Extending FORK-256 Attack to the Full Hash Function

Scott Contini Krystian Matusiewicz Josef Pieprzyk

Centre for Advanced Computing Algorithms and Cryptography, Department of Computing, Macquarie University

ACAC Seminar, 7 December 2007

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction

- FORK-256 is a dedicated cryptographic hash function designed by Hong et al. and presented during second NIST hash workshop and FSE 2006.
- Heuristic design, but with some unorthodox design choices.
- Meant as a possible replacement for SHA-256 (compatible interface, better speed).

History of cryptanalysis of FORK-256

Received considerable cryptanalytic attention since it was proposed in 2006.

- Matusiewicz, Contini, Pieprzyk - IACR ePrint 2006/317 cryptanalysis of reduced variants
- Mendel, Lano, Preneel - CT-RSA 2007 cryptanalysis of reduced variants
- Matusiewicz, Peyrin, Billet, Contini, Pieprzyk - FSE 2007 cryptanalysis of the full compression function

Our current contribution: Extending the attack to the full hash function (actually, with any predefined IV).

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

FORK-256

- 256 bits of chaining variable cv
- 512 bits of message M
- each branch uses a different permutation $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ of message words M_{0}, \ldots, M_{15}
- each branch B1, B2, B3, B4 consists of 8 steps

Structure of FORK-256 : step transformation

- there are 8 steps in each branch
- step transformation - composition of 3 simple operations
- addition of two different message words
- two parallel Q-structures
- rotation of registers

Functions f and g

$$
\begin{aligned}
& f(x)=x+\left(x^{\lll 7} \oplus x^{\lll 22}\right) \\
& g(x)=x \oplus\left(x^{\lll 13}+x^{\ll 27}\right)
\end{aligned}
$$

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Micro-collisions in the step transformation

Micro-collision: a difference in register A does not propagate to the selected register (B,C,D). If it does not propagate to more than one other register we have simultaneous micro-collisions.

Micro-collisions

- Let us fix a modular difference d. Having a value a of register A and $a^{\prime}=a+d$, we can efficiently determine sets $\mathcal{B}_{a}, \mathcal{C}_{a}, \mathcal{D}_{a}$ of values of B, C, D such that simultaneous micro-collisions appear in all three lines.
- If sets $\mathcal{B}_{a}, \mathcal{C}_{a}, \mathcal{D}_{a}$ are non-empty, we call such a an allowable value (meaning we can achieve micro-collisions for that value of a)

Using micro-collisions in a differential path

$$
d=0 \times d d 080000 \text { or } d=0 \times 22 £ 80000
$$

We need
microcollisions in only three and $1 / 3$ Q-structures.

Only four output registers are influenced by the differential.

Using a difference with only 13 MSB set we reduce this to 108 bits.

Collisions: the principle of the attack

- Get three micro-collisions in branches 3 and 4. This leaves two message words M_{4} and M_{9} free, the rest is fixed
- Using different values of M_{4} and M_{9} compute branch 1 and hope that there is a single micro-collision in strand D in step 7.
- If a micro-collision there is found, compute the rest of the function and check the output difference.
Note that the output differences have weights always ≤ 108

Obtaining micro-collisions in branches 3 and 4

To deal with branches 3 and 4
we have to:

1) Set values of

$$
F_{0}^{(4)}, G_{0}^{(4)}, H_{0}^{(4)}
$$

2) Set values of

$$
A_{4}^{(4)}, B_{4}^{(4)}, C_{4}^{(4)}, D_{4}^{(4)}
$$

3) Set values of

$$
E_{4}^{(4)}, F_{3}^{(3)}, G_{3}^{(3)}, H_{3}^{(3)}
$$

A property of Q-structures

- We can set E^{*} to any value by adjusting the value of E
- We can set F^{*} to any value by adjusting the value of F (true for G, H too).

Adjusting the values: branch 4 before step 5

Adjusting the values: branch 4 before step 5

Adjusting the values: branch 4 before step 5

Adjusting the values: branch 4 before step 5

Adjusting the values: branch 3 before step 4

Adjusting the values: branch 3 before step 4

Adjusting the values: branch 3 before step 4

Adjusting the values: branch 3 before step 4

Passing branch 1

We use free words M_{4} and M_{9} to search for the values that yield a single micro-collision in step 7.

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Why we are not happy?

Problem: During the attack, we have to adjust the value of B_{0}.

- This value depends on other values of message words so we cannot know it in advance or precompute it.
- We cannot use this method to obtain (near)collisions for the full hash function that needs a predefined IV.
- We want to extend the attack to the full hash function.
- We want to avoid the need for modification of B_{0}.

Better message adjustment strategy

- Solve branch 4 step 1
- Deal with whole branch 3: use M_{13} to preserve the value of $E_{3}^{(3)}$
- Finish with branch 4
- In branch 4 leave a single micro-collision in $C_{5}^{(4)}$ to chance

New message adjustment: branch 4 step 1

- Find a value x_{1} that may lead to simultaneous microcollisions in Q_{R} in step 1 of branch 4
- Pick appropriate constants for F_{0}, G_{0}, H_{0}
- Set M_{12} to $E_{0}-x_{1}$, $M_{12}^{\prime}=M_{12}+d$

New strategy: branch 3 (1)

- Pick message words M_{7}, M_{6}, $M_{10}, M_{14}, M_{13}, M_{2}$ randomly and compute until step 4
- If $E_{4}^{(3)}+M_{12}$ does not allow for finding simultaneous micro-collisions, start over. [We need around 2^{23} trials]
- When it does, keep that value and later adjust values of $F_{4}^{(3)}$, $G_{4}^{(3)}, H_{4}^{(3)}$

