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Persistence of Solutions

We’ll discuss the persistence of solutions to nonlinear equations.
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◦ Newton’s method for solving a nonlinear equation

G(u) = 0 , G(·) , u ∈ Rn ,

may not converge if the “initial guess” is not close to a solution.

◦ However, one can put an artificial homotopy parameter in the equation.

◦ Actually, most equations already have parameters.

◦ We’ll discuss persistence of solutions to parameter-dependent equations.
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The Implicit Function Theorem

Let G : Rn × R → Rn satisfy

(i) G(u0, λ0) = 0 , u0 ∈ Rn , λ0 ∈ R .

(ii) Gu(u0, λ0) is nonsingular (i.e., u0 is an isolated solution) ,

(iii) G and Gu are smooth near u0 .

Then there exists a unique, smooth solution family u(λ) such that

◦ G(u(λ), λ) = 0 , for all λ near λ0 ,

◦ u(λ0) = u0 .

PROOF : See a good Analysis book · · ·
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EXAMPLE: (course demo hom.)

Let
g(u, λ) = (u2 − 1) (u2 − 4) + λ u2 ecu ,

where c is fixed, c = 0.1 .

When λ = 0 the equation
g(u, 0) = 0 ,

has four solutions, namely,

u = ± 1 , and u = ± 2 .

We have

gu(u, λ)
∣∣∣
λ=0

≡ d

du
(u, λ)

∣∣∣
λ=0

= 4u3 − 10u .
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Since
gu(u, 0) = 4u3 − 10u ,

we have

gu(−1, 0) = 6 , gu( 1, 0) = −6 ,

gu(−2, 0) = −12 , gu( 2, 0) = 12 ,

which are all nonzero.

Thus each of the four solutions when λ = 0 is isolated .

Hence each of these solutions persists as λ becomes nonzero,

( at least for “small” values of | λ | · · · ).
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Four solution families of g(u, λ) = 0 . Note the fold.
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NOTE:

◦ Each of the four solutions at λ = 0 is isolated .

◦ Thus each of these solutions persists as λ becomes nonzero.

◦ Only two of the four homotopies ”reach” λ = 1 .

◦ The two other homotopies meet at a fold .

◦ IFT condition (ii) is not satisfied at this fold. (Why not?)
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Consider the equation

G(u, λ) = 0 , u , G(·, ·) ∈ Rn , λ ∈ R .

Let
x ≡ (u , λ) .

Then the equation can be written

G(x) = 0 , G : Rn+1 → Rn .

DEFINITION.

A solution x0 of G(x) = 0 is regular if the matrix

G0
x ≡ Gx(x0) , (with n rows and n+ 1 columns)

has maximal rank, i.e., if
Rank(G0

x) = n .
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In the parameter formulation,

G(u, λ) = 0 ,

we have

Rank(G0
x) = Rank(G0

u | G0
λ) = n ⇐⇒



(i) G0
u is nonsingular,

or

(ii)


dim N (G0

u) = 1 ,
and
G0
λ 6∈ R(G0

u) .

Above,

N (G0
u) denotes the null space of G0

u ,

and

R(G0
u) denotes the range of G0

u ,

i.e., the linear space spanned by the n columns of G0
u .
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THEOREM. Let
x0 ≡ ( u0 , λ0 )

be a regular solution of
G(x) = 0 .

Then, near x0 , there exists a unique one-dimensional solution family

x(s) with x(0) = x0 .

PROOF. Since

Rank( G0
x ) = Rank( G0

u | G0
λ ) = n ,

then either G0
u is nonsingular and by the IFT we have

u = u(λ) near x0 ,

or else we can interchange colums in the Jacobian G0
x to see that the solution

can locally be parametrized by one of the components of u .

Thus a unique solution family passes through a regular solution. •
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NOTE:

◦ Such a solution family is sometimes also called a solution branch .

◦ Case (ii) above is that of a simple fold , to be discussed later.

◦ Thus even near a simple fold there is a unique solution family.

◦ However, near such a fold, the family can not be parametrized by λ.
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EXAMPLE: The A→ B → C reaction. (course demo abc-ss.)

The equations are

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

where

1− u1 is the concentration of A , u2 is the concentration of B ,

u3 is the temperature, α = 1 , σ = 0.04 , B = 8 ,

D is the Damkohler number , β = 1.21 is the heat transfer coefficient .

We compute stationary solutions for varying D.
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Stationary solution family of the A→ B → C reaction for β = 1.15.
Solid/dashed lines denote stable/unstable solutions.

The red square denotes a Hopf bifurcation.
(Course demo abc-ss). Note the two folds .
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Examples of IFT Application

We give examples where the IFT shows that a given solution persists, at least
locally, when a problem parameter is changed.

We also identify some cases where the conditions of the IFT are not satisfied.
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A Predator-Prey Model

(Course demo pp2.)
u′1 = 3u1(1− u1)− u1u2 − λ(1− e−5u1 ) ,

u′2 = −u2 + 3u1u2 .

Here u1 may be thought of as “fish” and u2 as “sharks”, while the term

λ (1− e−5u1 ) ,

represents “fishing”, with “fishing-quota” λ .

When λ = 0 the stationary solutions are

3u1(1− u1)− u1u2 = 0

−u2 + 3u1u2 = 0

 ⇒ (u1, u2) = (0, 0) , (1, 0) , (
1

3
, 2) .
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The Jacobian matrix is

Gu(u1, u2 ; λ) =

(
3− 6u1 − u2 − 5λe

−5u1 −u1

3u2 −1 + 3u1

)

Gu(0, 0 ; 0) =

(
3 0
0 −1

)
; eigenvalues 3, -1 (unstable)

Gu(1, 0 ; 0) =

(
−3 −1

0 2

)
; eigenvalues -3, 2 (unstable)

Gu(
1

3
, 2 ; 0) =

(
−1 −1

3

6 0

)
; eigenvalues (−1±

√
−7)/2 (stable)

All three Jacobians at λ = 0 are nonsingular.

Thus, by the IFT, all three stationary points persist for (small) λ 6= 0 .
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In this problem we can explicitly find all solutions (see Figure 1) :

Branch I :

(u1, u2) = (0 , 0)

Branch II :

u2 = 0 , λ =
3u1(1− u1)

1− e−5u1

( Note that lim
u1 → 0

λ = lim
u1 → 0

3(1− 2u1)

5e−5u1
=

3

5
)

Branch III :

u1 =
1

3
,

2

3
− 1

3
u2 − λ(1− e−5/3) = 0 ⇒ u2 = 2−3λ(1− e−5/3)

These solution families intersect at two branch points, one of which is

(u1, u2, λ) = (0 , 0 , 3/5) .
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Figure 1: Stationary solution families of the predator-prey model. Solid/dashed
lines denote stable/unstable solutions. Note the fold , the bifurcations (open
squares), and the Hopf bifurcation (red square).
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Figure 2: Stationary solution families of the predator-prey model, showing fish
versus quota. Solid/dashed lines denote stable/unstable solutions.
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◦ Stability of branch I :

Gu(0, 0 ; λ) =

(
3− 5λ 0

0 −1

)
; eigenvalues 3− 5λ, − 1 .

Hence the trivial solution is :

unstable if λ < 3/5 ,

and

stable if λ > 3/5 ,

as indicated in Figure 2.

◦ Stability of branch II :

This family has no stable positive solutions.
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◦ Stability of branch III :

At λH ≈ 0.67 ,

(the red square in Figure 2) the complex eigenvalues cross the imaginary axis.

This crossing is a Hopf bifurcation, to be discussed later.

Beyond λH there are periodic solutions.

(See Figure 4 for some representative periodic orbits.)

Their period T increases as λ increases.

The period becomes infinite at λ = λ∞ ≈ 0.70 .

This final orbit is called a heteroclinic cycle.
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Figure 3: Stationary (blue) and periodic (red) solution families of the predator-
prey model.
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Figure 4: Some periodic solutions of the predator-prey model. The largest orbits
are very close to a heteroclinic cycle.
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From Figure 3 we can deduce the solution behavior for (slowly) increasing λ :

- Branch III is followed until λH ≈ 0.67 .

- Periodic solutions of increasing period until λ = λ∞ ≈ 0.70 .

- Collapse to trivial solution (Branch I).

EXERCISE.

Use AUTO to repeat the numerical calculations (course demo pp2) .

Sketch phase plane diagrams for λ = 0, 0.5, 0.68, 0.70, 0.71 .
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The Gelfand-Bratu Problem

(Course demo exp.)


u′′(x) + λ eu(x) = 0 , ∀x ∈ [0, 1] ,

u(0) = u(1) = 0 .

If λ = 0 then u(x) ≡ 0 is a solution.

We’ll prove that this solution is isolated, so that there is a continuation

u = ũ(λ) , for |λ| small .
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Consider

u′′(x) + λ eu(x) = 0

u(0) = 0 , u′(0) = p

 ⇒ u = u( x ; p, λ ) .

We want to solve
u( 1 ; p, λ )︸ ︷︷ ︸
≡G( p, λ )

= 0 ,

for |λ| small .

Here
G( 0 , 0 ) = 0 .
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We must show (IFT) that

Gp( 0 , 0 ) ≡ up( 1 ; 0 , 0 ) 6= 0 :

u
′′
p(x) + λ0 e

u0(x) up(x) = 0 ,

up(0) = 0 , u
′
p(0) = 1 ,

 where u0(x) ≡ 0 .

Now up( x ; 0 , 0 ) satisfies
u
′′
p(x) = 0 ,

up(0) = 0 , u
′
p(0) = 1 .

Hence
up( x ; 0 , 0 ) = x , up( 1 ; 0 , 0 ) = 1 6= 0 .

EXERCISE. Compute the solution family of the Gelfand-Bratu problem as
represented in Figures 5 and 6. (Course demo exp.)
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Figure 5: Bifurcation diagram of the Gelfand-Bratu equation.
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Figure 6: Some solutions to the Gelfand-Bratu equation.
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A Nonlinear Eigenvalue Problem

The BVP 
u′′ + λ (u + u2) = 0 ,

u(0) = u(1) = 0 ,

(course demo nev) , has u(x) ≡ 0 as solution for all λ .

QUESTION: Are there more solutions ?

Equivalently, are there solutions

u = u( x ; p , λ)

to the IVP 
u′′ + λ (u + u2) = 0 ,

u(0) = 0 , u′(0) = p ,

that satisfy

G( p , λ ) ≡ u( 1 ; p , λ ) = 0 , with p 6= 0 ,
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We had 
u′′ + λ (u + u2) = 0 ,

u(0) = 0 , u′(0) = p ,

and
G( p , λ ) ≡ u( 1 ; p , λ ) .

Here
G : R × R → R ,

with
G( 0 , λ ) = 0 , for all λ .

Let

up( x ; p , λ ) =
du

dp
( x ; p , λ ) ,

Gp( p , λ ) = up( 1 ; p , λ ) .
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Then up ( = u0
p ) satisfies

u′′p + λ (1 + 2u) up = 0 ,

up(0) = 0 , u′p(0) = 1 ,

which, about u ≡ 0 , gives
u′′p + λ up = 0 ,

up(0) = 0 , u′p(0) = 1 .

By the variation of parameters formula

up(x; p, λ) =
sin
√
λt√
λ

, λ ≥ 0 , (independent of p).

Gp(0, λ) = up(1; p, λ) =
sin(
√
λ)√
λ

= 0 , if λ = λk ≡ (kπ)2 .

Thus the conditions of the IFT fail to be satisfied at λk = (kπ)2 .

(We will see that these solutions are branch points .)
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Figure 7: Solution families to the nonlinear eigenvalue problem.
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Figure 8: Some solutions to the nonlinear eigenvalue problem.
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Numerical Continuation

We discuss algorithms for computing families of solutions to nonlinear equations.

