
Finding good differential patterns for attacks on
SHA-1

Krystian Matusiewicz and Josef Pieprzyk
Department of Computing,

Macquarie University, Australia
{kmatus,josef}@ics.mq.edu.au

March, 14 2005

Abstract

In this paper we analyse properties of the message expansion algorithm
of SHA-1 and describe a method of finding differential patterns that may
be used to attack reduced versions of SHA-1. We show that the problem of
finding optimal differential patterns for SHA-1 is equivalent to the problem of
finding minimal weight codeword in a large linear code. Finally, we present
a number of patterns of different lengths suitable for finding collisions and
near-collisions and discuss some bounds on minimal weights of them.

1 Introduction

Most of the modern hash functions used in practice are dedicated hash functions
based on the design principles of MD4 [18, 19]. The first cryptanalytic results con-
cerning MD4 appeared only a year after publication of the algorithm [8]. Both
MD4 and the improved version of it, called MD5 [20], were first broken by H. Dob-
bertin [11, 9]. Another hash function based on MD4, called RIPEMD [4] was also
shown by Dobbertin [10] to be insecure. Also the shortest variant of HAVAL [25]
has been broken by Van Rompay at al. [21]. Recent results obtained by Wang at
al. [23, 24] show that is is possible to find collisions for MD4, MD5, HAVAL-128
and RIPEMD within hours on a generic PC. It looks like the message expansion al-
gorithm based on permuting message words and applying them in a different order
in each round is a weak point of all these algorithms as it does not provide enough
diffusion of differences.

Another group of hash functions are hash functions of the SHA family. Although
based on the idea of extended Feistel permutation present in MD, they are equipped
with more complex message expansion algorithm. The first function of that family
was SHA-0 [12]. It was promptly replaced by an improved version, SHA-1 [17].
Security concerns appeared to be true, as in 1998 Chabaud and Joux presented
theoretical attack on SHA-0 [7], which was later implemented and improved allowing
for finding an actual collision [14, 13].

1

Now, one of the most interesting questions in the field of hash functions analysis
is how secure is the present standard SHA-1, which is different from SHA-0 by only
one rotation in the message expansion process. The same principle used to attack
SHA-0 could be applied to construct an attack on SHA-1 provided that there exists
good enough differential pattern. Biham and Chen were able to find patterns that
allowed for finding collisions for variants reduced to first 34 and 36 steps [3]. The
attack can be extended provided that one can find good differential patterns for
longer variants of SHA-1.

In this paper we investigate the problem of finding good differential patterns
for attacks on SHA-1. First we start with a different presentation of the message
expansion algorithm. Next, we show that the problem of finding differential patterns
suitable for attacking SHA-1 is a problem of finding low-weight codewords in a linear
code.

We present our results of search for the best patterns which can be used in a
differential attack and estimate some bounds on the minimal weight of such patterns.

2 Differential attacks on SHA

In this section we briefly recall the structure of SHA-1 and describe the basic frame-
work of differential attacks applicable to SHA-0/1.

2.1 Description of SHA-1 compression function

SHA-1 compression function [17] hashes 512 bit input messages to 160 bit digests.
Firstly, 512 bits of the message are divided into 16 words W0, W1, . . . ,W15 of 32 bits
each. The rest of 80 words is generated out of the first 16 words according to the
following recurrent formula

Wi = ROL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) for 16 ≤ i ≤ 79, (1)

where ROLk means rotation of word by k positions left.

If this is the first application of the compression function , five 32-bit registers
A, B, C, D, E are initialized to values A0 = 0x67452301, B0 = 0xEFCDAB89,
C0 = 0x98BADCFE, D0 = 0x10325476, E0 = 0xC3D2E1F0 accordingly.

Next, 80 steps (i = 0, . . . , 79) of the following form are applied:

Ai+1 = ROL5(Ai) � fi(Bi, Ci, Di) � Ei � Wi � Ki, (2)

Bi+1 = Ai, Ci+1 = ROL30(Bi), Di+1 = Ci, Ei+1 = Di,

where � denotes addition modulo 232, and Ri means the value of the register R
after i-th iteration. Functions fi and constants Ki used in each iteration are given
in Table 1.
The output of the compression function is the concatenation of bits of A0 � A80,

B0 � B80, C0 � C80, D0 � D80 and E0 � E80.

