
A Critical Look at Cryptographic Hash Function

Literature

Scott Contini, Ron Steinfeld, Josef Pieprzyk, and Krystian Matusiewicz

Centre for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Macquarie University

Abstract. The cryptographic hash function literature has numerous
hash function definitions and hash function requirements, and many of
them disagree. This survey talks about the various definitions, and takes
steps towards cleaning up the literature by explaining how the field has
evolved and accurately depicting the research aims people have today.

1 Introduction

The literature on cryptographic hash functions abounds with numerous differ-
ent definitions and requirements. There is no universal agreement on what a
cryptographic hash function is, or what it is supposed to achieve. The purpose
of this terminology survey is to call the research community together to agree
upon common definitions and requirements so that we can move forward with a
clear set of goals.

As an illustration of the problems, we note that most researchers agree that
a cryptographic hash function should compress data, in particular, it should
map very large domains to fixed size outputs. However, Salsa20 [9] does not
compress, even though it is labelled as a hash function and is used for crypto-
graphic purposes. Furthermore, excluding such non-compressing hash functions,
we note that the research community attempts to bifurcate hash functions into
ordinary hash functions (meaning a single, fixed function) and hash function
families, though this distinction is often blurred. Hash function families were
introduced by Damg̊ard [19] in order to make the security requirements very
precise in the complexity theory model. He specifically looked at collision resis-
tant1 hash function families, where one can aim for an algorithm such that no
polynomially bounded (in time and size) circuit can find collisions. Nowadays,
some people define collision resistant hash functions to be collision resistant [41,
§9.2] while others define them to be both collision resistant and preimage re-
sistant [46, Def. 2.2]. Despite the fact that Damg̊ard’s definition [19] is usually
cited, the current definitions do not seem to make a distinction between ordi-
nary hash functions and hash function families. Apparently these definitions are
supposed to cover both.

Within the literature of ordinary hash functions, we typically find security
requirements such as the following:

1 He actually used the term collision free, but this is no longer in use.

– Preimage resistance: Given y, it must be computationally infeasible to find
x such that h(x) = y.

– Second preimage resistance: Given y and x1 such that h(x1) = y, it must be
computationally infeasible to find x2 6= x1 such that h(x2) = y.

– Collision resistance: It must be computationally infeasible to find any x1 and
x2 such that h(x1) = h(x2).

These definitions are very informal, and attempts at formalizing them have had
differing consequences. For instance, it is often stated that collision resistance
implies second preimage resistance, but according to some interpretations of
these requirements (such as in [41]), the claim is not true (details given later).
Moreover, we note that these ordinary hash functions are used in cryptography
in ways that require more complex properties than the three stated above. For
example, the standardized HMAC [4] requires that the keyed compression func-
tion of the hash function is a pseudo random function family (PRF) [2], and the
theory behind the standardized RSA-OAEP [6] and RSA-PSS [7] assumes the
hash functions are random oracles. Since it is well known that random oracles do
not exist [15], usually people settle for some type of emulation of random oracle
goal. For instance, in NIST’s recent draft call for a new hash standard, one of
the security evaluation criterion is

“The extent to which the algorithm output is indistinguishable from a
random oracle.”

What does this mean? We know that any ordinary hash function can be dis-
tinguished from a random oracle in a single hash function query since random
oracles are secret objects whereas hash functions are entirely public. Since we
have no definition of what random oracle emulation is, we have no objective
way of telling how well candidate hash functions for NIST’s new standard are
behaving.

The main body of this paper elaborates on these and other problems with the
cryptographic hash function literature. Although we do not have all the answers,
we hope that it is a step forward in cleaning up the literature. However, we would
like to emphasize that our criticisms of certain definitions and terminology should
not be interpreted as a criticism of the people that said them. Cryptographic
hash functions has been an evolving subject since its origin. Many people had
good ideas as a step forward, but the ideas have now become obsolete as further
research has been developed. One of the goals of this paper is to point out ideas
which are obsolete so that new research can focus with less ambiguity on the
current understanding of the way hash functions are intended to be used.

Before we begin, we remark that [48] deals with related issues of hash function
terminology. In fact, we will reference this paper many times, since our goals are
overlapping with theirs. However, our focus is more broad and less technical,
and is more of a down-to-earth survey rather than original research.

2 A Brief History of Cryptographic Hashing

Here we outline a brief history on how we arrived to where we are today in
hashing, according to the history we were able to puzzle together. We do not

attempt to cover all hashing issues, only the ones that are most relevant to our
discussions. Note that we are mainly interested in unkeyed hash functions, but
we will talk about some applications where these functions are keyed one way
or another.

2.1 Definitions of Hash Functions

The use of one-way functions (which may be non-compressing) for authentication
was noted in Diffie and Hellman’s New Directions in Cryptography [26], although
they did not use the terminology “hash function”. They claimed to need preimage
resistance (i.e. one-wayness) and second preimage resistance. The term “hash
function” to imply a compressing one-way function seems to come from Merkle
[42] or Rabin [47]. Both were specifically concerned with message authentication,
though not necessarily through public key cryptosystems. At this time, neither
considered collision resistance, but the importance of the concept appeared soon
afterward [55]. As far as we are aware, all subsequent definitions of hash functions
insisted that the functions were compressing2 so for brevity, we will not mention
it any more.