The IFT is important in the design of such continuation methods.
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Parameter Continuation

Here the continuation parameter is taken to be λ .

Suppose we have a solution (u0, λ0) of

G(u, λ) = 0 ,

as well as the direction vector u̇0 .

Here

u̇ ≡ du

dλ
.

We want to compute the solution u1 at λ1 ≡ λ0 + ∆λ .

37



��

��

��

��

����������������������������������

����
����
����

����
����
����

"u"

u

u

λ λ
λ

u 1
(0)

du
d λ

at λ0 )
u

10

1

0

∆λ

(= 

Figure 9: Graphical interpretation of parameter-continuation.
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To solve the equation
G(u1 , λ1) = 0 ,

for u1 (with λ = λ1 fixed) we use Newton’s method

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = − G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 .

ν = 0, 1, 2, · · · .

As initial approximation use

u
(0)
1 = u0 + ∆λ u̇0 .

If
Gu(u1, λ1) is nonsingular ,

and ∆λ sufficiently small, then the Newton convergence theory guarantees that
this iteration will converge.
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After convergence, the new direction vector u̇1 can be computed by solving

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

This equation follows from differentiating

G(u(λ), λ) = 0 ,

with respect to λ at λ = λ1 .

NOTE:

◦ u̇1 can be computed without another LU -factorization of Gu(u1, λ1) .

◦ Thus the extra work to find u̇1 is negligible.
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EXAMPLE: The Gelfand-Bratu problem (Course demo exp) :

u′′(x) + λ eu(x) = 0 for x ∈ [0, 1] , u(0) = 0 , u(1) = 0 .

If λ = 0 then u(x) ≡ 0 is an isolated solution.

Discretize by introducing a mesh ,

0 = x0 < x1 < · · · < xN = 1 ,

xj − xj−1 = h , (1 ≤ j ≤ N) , h = 1/N .

The discrete equations are :

uj+1 − 2uj + uj−1

h2
+ λ euj = 0 , j = 1, · · · , N − 1 ,

with u0 = uN = 0 .
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Let

u ≡


u1

u2

·
uN−1

 .

Then we can write the above as

G( u , λ ) = 0 ,

where

G : Rn × R → Rn , n ≡ N − 1 .
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Parameter-continuation : Suppose we have

λ0 , u0 , and u̇0 .

Set
λ1 = λ0 + ∆λ .

Newton’s method :

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = −G(u

(ν)
1 , λ1) ,

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 ,

ν = 0, 1, 2, · · · ,

with
u

(0)
1 = u0 + ∆λ u̇0 .

After convergence find u̇1 from

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1) .

Repeat the above procedure to find u2 , u3 , · · · .
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Here

Gu( u , λ ) =


− 2
h2

+ λeu1 1
h2

1
h2

− 2
h2

+ λeu2 1
h2

. . .
. . .

1
h2
− 2
h2

+ λeuN−1

 .

Thus we must solve a tridiagonal system for each Newton iteration.

The solution family has a fold where the parameter-continuation method fails.
(Course demo exp: See the earlier Figures 5 and 6).

NOTE:! There are better discretizations (Collocation!)

44



Keller’s Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold.

Suppose we have a solution (u0, λ0) of

G( u , λ ) = 0 ,

as well as the direction vector (u̇0, λ̇0) of the solution branch.

Pseudo-arclength continuation solves the following equations for (u1, λ1) :

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

See Figure 10 for a graphical interpretation.
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Figure 10: Graphical interpretation of pseudo-arclength continuation.
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Solve the equations

G(u1, λ1) = 0 ,

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0 .

for (u1, λ1) by Newton’s method:

 (G1
u)(ν) (G1

λ)
(ν)

u̇∗0 λ̇0

(∆u
(ν)
1

∆λ
(ν)
1

)
= −

 G(u
(ν)
1 , λ

(ν)
1 )

(u
(ν)
1 − u0)∗u̇0 + (λ

(ν)
1 − λ0)λ̇0 −∆s

 .

Next direction vector : G1
u G1

λ

u̇∗0 λ̇0

( u̇1

λ̇1

)
=

0

1

 .
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NOTE:

◦ We can compute (u̇1, λ̇1) with one extra backsubstitution.

◦ The orientation of the branch is preserved if ∆s is sufficiently small.

◦ Rescale the direction vector so that indeed ‖ u̇1 ‖2 + λ̇2
1 = 1 .
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THEOREM.

The Jacobian of the continuation system is nonsingular

at a regular solution point.

PROOF. Let
x ≡ (u , λ) ∈ Rn+1 .

Then pseudo-arclength continuation can be written as

G(x1) = 0 ,

(x1 − x0)∗ ẋ0 − ∆s = 0 , (‖ ẋ0 ‖ = 1 ) .

(See Figure 11 for a graphical interpretation.)
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G(x1) = 0 ,

(x1 − x0)∗ ẋ0 − ∆s = 0 , (‖ ẋ0 ‖ = 1 ) .

The matrix in Newton’s method at ∆s = 0 is(
G0

x

ẋ∗0

)
.

At a regular solution

N (G0
x) = Span{ẋ0} .

We must show that (
G0

x

ẋ∗0

)

is nonsingular at a regular solution.
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If on the contrary (
G0

x

ẋ∗0

)
is singular then

G0
x z = 0 and ẋ∗0 z = 0 ,

for some vector z 6= 0 .

Thus

z = c ẋ0 , for some constant c .

But then
0 = ẋ∗0 z = c ẋ∗0 ẋ0 = c ‖ ẋ0 ‖2 = c ,

so that z = 0 , which is a contradiction. •
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EXAMPLE:

Use pseudo-arclength continuation for the discretized Gelfand-Bratu problem.

Then the matrix (
Gx

ẋ∗

)
=

(
Gu Gλ

u̇∗ λ̇

)
,

in Newton’s method is a “bordered tridiagonal ” matrix :



◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.
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Following Folds

At a fold the the behavior of a system can change drastically.

It is often useful to determine how the location of a fold changes

when a second parameter changes.

Thus we want the compute a “locus of folds ” in two parameters.
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Simple Folds

A regular solution x0 ≡ (u0, λ0) of G(u, λ) = 0 , is called a simple fold if

dim N (G0
u) = 1 and G0

λ 6∈ R(G0
u) .

From differentiating
G(u(s), λ(s)) = 0 ,

we have
Gu(u(s), λ(s)) u̇(s) + Gλ(u(s), λ(s))λ̇(s) = 0 .

In particular,
G0

u u̇0 = − λ̇0 G0
λ .

At a fold we have G0
λ 6∈ R(G0

u) . Thus

λ̇0 = 0 .

Hence G0
uu̇0 = 0 . Thus, since dim N (G0

u) = 1 , we have

N (G0
u) = Span{u̇0} .
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Differentiating again, we have

G0
u ü0 + G0

λ λ̈0 + G0
uu u̇0 u̇0 + 2G0

uλ u̇0 λ̇0 + G0
λλ λ̇0 λ̇0 = 0 .

At a simple fold (u0, λ0) let

N (G0
u) = Span{φ} , (φ = u̇0) ,

and
N ((G0

u)∗) = Span{ψ} .

Multiply by ψ∗ and use λ̇0 = 0 and ψ ⊥ R(G0
u) to find

ψ∗G0
λ λ̈0 + ψ∗G0

uu φ φ = 0 .

Here ψ∗G0
λ 6= 0 , since G0

λ 6∈ R(G0
u) . Thus

λ̈0 = −ψ∗G0
uuφφ

ψ∗G0
λ

.

If the curvature λ̈0 6= 0 then (u0, λ0) is called a simple quadratic fold.
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The Extended System

To continue a fold in two parameters we use the extended system

G(u, λ, µ) = 0 ,

Gu(u, λ, µ) φ = 0 ,

φ∗φ0 − 1 = 0 .

Here µ ∈ R is a second parameter in the equations.

The vector φ0 is from a “reference solution” (u0,φ0, λ0, µ0) .

(In practice this is the latest computed solution point on the branch.)

The above system has the form

F(U, µ) = 0 , U ≡ (u,φ, λ), F : R2n+1 × R→ R2n+1 ,

or, using the “parameter-free” formulation,

F(X) = 0 , X ≡ (U, µ) , F : R2n+2 → R2n+1 .
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Parameter Continuation

First consider continuing a solution

(u0 , φ0 , λ0) at µ = µ0 ,

in µ (although, in practice, we use pseudo-arclength continuation).

By the IFT there is a smooth solution family

U(µ) = ( u(µ) , φ(µ) , λ(µ) ) ,

if the Jacobian

F0
U ≡

dF

dU
(U0) =


G0

u O G0
λ

G0
uuφ0 G0

u G0
uλφ0

0∗ φ∗0 0

 ,

is nonsingular.
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THEOREM.

A simple quadratic fold with respect to λ can be continued locally, using the
second parameter µ as continuation parameter.

PROOF.

Suppose F0
U is singular. Then

(i) G0
ux + zG0

λ = 0 ,

(ii) G0
uuφ0x + G0

uy + zG0
uλφ0 = 0 ,

(iii) φ∗0y = 0 ,

for some

x,y ∈ Rn , z ∈ R .
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Since G0
λ 6∈ R(G0

u) we have from (i) that z = 0 , and hence

x = c1 φ0 , for some c1 ∈ R .

Multiply (ii) on the left by ψ∗0 , to get

c1 ψ
∗
0G

0
uuφ0φ0 = 0 .

Thus c1 = 0 , because by assumption ψ∗0G
0
uuφ0φ0 6= 0 .

Therefore x = 0 , and from (ii) we now have

G0
uy = 0 , i .e. , y = c2 φ0 .

But then by (iii) c2 = 0 . Thus

x = y = 0 , z = 0 ,

and hence F0
U is nonsingular. ◦
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NOTE:

◦ The zero eigenvalue of G0
u need not be be algebraically simple.

◦ Thus, for example, G0
u may have the form

G0
u =

(
0 1
0 0

)
,

provided the fold is simple and quadratic.

◦ Parameter-continuation fails at folds w.r.t µ on a solution family to

F(U , µ) = 0 .

◦ Such points represent cusps, branch points, or isola formation points.
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Pseudo-Arclength Continuation of Folds

Treat µ as one of the unknowns, and compute a solution family

X(s) ≡ ( u(s) , φ(s) , λ(s) , µ(s) ) ,

to

F(X) ≡



G(u, λ, µ) = 0 ,

Gu(u, λ, µ) φ = 0 ,

φ∗φ0 − 1 = 0 ,

(1)

and the added continuation equation

(u− u0)∗u̇0 + (φ− φ0)∗φ̇0 + (λ− λ0)λ̇0 + (µ− µ0)µ̇0 − ∆s = 0 . (2)

As before,
( u̇0 , φ̇0 , λ̇0 , µ̇0 ) ,

is the direction of the branch at the current solution point

( u0 , φ0 , λ0 , µ0) .
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The Jacobian of F with respect to u , φ , λ , and µ , at

X0 = ( u0 , φ0 , λ0 , µ0 ) ,

is now

F0
X ≡

dF

dX
(X0) ≡

 G0
u O G0

λ G0
µ

G0
uuφ0 G0

u G0
uλφ0 G0

uµφ0

0∗ φ∗0 0 0

 .

For pseudo-arclength continuation we must check that F0
X has full rank.

For a simple quadratic fold with respect to λ this follows from the Theorem.