2

Table 1: Functions and constants used in SHA-1.

step number i fi(B, C, D) Ki

0 – 19 (B ∧ C)⊕ (¬B ∧D) 0x5A827999
20 – 39 B ⊕ C ⊕D 0x6ED9EBA1
40 – 59 (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) 0x8F1BBCDC
60 – 79 B ⊕ C ⊕D 0xCA62C1D6

2.2 Differential Attack of Chabaud and Joux

Chabaud and Joux presented in [7] differential attack on SHA-0. The fundamental
observation they made is that a change in bit j of word Wi can be corrected by
complementary changes in the following bits: (j + 6) mod 32 of word Wi+1, j of
word Wi+2, (j + 30) mod 32 of word Wi+3, (j + 30) mod 32 of word Wi+4 and
(j + 30) mod 32 of word Wi+5, provided that functions fi+1,. . . ,fi+4 and additions
� behave like linear functions, that is a single change in the input to f results in a
change of output of f , change in two inputs of f leaves the result unchanged and
differences propagate through additions without generating carries. They showed
that one bit disturbance can be corrected by such a pattern with probability between
2−2 and 2−5 depending on functions fi,. . . ,fi+4, if disturbance is introduced in bit
j = 1.

If disturbance is introduced in position j 6= 1, than there is additional factor of
2−3 involved, caused by 1/2 chance of inducing carry in additions in steps i + 3,
i + 4, i + 5.

The attack is possible due to the property of the message expansion function
which does not mix bits in different positions. Thanks to that it was possible to
consider message expansion algorithm as a bit-wise. Enumeration of all 216 possible
bit patterns in position 1 allowed for choosing disturbance pattern in bit one that
led to a global differential pattern δ producing a collision with probability 2−61.

2.3 Improvements

It is possible to improve the attack of Joux and Chabaud by reducing probabilistic
behaviour of some initial corrections by a better strategy of selecting messages than
picking random ones. Biham and Chen proposed in [2] the method of so called
neutral bits. They showed that having a message which behaves correctly for at
least 16 first steps after adding a difference δ, it is possible to construct a big set
of pairs (M, M ⊕ δ) that have much better probability of successful correction than
pairs produced from random messages.

3 Analysis of the message expansion algorithm

of SHA-1

Additional rotation in the message expansion formula (1) makes finding corrective
patterns used in [7] impossible, because now differences propagate to other positions.

3

For SHA-1, one bit difference in one of the 16 initial blocks propagates to at least
107 bits of the expanded message W . However, we were able to find differences that
result in only 44 different positions in the expanded message [16]. This suggests
that it is interesting to investigate the message expansion algorithm of SHA-1 in a
greater detail and check to what extent the differential attack can be applied also
to SHA-1.

The important property of the message expansion process given by the for-
mula (1) is that when considered as a function producing 16 new words out of
16 old ones it is a bijection. This implies that it is possible to reconstruct the whole
expanded message given any 16 consecutive words of it, in particular the first 16.
Moreover, if we consider it on a bit level as a function A : F512

2 → F512
2 , it is easy

to see that A is F2-linear as the only operations used are word rotations (which are
permutations of bits) and bitwise XOR operations. Then the expansion of the initial
message1 m ∈ F512

2 can be expressed as a long vector

E1(m) =


m

A(m)
A2(m)
A3(m)
A4(m)

 ∈ F2560
2 . (3)

The set of correction masks is built from a disturbance pattern by rotations and
delaying the pattern by 1, 2, . . . , 5 words in the same way as described in [7]. In
order to find disturbance patterns which can give rise to correction patterns one has
to look for bit patterns b ∈ F2560

2 that satisfy the following conditions:

1. the pattern b has to be of the form (3), i.e. b is the result of the expansion
operation,

2. the pattern b ends with 5 · 32 = 160 zero bits (the last five words are zero),
because each disturbance is corrected in the next 5 steps, so no disturbance
may occur after the word 74,

3. after delaying a pattern by up to 5 words (that is, shifting bits of b down
(right) by 5 · 32 = 160 positions) the shifted pattern must also be the result of
the expansion of its first 512 bits, that is

[0 . . . 0︸ ︷︷ ︸
160 bits

b0 b1 . . . b2399]
T = E1([0 . . . 0 b0 . . . b351]

T) .

