is found, compute the rest of the
function and check the output difference.
Note that the output differences have weights always ≤ 108

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Obtaining micro-collisions in branches 3 and 4

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

12

To deal with branches 3 and 4
we have to:

1) Set values of

F (4)
0 , G(4)

0 , H(4)
0 .

2) Set values of

A(4)
4 , B(4)

4 , C(4)
4 , D(4)

4

3) Set values of

E (3)
3 , F (3)

3 , G(3)
3 , H(3)

3

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

A property of Q-structures

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2k
−

2
)

E F G H

E∗ F ∗ G∗ H∗

QL

• We can set E∗ to any value by adjusting the value of E

• We can set F ∗ to any value by adjusting the value of F
(true for G, H too).

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Passing branch 1

12

10

4

9

5

6 7

8

11

13

step 3

step 4

step 5

step 6

step 7

We use free words M4 and M9

to search for the values that
yield a single micro-collision in
step 7.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Why we are not happy?

Problem: During the attack, we have to adjust the value of B0.

• This value depends on other values of message words so
we cannot know it in advance or precompute it.

• We cannot use this method to obtain (near)collisions for
the full hash function that needs a predefined IV.

• We want to extend the attack to the full hash function.

• We want to avoid the need for modification of B0.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Better message adjustment strategy

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

12

• Solve branch 4 step 1

• Deal with whole branch 3: use
M13 to preserve the value of
E (3)

3

• Finish with branch 4

• In branch 4 leave a single
micro-collision in C(4)

5 to
chance

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New message adjustment: branch 4 step 1

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Find a value x1 that may lead
to simultaneous
microcollisions in QR in step 1
of branch 4

• Pick appropriate constants for
F0, G0, H0

• Set M12 to E0 − x1,
M ′

12 = M12 + d

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: branch 3 (1)

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Pick message words M7, M6,
M10, M14, M13, M2 randomly
and compute until step 4

• If E (3)
4 + M12 does not allow

for finding simultaneous
micro-collisions, start over.
[We need around 223 trials]

• When it does, keep that value
and later adjust values of F (3)

4 ,

G(3)
4 , H(3)

4

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: branch 3, adjusting F (3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: branch 3, adjusting G(3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: branch 3, adjusting H(3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: branch 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Pick M5, M1, M15 randomly.

• Pick M8, M0, M11 that
preserve the modular
difference.

• Compute up to step 4.

• Keep picking allowable values
of M3 and testing if there is no
difference in C(4)

5

• Once we find a good value of
M3, we can adjust constants
C(4)

4 and D(4)
4

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Passing step 5 in branch 4

pick M3
leading to an allowable

value

M3

M3 M3

try again

adjust constants C(4)
4 , D(4)

4

difference in C(4)
5 – bad

C(4)
4 D(4)

4B(4)
4A(4)

4

C(4)
4 D(4)

4B(4)
4A(4)

4

C(4)
4 D(4)

4B(4)
4A(4)

4

• We need around 219 trials like that

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

New strategy: complexity of getting close hashes

• Work effort of passing branches 3 and 4 for using the
difference 0x22f 80000:

< 224 · 219 · 2−3 = 240

FORK evaluations.

• The second phase of the attack (branches 1 and 2)
dominates with the complexity of 258.

• Conclusion: The new strategy for dealing with branches 3
and 4 does not affect the total complexity of the attack.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Fixing appropriate chaining values F0, G0, H0

• We removed the need for the fourth initial chaining value to
be used.

• The three values F0, G0, H0 have to be set to one of
possible constants required by simultaneous
micro-collisions in step 1 of branch 4.

• If we require three particular values, we can achieve this in
296 FORK evaluations by hashing a random prepended
message block

• In fact we can do much better: any of the set of good
constants for each register will do.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Estimating the probability of getting good constants

• Let Fa, Ga, Ha denote sets of constants that yield a
micro-collision in line F, G, H for an allowable value a.

• Probability that a random IV value will match one of those
values for each register F , G, H is

P = 1 −
∏

a∈A

(

1 −
|Fa| · |Ga| · |Ha|

296

)

• For original differences d = 0xdd080000 and
d = 0x22f80000 it is equal to P = 2−64.8,

• for other differences it may be much bigger, e.g. for
d = 0x3f6bf009 we have P = 2−21.7.

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Example of a near-collision

Example of a near-collision of weight 42 for the complete hash
function FORK-256. The first block is used to obtain the desired
values of chaining registers that enable the attack on the
compression function.

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M
2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 4e84d457 5a6c49b6 ad1d9711 0f69afa2

2d4458a4 57976f57 3e44cfd9 1ab54cb2 7ec11870 173f6573 6141c261 7db20d3e

M′
2feeb74d 5fac87a6 61a73fa1 3454b23d 451d389b 78f061ec 7c32fb06 57ef1928

79dcd071 39dc97f0 3a1bff42 031d364c fef000e6 40873ef5 d0741256 649430cf
97ef5538 3eab6a7e b4f9cf72 9eba8257 8df0c460 5a6c49b6 ad1d9711 0f69afa2

diff 00000000 83480012 32b4070c 681a1279 648600ad 00000000 00000000 00000000

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Conclusions

Presented an improved attack on FORK-256.

• finds collisions for any value of IV

• breaks the full hash function

• practical for finding near-collisions

Introduction FORK-256 Compression function collisions Improving the attack Conclusions

Thank you!

	Introduction
	FORK-256
	Compression function collisions
	Improving the attack
	Conclusions