Otherwise, if
ψ∗0 G0

uu φ0 φ0 6= 0 ,

and
G0
λ ∈ R(G0

u) , G0
µ 6∈ R(G0

u) ,

i.e., if we have a simple quadratic fold with respect to µ , then we can apply the
theorem to F0

X with the second last column struck out, to see that F0
X still

has full rank.
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EXAMPLE: The A→ B → C reaction. (AUTO demo abc-lp.)

The equations are

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

where

1− u1 is the concentration of A , u2 is the concentration of B ,

u3 is the temperature, α = 1 , σ = 0.04 , B = 8 ,

D is the Damkohler number , β is the heat transfer coefficient .

We will compute solutions for varying D and β .
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Figure 12: A stationary solution family of demo abc-lp; β = 1.15.
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Figure 13: The locus of folds of demo abc-lp.
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Figure 14: Stationary solution families for β = 1.15, 1.17, . . . , 1.39.

67



Numerical Treatment of
Bifurcations

Here we discuss branch switching, and the detection of branch points.
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Simple Singular Points

Let
G : Rn+1 → Rn .

A solution
x0 ≡ x(s0) of G(x) = 0 ,

is called a simple singular point if

G0
x ≡ Gx(x0) has rank n− 1 .
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In the parameter formulation, where

G0
x = ( G0

u | G0
λ ) ,

we have that

x0 = (u0, λ0) is a simple singular point

if and only if

(i) dim N (G0
u) = 1 , G0

λ ∈ R(G0
u) ,

or

(ii) dim N (G0
u) = 2 , G0

λ 6∈ R(G0
u) .
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Figure 15: Solution curves of u (λ− u) = 0 , with simple singular point.
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An example of case (ii) is

G(u, λ) =
(
λ − u2

1 − u2
2

u1 u2

)
, at λ = 0 , u1 = u2 = 0 .

Here
G0

u =
(

0 0
0 0

)
, and G0

λ =
(

1
0

)
.

u 2
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Figure 16: Solution curves of G(u, λ) = 0 , with simple singular point.
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Suppose we have a solution family x(s) of

G(x) = 0 ,

where s is some parametrization.

Let

x0 ≡ (u0, λ0) ,

be a simple singular point.

Thus, by definition of simple singular point,

N (G0
x) = Span{φ1,φ2} , N (G0∗

x ) = Span{ψ} .

73



We also have

G(x(s)) = 0 , G0 = G(x0) = 0 ,

Gx(x(s)) ẋ(s) = 0 , G0
x ẋ0 = 0 ,

Gxx(x(s)) ẋ(s) ẋ(s) + Gx(x(s)) ẍ(s) = 0 , G0
xx ẋ0 ẋ0 + G0

x ẍ0 = 0 .

Thus ẋ0 = α φ1 + β φ2 , for some α, β ∈ R , and

ψ∗G0
xx (α φ1 + β φ2) (α φ1 + β φ2) + ψ∗ G0

x︸ ︷︷ ︸
=0

ẍ0 = 0 ,

(ψ∗G0
xxφ1φ1)︸ ︷︷ ︸
c11

α2 + 2 (ψ∗G0
xxφ1φ2)︸ ︷︷ ︸
c12

αβ + (ψ∗G0
xxφ2φ2)︸ ︷︷ ︸
c22

β2 = 0 .

This is the Algebraic Bifurcation equation (ABE).
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We want solution pairs
(α , β) ,

of the ABE, with not both α and β equal to zero.

If the discriminant
∆ ≡ c2

12 − c11 c22 ,

satisfies
∆ > 0 ,

then the ABE has two real, distinct (i.e., linearly independent) solutions,

(α1, β1) and (α2, β2) ,

which are unique up to scaling.

In this case we have a bifurcation, (or branch point), i.e., two distinct branches
pass through x0 .
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Examples of Bifurcations

First we construct the Algebraic Bifurcation Equation (ABE) for our simple
predator-prey model, in order to illustrate the necessary algebraic manipulations.
Thereafter we present a more elaborate application to a nonlinear eigenvalue
problem
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A Predator-Prey Model

In the 2-species predator-prey model


u′1 = 3u1(1− u1)− u1u2 − λ(1− e−5u1 ) ,

u′2 = −u2 + 3u1u2 .

we have

Gx = (Gu1|Gu2|Gλ) =

 3− 6u1 − u2 − 5λe−5u1 −u1 −(1− e−5u1)

3u2 −1 + 3u1 0

 ,

and

Gxx =

(
(−6 + 25λe−5u1 ,−1,−5e−5u1) (−1, 0, 0) (−5e−5u1 , 0, 0)
(0, 3, 0) (3, 0, 0) (0, 0, 0)

)
.
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Figure 17: Two branch points (Solutions 2 and 4) in AUTO demo pp2.

78



At Solution 2 in Figure 17 we have u1 = u2 = 0 , λ = 3/5 , so that

x0 = ( 0 , 0 , 3/5 ) ,

G0
x =

(
0 0 0
0 −1 0

)
, G0∗

x =

 0 0
0 −1
0 0

 ,

N (G0
x) = Span


 0

0
1

 ,

 1
0
0


 , N (G0∗

x ) = Span

{(
1
0

)}
,

and

G0
xx =

(
(9,−1,−5) (−1, 0, 0) (−5, 0, 0)
(0, 3, 0) (3, 0, 0) (0, 0, 0)

)
.

G0
xx φ1 =

(
−5 0 0

0 0 0

)
, G0

xx φ2 =

(
9 −1 −5
0 3 0

)
.
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Thus

ψ∗ G0
xx φ1 φ1 = ψ∗

(
−5 0 0

0 0 0

)
φ1 = ψ∗

(
0
0

)
= 0 ,

ψ∗ G0
xx φ1 φ2 = ψ∗

(
−5 0 0

0 0 0

)
φ2 = ψ∗

(
−5

0

)
= −5 ,

ψ∗ G0
xx φ2 φ2 = ψ∗

(
9 −1 −5
0 3 0

)
φ2 = ψ∗

(
9
0

)
= 9 .

Therefore the ABE is
−10 α β + 9 β2 = 0 .

which has two linearly independent solutions, namely,

(
α
β

)
=

(
1
0

)
,
(

9
10

)
.
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Thus the (non-normalized) directions of the two bifurcation families at x0 are

ẋ0 = (1) φ1 + (0) φ2 =

 0
0
1

 =

 u̇1

u̇2

λ̇

 ,

and

ẋ0 = (9) φ1 + (10) φ2 =

 10
0
9

 =

 u̇1

u̇2

λ̇

 .

NOTE:

◦ The first direction is that of the zero solution family.

◦ The second direction is that of the bifurcating nonzero solution family.

◦ Since λ̇ 6= 0 for the second direction, this is a transcritical bifurcation .

◦ (The case where λ̇ = 0 may correspond to a pitchfork bifurcation .)
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A Nonlinear Eigenvalue Problem

This example makes extensive use of the method of “Variation of Parameters”
for solving linear differential equations. We first recall the use of this method.

Variation of Parameters

If
v′(t) = A(t) v(t) + f(t) ,

then

v(t) = V (t) [v(0) +
∫ t

0
V (s)−1f(s) ds] ,

where V (t) is the solution (matrix) of

V ′(t) = A(t) V (t) ,

V (0) = I .

Here V (t) is called the fundamental solution matrix.
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EXAMPLE:

Apply Variation of Parameters to the equation

v′′ + λ v = f ,

rewritten as 
v′1 = v2 ,

v′2 = −λ v1 + f ,

or (
v′1
v′2

)
=

(
0 1
−λ 0

) (
v1

v2

)
+

(
0
f

)
.

Then

V (t) =

(
cos
√
λt sin

√
λt/
√
λ

−
√
λ sin

√
λt cos

√
λt

)
.
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We find that

V −1(t) =

(
cos
√
λt − sin

√
λt/
√
λ√

λ sin
√
λt cos

√
λt

)
,

V −1(s)

(
0
f

)
=

(
− sin

√
λs f(s)/

√
λ

cos
√
λs f(s)

)
,

so that

(
v1(t)
v2(t)

)
=

 cos
√
λt sin

√
λt/
√
λ

−
√
λ sin

√
λt cos

√
λt



 v1(0)

v2(0)

 +

∫ t

0

 − sin
√
λsf(s)/

√
λ

cos
√
λsf(s)

 ds


Hence

v1(t) = cos(
√
λt) v1(0) +

sin(
√
λt)√
λ

v2(0)

− cos
√
λt

∫ t

0

sin
√
λs f(s)√
λ

ds +
sin
√
λt√
λ

∫ t

0
cos
√
λs f(s) ds .
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For the specific initial value problem


v′′ + λ v = f ,

v(0) = v′(0) = 0 ,

we have

v(t) = v1(t) =
sin
√
λt√
λ

∫ t

0
cos
√
λs f(s) ds − cos

√
λt√
λ

∫ t

0
sin
√
λs f(s) ds .
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Singular points

Consider the nonlinear boundary value problem
u′′ + λ (u + u2) = 0 ,

u(0) = u(1) = 0 ,

which has u(t) ≡ 0 as solution for all λ .

Equivalently, we want the solution

u = u( t ; p , λ) ,

of the initial value problem
u′′ + λ (u + u2) = 0 ,

u(0) = 0 , u′(0) = p ,

that satisfies
G( p , λ ) ≡ u( 1 ; p , λ ) = 0 .
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u′′ + λ (u + u2) = 0 , u(0) = 0 , u′(0) = p

G( p , λ ) ≡ u( 1 ; p , λ ) = 0

We have that

G : R × R → R ,

with
G( 0 , λ ) = 0 , for all λ .

Let

up( t ; p , λ ) =
du

dp
( t ; p , λ ) ,

Gp( p , λ ) = up( 1 ; p , λ ) , etc.
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u′′ + λ (u + u2) = 0 u(0) = 0 , u′(0) = p

Then up ( = u0
p ) satisfies

u′′p + λ (1 + 2u) up = 0 ,

up(0) = 0 , u′p(0) = 1 ,

which, about u ≡ 0 , gives
u′′p + λ up = 0 ,

up(0) = 0 , u′p(0) = 1 .

By the variation of parameters formula

up(t; p, λ) =
sin
√
λt√
λ

, λ ≥ 0 , (independent of p).

Gp(0, λ) = up(1; p, λ) =
sin(
√
λ)√
λ

= 0 , if λ = λk ≡ (kπ)2 .

(We will see that the λk are branch points.)
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u′′ + λ (u + u2) = 0 u(0) = 0 , u′(0) = p

Next, uλ satisfies
u′′λ + u + u2 + λ (1 + 2u) uλ = 0 ,

uλ(0) = 0 , u′λ(1) = 0 ,

which, about u ≡ 0 , gives
u′′λ + λ uλ = 0 ,

uλ(0) = 0 , u′λ(0) = 0 .

from which,

uλ( t ; p , λ ) ≡ 0 , Gλ(0, λ) = uλ(1; 0, λ) = 0 ,

which holds, in particular, at

λ = λk = (kπ)2 .
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Thus, so far we know that

G(0, λ) = 0 , for all λ ,

and if
λ = λk ≡ (kπ)2 ,

then, with
x ≡ (p, λ) ,

we have
G0

x ≡ ( Gp(0, λk) | Gλ(0, λk) ) = (0 | 0) ,

N (G0
x) = Span{

(
1
0

)
,
(

0
1

)
} , (2D) ,

N (G0∗

x ) = Span{(1)} , (1D) .

