
Introduction to cryptographic hash functions

Krystian Matusiewicz

Centre for Advanced Computing Algorithms and Cryptography,
Department of Computing, Macquarie University

NTU Seminar, 5 October 2007

Outline

1 Basics

2 Security requirements

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

Outline

1 Basics
Ordinary hash functions
Cryptographic hash functions
Examples of applications

2 Security requirements

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

Hash functions

Definition

A hash function is a function that maps strings of arbitrary
length to strings of fixed length, i.e. any function

h : {0, 1}∗ → {0, 1}n

for some fixed n called the hash length.

Example

A modulo operator can be seen as a simple example of a hash
function. For any bitstring M we can see it as a number and
compute h(M) = M mod q.

Hash functions : popular uses

Hash functions (ordinary) are ubiquitous tools of computer
science and engineering.

hash tables

pattern matching

checksum algorithms

In all those applications the essential property is that the hash
value is a short “tag” or “fingerprint” of possibly long data.

h(M1) 6= h(M2)
always
−→ M1 6= M2

h(M1) = h(M2)
with high Prob.
−→ M1 = M2

Collisions

Definition

A collision for the hash function h is a pair of different
messages M, M ′ that have the same hash value h(M) = h(M ′).

Since the domain is bigger than the range, collisions
necessarily exist.

Quite often we don’t care as long as the probability of a
collision is low.

However, low probability of a collision for random inputs
does not mean they cannot be found easily.

Constructing collisions for mod operator

Example

For a modulo operator mod q, the probability that a random
pair of numbers will yield the same value is 1/q. But we can
easily construct different messages which collide.

x , x + q, x + 2q, x + 3q, . . .

There are bad people out there...

This ability to construct different messages that collide under
the hash function may be exploited by malicious persons to
attack a system.

some intrusion detection systems use hash tables – by
crafting inputs that degenerate hash tables, it may be
possible to launch a DoS attack

peer-to-peer networks use hash values to identify chunks
of data. By producing many fake chunks that have the
same digest as original ones, one can “poison” p2p
network. [cf. UUHash case]

Stronger notion: cryptographic hash functions

This naturally leads to the definition of a cryptographic hash
function, i.e. a hash function that satisfies the following security
requirements:

preimage resistance

second-preimage resistance

collision resistance

Preimage resistance

? h

Preimage resistant : Given an output Y of the hash function it is
difficult to find any preimage - an input X such that h(X) = Y .

Second preimage resistance

h

h?

Second preimage resistant : Given a fixed input X to the hash
function and the corresponding output h(X) it is difficult to find
a second preimage - another input X ′, X ′ 6= X such that
h(X) = h(X ′).

Collision resistance

h

h?

?

Collision resistant : It is hard to find any pair of distinct
messages (X , X ′), X 6= X ′ such that h(X) = h(X ′).

Applications: Data integrity

secure channel

?
=

insecure channel

h h

data data

Comparing the digest of data sent over insecure
communication channel with securely obtained original digest
allows to verify integrity of the data.

Applications: digital signatures

insecure channel
h

data

sign

private key

h

public key

verify Y/N ?

data

Digital signature schemes with appendix use cryptographic
hash function h to obtain the digest of the data which is later
signed.

Outline

1 Basics

2 Security requirements
Classical definitions
Problems with more formal definitions
More requirements?

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

The three classical definitions

Preimage resistant : Given an output Y of the hash
function it is difficult to find any preimage - an input X such
that h(X) = Y .

Second preimage resistant : Given a fixed input X to the
hash function and the corresponding output h(X) it is
difficult to find a second preimage - another input X ′,
X ′ 6= X such that h(X) = h(X ′).

Collision resistant : It is hard to find any pair of distinct
messages (X , X ′), X 6= X ′ such that h(X) = h(X ′).

Problems with more formal definitions

What does “hard” or “difficult” mean?

Two rigorous models of computational complexity:

Asymptotic complexity (classical complexity theory)

Concrete security

Classical complexity theory

Define a family of functions where the security parameter
(e.g. digest length) corresponds to “instance size”

Prove that the complexity function (function that expresses
the amount of work necessary to break the algorithm as
the function of the security parameter) has desired
asymptotic behaviour (e.g. grows exponentially).

Classical complexity theory – some problems

Worst case complexity is often not enough for
cryptographic purposes.

How is asymptotic complexity related to “real world”
expectations? Example: knapsack problem is known to be
NP-hard, but knapsack cryptosystems were broken for
proposed instance sizes.