Around the same time, the RSA public key cryptosystem was invented and
soon after attempts at attacking the system were published. Most notably,
Davida [21] demonstrated how to break the RSA signature scheme by a cho-
sen message attack, and improved attacks followed [25]. As a consequence, hash
functions were suggested by a few researchers as a tool for preventing such at-
tacks as well as speeding up signatures. In [22], Denning states that the hash
function should destroy homomorphic structure in the underlying public key
cryptosystem, it should be one-way, and it should be second preimage resis-
tant. Note that collision resistance is not mentioned. In [54], it was specifically
stated that collision resistance is a requirement for hashing in digital signature
schemes, including RSA. However, ironically, he defines one-way hash functions

to be collision-resistant only – the preimage resistance requirement is not stated.
Merkle used similar definitions in 1989 [43] where he defined weak one-way hash

functions (second preimage resistant) and strong one-way hash functions (col-
lision resistant) without explicitly stating the one-way requirement (thus one
could include that they are misnomers). One might assume that the researchers
had a reason to believe that collision resistance implies preimage resistance,
but the implication holds only under certain conditions [19, 49, 51]. Also in 1989,
Damg̊ard formally defined families of collision free hash functions [19], which are
collision resistant in the complexity theory model. However, he remarks that col-
lision resistance does not necessarily imply preimage resistance. Note that both
Denning and Damg̊ard explicitly accepted the heuristic use of hash functions to
securing public key systems since at that time, there was a lack of systems with
a security proof. Later, in Preneel’s PhD Thesis, he notes that there are many
different definitions of hash functions [46], and attempts to clean up the liter-
ature. Citing Merkle’s work as well as Rabin’s, Preneel defines a one-way hash

2 Although [9] is claimed to be a hash function, the author does not seem to give a
definition of hash function.

function to be preimage resistant and second preimage resistant. Additionally,
citing Damg̊ard’s work and Merkle’s work, he defines collision resistant hash

function to be preimage resistant, second preimage resistant, and collision resis-
tant. The Handbook of Applied cryptography [41] accepts Preneel’s definition
of one-way hash function (this may be the first two definitions that agree), yet
they drop the preimage resistance requirement from the definition of collision
resistant hash function. A cursory glance might lead one to think that this defini-
tion of collision resistant hash is the same as Damg̊ard’s families of collision free
hash functions, but they are not. One of the major differences is that Damg̊ard’s
definitions involve families of functions, which makes formalizing the definitions
in the complexity theory model possible. The other definitions are informal, and
attempts at formalizing them have given different results [49]. We will talk more
about this later. A summary of this paragraph is in Table 1.

source function pre. 2 pre. coll. fam.
name resist. resist. resist. funcs.

Winternitz [54] o.w. hash X

Merkle [43] weak o.w. hash X

Merkle [43] strong o.w. hash X

Damg̊ard [19] coll. free hash X X

Preneel [46] o.w. hash X X

Preneel [46] coll. resist. hash X X X

HAC [41] o.w. hash X X

HAC [41] coll. resist. hash X X
Table 1. Different definitions of hash functions and their requirements, according to
various sources in cryptographic hash function literature.

Nowadays, when a new design is created, people typically refer to it as sim-
ply a “hash function” with the intended three properties of collision resistance,
second preimage resistance, and preimage resistance. In some cases, people say
informally that the outputs are also intended to look random. There are also
some designs which are called “collision-resistant hash functions” which, in ad-
dition to collision resistance, may or may not intend to have preimage resistance
and may or may not be a family of functions (depending upon the definition
the inventors use). In general, the more theoretical community does not require
preimage resistance as part of the requirement for collision resistant hashing (for
example, the Merkle-Damg̊ard construct turns a collision resistant compression
function into a collision resistant hash function, but nothing is proved about
preimage resistance). On the other hand, the cryptanalysis literature often looks
at these designs from the viewpoint of an “ideal hash” (more details will be given
below), which should have all of the above properties (except possibly the family
of functions property) and more. In summary, we have practical designers, the-
oreticians, and cryptanalysts all speaking different languages, and even within a
single group they do not necessarily speak the same.

2.2 Random Oracles

As the importance of hash functions became clear, the theoreticians tried to for-
malize concepts such as destroying the homomorphic structure in the underlying
public key cryptosystem. The way forward seemed to be viewing the hash func-
tion as a randomly chosen function from the space of all functions with the same
domain and range. From here came the closely related concepts of random ora-
cles [28] and pseudo random function families (PRFs) [33]. The random oracle in
particular was aimed at modelling the ideal hash function – one that behaves like
a truly random function. The concept was used by Bellare and Rogaway [5] as a
first step between bridging the theory and practice of public key cryptography.
They developed the first practical versions of RSA encryption and signatures
that had some notion of a proof of security – a concept that was long sought
after, since heuristic defenses against attacks on RSA were very ad hoc. Systems
which have security proofs (i.e. security reductions) involving random oracles
are said to be proven secure in the random oracle model. Some interpret these
proofs as an argument that the design is secure against any adversary who treats
the hash function as a black box. The ideas of Bellare and Rogaway came at the
right time since a few years later Bleichenbacher developed a clever attack on
the RSA PKCS #1 encryption standard [10]. Consequently, the standard was
able to be quickly updated to use the ideas of Bellare and Rogaway, namely
RSA-OAEP and RSA-PSS, which have more of a theoretical foundation than
the previous version.

Around the same time as Bleichenbacher’s attack, a new way of performing
public key encryption was developed by Cramer and Shoup [18] that is prov-
ably secure without the use of random oracles. The only thing they require is
a collision resistant hash function, where in this case the exact requirement is
collision resistance only (i.e. not preimage resistance). The Cramer and Shoup
designs are practical, though not as efficient as RSA-OAEP or RSA-PSS. The
theoreticians considered this a great breakthrough – a practical and provably
secure design that relied only on plausible number theory assumptions. Adding
to its significance is research casting doubt on the random oracle model, starting
with the work of Canetti, Goldreich, and Halevi [15] who showed that there are
protocols that are secure in the random oracle model but immediately become
insecure as soon as any concrete hash function is substituted for the random
oracle. Some have criticized this work since the examples are quite artificial, but
newer related results are closer to the real world [3].