Thus the solutions
p = 0 , λ = λk = (kπ)2 ,

correspond to simple singular points.
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Construction of the ABE

The ABE is

(ψ∗G0
xxφ1φ1) α2 + 2(ψ∗G0

xxφ1φ2) α β + (ψ∗G0
xxφ2φ2) β2 = 0 ,

where
ψ = 1 ,

G0
xx =

(
(G0

pp | G0
pλ)

∣∣∣ (G0
λp|G0

λλ)
)
,

with

G0
pp = Gpp(0, λk) = upp(1; 0, λk) , etc.
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If the ABE has 2 independent solutions then the bifurcation directions are

(
ṗ
λ̇

)
= α1

(
1
0

)
+ β1

(
0
1

)
=

(
α1

β1

)
,

and (
ṗ
λ̇

)
= α2

(
1
0

)
+ β2

(
0
1

)
=

(
α2

β2

)
.

Since
p = 0 ,

is a solution for all λ , one direction is

(
ṗ
λ̇

)
=

(
0
1

)
.
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u′′ + λ (u + u2) = 0 u(0) = 0 , u′(0) = p

Now upp satisfies
u′′pp + 2λ u2

p + λ (1 + 2u) upp = 0 ,

upp(0) = u′pp(0) = 0 ,

which, about

u ≡ 0 , λ = λk , up(t; p, λ) =
sin
√
λt√
λ

,

gives 
u′′pp + λk upp = − 2λk u

2
p = − 2 sin2

√
λt ,

upp(0) = u′pp(0) = 0 .

that is, 
u′′pp + (kπ)2 upp = − 2 sin2(kπt) ,

upp(0) = u′pp(0) = 0 .

93



By the variation of parameters formula

upp( t ; p , λ ) =

sin kπt

kπ

∫ t

0
cos kπs(−2 sin2 kπs) ds − cos kπt

kπ

∫ t

0
sin kπs(−2 sin2 kπs) ds

= − 2 sin kπt

kπ

∫ t

0
sin2 kπs cos kπs ds +

2 cos kπt

kπ

∫ t

0
sin3 kπs ds ,

and hence

Gpp(0, λk) = upp(1; 0, λk) =
2

3(kπ)2
[1− (−1)k] =


0 , k even ,

4
3(kπ)2

, k odd .
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u′′ + λ (u + u2) = 0 u(0) = 0 , u′(0) = p

Next, upλ satisfies


u′′pλ + (1 + 2u) up + 2λ up uλ + λ (1 + 2u) upλ = 0 ,

upλ(0) = u′pλ(0) = 0 .

which, about

u ≡ 0 , λk = (kπ)2 , up(t; p, λ) =
sin
√
λt√
λ

, uλ = 0 ,

gives 
u′′pλ + k2 π2 upλ = − up = − sin kπt

kπ
,

upλ(0) = u′pλ(0) = 0 .
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Using the variation of parameters formula

upλ(t; p, λ) =

sin kπt

kπ

∫ t

0
cos kπs(

− sin kπs

kπ
) ds − cos kπt

kπ

∫ t

0
sin kπs(

− sin kπs

kπ
) ds

=
sin kπt

(kπ)2

∫ t

0
sin kπs cos kπs ds +

cos kπt

(kπ)2

∫ t

0
sin2 kπs ds ,

and hence

Gpλ(0, λk) = upλ(1; 0, λk) =
1

2(kπ)2
(−1)k =


1

2(kπ)2
, k even ,

−1
2(kπ)2

, k odd .
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u′′ + λ (u + u2) = 0 u(0) = 0 , u′(0) = p

Finally uλλ satisfies
u′′λλ + (1 + 2u) uλ + (1 + 2u) uλ + 2λ u2

λ + λ (1 + 2u) uλλ = 0 ,

uλλ(0) = u′λλ(0) = 0 ,

which, about

u = 0 , uλ = 0 , λ = λk = k2π2 ,

gives 
u′′λλ + k2 π2 uλλ = 0 ,

uλλ(0) = u′λλ(0) = 0 ,

so that
uλλ(t; p, λ) ≡ 0 , Gλλ(0, λk) = uλλ(1; 0, λk) = 0 .
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Thus we have found that

G0
xx =

(
(G0

pp|G0
pλ)
∣∣∣(G0

λp|G0
λλ)

)
=


(
(0| 1

2(kπ)2
)
∣∣∣ ( 1

2(kπ)2
|0)
)

, k even,

(
( 4

3(kπ)2
| −1
2(kπ)2

)
∣∣∣ ( −1

2(kπ)2
|0)
)
, k odd.

The coefficients of the ABE are

ψ∗G0
xxφ1φ1 =


0 , k even,

4
3(kπ)2

, k odd,
ψ∗G0

xxφ1φ2 =


1

2(kπ)2
, k even,

−1
2(kπ)2

, k odd,

ψ∗G0
xxφ2φ2 =


0 , k even,

0 , k odd.
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Thus the ABE is


α β = 0 , k even, Roots : (α, β) = (1, 0) , (0, 1) ,

4
3
α2 − 1

2
α β = 0 , k odd, Roots : (α, β) = (0, 1) , (3, 8) .

The directions of the bifurcating families are:

ẋ =
(
ṗ
λ̇

)
= α φ1 + β φ2 = α

(
1
0

)
+ β

(
0
1

)
,

where

(
ṗ
λ̇

)
=



(
0
1

)
,
(

1
0

)
, k even, (“pitch-fork bifurcation”) ,

(
0
1

)
,
(

3
8

)
, k odd, (“transcritical bifurcation”) .
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Figure 18: The bifurcating families of the nonlinear eigenvalue problem.
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EXERCISE.

◦ Check the above calculations (!).

◦ Use the course demo nev to compute some bifurcating families.

◦ Do the numerical results support the analytical results?

◦ Also carry out the above analysis and AUTO computations for


u′′ + λ (u + u3) = 0 ,

u(0) = u(1) = 0 .
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Branch Switching

◦ Along a solution family we may find branch points .

◦ We give two methods for switching branches .

◦ We also give a method to detect branch points.
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Computing the bifurcation direction

Let
G : Rn+1 → Rn .

Suppose that we have a solution family x(s) of

G(x) = 0 ,

and that
x0 ≡ x(s0) ,

is a simple singular point , i.e., the n by n+ 1 matrix

G0
x ≡ Gx(x0) has rank n− 1 ,

with
N (G0

x) = Span{φ1,φ2} , N (G0∗

x ) = Span{ψ} .
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NOTATION.

◦ ẋ0 = α1 φ1 + β1 φ2 denotes the direction of the ”given” family.

◦ x′0 = α2 φ1 + β2 φ2 denotes the direction of the bifurcating family.

The two coefficient vectors

(α1 , β2) and (α2 , β2) ,

correspond to two linearly independent solutions of the ABE

c11 α
2 + 2 c12 α β + c22 β

2 = 0 .

Assume that the discriminant is positive:

∆ ≡ c2
12 − c11 c22 > 0 .
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Since along the ”given” family we have

G0
x ẋ0 = 0 ,

we can take
φ1 = ẋ0 , ( ẋ0 = α1 φ1 + β1 φ2 ) .

Thus
(α1, β1) = (1, 0)

is a solution of the ABE

c11 α
2 + 2 c12 α β + c22 β

2 = 0 .

Thus
c11 = 0 , and (since c2

12 − c11c22 > 0 ) c12 6= 0 .

The second solution then satisfies

2 c12 α + c22 β = 0 ,

from which,

(α2, β2) = = (c22 ,−2c12) , (unique, up to scaling) .
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To evaluate c12 and c22 , we need the null vectors φ1 and φ2 of G0
x .

φ1 : We already have chosen φ1 = ẋ0 .

φ2 : Choose φ2 ⊥ φ1 . Then φ2 is a null vector of

F0
x =

(
G0

x

ẋ∗0

)
i .e., F 0

x φ2 =
(

G0
x

ẋ∗0

)
φ2 = 0 .

Note that F0
x is the Jacobian of the pseudo-arclength system at x0 !

The null space of F0
x is indeed one-dimensional. (Check!)

ψ : is the left null vector: (G0
x)∗ ψ = 0 , so that also

(F0
x)∗

(
ψ
0

)
= ((G0

x)∗ | ẋ0)
(
ψ
0

)
= 0 ,

i.e., ψ is also the left null vector of F0
x .
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NOTE:

◦ Left and right null vectors of a matrix can be computed at little cost , once
the matrix has been LU decomposed.

◦ After determining the coefficients α2 and β2 , scale the direction vector

x′0 ≡ α2 φ1 + β2 φ2 ,

of the bifurcating family so that

‖ x′0 ‖ = 1 .
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Switching branches

The first solution x1 on the bifurcating family can be computed from :

G(x1) = 0 ,

(x1 − x0)∗x′0 − ∆s = 0 ,
(3)

where
x′0 is the direction of the bifurcating branch.

As initial approximation in Newton’s method take

x
(0)
1 = x0 + ∆s x′0 .

For a graphical interpretation see Figure 19.

NOTE: Computing x′0 requires evaluation of G0
xx .
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Figure 19: Switching branches using the correct bifurcation direction.
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Simplified branch switching

Instead of Eqn. (3) for the first solution on the bifurcating branch, use :

G(x1) = 0 ,

(x1 − x0)∗φ2 − ∆s = 0 .

where φ2 is the second null vector of G0
x , with, as before,

φ2 ⊥ φ1, (φ1 = ẋ0) ,
i.e., (

G0
x

ẋ∗0

)
φ2 = 0 , ‖ φ2 ‖ = 1 .

As initial approximation, now use

x
(0)
1 = x0 + ∆s φ2 .

For a graphical interpretation see Figure 20.
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Figure 20: Switching branches using the orthogonal direction.
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NOTE:

◦ The simplified branch switching method may fail in some situations.

◦ The advantage is that it does not need second derivatives .

◦ The orthogonal direction φ2 can be computed at little cost .

◦ In fact, φ2 is the null vector of the continuation system(
G0

x

ẋ∗0

)
at the branch point.
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Detection of Branch Points

Let
G : Rn+1 → Rn .

Recall that a solution

x0 ≡ x(s0) of G(x) = 0 ,

is a simple singular point if

G0
x ≡ Gx(x0) has rank n− 1 .

Suppose that we have a solution family x(s) of

G(x) = 0 ,
and that

x0 = x(0) ,

is a simple singular point.

Let ẋ0 be the unit tangent to x(s) at x0 .

Assume that x(s) is parametrized by its projection onto ẋ0 . (See Figure 21.)
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Figure 21: Parametrization of a solution family near a branch point.
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Consider the continuation system

F( x ; s ) ≡

 G(x)

(x− x0)∗ẋ0 − s

 . (4)

Then

Fx( x ; s ) = Fx(x) =
(

Gx(x)
ẋ∗0

)
,

and

F0
x ≡ Fx(x0) =

(
G0

x

ẋ∗0

)
.

NOTE: Fx does not explicitly depend on s .
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Take
φ1 = ẋ0 ,

as the first null vector of G0
x .

Thus

F0
x =

(
G0

x

φ∗1

)
.

Choose the second null vector φ2 of G0
x such that

φ∗2 φ1 = 0 .

Then

F0
x φ2 =

(
G0

x

φ∗1

)
φ2 = 0 ,

so that φ2 is also a null vector of F0
x , while φ1 is not.

In fact, F0
x has a one-dimensional nullspace .
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The null vector of

F0∗
x =

(
G0

x

φ∗1

)∗
= ( (G0

x)
∗ | φ1 ) ,

is given by

Ψ ≡
(
ψ
0

)
,

where ψ is the null vector of (G0
x)∗ .

NOTE: Since
G0

x has n rows and n+ 1 columns ,

and
N (G0

x) = Span{φ1, φ2} is assumed two-dimensional ,

it follows that
(G0

x)∗ has n+ 1 rows and n columns ,

and
N (G0∗

x ) = Span{ψ} is one-dimensional .
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THEOREM. Let
x0 = x(0) ,

be a simple singular point on a smooth solution family x(s) of

G(x) = 0 .