4. b has both the minimal Hamming weight and the maximal number of non-zero
bits in position 1.

3.1 Basic Construction

Conditions 1– 3 imply that in fact we are looking for longer bit sequences of 85
words such that the first 5 words are zero, the next 11 words are chosen in such a

1we consider m to be a column vector

4

way that while the rest of the words are the result of the expansion of the first 16,
the last 5 words are zero again. After denoting the first 5 zero words with indices
−5,. . . ,−1, in positions 0, . . . , 79 we get the disturbance pattern which allows for
construction of the corrective pattern.

Using matrix notation, we are looking for a vector m ∈ F512
2 such that A4m has

160 trailing zero bits and also A−1m has 160 trailing zeros. As the transformation
A is a bijection, this is equivalent to finding a vector

v = [v0, v1, . . . , v351, 0, . . . , 0]T ∈ F512
2 ,

such that the last 160 bits of A−5(v) contain only zeros, what can be written as

x0

x1
...

x351

0
...
0


=



a0,0 a0,511

...
...

a352,0 . . . a352,351
...

. . .
...

...
a511,0 . . . a511,351 . . . a511,511


·



v0

v1
...

v351

0
...
0


, (4)

where A−5 = (ai,j) 0≤i,j≤511.
This condition means that truncated vectors v̄ = [v0, v1, . . . , v351]

T ∈ F352
2 have

to belong to the nullspace of the matrix Ω of the form

Ω =

 a352,0 . . . a352,351
...

. . .
...

a511,0 . . . a511,351

 , (5)

created as a copy of a lower left part of the matrix A−5. It means that the set of all
vectors satisfying properties 1– 2 is a linear subspace of F2560

2 with elements of the
form

c = [A−4(v)T || A−3(v)T || A−2(v)T || A−1(v)T || vT] , (6)

where v = [v̄T || 0 . . . 0]T ∈ F512
2 and v̄ ∈ Ker(Ω).

The set of all such vectors c is in fact a linear code C of length n = 2560 and, as
we have verified that the rank of the matrix Ω is equal to 192, of dimension k = 192.

To maximize the probability of successful correction by the differential pattern,
it is necessary to search for the words of minimal Hamming weight and, if possible,
for those words with the maximal number of nonzero bits in position 1.

This is essentially the problem of finding minimal distance in a linear code, which
is known to be NP-hard [22], so there is no easy way of finding optimal corrective
patterns. However, there are a number of probabilistic methods [15, 5] that allow
for efficient finding of low-weight codewords in big linear codes in practice.

The second part of the condition 4 can be partially achieved using the fact that
the expansion process is invariant in respect of word rotation. The result of the
expansion of 16 input words already rotated by a number of bits is the same as the
rotation of the result of expansion of 16 words performed without rotation. Thanks
to that having a pattern of minimal weight, it is easy to transform it to a pattern

5

with the maximal number of ones in position 1 using word-wise rotation by an
appropriate number of positions. Of course, in general this is the problem of finding
codewords with minimal weighted weight, however, our experiments show that the
simplified approach gives very good results.

3.2 Reduced variants

The generalization of the construction presented above can be applied to find good
differential patterns for reduced versions of SHA-1.