Today there is a research trend of avoiding random oracles, though a few
researchers are resisting [38]. Regardless of whether one agrees or disagrees with
random oracle proofs, there are widely used standards whose security founda-
tion is based upon them. We do know that random oracles can never be realized
in practice since these functions are private whereas hash functions are entirely
public objects. Despite this, right now much of the hash function community
is aiming for a function that emulates a random oracle. Unfortunately, nobody
has yet said what this means. Although the topic has been looked at by theo-
reticians (example: [14]), it remains unresolved today. We remark that talking

about distinguishing a hash function from a random oracle seems to be the
wrong concept – one can always distinguish in a single computation since hash
functions are computable whereas random oracles are not. For instance, given
an input/output pair (x, y), we can easily check whether SHA1(x) = y just by
running it through a computer program that implements SHA1. On the other
hand, the probability that some random oracle O also has O(x) = y is 2−160.
So if the SHA1 computation matches, there is no reasonable doubt that it came
from SHA1 instead of a random oracle.

2.3 Other Requirements for Hash Functions

Nowadays, hash functions are used in many different ways in practice. One of the
most common ways is with Message Authentication Codes (MACs) which are a
means that two users with a shared secret key can authenticate between each
other. The widely used HMAC standard comes with a security proof [4]– it is
secure provided that the underlying keyed compression function of the hash is a
PRF. Hash functions are also widely used for pseudo random number generation.
In one instance, security can be proved provided that the hash function behaves
as a PRF where the secret involves adding a key to the message space [23]. See
Table 2 later in our paper.

One of the reasons hash functions have taken on such a diverse role is because
they have not been subject to export regulations, contrary to other cryptographic
primitives. Additionally, they offered speed advantages and could be used with-
out a license (unlike the IDEA block cipher). Today, export regulations are less
strict and there are plenty of efficient alternative public domain cryptographic
primitives available, so the mentioned benefits have disappeared. If we are going
to continue to apply hashing to the various scenarios that we are using today,
then we require a single function that satisfies all of these security requirements.
An alternative is to cut back in the way we are using these functions.

2.4 Summary

Despite Preneel’s efforts at cleaning up the hash literature, we still have multiple
definitions and no clear vision of what exactly the requirements are. There seems
to a few reasons for this. First, we need to carefully distinguish between ordinary
hash functions and hash function families, and what they are aiming to achieve.
Second, the names of the objects we are defining should accurately reflect the
security properties they are intended to have. Third, we need precise definitions
on exactly what properties we require.

3 Ordinary Hash Functions Versus Hash Function

Families

Hash function families were introduced by Damg̊ard [19] in order to make a for-
mal definition of collision resistance in the complexity theory model. Sometimes

the word “ensembles” is used instead of “families.” Damg̊ard’s functions had a
single specific purpose rather than trying to solve all problems at once, contrary
to the current approach used for ordinary hash functions.

Damg̊ard required that there is no polynomially bounded circuit that could
compute a collision with non-negligible probability, where the probability is eval-
uated over all members of the family. The problem with ordinary hash functions
is that collision resistance cannot be defined in this way, since there is only
a single member of the family. In other words, there is always a polynomially
bounded circuit which will compute the collision for an ordinary hash function
– the difficulty is finding that circuit, which depends upon human ignorance [48]
rather than complexity theory. This point must be emphasized. When people
design ordinary hash functions that are intended to be collision resistant, what
they mean is that they have a design for which they believe it is tricky enough
that nobody will be able to come up with a clever way of finding collisions – not

that such algorithms don’t exist.3

Thus, we see that there are different definitions used for ordinary crypto-
graphic hash functions than there are for hash function families and that there
are different research goals. With this is mind, it is a mistake to try to clump
these together and use a single definition to represent both of them. We there-
fore shall treat the two topics separately. As we will justify below, ordinary hash
functions meet engineering requirements but are lacking in a theoretical founda-
tion, while hash function families have the theoretical foundation but are lacking
in practical solutions. These gaps need to be closed.

3.1 Ordinary Hash Functions

By “ordinary hash functions,” we mean the designs like MD5 and SHA-1 that
are used today. We have not yet given a precise definition of what these are – we
shall return to that later. But generally, we are speaking of single functions (not
families) that compress and have additional goals such as collision resistance,
second preimage resistance, and preimage resistance. We are essentially clumping
together the so-called custom designed hash functions with hash functions based
upon block ciphers.

Those who have done research in ordinary hash functions have been more
concerned with engineering requirements than scientific definitions. They aim for
a single solution that has numerous security properties, so that it can substituted
anywhere without having to think about it. However, this view has come at a
cost, since it is not clear that such goals are achieveable. Note that although
the stated goals of such functions are usually only collision resistance, second
preimage resistance, and preimage resistance, in fact the functions are being
used in ways that require additional properties.

3 Rogaway [48] also considers a hybrid variant, where unkeyed hash functions have
a secuity parameter n representing the hash length. Most ordinary hash functions
are currently not built in this way, but it may be advisable to do so in the future.
Another option is custom designed families of functions having a security parameter.

Definitions and Implications of Security Properties Despite the fact that
collision resistance is a central requirement of hash function research, nearly all
analyses involving this concept are in the family of function setting. In practice
we are not at all using that setting. Only recently has the model of human igno-
rance been proposed by Rogaway [48] in order to formalize collision resistance
for ordinary hash functions. The next step is to develop results analagous to [49]
in either the code-constructive or the blackbox-constructive form (see [48]). Note
that the relation between aPre and aSec [49] carries directly over to this setting.
Presumably, collision resistance carries over as well.