Concrete security

Developed as an alternative to asymptotic analysis.

define a finite family of functions indexed by the key k ∈ K

introduce an adversary, i.e. someone who wants to attack
the system and define the winning conditions for him

define a computational experiment in which adversary
takes part (a sequence of steps requiring some interaction
with the adversary)

measure the advantage of the adversary, i.e. the
probability that he wins the game taken over all random
choices of the key k

if no reasonable adversary can achieve significant
advantage, the system is secure

Concrete security definition of collision resistance

Definition (Rogaway, Shrimpton)

Let H : K×M→ {0, 1}n be a hash-function family and let A
be an adversary. Then we define

AdvColl
H (A) =

Pr [K $
← K; (M, M ′)

$
← A(K) : (M 6= M ′) ∧ HK (M) = HK (M ′)].

In the above formula M $
← S denotes choosing a random

element from the distribution S and calling it M.

In practice...

Concrete security setting needs a family of functions.

In practice, we have only a single, fixed instance of the
function.

The only security framework we can talk about is human
ignorance model [Rogaway, 2006]

But this is not satisfactory for the designers of
cryptographic primitives.

More requirements

Apart from the three fundamental properties, quite often more
is implicitly required from a cryptographic hash function.

“hash function should mimic a random function” – no
detectable structure

simulation of random oracles – e.g. for RSA-OAEP,
RSA-PSS
pseudorandom function families (PRFs) – e.g. for HMAC

security properties of truncated variants – e.g. SHA-224

regularity of the hash function – influences birthday attacks

others ???

Outline

1 Basics

2 Security requirements

3 Design strategies
Iterated hash functions
Hash functions based on block ciphers
Dedicated constructions
Constructions with security reductions

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

Iterative hash functions

It’s difficult to design a function that accepts inputs of
arbitrary length.

The natural solution is to use some kind of an iterative
procedure to process data in chunks.

use a compression function that “shrinks” input

Definition

A compression function is a function

f : {0, 1}m+n → {0, 1}n

where m > 0.

Merkle-Damgård construction

INPUT: message M ∈ {0, 1}∗

OUTPUT: digest h(M) ∈ {0, 1}n

pad the message M to a multiple of block length.

(optionally) Append a block of m bits with encoded initial
length of the message M.

Split M into blocks M = (M0, M1, . . . , Mb).

Perform the iterative compression
H0 := IV {quite often IV = 0b}
for i = 0 to b do

Hi+1 := f (Hi ||Mi)
end for

Return the result h(M) = Hb+1.

One picture worth a thousand words: Merkle-Damgård

M

M1 M2 M3 M4

h(M)

IV

f

f

f

f

padding

length block

Security of iterated hash functions

The fundamental question

What is the relation between security properties of the
iterated hash function and the security properties of
the compression function itself?

MD construction comes with a reduction proof of collision
resistance: as long as the compression function is collision
resistant, the hash function is collision resistant
[Merkle-Damgård]

But what about the other properties? – The situation here
is more complex...

Drawbacks of the iterated construction

multicollisions [Joux 2004]

second preimages faster than 2n [Dean 1999; Kelsey,
Schneier 2005]

iteration does not preserve balance [Bellare, Kohno 2004]

Alternatives to MD iteration mode

Recent alternatives that aim at improving properties of the
iterative constructions.

Wide-pipe strategy [Lucks 2005]

Randomized Hashing [Halevi, Krawczyk 2006]

Hi+i := h(Hi || Mi ⊕ r) .

HAIFA [Biham, Dunkelman 2007]

Hi+1 := f (Hi || Mi || #bits || salt) .

How to build a good compression function?

Three main approaches:

Compression functions based on block ciphers

Dedicated heuristic designs

Constructions with security reductions

Cipher-based compression functions

Assume we have a block cipher E : {0, 1}n × {0, 1}n → {0, 1}n.
We can use it to construct a compression function.

Hi−1 Hi

mi Hi−1

Himi

Davies-Meyer mode Miyaguchi-Preneel mode

So called “PGV modes” [Preneel, Govaerts, Vanderwalle 1993]

Cipher-based compression functions

The good:

come with security reductions: if you have a good block
cipher, you can have a good compression function [Black,
Rogaway, Shrimpton 2002]

The bad:

Cipher-based hashes are too slow for some...

The block size of most popular ciphers is too small to
produce digests of appropriate length (solutions: design a
specialized block cipher, like Whirlpool or use double
block-length modes)

Do we want to put all the eggs in just one basket?

