
Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Extending FORK-256 Attack to the Full Hash
Function

Scott Contini Krystian Matusiewicz Josef Pieprzyk

Centre for Advanced Computing Algorithms and Cryptography,
Department of Computing, Macquarie University

ACAC Seminar, 7 December 2007

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Introduction

• FORK-256 is a dedicated cryptographic hash function
designed by Hong et al. and presented during second
NIST hash workshop and FSE 2006.

• Heuristic design, but with some unorthodox design
choices.

• Meant as a possible replacement for SHA-256 (compatible
interface, better speed).

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

History of cryptanalysis of FORK-256

Received considerable cryptanalytic attention since it was
proposed in 2006.

• Matusiewicz, Contini, Pieprzyk – IACR ePrint 2006/317
cryptanalysis of reduced variants

• Mendel, Lano, Preneel – CT-RSA 2007
cryptanalysis of reduced variants

• Matusiewicz, Peyrin, Billet, Contini, Pieprzyk – FSE 2007
cryptanalysis of the full compression function

Our current contribution: Extending the attack to the full hash
function (actually, with any predefined IV).

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

FORK-256

cvℓ

cvℓ+1

Mℓ

σ1 σ2 σ3 σ4B1 B2 B3 B4

• 256 bits of chaining variable cv

• 512 bits of message M

• each branch uses a different permutation (σ1, σ2, σ3, σ4) of
message words M0, . . . , M15

• each branch B1, B2, B3, B4 consists of 8 steps

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Structure of FORK-256 : step transformation

g

f

≪ 9

≪ 21

≪ 5

≪ 17

δ
π

j (2k
−

2
)

Aj,k−1 Bj,k−1 Cj,k−1 Dj,k−1

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2k
−

1
)

Ej,k−1 Fj,k−1 Gj,k−1 Hj,k−1

Mσj (2k−2) Mσj (2k−1)

QL QR

Aj,k Bj,k Cj,k Dj,k Ej,k Fj,k Gj,k Hj,k

• there are 8 steps in each branch
• step transformation – composition of 3 simple operations

• addition of two different message words
• two parallel Q-structures
• rotation of registers

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Functions f and g

f (x) = x +
(

x≪7 ⊕ x≪22
)

g(x) = x ⊕
(

x≪13 + x≪27
)

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Micro-collisions in the step transformation

g

f

≪ 9

≪ 21

≪ 5

≪ 17δπj(2k)

A B C D

A B C D

QL

y

z

Micro-collision: a difference in register A does not propagate to
the selected register (B,C,D).
If it does not propagate to more than one other register we have
simultaneous micro-collisions.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Micro-collisions

g

f

≪ 9
≪ 21

≪ 5
≪ 17δπj (2k)

A B C D

A B C D

QL

y

z

• Let us fix a modular difference d . Having a value a of
register A and a′ = a + d , we can efficiently determine sets
Ba, Ca, Da of values of B, C, D such that simultaneous
micro-collisions appear in all three lines.

• If sets Ba, Ca, Da are non-empty, we call such a an
allowable value (meaning we can achieve micro-collisions
for that value of a)

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Using micro-collisions in a differential path

9

4

9

4

9

4

4

3

1

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

5

6 7

8

10 11

12 13

14 15

15

11 9

8 10

3

2 13

0 5

6 7

12 1

7 6

10 14

13 2

12

11

15 8

5 0

3

5 12

1 8

15 0

13 11

10

2

7 14

6

d = 0xdd080000 or d = 0x22f80000

We need
microcollisions in
only three and 1/3
Q-structures.

Only four output
registers are
influenced by the
differential.

Using a difference
with only 13 MSB
set we reduce this
to 108 bits.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Collisions: the principle of the attack

• Get three micro-collisions in branches 3 and 4.
This leaves two message words M4 and M9 free, the rest is fixed

• Using different values of M4 and M9 compute branch 1 and
hope that there is a single micro-collision in strand D in
step 7.

• If a micro-collision there is found, compute the rest of the
function and check the output difference.
Note that the output differences have weights always ≤ 108

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Obtaining micro-collisions in branches 3 and 4

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

12

To deal with branches 3 and 4
we have to:

1) Set values of

F (4)
0 , G(4)

0 , H(4)
0 .