It is a convenient time to emphasize the importance of formalizing these
definitions. The definition of second preimage resistance from the Handbook of
Applied Cryptography [41] is:

2nd preimage resistance – it is computationally infeasible to find any
second input which has the same output as any specified input, i.e.,
given x to find a 2nd preimage x′ 6= x such that h(x) = h(x′).

In [49], it is asked whether it is really meant that the specified x can be any

domain point. In fact, this definition is better than most informal definitions
in the sense that it does tell us how x is chosen. But, returning to Rogaway
and Shrimpton’s question, do we really mean any or is it sufficient to require all

except a negligible portion? Or does it not matter at all?

In fact it does matter when one considers the relation between collision re-
sistance and second preimage resistance. Informally, one would argue that the
former trivially implies the latter, since if one can compute second preimages,
then they have found a collision. But this argument is actually not valid for the
Handbook of Applied Cryptography definition since it may be possible that there
is a subset of negligible size where one can trivially compute second preimages,
though in practice it may be impossible to find that subset [24]. For instance,
consider the number theoretic hash of the form h(x) = ax mod N , where N is a
product of two large primes and a is a parameter having certain required prop-
erties – details in [45]. With proper padding (ignored here for simplicity) this
function is provably collision resistant, with a security reduction from integer
factorization. Actually, this is as a family of functions indexed by the modulus,
N , but if we fix N then it becomes an ordinary hash function and we can use
the code- or blackbox-constructive formalization. Despite having a security re-
duction from factoring N to collision finding, one can always trivially compute
second preimages for any value of x that is a multiple of φ(N) since any other
multiple of x is a second preimage. Of course, these pathological messages give
away a break of that hash function, making it so that it is no longer collision re-
sistant. Obviously, if factoring is really a hard problem, then it is safe to assume
that we would never encounter such messages in practice, and therefore such
counterexamples are of no interest. So we really want a definition that reflects
that these negligible probability events should have no real security impact.

With proper definitions and formalizations, it appears that one can indeed
show that collision resistance implies second preimage resistance for ordinary

hash functions, which seemingly would simplify our list of goals for hash func-
tions. Unfortunately, the argument only shows that finding second preimages is
at least as hard as finding collisions, so it only guarantees that finding a second
preimage is at least order 2n/2 effort for a hash with an n−bit output (assuming
the best collision attack is a generic one). Those who do research in ordinary
hash functions often want that second preimages should take 2n effort, though
it usually isn’t explicitly stated. In that case, the security relation between col-
lision resistance and second preimage resistance does not matter to them. A
further setback is [37], which showed that nearly all ordinary hash function con-
structions that are being seriously considered today cannot achieve 2n second
preimage resistance. They suggest that perhaps we should not expect more than
2n/2 security for any aspect of an n−bit hash. On the other hand, new construc-
tions are being considered which might resist the Kelsey and Schneier attack [39].
In any event, the hash function community has to come to a common agreement
on their security goals, and to be very precise about those requirements.

Furthermore, for some reason the hash community has left out the notions of
PRF and random oracle emulation when considering the implications of various
security notions, despite the fact that hash functions are being used for this
purpose. In regard to PRF, the current folklore indicates that we could build
one by taking a hash function and putting a secret element into one of the
inputs (IV or message). But there is no theoretical justification for this idea. In
regard to random oracle emulation, someone should formally define what random
oracle emulation means, and that definition presumably would imply the other
security requirements we have so far listed. Then researchers would have the
single objective goal of designing a hash function that “looks like” a random
oracle, rather than a list of many smaller goals that do not accurately depict all
the necessary security requirements.

In the absence of a satisfactory definition for random oracle emulation, we
face a dilemma for evaluating proposals for new hash function standards. On
the one hand, we would like a new function to support existing random oracle
applications. On the other hand, we do not have a simple well-defined security
requirement on the hash function to support all such applications. In that case,
we could deal with this problem by identifying the main important applications
of a new hash function standard, and then, for each such application, specify in
a well-defined way: (1) the precise details of the application and how it makes
use of the hash function (with the hash function treated as a black box), and (2)
the security requirement on the application incorporating the hash function. For
example, consider the OAEP-RSA public-key encryption application [50], which
makes use of two “Mask Generation Functions” (treated as random oracles in
the security analysis [6, 32]). The precise details of the application and how
it makes use of the hash functions (in particular how the “Mask Generation
Functions” are constructed from a given hash function h) are specified in the
PKCS standard [50] (see in particular the definition of MGF1 in Appendix B.2.1
in [50]), and the precise security requirement on the OAEP-RSA application
is the well-known IND-CCA2 security requirement for public-key encryption

schemes [32]. The important advantage of this approach is that it allows a hash
standard to support the most important random oracle applications of hash
functions with well-defined security requirements for the hash function, allowing
objective evaluation of proposals. The disadvantages of this approach are that
these security requirements are complex (involving details of the applications),
and that the approach introduces a new security requirement for each random
oracle application that is to be supported by the hash standard. However, at
present we do not see any better way available to support all the uses of random
oracles with well-defined security requirements.

An open research problem is find simpler security requirements on the hash
functions, which are sufficient at least for the most popular current applications
of random oracles. Some theoretical progress has been made in this direction over
the last few years [14–16, 3, 11, 27, 12, 13], but more research is needed for such
results to be applicable in practice (e.g. to support the full security requirements
of popular applications provable in the random-oracle model).