Dedicated constructions

Compression functions designed “from scratch”

Most popular approach in practice: Davies-Meyer mode
but with specially crafted ciphers: still secure (?) but faster
than mainstream block ciphers

MD4, MD5, HAVAL, HAS-V, SHA-1, SHA-2, (and many
others) are designed that way

Dedicated designs: overview

Hi Mi

Hi+1

message expansion algorithm

iteration of the step transformation

output state

input state

input message

state feed-forward operation

Dedicated designs: step transformation in MD designs

MD = Message Digest, a family of designs influenced by Ron
Rivest’s MD4 and MD5 functions.

f

Mi

Constructions with security reductions

Principle:

Functions based on some difficult computational problems

Breaking the function implies solving some difficult
problem – security reduction “provable security”

Examples:

VSH (Very Smooth Hash) [provably collision-resistant]

MQ-Hash [provably one-way]

“Provably secure” designs – some issues

How tight is the security reduction?

Is the difficult problem really difficult (what about difficulty
on average, for some special cases etc)

Looks like all such constructions need quite long hashes to
achieve good security level

At the moment MUCH slower than dedicated designs

Outline

1 Basics

2 Security requirements

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

Current situation

Vast majority of functions used in practice are dedicated
heuristic designs

Wang et al showed how to attack such constructions

Revived interest in cryptographic hash functions

A lot of new research into cryptanalysis of hash functions
in recent years

Attacks of Wang et al and some improvements

Look for differentials using both XOR differences (over F2)
and modular differences (over Z232). In other words, trace
signed binary differences.

used to break MD4, MD5, HAVAL and SHA-1
(theoretically).
Improved algorithms, especially automatisation of path
finding

Coding-theory tools
Branch and prune searches

More fine-grained conditions for automatic path-finding
[Rechberger, De Cannière 2006]

The Hash Function Lounge (or a graveyard?)

“The Hash Function Lounge” – a webpage maintained by
P. Barreto that lists cryptographic hash functions together with
attacks

theoretical attack on the function

practical attack on the full function

Recently, there are many, many new skulls there ...

Outline

1 Basics

2 Security requirements

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future
NIST competition for AHS

6 Conclusions

Replacing the currently used hash functions

Replacing currently deployed functions is an enormous
task.

We have to be sure that the change will be for better.
We need to know how to design secure cryptographic hash
functions

what requirements do we need
how to construct functions satisfying them

NIST competition for AHS

Public competition for the Advanced Hashing Standard

Something similar to the AES process

Announced in Federal Register

Tentative Timeline definitely not feasible

Proposed Draft Minimum Acceptability Requirements

A.1 The algorithm must be publicly disclosed and available on
a worldwide, non-exclusive, royalty-free basis.

A.2 The algorithm must be implementable in a wide range of
hardware and software platforms.

A.3 The algorithm must support 224, 256, 384, and 512-bit
message digests, and must support a maximum message
length of at least 264 bits

Proposed Draft Evaluation Criteria

Security,

Computational efficiency,

Memory requirements,

Hardware and software suitability,

Simplicity,

Flexibility, and

Licensing requirements.

Evaluation Criteria : C.1 Security

The actual security provided by the algorithm as compared
to other submitted algorithms (of the same hash length),
including (but not limited to) first and second preimage
resistance, collision resistance, and resistance to generic
attacks (e.g., length extension).

The extent to which the algorithm output is
indistinguishable from a random oracle.

The soundness of the mathematical basis for the
algorithms security.

Other security factors raised by the public during the
evaluation process ...

Outline

1 Basics

2 Security requirements

3 Design strategies

4 Current situation in the world of hash functions

5 The challenges of the future

6 Conclusions

Conclusions

Cryptographic hash functions are ubiquitous tools of
modern cryptography

Although basics are simple, there is a lot of subtle
properties and relationships there

A lot more research is needed to understand enough to
propose a new hashing standard that would last

It is a really exciting topic to work on!

Thank you!

	Basics
	Ordinary hash functions
	Cryptographic hash functions
	Examples of applications

	Security requirements
	Classical definitions
	Problems with more formal definitions
	More requirements?

	Design strategies
	Iterated hash functions
	Hash functions based on block ciphers
	Dedicated constructions
	Constructions with security reductions

	Current situation in the world of hash functions
	The challenges of the future
	NIST competition for AHS

	Conclusions