Let F(x; s) be as above, i.e., F(x; s) ≡
(

G(x)
(x− x0)∗ẋ0 − s

)
.

Assume that

◦ the discriminant ∆ of the ABE is positive ,

◦ 0 is an algebraically simple eigenvalue of

F0
x ≡

(
G0

x

ẋ∗0

)
.

Then

det Fx(x(s)) = det
(

Gx(x(s))
ẋ∗0

)
,

changes sign at x0 .

118



PROOF.

Consider the parametrized eigenvalue problem

Fx( x(s) ) φ(s) = κ(s) φ(s) ,

where κ(s) and φ(s) are smooth near s = 0 , with

κ(0) = 0 and φ(0) = φ2 ,

i.e., the eigen pair
( κ(s) , φ(s) ) ,

is the continuation of (0,φ2) .

(This can be done because 0 is an algebraically simple eigenvalue.)
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Differentiating

Fx( x(s) ) φ(s) = κ(s) φ(s) ,

gives

Fxx(x(s)) ẋ(s) φ(s) + Fx(x(s)) φ̇(s) = κ̇(s) φ(s) + κ(s) φ̇(s).

Evaluating at s = 0 , using

κ(0) = 0 ,

and
ẋ0 = φ1 and φ(0) = φ2 ,

gives

F0
xx φ1 φ2 + F0

x φ̇(0) = κ̇0 φ2 .
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F0
xx φ1 φ2 + F0

x φ̇(0) = κ̇0 φ2 .

Multiplying this on the left by Ψ∗ we find

κ̇0 =
Ψ∗F0

xxφ1φ2

Ψ∗φ2

=
(ψ∗, 0)

(
G0

xx

0

)
φ1φ2

Ψ∗φ2

=
ψ∗G0

xxφ1φ2

Ψ∗φ2

.

The left and right null vectors ( Ψ and φ2 ) of F0
x cannot be orthogonal

(because the eigenvalue 0 is assumed to be algebraically simple .

Thus

Ψ∗φ2 6= 0 .
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Note that

ψ∗G0
xxφ1φ2 = c12 ,

is a coefficient of the ABE.

By assumption, the discriminant satisfies

∆ 6= 0 .

As before this implies that

c12 6= 0 ,

and hence

κ̇0 6= 0 •
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NOTE:

◦ The Theorem implies that det
(

Gx(x(s))
ẋ∗0

)
changes sign .

◦ Note that ẋ0 is kept fixed.

◦ We haven’t proved that det Fx(x(s)) = det
(

Gx(x(s))
ẋ(s)∗

)
changes sign.

◦ The latter follows from a similar, but more elaborate argument.

◦ Detection of simple singular points is based upon this fact.

◦ During continuation we monitor the determinant of the matrix Fx .

◦ If a sign change is detected then an iterative method can be used to
accurately locate the singular point.

◦ For large systems a scaled determinant avoids overflow .
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The following theorem states that there must be a bifurcation at x0 .

(This result can be proven by degree theory .)

THEOREM.

Let x(s) be a smooth solution family of

F( x ; s ) = 0 ,

where
F : Rn+1 × R → Rn+1 is C1 ,

and assume that

det Fx(x(s); s) changes sign at s = 0 .

Then x(0) is a bifurcation point , i.e., every open neigborhood of x0 contains
a solution of F(x; s) = 0 that does not lie on x(s) .
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Boundary Value Problems
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Boundary Value Problems.

Consider the first order system of ordinary differential equations

u′(t) − f( u(t) , µ , λ ) = 0 , t ∈ [0, 1] ,

where

u(·) , f(·) ∈ Rn , λ ∈ R, µ ∈ Rnµ ,

subject to boundary conditions

b( u(0) , u(1) , µ , λ ) = 0 , b(·) ∈ Rnb ,

and integral constraints∫ 1

0
q( u(s) , µ , λ ) ds = 0 , q(·) ∈ Rnq .
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This boundary value problem (BVP) is of the form

F( X ) = 0 ,

where
X = ( u , µ , λ ) ,

to which we add the continuation equation

< X−X0 , Ẋ0 > − ∆s = 0 ,

where X0 represents the preceding solution on the branch.

In detail, the continuation equation is

∫ 1

0
(u(t)− u0(t))∗u̇0(t) dt + (µ− µ0)µ̇0

+ (λ− λ0)λ̇0 − ∆s = 0 .
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◦ We want to solve BVP for u(·) and µ .

◦ We can think of λ as the continuation parameter .

◦ (In pseudo-arclength continuation, we don’t distinguish µ and λ .)

◦ In order for problem to be formally well-posed we must have

nµ = nb + nq − n ≥ 0 .

◦ A simple case is

nq = 0 , nb = n , for which nµ = 0 .
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Discretization

We discuss “orthogonal collocation with piecewise polynomials ”,

for solving BVPs.

This method is very accurate, and allows adaptive mesh-selection.
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Orthogonal Collocation

Introduce a mesh

{ 0 = t0 < t1 < · · · < tN = 1 } ,

where

hj ≡ tj − tj−1 , (1 ≤ j ≤ N) ,

Define the space of (vector) piecewise polynomials Pm
h as

Pm
h ≡ { ph ∈ C[0, 1] : ph

∣∣∣
[tj−1,tj ]

∈ Pm } ,

where Pm is the space of (vector) polynomials of degree ≤ m .
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The collocation method consists of finding

ph ∈ Pm
h , µ ∈ Rnµ ,

such that the following collocation equations are satisfied:

p′h(zj,i) = f( ph(zj,i) , µ, λ ) , j = 1, · · · , N , i = 1, · · · ,m ,

and such that ph satisfies the boundary and integral conditions .

The collocation points zj,i in each subinterval

[ tj−1 , tj ] ,

are the (scaled) roots of the mth-degree orthogonal polynomial (Gauss points) .

See Figure 22 for a graphical interpretation.
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Figure 22: The mesh {0 = t0 < t1 < · · · < tN = 1} . Collocation points and
“extended-mesh points” are shown for the case m = 3, in the jth mesh interval.
Also shown are two of the four local Lagrange basis polynomials.
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Since each local polynomial is determined by

(m+ 1) n ,

coefficients, the total number of degrees of freedom (considering λ as fixed) is

(m+ 1) n N + nµ .

This is matched by the total number of equations :

collocation : m n N ,

continuity : (N − 1) n ,

constraints : nb + nq ( = n + nµ ) .
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Assume that the solution u(t) of the BVP is sufficiently smooth.

Then the order of accuracy of the orthogonal collocation method is m , i.e.,

‖ ph − u ‖∞ = O(hm) .

At the main meshpoints tj we have superconvergence :

maxj | ph(tj)− u(tj) | = O(h2m) .

The scalar variables µ are also superconvergent.
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Implementation

For each subinterval [ tj−1 , tj ] , introduce the Lagrange basis polynomials

{ `j,i(t) } , j = 1, · · · , N , i = 0, 1, · · · ,m ,

defined by

`j,i(t) =
m∏

k=0,k 6=i

t− tj− k
m

tj− i
m
− tj− k

m

,

where

tj− i
m
≡ tj −

i

m
hj .

The local polynomials can then be written

pj(t) =
m∑
i=0

`j,i(t) uj− i
m
.

With the above choice of basis

uj ∼ u(tj) and uj− i
m
∼ u(tj− i

m
) ,

where u(t) is the solution of the continuous problem.
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The collocation equations are

p
′

j(zj,i) = f( pj(zj,i) , µ , λ ) , i = 1, · · · ,m, j = 1, · · · , N .

The discrete boundary conditions are

bi( u0 , uN , µ , λ ) = 0 , i = 1, · · · , nb .

The integral constraints can be discretized as

N∑
j=1

m∑
i=0

ωj,i qk( uj− i
m
, µ , λ) = 0 , k = 1, · · · , nq ,

where the ωj,i are the Lagrange quadrature weights .
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The continuation equation is∫ 1

0
(u(t) − u0(t))∗u̇0(t) dt + (µ − µ0)∗µ̇0 + (λ − λ0) λ̇0 − ∆s = 0 ,

where

( u0 , µ0 , λ0 ) ,

is the previous solution on the solution branch, and

( u̇0 , µ̇0 , λ̇0 ) ,

is the normalized direction of the branch at the previous solution.

The discretized continuation equation is

N∑
j=1

m∑
i=0

ωj,i [ uj− i
m
− (u0)j− i

m
]∗ (u̇0)j− i

m

+ (µ − µ0)∗µ̇0 + (λ − λ0) λ̇0 − ∆s = 0 .
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Numerical Linear Algebra

The complete discretization consists of

m n N + nb + nq + 1 ,

nonlinear equations, in the unknowns

{uj− i
m
} ∈ RmnN+n , µ ∈ Rnµ , λ ∈ R .

These equations can be solved by a Newton-Chord iteration .
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We illustrate the numerical linear algebra for the case

n = 2 ODEs , N = 4 mesh intervals , m = 3 collocation points ,

nb = 2 boundary conditions , nq = 1 integral constraint ,

and the continuation equation.

◦ The operations are also done on the right hand side , which is not shown.

◦ Entries marked “◦” have been eliminated by Gauss elimination.

◦ Entries marked “·” denote fill-in due to pivoting .

◦ Most of the operations can be done in parallel .
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • •
• • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figure 23: The structure of the Jacobian
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • • •

• • • • • •
• • • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

Figure 24: The system after condensation of parameters.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ? ? ? ?

Figure 25: The preceding matrix, showing the decoupled ? sub-system.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?

Figure 26: Stage 1 of the nested dissection to solve the decoupled ? system.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? ? ? ?

Figure 27: Stage 2 of the nested dissection to solve the decoupled ? system.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + + + + +
+ + + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +

Figure 28: The preceding matrix showing the final decoupled + sub-system.
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u0 u 1
3

u 2
3

u1 u2 u3 uN µ λ

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

? ? ◦ ◦ ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •
? ? ◦ ◦ ◦ ◦ ? ? · · ? ?
? ? ◦ ◦ ◦ ◦ ◦ ? · · ? ?

• • • • • • • • • •
• • ◦ • • • • • • •
• • ◦ ◦ • • • • • •
• • ◦ ◦ ◦ • • • • •

A A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B B + +
A A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B B + +
+ + + + + +
+ + + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +
+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +

Figure 29: The Floquet Multipliers are the eigenvalues of −B−1A .
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Accuracy Test

The Table shows the location of the fold in the Gelfand-Bratu problem for

◦ 4 Gauss collocation points per mesh interval

◦ N mesh intervals

N Fold location
2 3.5137897550
4 3.5138308601
8 3.5138307211

16 3.5138307191
32 3.5138307191
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A Singularly-Perturbed BVP

ε u′′(x) = u(x) u′(x) (u(x)2 − 1) + u(x) .

with boundary conditions

u(0) =
3

2
, u(1) = γ .

Computational formulation

u′1 = u2 ,

u′2 =
λ

ε
( u1 u2 (u2

1 − 1) + u1 ) ,

with boundary conditions

u1(0) = 3/2 , u1(1) = γ .

When λ = 0 an exact solution is

u1(x) =
3

2
+ (γ − 3

2
) x , u2(x) = γ − 3

2
.
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COMPUTATIONAL STEPS: (Course demo spb)

◦ λ is a homotopy parameter to locate a starting solution.

◦ In the first run λ varies from 0 to 1 .

◦ In the second run ε is decreased by continuation.

◦ In the third run ε = 10−3 , and the solution is continued in γ .