3.2 Hash Functions Families

In contrast to ordinary hash functions, the security properties and implications
of hash function families are better understood [49]. Although not explicitly
stated, hash function families seem to have traditionally been aimed at designing
specific solutions for specific problems rather than a one solution for all problems
approach. Where they are lacking is in practical solutions, both at the hash
function design level and the protocol design level, which is entirely the reason
they have so far not been used in practice today.

At the hash function design level, there has been some recent progress towards
making this approach practical. Examples include VSH [17] and FFT Hash [40],
which both achieve provable collision resistance and are approaching practicality.
A preliminary implementation of VSH is reported to be within a factor of 25
of the speed of SHA-1. While both results are encouraging, more needs ot be
done. Solutions need to be developed that have smaller output sizes (especially
for FFT-hash, which requires very large parameters for the security reduction to
hold) and faster speeds. Moreover, there is still no provable and practical hash
solutions for other security needs, such as PRF.

At the protocol level, there have been many new designs that have eliminated
random oracles. The down side is that they usually do not achieve the efficiency
of random oracle based approaches.

4 What to Do about all the Cryptographic Hash

Function Definitions?

We have so far eluded the question of how these hash functions should be defined.
Given that so many people have cluttered the literature with different definitions,
it is against our judgement to offer new definitions that are attempts at overriding
others. However, we do recommend rejecting certain definitions.

Generally, we would like to avoid definitions that do not accurately reflect the
security properties that they are intended to have. Examples include Merkle’s
weak and strong one-way hash functions, Winternitz’s version of a one-way hash
function, and Preneel’s version of a collision-resistant hash function (since the
name does not specify preimage resistance also). We would also like to avoid
definitions that are not mainstream, such as definitions that do not involve com-
pression.

Many hash function designers today simply call their design a “hash function”
without adjectives such as “one-way” or “collision resistant.” An interpretation
of this vernacular is a compressing and easy to compute function that has ad-
ditional security properties. We do not oppose such a definition (although it
is informal), but we do strongly recommend that researchers say exactly what
those additional properties are for their design. In particular, if researchers are
proposing a single solution to be used everywhere like the way we are using
SHA-1 today, then they should include PRF and random oracle emulation in
their stated security goals, and at least include a reference to how to interpet
such definitions formally. Moreover, when researchers develop a hash function
family, do not omit the word “family.”

5 Moving Forward

We recommend that standards bodies involved in selecting new standards for
cryptographic hash functions, in collaboration with the cryptographic commu-
nity, should aim to specify a set of well-defined security requirements for cryp-
tographic hash functions. This set of security requirements would then allow an
objective assessment of the security of candidate functions submitted for stan-
dardization. Such requirements are defined by specifying an interactive computa-

tional game between an adversary and a challenger, and defining a condition on
the outcome of the game which defines success of the adversary in ‘winning’ the
game, and a quantity called the advantage of the adversary (which is determined
by its success probability). The security requirement can then be quantified by
the maximal advantage of the adversary in the game given bounds on its compu-
tational resources (run-time/program, size, number of oracle queries, etc). In the
standard complexity-theory model, the maximal adversary advantage is taken
over all adversaries with the given resource bound. An alternative approach is
the human ignorance model where details can be found in [48].

The security requirements needed from cryptographic hash functions are ulti-
mately determined by their applications. Therefore, as a step towards the above
stated goal, we present below a list of the main current practical applications
of cryptographic hash functions. For each such application, we cite known well-
defined security requirements on the underlying hash function which guaran-
tee the security of the application (if such requirements are known). We also
list other requirements from the hash function (whether a function family is
needed, whether the family key is secret or public, the function input/output
domain) and the relevant references to the literature where the security require-
ment was defined and shown sufficient for the application. To make this survey

self-contained we also provide a definition of the relevant security requirements
(via the games and adversary success conditions) in the Appendix.

We note that this list is not intended to be exhaustive but is presented to
indicate the variety of requirements needed from hash functions today. Other
applications are expected to add yet other new requirements. We also note that
it is debatable whether all the listed applications (and corresponding security
requirements) should in fact be supported by a new hash standard. For example,
applications which need a PRF are usually implementable using a block cipher as
the underlying cryptograpic primitive, rather than a hash function. Indeed, block
ciphers are usually designed to achieve a PRF-like design goal (more precisely
the closely related PRP family goal). On the other hand, it is possible that hash
functions may be preferred for such applications for various (not necessarily
technical) reasons.

App Fam? Key In Out Security Ref.

Sec?

HMAC [31] (a) N – Bb
× Bc Bc h(·, K) and h(K, ·) [2], 1

are PRF families

Deterministic Y N B∗ Bc HK(·) is CR Family [19], 2
Message Y N Bb

× Bc Bc hK(·) is CR Family [19, 20], 2
Hashing for

Secure Sig (b)

Randomized Y N B∗ Bc HK(·) is TCR Family [44], 3
Message Y N B∗ Bc HK(·) is eTCR Family [35], 4

Hashing for N – Bb
× Bc Bc h(·, ·) is e-SPR [35], 5

Secure Sig (b),(c)

RSA-PSS [50] N N B∗ Bc “random oracle” [7], ???
(d) Y N B∗ Bc RSA-PSS (using HK(·))

is EF-CMA [34]

RSA-OAEP [50] N N B∗ Bc “random oracle” [6, 32], ???
(e) Y N B∗ Bc RSAES-OAEP

(using HK(·))
is IND-CCA2 [32]

FIPS 186 N – Bb
× Bc Bc h((· + K) mod 2b, IV) [23], 1

PRG [29, 30] is PRF family (fixed IV)

DSA [29, 30] Y N B∗ Bc DSA (using HK(·))
(f) is EF-CMA [34]

ECDSA [1] Y N B∗ Bc ECDSA (using HK(·))
(f) is EF-CMA [34]

Password N – Bb Bc preimage resistant [53],6
Hashing (g)

Commitments Y N Bb
× Bc Bc hK(·, ·) is CR Family [36], 2

Table 2. List of hash function applications and corresponding requirements. Refer to
the text for more details. Letters in parenthesis (e.g. “(a)”) in the leftmost column
refer to the list of remarks listed below.