2) Set values of

A(4)
4 , B(4)

4 , C(4)
4 , D(4)

4

3) Set values of

E (4)
4 , F (3)

3 , G(3)
3 , H(3)

3

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

A property of Q-structures

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j (2k
−

2
)

E F G H

E∗ F ∗ G∗ H∗

QL

• We can set E∗ to any value by adjusting the value of E

• We can set F ∗ to any value by adjusting the value of F
(true for G, H too).

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 4 before step 5

12

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Adjusting the values: branch 3 before step 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Passing branch 1

12

10

4

9

5

6 7

8

11

13

H1,5

step 3

step 4

step 5

step 6

step 7

allowable values

We use free words M4 and M9

to search for the values that
yield a single micro-collision in
step 7.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Why we are not happy?

Problem: During the attack, we have to adjust the value of B0.

• This value depends on other values of message words so
we cannot know it in advance or precompute it.

• We cannot use this method to obtain (near)collisions for
the full hash function that needs a predefined IV.

• We want to extend the attack to the full hash function.

• We want to avoid the need for modification of B0.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Better message adjustment strategy

9

9

4 3

7 6

10 14

13 2

12

11

15 8

5

1 8

15 0

13 11

10

2

12

• Solve branch 4 step 1

• Deal with whole branch 3: use
M13 to preserve the value of
E (3)

3

• Finish with branch 4

• In branch 4 leave a single
micro-collision in C(4)

5 to
chance

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New message adjustment: branch 4 step 1

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Find a value x1 that may lead
to simultaneous
microcollisions in QR in step 1
of branch 4

• Pick appropriate constants for
F0, G0, H0

• Set M12 to E0 − x1,
M ′

12 = M12 + d

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: branch 3 (1)

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Pick message words M7, M6,
M10, M14, M13, M2 randomly
and compute until step 4

• If E (3)
4 + M12 does not allow

for finding simultaneous
micro-collisions, start over.
[We need around 223 trials]

• When it does, keep that value
and later adjust values of F (3)

4 ,

G(3)
4 , H(3)

4

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: branch 3, adjusting F (3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: branch 3, adjusting G(3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: branch 3, adjusting H(3)
3

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: branch 4

9 12

12

9

4 3

7 6

10 14

13 2

11

15 8

5

1 8

15 0

13 11

10

2

• Pick M5, M1, M15 randomly.

• Pick M8, M0, M11 that
preserve the modular
difference.

• Compute up to step 4.

• Keep picking allowable values
of M3 and testing if there is no
difference in C(4)

5

• Once we find a good value of
M3, we can adjust constants
C(4)

4 and D(4)
4

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Passing step 5 in branch 4

pick M3
leading to an allowable

value

M3

M3 M3

try again

adjust constants C(4)
4 , D(4)

4

difference in C(4)
5 – bad

C(4)
4 D(4)

4B(4)
4A(4)

4

C(4)
4 D(4)

4B(4)
4A(4)

4

C(4)
4 D(4)

4B(4)
4A(4)

4

• We need around 219 trials like that

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New strategy: complexity of getting close hashes

• Work effort of passing branches 3 and 4 for using the
difference 0x22f 80000:

< 224 · 219 · 2−3 = 240

FORK evaluations.

• The second phase of the attack (branches 1 and 2)
dominates with the complexity of 258.

• Conclusion: The new strategy for dealing with branches 3
and 4 does not affect the total complexity of the attack.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Fixing appropriate chaining values F0, G0, H0

• We removed the need for the fourth initial chaining value to
be used.

• The three values F0, G0, H0 have to be set to one of
possible constants required by simultaneous
micro-collisions in step 1 of branch 4.

• If we require three particular values, we can achieve this in
296 FORK evaluations by hashing a random prepended
message block

• In fact we can do much better: any of the set of good
constants for each register will do.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Estimating the probability of getting good constants

• Let Fa, Ga, Ha denote sets of constants that yield a
micro-collision in line F, G, H for an allowable value a.