◦ This third run takes many continuation steps if ε is very small.
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Figure 30: Bifurcation diagram of the singularly-perturbed BVP.
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Figure 31: Some solutions along the solution family.
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Hopf Bifurcation and Periodic
Solutions

We first introduce the concept of Hopf bifurcation for a “linear” problem.

Then we state the Hopf Bifurcation Theorem (without proof).

We give examples of periodic solutions emanating from Hopf bifurcation points.
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A Linear Example

The linear problem : 
u′1 = λu1 − u2 ,

u′2 = u1 ,
(5)

which can also be written as(
u′1
u′2

)
=

(
λ −1
1 0

)(
u1

u2

)
,

is of the form

u′(t) = A(λ) u(t) ≡ G(u, λ) ,

with stationary solutions,

u1 = u2 = 0 , for all λ .
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The eigenvalues µ of the Jacobian matrix

Gu(u, λ) = A(λ) =

(
λ −1
1 0

)
= Gu(0, λ) ,

satisfy
det( A(λ) − µ I ) = µ2 − λ µ + 1 = 0 ,

from which

µ1,2 =
λ±
√
λ2 − 4

2
.

Consider the initial value problem

u′(t) = A(λ) u(t) ≡ G(u, λ) ,

with

u(0) =
(
u1(0)
u2(0)

)
=

(
p1

p2

)
≡ p .
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Then

u(t) = etA(λ) p = V (λ) etΛ(λ) V −1(λ) p

= V (λ)

(
etµ1(λ) 0

0 etµ2(λ)

)
V −1(λ) p ,

(6)

where

A(λ) V (λ) = V (λ) Λ(λ) , A(λ) = V (λ) Λ(λ) V −1(λ) ,

and

Λ(λ) =

(
µ1(λ) 0

0 µ2(λ)

)
, V (λ) =

(
v11(λ) v12(λ)
v21(λ) v22(λ)

)
.
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Assume that
−2 < λ < 2 ,

and recall that

u(t) = V (λ)

(
etµ1(λ) 0

0 etµ2(λ)

)
V −1(λ) p ,

and

µ1,2 =
λ±
√
λ2 − 4

2
.

Thus we see that

u(t) → 0 if λ < 0 ,

and

u(t) → ∞ if λ > 0 ,

i.e., the zero solution is stable if λ is negative, and unstable if λ is positive.
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However, if λ = 0 , then

A0 ≡ A(0) =

(
0 −1
1 0

)
,

and
µ1 = i, µ2 = − i ,

V0 ≡ V (0) =

(
1 −i
−i 1

)
,

V −1
0 =

1

2

(
1 i
i 1

)
,

so that

u(t) = V0 e
tΛ V −1

0 p =
1

2

(
1 −i
−i 1

)(
eit 0
0 e−it

)(
1 i
i 1

) (
p1

p2

)

=
1

2

(
eit + e−it i(eit − e−it)
−i(eit − e−it) eit + e−it

)(
p1

p2

)
.
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Thus, if λ = 0 , then

(
u1(t)
u2(t)

)
=

(
cos(t) − sin(t)
sin(t) cos(t)

)(
p1

p2

)
=

(
p1 cos(t) − p2 sin(t)
p1 sin(t) + p2 cos(t)

)
,

and we see that

◦ This solution is periodic, with period 2π , for any p1 , p2 .

◦ u1(t)2 + u2(t)2 = p2
1 + p2

2 , (The orbits are circles.) ,

◦ We can fix the phase by setting, for example, p2 = 0 .

◦ (Then u2(0) = 0 .)

◦ This leaves a one-parameter family of periodic solutions.

(See Figures 32 and 33.).

◦ For nonlinear problems the family is generally not “vertical”.
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EXERCISE. (Course demo vhb-lin)

Use AUTO to compute the zero stationary solution family, a Hopf bifurcation,
and the emanating family of periodic solutions, of the “linear” Hopf bifurcation
problem, i.e., of 

u′1 = λu1 − u2 ,

u′2 = u1 .
(7)

NOTE:

◦ The family of periodic solutions is “vertical”, i.e., λ = 0 along it.

◦ This is not “typical” (not “generic”) for Hopf bifurcation.

◦ For the numerically computed family, λ = 0 up to numerical accuracy.

◦ The period is constant, namely, 2π , along the family.

◦ This is also not generic for periodic solutions from a Hopf bifurcation.

◦ The numerical computation of periodic solutions will be considered later.
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Figure 32: Bifurcation diagram of the “linear” Hopf bifurcation problem.
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Figure 33: A phase plot of some periodic solutions.
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The Hopf Bifurcation Theorem

THEOREM. Suppose that along a stationary solution family (u(λ), λ) , of

u′ = f(u, λ) ,

a complex conjugate pair of eigenvalues

α(λ) ± i β(λ) ,

of fu(u(λ), λ) crosses the imaginary axis transversally, i.e., for some λ0 ,

α(λ0) = 0 , β(λ0) 6= 0 , and α̇(λ0) 6= 0 .

Also assume that there are no other eigenvalues on the imaginary axis .

Then there is a Hopf bifurcation, i.e., a family of periodic solutions bifurcates
from the stationary solution at (u0, λ0) . ◦

NOTE: The assumptions also imply that f0
u is nonsingular, so that the station-

ary solution family can indeed be parametrized locally using λ .
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EXERCISE. (Course Demo vhb-hom)

Use AUTO to compute the zero stationary solution family, a Hopf bifurcation,
and the emanating family of periodic solutions for the equation


u′1 = λu1 − u2 ,

u′2 = u1 (1− u1) .
(8)

NOTE:

◦ u(t) ≡ 0 is a stationary solution for all λ .

◦ u(t) ≡
(

1
λ

)
is another stationary solution .
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NOTE:

The Jacobian along the solution family u(t) ≡ 0 is

(
λ −1
1 0

)
,

with eigenvalues
λ ±

√
λ2 − 4

2
.

◦ The eigenvalues are complex for λ ∈ (−2, 2) .

◦ The eigenvalues cross the imaginary axis when λ passes through zero.

◦ Thus there is a Hopf bifurcation along u ≡ 0 at λ = 0 .

◦ A family of periodic solutions bifurcates from u = 0 at λ = 0 .
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Figure 34: Bifurcation diagram for Equation (8).
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Figure 35: A phase plot of some periodic solutions to Equation (8).
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Figure 36: u1 as a function of the scaled time variable t for Equation (8).
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Figure 37: u2 as a function of the scaled time variable t for Equation (8).
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NOTE:

◦ The family of periodic solutions is also “vertical” (non-generic).

◦ The period changes along this family; in fact, the period tends to infinity.

◦ The terminating infinite period orbit is an example of a homoclinic orbit.

◦ This homoclinic orbit contains the stationary point (u1, u2) = (1, 0) .

◦ In the solution diagrams, showing u1 and u2 versus time t , note how
the “peak” in the solution remains in the same location.

◦ This is a result of the numerical “phase-condition”, to be discussed later.
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EXERCISE. (Demo het .)

Use AUTO to compute the zero stationary solution family, a Hopf bifurcation,
and the emanating family of periodic solutions, of the equation


u′1 = λu1 − u2 ,

u′2 = u1 (1− u2
1) .

(9)

NOTE:

◦ u(t) ≡ 0 is a stationary solution for all λ .

◦ There is a Hopf bifurcation along u ≡ 0 at λ = 0 .

◦ u(t) ≡
(

1
λ

)
,

(−1
λ

)
are two more stationary solutions .
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Figure 38: Bifurcation diagram for Equation (9).
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Figure 39: A phase plot of some periodic solutions to Equation (9).
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Figure 40: u1 as a function of the scaled time variable t for Equation (9).
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Figure 41: u2 as a function of the scaled time variable t for Equation (9).
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NOTE:

◦ This family of periodic solutions is also “vertical” (non-generic).

◦ The period along this family also tends to infinity.

◦ The terminating infinite period orbit is an example of a heteroclinic cycle.

◦ This heteroclinic cycle is made up of two heteroclinic orbits.

◦ The heteroclinic orbits contains the stationary points

(u1, u2) = (1, 0) and (u1, u2) = (−1, 0) .
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EXERCISE. (Course demo pp3 .)

Compute the families of periodic solutions that bifurcate from the four Hopf
bifurcation points in the following system; taking p4 = 4 .

u′1(t) = u1 (1− u1) − p4 u1 u2 ,

u′2(t) = − 1
4
u2 + p4 u1 u2 − 3 u2 u3 − p1 (1− e−5u2) ,

u′3(t) = − 1
2
u3 + 3 u2 u3 .

This is a simple predator-prey model where, say,

u1 = plankton, u2 = fish, u3 = sharks, λ ≡ p1 = fishing quota.

The factor

(1 − e−5u2) ,

models that the quota cannot be met if the fish population is small.
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Figure 42: A bifurcation diagram for the 3-species model; with p4 = 4 .
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Figure 43: A bifurcation diagram for the 3-species model; with p4 = 4 .
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Figure 44: A bifurcation diagram for the 3-species model; with p4 = 4 .
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NOTE:

◦ These periodic solution families are not “vertical”. (The generic case.)

◦ A 3D family connects the two Hopf points along the stationary family
along which u1 is constant.

◦ The planar family connects the two Hopf points along the stationary family
along which u1 is not constant.

◦ These two families of periodic solutions “intersect” at a branch point of
periodic solutions, at λ ≈ 0.3012 .

◦ At this point there is an “interchange of stability” between the families.

◦ Stable periodic orbits are denoted by solid blue curves in the diagram.

◦ Unstable periodic orbits are denoted by dashed blue curves in the diagram.
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Figure 45: Stable 3D periodic orbits.
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Figure 46: Stable planar periodic orbits.
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Computing Periodic Solutions

Periodic solutions can be computed very effectively using a BVP approach.

This method also determines the period very accurately.

Moreover, the technique can compute unstable periodic orbits.
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The BVP Approach.

Consider

u′(t) = f( u(t) , λ ) , u(·) , f(·) ∈ Rn , λ ∈ R .

Fix the interval of periodicity by the transformation

t → t

T
.

Then the equation becomes

u′(t) = T f( u(t) , λ ) , u(·) , f(·) ∈ Rn , T , λ ∈ R .

and we seek solutions of period 1 , i.e.,

u(0) = u(1) .

Note that the period T is one of the unknowns.
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The above equations do not uniquely specify u and T :

Assume that we have computed

( uk−1(·) , Tk−1 , λk−1 ) ,

and we want to compute the next solution

( uk(·) , Tk , λk ) .

Specifically, uk(t) can be translated freely in time:

If uk(t) is a periodic solution, then so is

uk(t+ σ) ,

for any σ .

Thus, a “phase condition” is needed.
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An example is the Poincaré orthogonality condition

(uk(0) − uk−1(0))∗ u
′

k−1(0) = 0 .

(Below we derive a numerically more suitable phase condition.)

u k-1 (0)

��

��

u
k-1 (0)

u (0)
k

Figure 47: Graphical interpretation of the Poincaré phase condition.
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Integral Phase Condition

If ũk(t) is a solution then so is

ũk(t+ σ) ,

for any σ .

We want the solution that minimizes

D(σ) ≡
∫ 1

0
‖ ũk(t+ σ) − uk−1(t) ‖2

2 dt .

The optimal solution
ũk(t+ σ̂) ,

must satisfy the necessary condition

D′(σ̂) = 0 .
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Differentiation gives the necessary condition

∫ 1

0
( ũk(t+ σ̂) − uk−1(t) )∗ ũ′k(t+ σ̂) dt = 0 .

Writing
uk(t) ≡ ũk(t+ σ̂) ,

gives ∫ 1

0
( uk(t) − uk−1(t) )∗ u′k(t) dt = 0 .