We use the following conventions in Table 2. Set B denotes binary set {0, 1}
and B∗ denotes the set of all finite binary strings. Column ‘App’ lists the appli-
cations. For each application, column ‘Fam?’ indicates whether a function family
is required (Y) or not (N). If a function family is needed, column ‘Key Sec?’ in-
dicates whether the function key is secret (Y) or public (N). Columns ’In’ and
’Out’ indicate the required hash function input and output domains respectively
(with typical values). Column ‘Security’ indicates the sufficient security require-
ment required from the hash for the application. Column ‘Ref’ gives a reference
in the literature for relevant security analysis, followed by a security requirement
number, referring to our list of security requirement definitions in the appendix;
if such a well-defined security requirement on the hash is not known, we write
‘???’. Note that for some applications there are several alternative hash function
requirements, any one of which is sufficient for the application; in such cases, we
list the alternatives on separate rows.

Remarks on table entries:

(a) The security requirement stated here are for the “2-key” variant of HMAC
which uses two independent keys [2]. The security proof for the standard “1-
key” variant of HMAC requires an additional ‘related key’ pseudorandomness
assumption on h, see [2].

(b) In these applications the hash function is used to hash a long message prior
to signing the hash value using a secure signature scheme which accepts short
fixed-length input messages (of length at least equal to the output length c
of the hash function). It is assumed that the given signature scheme is fully

secure, i.e. is existentially unforgeable under adaptive chosen message attack
(EF-CMA) [34]. In other words, we assume the hash function is only used
to allow signing arbitrary length messages, and not for strengthening the
security of the underlying signature scheme. This excludes many “classic”
signature schemes such as plain RSA and ElGamal-type signatures (which
are existentially forgeable and not secure against chosen message attacks).
To strengthen such ‘weak’ signature schemes into secure ones, the hash func-
tion requires additional properties beyond collision-resistance. In many such
cases, modelling the hash function as a “random oracle” is enough (see ‘PSS-
RSA’ table entry for example). The hash security requirements listed here
are also sufficient for other ‘integrity checking’ applications, where the mes-
sage hash value is write-protected in some other way (rather than being
signed), e.g. by storing it in a public read-only memory device, and is used
to verify integrity of the message by hashing and comparing with the stored
write-protected hash value.

(c) The alternative in the first row requires signing both the hash value and the
hash randomizer, whereas in the alternatives in the last two rows, only the
hash value needs to be signed.

(d) We refer here to the RSASSA-PSS signature scheme in the PKCS stan-
dard [50]. We denote by EF-CMA the standard security requirement for
signature schemes, namely Existential Unforgeability under adaptive Cho-
sen Message Attack [34].

(e) We refer here to the RSAES-OAEP public-key encryption scheme in the
PKCS standard [50]. We denote by IND-CCA2 the standard security re-
quirement for public-key encryption schemes, namely Indistinguishability
under Adaptive Chosen Ciphertext Attack [32].

(f) Some security results for variants of DSA and ECDSA are known in the
random oracle and generic group models, see [52] for a survey.

(g) For password hashing, applying the results of [53], if maximal adversary
advantage against preimage resistance of h(·) : Bb → Bc is Adv(t) for run-
time t then maximal adversary advantage against preimage resistance of h(·)
when applied to a a uniformly random password from a subset D ⊂ Bb of

size |D| is Adv′(t) ≤ Adv(t)2b

|D| , hence to guarantee Adv′(t) ≤ 1/2s (password

security level of ‘s-bits’) we need a password set D of size at least |D| ≥
(Adv(t) · 2b) · 2s. We note that we assume here (following [53]) that no
‘salting’ is used.

6 Conclusion

The field of cryptographic hash functions has been evolving since its origin ap-
proximately 30 years ago, and will continue to do so for quite some time. The
informality of hash function terminology has resulted in cluttered literature, lack-
ing a clean list of goals summarizing our security requirements. Consequently,
there is no objective way of evaluating the security of new hash function pro-
posals, except designs that are very obviously broken.

This survey has emphasized the importance of formal terminology and a
clear set of objectives. The hope is that researchers will take our view into
consideration as a first step of trying to clean up the cryptographic hashing
literature.

References

1. ANSI X9.62. Public Key Cryptography for the Financial Services Industry: The El-
liptic Curve Digital Signature Algorithm (ECDSA). American National Standards
Institute. American Bankers Association, 1998.

2. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Advances in Cryptology – CRYPTO’06, volume 4117 of LNCS, pages
602–619. Springer, 2006.

3. M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology – EUROCRYPT ’04, volume 3027 of LNCS, pages 171–
188. Springer, 2004.

4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. Lecture Notes in Computer Science, 1109, 1996.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communications

Security, pages 62–73, Fairfax, 1993. ACM.

6. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in

Cryptology – EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer, 1995.
7. M. Bellare and P. Rogaway. The exact security of digital signatures – how to

sign with RSA and Rabin. In Advances in Cryptology – EUROCRYPT’96, volume
1070, pages 399–416. Springer, 1996.

8. M. Bellare and P. Rogaway. Collision-Resistant hashing: Towards making
UOWHFs Practical. In CRYPTO ’97, volume 1294 of LNCS, pages 470–484,
Berlin, 1997. Springer-Verlag.