Assume that we want to find a differential pattern for SHA-1 reduced to 16 < s ≤
80 steps given by (2). Condition 1 implies that the vector A−1(m) has to have 160
trailing zero bits. If we denote the last 160 rows of the matrix A−1 as A−1[352 :: 511]
then this condition can be written as

0 = A−1[352 :: 511] ·m . (7)

To formulate a simple description of constraints inferred from condition 2, it is
convenient to note that the whole message expansion process can be seen as a linear
transform E1 : F512

2 → F2560
2 represented by a matrix of the form

E1 =


I512

A
A2

A3

A4

 ,

where I512 is an identity matrix and A is the linear transform described before. Now,
if we want to find a differential pattern for s steps, 5 words of the expanded message
in positions s−4, s−3, . . . , s have to be zero. In matrix notation, 160 entries in the
vector E1 ·m have to be zero, precisely these in positions (s− 4) · 32, . . . , s · 32+31.
If we denote by E1[32(s− 4) :: 32s + 31] the matrix created by selecting rows of the
matrix E1 with indices 32(s− 4), . . . , 32s+31, then condition 2. can be written as:

0 = E1[32(s− 4) :: 32s + 31] ·m . (8)

Putting together Equations (7) and (8) we obtain the final result. A message m ∈
F512

2 gives rise to the corrective pattern if and only if m ∈ Ker(Ψs), where

Ψs =

[
A−1[352 :: 511]

E1[32(s− 4) :: 32s + 31]

]
(9)

is a matrix of dimensions 320× 512 built by placing rows of E1[32(s− 4) :: 32s+31]
below rows of A−1[352 :: 511].

4 Search for the best patterns

We have shown that the problem of finding disturbance patterns with minimal
weights can be seen as a problem of finding minimal weight codewords in a lin-
ear code. To find them, we used a simplified version of the algorithm by Leon [15]

6

presented in [6]. We used the parameter p = 3 to search for all combinations of up to
three rows and for each code we used at least 100 repetitions of the procedure. Ob-
tained results are presented in Table 2. For each variant of SHA-1 (of length 32 - 85)
the second column contains the minimal weight of the pattern we could find. Results
marked with (*) improve results of Biham and Chen [3]. Patterns we investigated
are suitable for attacking only last steps of SHA-1. As the first 20 steps of SHA-1
employ IF boolean function, the first 16 words of disturbance pattern cannot have
ones in the same bit position in two consecutive words. Thus for variants longer than
64, where additional constraint is necessary, we gave weights of unrestricted patterns
which constitute lower bounds on weights of the patterns compliant to IF condition.
We decided to compute lower bound because the algorithm we used ensures that
there is no codeword of lower weight with very high probability. This result seems
not to extend in a straightforward way to the case of search for restricted patterns
and so providing a sound lower bound seems to be more reasonable in this situation.
It is even more relevant in the light of latest achievements of Biham and Chen who
were able to circumvent the obstacle of consecutive ones in many cases [1].

According to Biham and Chen [3], it is also possible to eliminate the probabilistic
behaviour of up to 20 first rounds. Thus the third column (denoted wt20+) contains
minimal weights of patterns where weights of the first 20 steps are not counted.

We were also interested in patterns which do not allow for finding the full colli-
sions but still are suitable for finding near-collisions as this may possibly lead to an
easier way of finding real collisions. To obtain them we relaxed the condition that
the last five words must contain only zeros and allowed for nonzero entries in one
more block. Weights of the best patterns found that way are listed in column wtn.

It is interesting to see that the minimal weights we were able to find are growing
in quite an irregular fashion. In fact, after a rapid jump after reaching 35 steps and
a steady growth up till 47 steps, there is an unexpected downfall to weight 35 on
step 48. The same pattern, which can be found in [16], is suitable for attacks on up
to 53 steps. After 53 steps weights get much higher and as we considered patterns
without restrictions imposed by the IF function in the first 20 steps of SHA-1, the
best pattern for the full SHA-1 will most likely have weight considerably higher than
172.

Let us discuss some bounds on the minimal weights of corrective patterns. Con-
sider the inverse of the transformation (1). It can be written as

Wi = Wi+2 ⊕Wi+8 ⊕Wi+13 ⊕ROR1(Wi+16), 0 ≤ i < 64, (10)

where the last 16 words W64,. . . ,W79 are set arbitrarily.
Although this formula describes essentially the same transform, thanks to the

fact that rotation is now applied to only one variable distant by 16 steps, difference
propagation of (10) is much worse than the original function. In fact, difference in
one bit in one of the last 16 words propagates to only up to 4 different positions and
changes only 55 to 82 bits. It is interesting to note that this peculiar behaviour does
not depend on the rotation amount used in the algorithm but is rather inherent to
the structure of recurrence relations similar to (1).