Integration by parts, using periodicity, gives

∫ 1
0 uk(t)

∗ u
′
k−1(t) dt = 0 .

This is the integral phase condition.
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Continuation of Periodic Solutions

We use pseudo-arclength continuation to follow a family of periodic solutions.

This allows calculation past folds along a family of periodic solutions.

It also allows calculation of a “vertical family” of periodic solutions.

For periodic solutions the continuation equation is

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .
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In summary, we have the following equations for continuing periodic solutions:

u′k(t) = T f( uk(t) , λk ) ,

uk(0) = uk(1) ,

∫ 1

0
uk(t)

∗ u
′

k−1(t) dt = 0 ,

withh continuation equation

∫ 1

0
(uk(t)− uk−1(t))∗u̇k−1(t) dt + (Tk − Tk−1)Ṫk−1 + (λk − λk−1)λ̇k−1 = ∆s .

Here

u(·) , f(·) ∈ Rn , λ , T ∈ R .
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Starting at a Hopf Bifurcation

Let
(u0 , λ0) ,

be a Hopf bifurcation point, i.e.,

fu( u0 , λ0 ) ,

has a simple conjugate pair of purely imaginary eigenvalues

± i ω0 , ω0 6= 0 ,

and no other eigenvalues on the imaginary axis.

Also, the pair crosses the imaginary axis transversally with respect to λ .

By the Hopf Bifurcation Theorem, a family of periodic solutions bifurcates.
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Asymptotic estimates for periodic solutions near the Hopf bifurcation :

u( t ; ε ) = u0 + ε φ(t) + O(ε2) ,

T (ε) = T0 + O(ε2) ,

λ(ε) = λ0 + O(ε2) .

Here ε locally parametrizes the family of periodic solutions.

T (ε) denotes the period, and

T0 =
2π

ω0

.

The function φ(t) is the normalized nonzero periodic solution of the linearized,
constant coefficient problem

φ′(t) = fu(u0, λ0) φ(t) .
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To compute a first periodic solution

( u1(·) , T1 , λ1 ) ,

near a Hopf bifurcation (u0, λ0) , we still have

u′1(t) = T f( u1(t) , λ1 ) , (10)

u1(0) = u1(1) . (11)

Initial estimates for Newton’s method are

u
(0)
1 (t) = u0 + ∆s φ(t) , T

(0)
1 = T0 , λ

(0)
1 = λ0 .
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Above, φ(t) is a nonzero solution of the time-scaled, linearized equations

φ′(t) = T0 fu(u0, λ0) φ(t) , φ(0) = φ(1) ,

namely,

φ(t) = sin(2πt) ws + cos(2πt) wc ,

where
( ws , wc ) ,

is a null vector in

( −ω0 I fu(u0, λ0)
fu(u0, λ0) ω0 I

) (
ws

wc

)
=

(
0
0

)
, ω0 =

2π

T0

.

The nullspace is generically two-dimensional since(−wc

ws

)
,

is also a null vector.
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For the phase equation we “align” u1 with φ(t) , i.e.,

∫ 1
0 u1(t)∗ φ′(t) dt = 0 .

Since

λ̇0 = Ṫ0 = 0 ,

the continuation equation for the first step reduces to

∫ 1
0 ( u1(t)− u0(t) )∗ φ(t) dt = ∆s .
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Accuracy Test

EXERCISE.

A simple accuracy test is to treat the linear equation

u′1(t) = λ u1 − u2 ,

u′2(t) = u1 ,

(course demo vhb-lin) as a bifurcation problem.

◦ It has a Hopf bifurcation point at λ = 0 from the zero solution family.

◦ The bifurcating family of periodic solutions is vertical.

◦ Along the family, the period remains constant, namely, T = 2π .
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For the above problem:

◦ Compute the family of periodic solutions, for different choices of the number
of mesh points and the number of collocation points .

◦ Determine the accuracy of the period of the computed solutions.

Typical results are shown in the Table below:

ntst ncol = 2 ncol = 3 ncol = 4
4 0.47e-1 (5.5) 0.85e-3 (7.9) 0.85e-5 (8.9)
8 0.32e-2 (4.0) 0.14e-4 (6.0) 0.35e-7 (8.0)

16 0.20e-3 (4.0) 0.22e-6 (6.0) 0.14e-9 (8.0)
32 0.13e-4 0.35e-8 0.54e-11

Table 1: Accuracy of T for the linear problem
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EXAMPLE: (Course demo fhn)

The FitzHugh-Nagumo model

u′1 = u1 −
u3

1

3
− u2 + I ,

u′2 = a( u1 + b − cu2 ) .

is a model of spike generation in squid giant axons, where

u1 is the membrane potential ,

u2 is a recovery variable ,

I is the stimulus current .

Take I as bifurcation parameter, and

a = 0.08 , b = 0.7 , c = 0.8 .

If I = 0 then (u1, u2) = (−1.19941 ,−0.62426) is a stationary solution.
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Figure 48: Bifurcation diagram of the Fitzhugh-Nagumo equations.
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Figure 49: A stable periodic solutions .
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Periodically Forced Systems

Here we illustrate computing periodic solutions to a periodically forced system.

In AUTO this can be done by adding a nonlinear oscillator with the desired
periodic forcing as one of its solution components.

An example of such an oscillator is

x′ = x + βy − x (x2 + y2) ,

y′ = −βx + y − y (x2 + y2) ,

which has the asymptotically stable solution

x = sin(βt) , y = cos(βt) .
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EXAMPLE. (Course demo ffn.)

Couple the oscillator

x′ = x + βy − x (x2 + y2) ,

y′ = −βx + y − y (x2 + y2) ,

to the Fitzhugh-Nagumo equations :

v′ = c (v − v3

3
+ w − r y) ,

w′ = −(v − a + b ∗ w)/c ,

where
a = 1.0 , b = 0.8 , c = 3 , and β = 10 .

Note that if
a = 0 and r = 0 ,

then a solution is

x = sin(βt) , y = cos(βt) , v(t) ≡ 0 , w(t) ≡ 0 .
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Computational Steps :

◦ Continue in a from a = 0 to a = 1 .

◦ Continue in r from r = 0 to r = 10 .
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Figure 50: Continuation in r. Solution 2 is a torus bifurcation.
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Figure 51: Some solutions along the path from r = 0 to r = 10 .
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NOTE:

◦ The starting solution at r = 0, with v = w = 0, is unstable.

◦ The oscillation becomes stable when r passes the value rT ≈ 4.52 .

◦ At r = rT there is a torus bifurcation.
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General Non-Autonomous Systems

If the forcing is not periodic, or difficult to model by an autonomous oscillator,
then the equations can be rewritten in autonomous form as follows:

u′(t) = f( t , u(t) ) , u(·) , f(·) ∈ Rn , t ∈ [0, 1] ,

b( u(0) , u(1) ) = 0 , b(·) ∈ Rn ,

can be transformed into

u′(t) = f( v(t) , u(t) ) ,

v′(t) = 1 , v(·) ∈ R ,

b( u(0) , u(1) ) = 0 ,

v(0) = 0 ,

which is autonomous, with n+ 1 ODEs and n+ 1 boundary conditions.
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Periodic Solutions of Conservative Systems

EXAMPLE:
u′1 = − u2 ,

u′2 = u1 (1− u1) .

PROBLEM:

◦ This equation has a family of periodic solutions, but no parameter !

◦ This system has a constant of motion, namely the Hamiltonian

H(u1, u2) = − 1

2
u2

1 −
1

2
u2

2 +
1

3
u3

1 .
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REMEDY:

Introduce an “unfolding term” with “unfolding parameter” λ :

u′1 = λ u1 − u2 ,

u′2 = u1 (1− u1) .

Then there is a “vertical” Hopf bifurcation from the trivial solution at λ = 0 .

(This is course demo vhb-hom.)
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Figure 52: Bifurcation diagram of the “linear” Hopf bifurcation problem.
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NOTE:

◦ The family of periodic solutions is “vertical”.

◦ The parameter λ is solved for in each continuation step.

◦ Upon solving, λ is found to be zero, up to numerical precision.

◦ One can use “standard” BVP continuation and bifurcation software.

211



0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
u1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

u
2

Figure 53: A phase plot of some periodic solutions.
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EXAMPLE : The Circular Restricted 3-Body Problem (CR3BP).

x′′ = 2y′ + x − (1− µ) (x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

,

y′′ = −2x′ + y − (1− µ) y

r3
1

− µ y

r3
2

,

z′′ = −(1− µ) z

r3
1

− µ z

r3
2

,

where

r1 =
√

(x + µ)2 + y2 + z2 , r2 =
√

(x− 1 + µ)2 + y2 + z2 .

and
( x , y , z) ,

denotes the position of the zero-mass body.

For the Earth-Moon system µ ≈ 0.01215 .
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The CR3BP has one integral of motion, namely, the “Jacobi-constant”:

J =
x′2 + y′2 + z′2

2
− U(x, y, z) − µ

1− µ
2

,

where

U =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

,

where

r1 =
√

(x+ µ)2 + y2 + z2 , r2 =
√

(x− 1 + µ)2 + y2 + z2 .
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BOUNDARY VALUE FORMULATION:

x′ = T vx ,

y′ = T vy ,

z′ = T vz ,

v′x = T [ 2vy + x − (1− µ)(x+ µ)r−3
1 − µ(x− 1 + µ)r−3

2 + λ vx ] ,

v′y = T [ − 2vx + y − (1− µ)yr−3
1 − µyr−3

2 + λ vy ] ,

v′z = T [ − (1− µ)zr−3
1 − µzr−3

2 + λ vz ] ,

with periodicity boundary conditions

x(1) = x(0) , y(1) = y(0) , z(1) = z(0) ,

vx(1) = vx(0) , vy(1) = vy(0) , vz(1) = vz(0) ,

+ phase constraint + pseudo-arclength equation.
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NOTE:

◦ One can use standard BVP continuation and bifurcation software.

◦ The “unfolding term” λ ∇v regularizes the continuation.

◦ λ will be ”zero”, once solved for.

◦ Other unfolding terms are possible.
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Families of Periodic Solutions of the Earth-Moon system.
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The planar Lyapunov family L1.
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The Halo family H1.

219



The Halo family H1.
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The Vertical family V1.
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The Axial family A1.
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Following Periodic Orbit Folds

The fold-following algorithm also applies to boundary value problems.

In particular, it applies to folds on families of periodic solutions.
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EXAMPLE: The A→ B → C reaction. (Course demo abc-plp)

The equations are

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

with

α = 1 , σ = 0.04 , B = 8 .

Our varying parameters will be D and β .

224



0.20 0.25 0.30 0.35
Damkohler number

2

3

4

5

6

7

8

9

m
a
x
 u

3

Figure 54: Stationary and periodic solutions of demo abc-plp; β = 1.55.
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Recall that periodic orbits families can be computed using the equations

u′(t) − T f( u(t) , λ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0
u(t)∗ u

′

0(t) dt = 0 ,

where u0 is a reference orbit, typically the latest computed orbit.

The above boundary value problem is of the form

F( X , λ ) = 0 ,

where
X = ( u , T ) .
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At a fold with respect to λ we have

FX( X , λ ) Φ = 0 ,

< Φ , Φ > = 1 ,
where

X = ( u , T ) , Φ = ( v , S ) ,

or, in detail,

v′(t) − T fu( u(t) , λ ) v − S f( u(t) , λ ) = 0 ,

v(0) − v(1) = 0 ,

∫ 1

0
v(t)∗u

′

0(t) dt = 0 ,

∫ 1

0
v(t)∗v(t) dt + S2 = 1 .
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The complete extended system to follow a fold is

F( X , λ , µ ) = 0 ,

FX( X , λ , µ ) Φ = 0 ,

< Φ , Φ > − 1 = 0 ,

with two free problem parameters λ and µ .