New strategy: branch 3 , adjusting $F_{3}^{(3)}$

New strategy: branch 3 , adjusting $G_{3}^{(3)}$

New strategy: branch 3 , adjusting $H_{3}^{(3)}$

New strategy: branch 4

- Pick M_{5}, M_{1}, M_{15} randomly.
- Pick M_{8}, M_{0}, M_{11} that preserve the modular difference.
- Compute up to step 4.
- Keep picking allowable values of M_{3} and testing if there is no difference in $C_{5}^{(4)}$
- Once we find a good value of M_{3}, we can adjust constants $C_{4}^{(4)}$ and $D_{4}^{(4)}$

Passing step 5 in branch 4

- We need around 2^{19} trials like that

New strategy: complexity of getting close hashes

- Work effort of passing branches 3 and 4 for using the difference $0 x 22 f 80000$:

$$
<2^{24} \cdot 2^{19} \cdot 2^{-3}=2^{40}
$$

FORK evaluations.

- The second phase of the attack (branches 1 and 2) dominates with the complexity of 2^{58}.
- Conclusion: The new strategy for dealing with branches 3 and 4 does not affect the total complexity of the attack.

Fixing appropriate chaining values F_{0}, G_{0}, H_{0}

- We removed the need for the fourth initial chaining value to be used.
- The three values F_{0}, G_{0}, H_{0} have to be set to one of possible constants required by simultaneous micro-collisions in step 1 of branch 4.
- If we require three particular values, we can achieve this in 2^{96} FORK evaluations by hashing a random prepended message block
- In fact we can do much better: any of the set of good constants for each register will do.

Estimating the probability of getting good constants

- Let $\mathcal{F}_{a}, \mathcal{G}_{a}, \mathcal{H}_{a}$ denote sets of constants that yield a micro-collision in line F, G, H for an allowable value a.
- Probability that a random IV value will match one of those values for each register F, G, H is

$$
P=1-\prod_{a \in \mathcal{A}}\left(1-\frac{\left|\mathcal{F}_{a}\right| \cdot\left|\mathcal{G}_{a}\right| \cdot\left|\mathcal{H}_{a}\right|}{2^{96}}\right)
$$

- For original differences $d=0 x d d 080000$ and $d=0 \times 22 f 80000$ it is equal to $P=2^{-64.8}$,
- for other differences it may be much bigger, e.g. for $d=0 \times 3 \mathrm{f} 6 \mathrm{~b} f 009$ we have $P=2^{-21.7}$.

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

New FORK-256

Modified version designed to counter attacks exploiting micro-collisions.

- Different functions f, g
- Modified step transformation

New FORK-256: Functions f and g

$$
\begin{aligned}
& f(x)=x \oplus x^{\ll 15} \oplus x^{\lll 27} \\
& g(x)=x \oplus\left(x^{\ll 7} \boxplus x^{\ll 25}\right)
\end{aligned}
$$

- f is a bijection

New FORK-256: Step transformation

New step transformation:

New FORK-256: Rationale

Impossible to get step differentials of the form

$$
(\Delta A, 0,0,0,0,0,0,0) \rightarrow(0, \Delta B, 0,0,0,0,0,0,0)
$$

- not possible to get collisions in both f and g
- not possible to get micro-collisions: difference in A or E propagates to at least two registers

Saarinen's meet-in-the-middle attack

- It is possible to produce hashes that have a fixed value of register F equal to the initial value of F_{0}.
- This effectively reduces the range of the function to 2^{224} possible outputs.
- If we can generate such hashes efficiently enough, we can mount birthday attack on the whole hash function.

Ouput F is equal to F_{0} iff
 $F_{8}^{(1)} \boxplus F_{8}^{(2)}=F_{8}^{(3)} \boxplus F_{8}^{(4)}$

Equivalently:

$$
F_{8}^{(2)} \boxminus F_{8}^{(3)}=F_{8}^{(1)} \boxminus F_{8}^{(4)}
$$

Note that:

- B.(1): $F_{8}^{(1)}$ doesn't depend on M_{14}
- B.(2): $F_{8}^{(2)}$ is a linear function of M_{1}
- B.(3): $F_{8}^{(3)}$ doesn't depend on M_{1}
- B.(4): $F_{8}^{(4)}$ doesn't depend on M_{14}

Outline of the attack

- Set random values of message words $M_{i}, i=0,2 . .13,15$
- Set M_{0} to zero
- For each value of $M_{14}=0, \ldots, 2^{32}-1$:
- compute branches 2 and 3 to obtain

$$
x=F_{8}^{(2)} \boxminus F_{8}^{(3)}
$$

- Add the pair $\left(x, M_{14}\right)$ to a dictionary (hash table)
- For each value of $M_{1}=0, \ldots, 2^{32}-1$:
- compute branches 1 and 4 to get

$$
y=F_{8}^{(1)} \boxminus F_{8}^{(4)} \boxplus M_{1}
$$

- if $x=y$, output the value M_{1} with corresponding value(s) of M_{14}

Complexity of the attack

- For the effort of $3 / 2 \cdot 2^{32}$ we get around 2^{32} "restricted" hashes
- We need to repeat the procedure
$\sqrt{\pi / 2 \cdot 2^{224}}=\sqrt{\pi / 2} \cdot 2^{112}$
- Total expected complexity of $\approx 3 / 2 \sqrt{\pi / 2} \cdot 2^{112} \approx 2^{112.9}$
- Memory requirements of the same order

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Conclusions

- Presented an improved attack on FORK-256
- finds collisions for any value of IV
- breaks the full hash function
- practical for finding near-collisions
- New FORK-256
- And new attacks...

Thank you!