To estimate the minimal number of ones in the expansion process we divide the
set of ones in two groups: these in the same position that the initial bit and those in
different positions. The size of the first group can be easily found experimentally, as

7

Table 2: Hamming weights of the best patterns found. Column wt contains total
Hamming weights of patterns, wt20+ – weights of patterns with ignored 20 first steps,
column wtn shows total weights of incomplete patterns for near-collisions (ending
with only 4 zero blocks).

steps wt wt20+ wtn steps wt wt20+ wtn steps wt wt20+ wtn
32 9 2 9 50 35 14 35 68 > 122 > 78 > 90
33 9 2 9 51 35 15 35 69 > 127 > 81 > 127
34 9 2 9 52 35 16 35 70 > 139 > 80 > 124
35 28 4 24 53 35 16 35 71 > 157 > 94 > 142
36 24 5 24 54 78 36 75 72 > 163 > 93 > 139
37 25 5 25 55 80 39* 73 73 > 139 > 111 > 139
38 30 8 30 56 79 41 72 74 > 139 > 98 > 139
39 39 8* 35 57 72 42 72 75 > 142 > 90 > 142
40 41 11 38 58 73 42 55 76 > 187 > 111 > 187
41 41 12 41 59 91 51 66 77 > 184 > 108 > 184
42 41 13 34 60 66 44 66 78 > 198 > 115 > 177
43 41 17 41 61 66 44 66 79 > 173 > 115 > 173
44 50 15 42 62 66 45 66 80 > 172 > 106 > 172
45 45 15 45 63 107 64 87 81 > 185 > 117
46 56 23 42 64 > 101 > 60 > 96 82 > 242 > 142
47 56 24* 35 65 > 113 > 66 > 98 83 > 215 > 163
48 35 14 35 66 > 98 > 58 > 98 84 > 161 > 101
49 35 14 35 67 > 127 > 69 > 122 85 > 301 > 177

there are only 216 bit sequences generated by the relation wi = wi+2 ⊕wi+8 ⊕wi+13,
i > 15 and much less of them with 5 leading and 5 trailing zeros. Minimal weights
of such sequences are presented in Table 3. Note that to estimate the number of
ones for a differential pattern of length s, minimal weight of a sequence of length
s + 5 has to be considered with 5 leading and 5 trailing zero bits.

Table 3: Minimal weights of sequences of length s + 5 with 5 leading and 5 trailing
zeros generated by the formula wi = wi+2 ⊕ wi+8 ⊕ wi+13 .

s 32–34 35–38 39,40 41 42,43 44–47 48,49 50 51
min. wt 8 9 11 13 11 14 16 17 16

s 52,53 54–56 57–64 65–67 68–71 72 73–75 76,77 78–85
min. wt 17 18 19 23 22 26 24 29 30

The size of the other group of bits cannot be easily estimated. We only can say
that it contains at least one element for sequences longer than 16. This makes our
estimation work only for not too long variants.

As an example, we can consider the differential pattern for 34 steps (it can be
found on [16]). The first set for sequences of length 34 contains at least 8 nonzero
bits. The second set must contain at least one bit. Thus, we have shown that the
pattern for 34 steps, the same that was used by Biham and Chen to find collisions

8

for 34 steps of SHA-1 [3] is the optimal one for that length.

5 Conclusions

In this paper we presented a way of finding differential patterns for attacks on
reduced variants of SHA-1 and we proved that the problem of finding the best pattern
is equivalent to the problem of finding minimum weight codeword in a particular
linear code. We have found differential patterns for reduced versions of SHA-1
of different lengths between 34 and 85 steps. Our results show that the minimal
weights for reduced variants may vary in an unexpected way, but nevertheless the
longest variant for which the differential attack of Joux and Chabaud with necessary
improvements seems to be possible is the version of the last 53 steps of SHA-1. We
presented the actual differential for this variant and improved in a few places weights
for shorter variants given by Biham and Chen. We also derived some bounds on
minimal weights of differential patterns and proved that the 34 step differential used
by Biham and Chen is the optimal one for this length.