• Probability that a random IV value will match one of those
values for each register F , G, H is

P = 1 −
∏

a∈A

(

1 −
|Fa| · |Ga| · |Ha|

296

)

• For original differences d = 0xdd080000 and
d = 0x22f80000 it is equal to P = 2−64.8,

• for other differences it may be much bigger, e.g. for
d = 0x3f6bf009 we have P = 2−21.7.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New FORK-256

Modified version designed to counter attacks exploiting
micro-collisions.

• Different functions f , g

• Modified step transformation

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New FORK-256: Functions f and g

f (x) = x ⊕ x≪15 ⊕ x≪27

g(x) = x ⊕
(

x≪7
⊞ x≪25

)

• f is a bijection

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New FORK-256: Step transformation

New step transformation:

g

f

≪ 17

≪ 13

δ
π

j (2k
−

2
)

Aj ,k−1 Bj ,k−1 Cj ,k−1 Dj ,k−1

f

g

≪ 8

≪ 3

δ
π

j (2k
−

1
)

Ej ,k−1 Fj ,k−1 Gj ,k−1 Hj ,k−1

Mσj (2k−2) Mσj (2k−1)

Aj ,k Bj ,k Cj ,k Dj ,k Ej ,k Fj ,k Gj ,k Hj ,k

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

New FORK-256: Rationale

Impossible to get step differentials of the form

(∆A, 0, 0, 0, 0, 0, 0, 0) → (0,∆B, 0, 0, 0, 0, 0, 0, 0)

• not possible to get collisions in both f and g

• not possible to get micro-collisions: difference in A orE
propagates to at least two registers

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Saarinen’s meet-in-the-middle attack

• It is possible to produce hashes that have a fixed value of
register F equal to the initial value of F0.

• This effectively reduces the range of the function to 2224

possible outputs.

• If we can generate such hashes efficiently enough, we can
mount birthday attack on the whole hash function.

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

4

14

14

14

14

1

1

11

Branch 1 Branch 2 Branch 3 Branch 4
0

2 3

4 5

6 7

8 9

10 11

12 13

15

15

11 9

8 10

3 4

2 13

0 5

6 7

12

7 6

10

13 2

9 12

11 4

15 8

5 0

3

5 12

8

15 0

13 11

3 10

9 2

7

6

Ouput F is equal to F0 iff

F (1)
8 ⊞ F (2)

8 = F (3)
8 ⊞ F (4)

8

Equivalently:

F (2)
8 ⊟ F (3)

8 = F (1)
8 ⊟ F (4)

8

Note that:

• B.(1): F (1)
8 doesn’t

depend on M14

• B.(2): F (2)
8 is a linear

function of M1

• B.(3): F (3)
8 doesn’t

depend on M1

• B.(4): F (4)
8 doesn’t

depend on M14

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline of the attack

• Set random values of message words Mi , i = 0, 2..13, 15

• Set M0 to zero
• For each value of M14 = 0, . . . , 232 − 1:

• compute branches 2 and 3 to obtain

x = F (2)
8 ⊟ F (3)

8

• Add the pair (x , M14) to a dictionary (hash table)

• For each value of M1 = 0, . . . , 232 − 1:
• compute branches 1 and 4 to get

y = F (1)
8 ⊟ F (4)

8 ⊞ M1

• if x = y , output the value M1 with corresponding value(s) of
M14

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Complexity of the attack

• For the effort of 3/2 · 232 we get around 232 “restricted”
hashes

• We need to repeat the procedure
√

π/2 · 2224 =
√

π/2 · 2112

• Total expected complexity of ≈ 3/2
√

π/2 · 2112 ≈ 2112.9

• Memory requirements of the same order

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Outline

Introduction

FORK-256

Compression function collisions

Improving the attack

Latest news

Conclusions

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Conclusions

• Presented an improved attack on FORK-256
• finds collisions for any value of IV
• breaks the full hash function
• practical for finding near-collisions

• New FORK-256

• And new attacks...

Introduction FORK-256 Compression function collisions Improving the attack Latest news Conclusions

Thank you!

	Introduction
	FORK-256
	Compression function collisions
	Improving the attack
	Latest news
	Conclusions