9. D. J. Bernstein. The Salsa20 hash function. Web page, http://cr.yp.to/salsa20.
html.

10. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on rsa en-
cryption standard pkcs #1. In Advances in Cryptology – CRYPTO’98, volume
1462 of LNCS, pages 1–12. Springer-Verlag, 1998.

11. A. Boldyreva and M. Fischlin. Analysis of random-oracle instantiation scenarios
for OAEP and other practical schemes. In Advances in Cryptology – CRYPTO

’05, volume 3621 of LNCS, pages 412–429. Springer-Verlag, 2005.
12. A. Boldyreva and M. Fischlin. On the security of OAEP. In Advances in Cryptology

– ASIACRYPT ’06, volume 4284 of LNCS, pages 210–225. Springer-Verlag, 2006.
13. D. Brown. Unprovable security of RSA-OAEP in the standard model. Cryptology

ePrint Archive, Report 2006/223, June 2006. http://eprint.iacr.org/.
14. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial

information. In CRYPTO ’97, volume 1294, pages 455–469, London, UK, 1997.
Springer-Verlag.

15. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, 2004.

16. R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash
functions. In STOC ’98, pages 131–140. ACM Press, 1998.

17. S. Contini, A. Lenstra, and R. Steinfeld. VSH, an efficient and provable collision-
resistant hash function. In S. Vaudenay, editor, EUROCRYPT ’06, volume 4004
of Lecture Notes in Computer Science. Springer, 2006.

18. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98, volume 1462 of LNCS,
pages 13–25. Springer, 1998.

19. I. B. Damg̊ard. Collision free hash functions and public key signature schemes. In
Advances in Cryptology – EUROCRYPT’87, volume 304 of LNCS, pages 203–216.
Springer, 1987.

20. I. B. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 416–427.
Springer-Verlag, 1989.

21. G. Davida. Chosen signature cryptanalysis of the RSA (MIT) public key cryp-
tosystem. Tech. Rep., TR-CS-82-2, 1982.

22. D. E. Denning. Digital signatures with RSA and other public-key cryptosystems.
Commun. ACM, 27(4):388–392, 1984.

23. A. Desai, A. Hevia, and Y. Yin. A practice-oriented treatment of pseudorandom
number generators. In EUROCRYPT 2002, pages 368–383. Springer, 2002.

24. Y. G. Desmedt. Private email, 2005.
25. Y. G. Desmedt and A. M. Odlyzko. A chosen text attack on the RSA cryptosystem

and some discrete logarithm schemes. In CRYPTO ’85, pages 516–522. Springer,
1985.

26. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, 1976.

27. Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of full-domain
hash. In CRYPTO ’05, volume 3621 of LNCS, pages 449–466. Springer, 2005.

28. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings on Advances in cryptology—CRYPTO ’86,
pages 186–194, London, UK, 1987. Springer-Verlag.

29. FIPS PUB 186-2. Digital signature standard. National Institute of Standards and
Technology, 1994.

30. FIPS PUB 186-2 (Change Notice 1). Digital signature standard. National Institute
of Standards and Technology, 2001.

31. FIPS PUB 198. The keyed-hash message authentication code (HMAC). National
Institute of Standards and Technology, 2002.

32. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. In Advances in Cryptology– CRYPTO’01, volume 2139, pages
260–274. Springer, 2001.

33. O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications
of random functions. In G. R. Blakley and D. C. Chaum, editors, CRYPTO ’84,
pages 276–288. Springer, 1985. Lecture Notes in Computer Science No. 196.

34. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

35. S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hash-
ing. In Advances in Cryptology - CRYPTO’06, volume 4117 of LNCS, pages 41–59.
Springer, 2006.

36. S. Halevi and S. Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Advances in Cryptology - CRYPTO’96, volume 1109,
pages 201–215, 1996.

37. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much
less than 2n work. In R. Cramer, editor, Advances in Cryptology - EUROCRYPT

2005, volume 3494 of LNCS, pages 474–490. Springer-Verlag, 2005.
38. N. Koblitz and A. J. Menezes. Another look at “provable security”. Journal of

Cryptology, 20(1):3–37, January 2007.
39. S. Lucks. Failure-friendly design principle for hash functions. In B. K. Roy, editor,

Advances in Cryptology - ASIACRYPT ’05, volume 3788 of LNCS, pages 474–494.
Springer, 2005.

40. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably secure FFT
hashing. Second NIST Workshop on Hash Functions, 2006.

41. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.
42. R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis,

Stanford University, 1979.
43. R. C. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances

in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 428 – 446. Springer-
Verlag, 1989.

44. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty First Annual ACM Symposium on

Theory of Computing. ACM Press, 1989.
45. D. Pointcheval. The composite discrete logarithm and secure authentication. In

PKC ’00, pages 113–128, London, UK, 2000. Springer-Verlag.
46. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.

47. M. Rabin. Digitalized signatures. In R. A. DeMillo, D. P. Dobkin, A. K. Jones,
and R. J. Lipton, editors, Foundations of Secure Computation, pages 155–168.
Academic Press, 1978.

48. P. Rogaway. Formalizing human ignorance. In Progress in Cryptology - VI-

ETCRYPT’06, volume 4341, pages 211–228. Springer, 2006.
49. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In Fast Software Encryption – FSE’04, volume 3017 of
LNCS, pages 371–388. Springer, 2004.

50. RSA Laboratories. PKCS ♯1 v2.1: RSA Cryptography Standard, June 2002.
51. D. Stinson. Some observations on the theory of cryptographic hash functions. Des.