References

[1] E. Biham. New results on SHA-0 and SHA-1. ACAC Seminar talk, 28/01/05,
Macquarie University, http://www.ics.mq.edu.au/acac/seminars/.

[2] E. Biham and R. Chen. Near collisions of SHA-0. In M. Franklin, editor,
CRYPTO’04, volume 3152 of LNCS. Springer-Verlag, 2004.

[3] E. Biham and R. Chen. New results on SHA-0 and SHA-1. Short talk presented
at CRYPTO’04 Rump Session, 2004.

[4] A. Bosselaers and B. Preneel, editors. Integrity Primitives for Secure Informa-
tion Systems. Final Report of RACE Integrity Primitives Evaluation., volume
1007 of LNCS. Springer-Verlag, 1995.

[5] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Trans. Inf. Theory, 44(1):367–378, 1998.

[6] F. Chabaud. On the security of some cryptosystems based on error-correcting
codes. In A. D. Santis, editor, EUROCRYPT ’94, volume 950 of LNCS, pages
131–139. Springer-Verlag, 1995.

[7] F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 56–71. Springer-Verlag, 1998.

[8] B. den Boer and A. Bosselaers. An attack of the last two rounds of MD4.
In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 194–203.
Springer-Verlag, 1991.

[9] H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes, 2(2):1,3–6,
1996.

9

[10] H. Dobbertin. RIPEMD with two-round compress function is not collison free.
J. Cryptology, 10(1):51–70, 1997.

[11] H. Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

[12] FIPS 180. Secure hash standard (SHS). National Institute of Standards and
Technology, May 1993. Replaced by [17].

[13] A. Joux. Collisions in SHA-0. Short talk presented at CRYPTO’04 Rump
Session, 2004.

[14] C. Lemuet. Collision in SHA-0. sci.crypt newsgroup message, Message-ID:
cfg007$1h1b$1@io.uvsq.fr, 12 August 2004.

[15] J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inf. Theory, 34(5):1354–1359, 1988.

[16] K. Matusiewicz and J. Pieprzyk. Finding good differential patterns for attacks
on SHA-1 : Supplementary materials. http://www.ics.mq.edu.au/∼kmatus/
finding/.

[17] National Institute of Standards and Technology. Secure hash standard (SHS).
FIPS 180-2, August 2002.

[18] L. R. Rivest. The MD4 message digest algorithm. In A. J. Menezes and S. A.
Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 303–311. Springer-
Verlag, 1991.

[19] R. L. Rivest. The MD4 message digest algorithm. Request for Comments
(RFC) 1320, Internet Engineering Task Force, April 1992.

[20] R. L. Rivest. The MD5 message digest algorithm. Request for Comments
(RFC) 1321, Internet Engineering Task Force, April 1992.

[21] B. Van Rompay, A. Biryukov, B. Preneel, and J. Vandewalle. Cryptanalysis of
3-pass HAVAL. In C. S. Laih, editor, ASIACRYPT’03, volume 2894 of LNCS,
pages 228–245. Springer-Verlag, 2003.

[22] A. Vardy. The intractability of computing the minimum distance of a code.
IEEE Trans. Inf. Theory, 43(6):1757–1766, 1997.

[23] X. Wang, X. Lai, D. Feng, and H. Yu. Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD. Short talk presented at CRYPTO’04 Rump
Session, 2004.

[24] X. Wang, X. Lai, D. Feng, and H. Yu. Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199,
August 2004. http://eprint.iacr.org/.

[25] Y. Zheng and J. a. Pieprzyk. HAVAL – a one-way hashing algorithm with
variable length of output. In J. Seberry and Y. Zheng, editors, AUSCRYPT’92,
volume 718 of LNCS, pages 83–104. Springer-Verlag, 1993.

10