Codes Cryptography, 38(2):259–277, 2006.
52. S. Vaudenay. The security of DSA and ECDSA. In PKC 2003, volume 2567 of

LNCS, pages 309–323. Springer-Verlag, 2003.
53. D. Wagner and I. Goldberg. Proofs of security for the unix password hashing

algorithm. In D. Gollmann, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 560–572. Springer-Verlag, 2000.

54. R. S. Winternitz. Producing a one-way hash function from DES. In CRYPTO’83,
pages 203–207, 1983.

55. G. Yuval. How to swindle Rabin. Cryptologia, 3:187–189, 1979.

A Security Requirement Definitions

To make this paper self-contained, we provide here a summary of hash function
security requirement definitions referred to in Table 2 in the text. For each re-
quirement listed, we provide: (a) Input and output domains of the hash function
h , (b) the computational game between the adversary A and the challenger
C, (c) the success condition for the adversary in the game, (d) the definition
of adversary’s advantage in the game, (e) an example of typical required upper
bound for adversary advantage for typical adversary resources (here “run-time”
t is typically measured as the sum of the run-time in machine instructions plus
program length for some fixed computational machine model).

1. Security Requirement: h(K, ·) is a PRF Family [2]
(a) In/Out Domains: h : Bb × Bc → Bc

(b) Game: (1) C chooses uniformly random bit b ∈ B. If b = 0, C chooses
uniformly at random a function h′ : Bc → Bc from the set of all functions
from Bc to Bc. If b = 1, C chooses uniformly at random a key K ∈ Bb.
(2) A runs with no input for time t and makes q queries to oracle F :

Bc → Bc defined as follows: If b = 0, F (x)
def
= h′(x), and if b = 1,

F (x)
def
= h(K, x). At the end of the game, A outputs a bit b′ ∈ B.

(c) A Success Condition: b′ = b.

(d) A Advantage: AdvA

def
= 2|SuccA − 1/2|, where SuccA is A’s success prob-

ability.
(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource

bounds t ≤ 280 and q ≤ 240.

2. Security Requirement: hK(·) is a CR Family [19]
(a) In/Out Domains: hK : Bb × Bc → Bc

(b) Game: (1) C chooses uniformly random hash function key K ∈ K (K
denotes hash family key space). (2) A runs with input K for time t and
outputs m, m′ ∈ Bb × Bc.

(c) A Success Condition: m 6= m′ and hK(m) = hK(m′).

(d) A Advantage: AdvA

def
= SuccA, where SuccA is A’s success probability.

(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource
bounds t ≤ 280.

3. Security Requirement: HK(·) is a TCR4 Family [8, 44]
(a) In/Out Domains: HK : B∗ → Bc

(b) Game: (1) A runs on no input and outputs m ∈ B∗, (2) C chooses
uniformly random hash function key K ∈ K (K denotes hash family key
space), (3) A continues to run on input K (for total time t) and outputs
m′ ∈ B∗.

(c) A Success Condition: m 6= m′ and HK(m) = HK(m′).

(d) A Advantage: AdvA

def
= SuccA, where SuccA is A’s success probability.

(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource
bounds t ≤ 280.

4. Security Requirement: HK(·) is an eTCR Family [35]

(a) In/Out Domains: HK : B∗ → Bc

(b) Game: (1) A runs on no input and outputs m ∈ B∗, (2) C chooses
uniformly random hash function key K ∈ K (K denotes hash family key
space), (3) A continues to run on input K (for total time t) and outputs
K ′ ∈ K, m′ ∈ B∗.

(c) A Success Condition: (m, K) 6= (m′, K ′) and HK(m) = HK′(m′).

(d) A Advantage: AdvA

def
= SuccA, where SuccA is A’s success probability.

(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource
bounds t ≤ 280.

5. Security Requirement: h(·, ·) is e-SPR [35]

(a) In/Out Domains: h : Bb × Bc → Bc

(b) Game: (1) A runs on no input and outputs ℓ values ∆1, . . . , ∆ℓ, each
in Bb, (2) C chooses uniformly random r ∈ Bb and computes m =
r ⊕ ∆ℓ and c = Hc0(r ⊕ ∆1, . . . , r ⊕ ∆ℓ−1) (here c0 ∈ Bc is a fixed IV
and Hc0(x1, . . . , xℓ) denotes the output of the ℓ-block Merkle-Damg̊ard
(MD) iteration function [19] with ℓ message blocks (x1, . . . , xℓ) and IV
c0), (3) A is given r, continues to run (for total time t) and outputs
c′ ∈ Bc, m′ ∈ Bb.

(c) A Success Condition: (m, c) 6= (m′, c′) and h(m, c) = h(m′, c′).

(d) A Advantage: AdvA

def
= SuccA, where SuccA is A’s success probability.

4 The term TCR (Target Collision Resistant) was introduced by Bellare and Rog-
away [8] as an alternative name for UOWHF (Universal One-Way Hash Function),
introduced by Naor and Yung [44]. Both TCR and UOWHF terms are now com-
monly used in the cryptographic literature to refer to this notion.

(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource
bounds t ≤ 280 and ℓ ≤ 264.

6. Security Requirement: h(·) is preimage resistant (one-way) [53]
(a) In/Out Domains: h : Bb → Bc

(b) Game: (1) C chooses uniformly random x ∈ Bb and computes y = f(x),
(2) A runs on input y for time t and outputs x′ ∈ Bb.

(c) A Success Condition: h(x) = h(x′).

(d) A Advantage: AdvA

def
= SuccA, where SuccA is A’s success probability.

(e) Typical Quantitative Requirement: AdvA ≤ 2−80 for any A with resource
bounds t ≤ 280.