To the above we add the continuation equation

< X−X0 , Ẋ0 > + < Φ−Φ0 , Φ̇0 > + (λ−λ0) λ̇0 + (µ−µ0) µ̇0 − ∆s = 0 .
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In detail: u′(t) − T f( u(t) , λ , µ ) = 0 ,

u(0) − u(1) = 0 ,∫ 1

0
u(t)∗u

′

0(t) dt = 0 ,

v′(t) − T fu( u(t) , λ , µ ) v − S f( u(t) , λ , µ ) = 0 ,

v(0) − v(1) = 0 ,∫ 1

0
v(t)∗u

′

0(t) dt = 0 ,

with normalization ∫ 1

0
v(t)∗v(t) dt + S2 − 1 = 0 ,

and continuation equation∫ 1

0
(u(t)− u0(t))∗u̇0(t) dt +

∫ 1

0
(v(t)− v0(t))∗v̇0(t) dt +

+ (T0 − T )Ṫ0 + (S0 − S)Ṡ0 + (λ− λ0)λ̇0 + (µ− µ0)µ̇0 − ∆s = 0 .
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Figure 55: Stationary and periodic solutions of demo abc-plp; β = 1.55.
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Figure 56: The locus of periodic solution folds of demo abc-plp.
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Figure 57: Stationary and periodic solutions of demo abc-plp; β = 1.56.
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Figure 58: Stationary and periodic solutions of demo abc-plp; β = 1.57.
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Figure 59: Stationary and periodic solutions of demo abc-plp; β = 1.58.
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Figure 60: Stationary and periodic solutions of demo abc-plp; β = 1.61.

235



0.20 0.25 0.30 0.35 0.40
Damkohler number

2

3

4

5

6

7

m
a
x
 u

3

Figure 61: Stationary and periodic solutions of demo abc-plp; β = 1.62.
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Following Hopf Bifurcations

We consider the persistence of a Hopf bifurcation as a second parameter is varied.

We give an algorithm to compute a 2-parameter locus of Hopf bifurcations .
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A Hopf bifurcation along a stationary solution family (u(λ), λ) , of

u′ = f(u, λ) ,

occurs when a complex conjugate pair of eigenvalues

α(λ) ± i β(λ) ,

of fu(u(λ), λ) crosses the imaginary axis transversally , i.e., for some λ0 ,

α(λ0) = 0 , α̇(λ0) 6= 0 , and β0 = β(λ0) 6= 0 ,

also assuming there are no other eigenvalues on the imaginary axis.

The assumptions imply that f0
u is nonsingular , so that stationary solution

family can indeed be parametrized locally using λ .

The right and left complex eigenvectors of f0
u = fu(u(λ0), λ0) are defined by

f0
u φ0 = i β0 φ0 , (f0

u)∗ ψ0 = − i β0 ψ0 .
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Transversality and Persistence

THEOREM. The eigenvalue crossing in the Hopf Theorem is transversal if

Re ( ψ∗0 [f0
uu (f0

u)−1 f0
λ − f0

uλ] φ0 ) 6= 0 .

PROOF. Since the eigenvalue
i β0 ,

is algebraically simple, there is a smooth solution family (at least locally) to the
parametrized right and left eigenvalue-eigenvector equations :

(a) fu(u(λ) , λ) φ(λ) = κ(λ) φ(λ) ,

(b) ψ(λ)∗fu(u(λ), λ) = κ(λ) ψ∗(λ) ,

(c) ψ(λ)∗φ(λ) = 1, (and also φ(λ)∗φ(λ) = 1) ,

with
κ(λ0) = i β0 .

(Above, ∗ denotes conjugate transpose.)
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fu(u(λ) , λ) φ(λ) = κ(λ) φ(λ) , ψ(λ)∗fu(u(λ), λ) = κ(λ) ψ∗(λ) , ψ(λ)∗φ(λ) = 1

Differentiation with respect to λ gives

(a) fuuu̇φ + fuλφ + fuφ̇ = κ̇φ + κφ̇ ,

(b) ψ∗fuuu̇ + ψ∗fuλ + ψ̇
∗
fu = κ̇ψ∗ + κψ̇

∗
,

(c) ψ̇
∗
φ + ψ∗φ̇ = 0 .

Multiply
(a) on the left by ψ∗ ,

and
(b) on the right by φ ,

to get

(a) ψ∗fuuu̇ φ + ψ∗fuλ φ + ψ∗fu φ̇ = κ̇ ψ∗φ + κ ψ∗φ̇ ,

(b) ψ∗fuu u̇ φ + ψ∗fuλ φ + ψ̇
∗
fu φ = κ̇ ψ∗φ + κ ψ̇

∗
φ .
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ψ∗fuuu̇ φ + ψ∗fuλ φ + ψ∗fu φ̇ = κ̇ ψ∗φ + κ ψ∗φ̇

ψ∗fuu u̇ φ + ψ∗fuλ φ + ψ̇
∗
fu φ = κ̇ ψ∗φ + κ ψ̇

∗
φ

Adding the above, and using

ψ∗fu︸ ︷︷ ︸
=κψ∗

φ̇ + ψ̇
∗
fuφ︸︷︷︸
=κφ

= κ(ψ∗φ̇ + ψ̇
∗
φ) = κ

d

dλ
(ψ∗φ︸ ︷︷ ︸

=1

) = 0 ,

we find

κ̇ = ψ∗[fuuu̇ + fuλ] φ .
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κ̇ = ψ∗[fuuu̇ + fuλ] φ

From differentiating

f(u(λ), λ) = 0 ,

with respect to λ , we have

u̇ = − (fu)−1 fλ ,

so that
κ̇ = ψ∗[−fuu (fu)−1 fλ + fuλ] φ .

Thus the eigenvalue crossing is transversal if

α̇(0) = Re(κ̇0) = Re(ψ∗0[f0
uu (f0

u)−1 f0
λ − f0

uλ] φ0) 6= 0 . •
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NOTE:

The transversality condition of the Theorem, i.e.,

α̇(0) = [f0
uu(f0

u)−1f0
λ − f0

uλ] φ0 ) 6= 0 ,

is also needed for persistence of the Hopf bifurcation, as shown below.
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The extended system for following Hopf bifurcations is

F(u,φ, β, λ;µ) ≡



f(u, λ, µ) = 0 ,

fu(u, λ, µ) φ − i β φ = 0 ,

φ∗φ0 − 1 = 0 ,

where
F : Rn × Cn × R2 × R → Rn × Cn × C ,

and to which we want to compute a solution family

( u , φ , β , λ , µ ) ,

with
u ∈ Rn, φ ∈ Cn, β, λ, µ ∈ R .

Above φ0 belongs to a “reference solution”

( u0 , φ0 , β0 , λ0 , µ0 ) ,

which typically is the latest computed solution point of a family.
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First consider parametrizing in the second parameter µ , i.e., we seek a family

( u(µ) , φ(µ) , β(µ) , λ(µ) ) .

(In practice, pseudo-arclength continuation is used.)

The derivative with respect to

( u , φ , β , λ ) ,

at the solution point
( u0 , φ0 , β0 , λ0 , µ0 ) ,

is 
f0
u O 0 f0

λ

f0
uuφ0 f0

u − iβ0I −iφ0 f0
uλφ0

0∗ φ∗0 0 0

 . (12)
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The Jacobian is of the form

 A O 0 c1

C D −iφ0 c2

0∗ φ∗0 0 0

 ,

where

A = f0
u (nonsingular), C = f0

uu φ0 , D = f0
u − i β0 I ,

and

c1 = f0
λ , c2 = f0

uλ φ0 ,

with
N (D) = Span{φ0} , N (D∗) = Span{ψ0} ,

where
ψ∗0 φ0 = 1 , φ∗0 φ0 = 1 .
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THEOREM.

If the eigenvalue crossing is transversal , i.e., if

α̇(0) = [f0
uu(f0

u)−1f0
λ − f0

uλ] φ0 ) 6= 0 ,

then the Jacobian matrix (12) is nonsingular.

Hence there locally exists a solution family

( u(µ) , φ(µ) , β(µ) , λ(µ) )

to the extended system

F( u , φ , β , λ ; µ ) = 0 .

Thus the Hopf bifurcation persists under small perturbations of µ .
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PROOF. We prove this by constructing a solution

x ∈ Rn , y ∈ Cn , z1 , z2 ∈ R ,

to  A O 0 c1

C D −iφ0 c2

0∗ φ∗0 0 0




x
y
z1

z2

 =

 f
g
h

 ,

where
f ∈ Rn , g ∈ Cn , h ∈ C .

From the first equation
Ax + z2 c1 = f ,

we have
x = A−1f − z2 A

−1 c1 .

The second equation can then be written

C A−1f − z2 C A−1 c1 + D y − z1 i φ0 + z2 c2 = g .
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C A−1f − z2 C A−1 c1 + D y − z1 i φ0 + z2 c2 = g .

Multiply on the left by ψ∗0 to get

ψ∗0 C A−1 f − z2 ψ
∗
0 C A−1 c1 − z1 i ψ

∗
0 φ0 + z2 ψ

∗
0 c2 = ψ∗0 g .

Recall that
ψ∗0 φ0 = 1 .

Defining
f̃ ≡ C A−1 f , c̃1 ≡ C A−1 c1 .

we have
i z1 + ψ∗0 (c̃1 − c2) z2 = ψ∗0 (f̃ − g) .

Computationally f̃ and c̃1 are obtained from

A f̂ = f , A ĉ1 = c1 ,

f̃ = C f̂ , c̃1 = C ĉ1 .
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i z1 + ψ∗0 (c̃1 − c2) z2 = ψ∗0 (f̃ − g)

Separate real and imaginary part of this equation, and use the fact that

z1 and z2 are real ,

to get
Re( ψ∗0 [c̃1 − c2] ) z2 = Re( ψ∗0 [f̃ − g] ) ,

z1 + Im( ψ∗0 [c̃1 − c2] ) z2 = Im( ψ∗0 [f̃ − g] ) ,

from which

z2 =
Re( ψ∗0 [f̃ − g] )

Re( ψ∗0 [c̃1 − c2] )
,

z1 = − z2 Im( ψ∗0 [c̃1 − c2] ) + Im( ψ∗0 [f̃ − g] ) .
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Now solve for x in

A x = f − z2 c1 ,

and compute a particular solution yp to

D y = g − C x + i z1 φ0 − z2 c2 .

Then

y = yp + α φ0 , α ∈ C .

The third equation is

φ∗0 y = φ∗0 yp + α φ∗0 φ0 = h ,

from which, using φ∗0 φ0 = 1 ,

α = h − φ∗0 yp .
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The above construction can be carried out if

Re( ψ∗0 [c̃1 − c2] ) 6= 0 .

However, using the definition of c̃1 and c2 , we have

Re( ψ∗0 [c̃1 − c2] ) = Re( ψ∗0 [C A−1 c1 − c2] )

= Re( ψ∗0 [f0
uu φ0 (f0

u)−1f0
λ − f0

uλ φ0] )

= Re( ψ∗0 [f0
uu (f0

u)−1f0
λ − f0

uλ] φ0 )

= Re(κ̇0) 6= 0 . •
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NOTE:

◦ The proof provides an efficient algorithm for the Newton equations.

◦ ( i.e. , when using parameter continuation · · · )

◦ In practice we use pseudo-arclength continuation .

◦ This allows passing folds w. r. t. the second parameter µ .
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Practical Continuation of Hopf Bifurcations

Recall that the extended system for following Hopf bifurcations is

F(u,φ, β, λ;µ) ≡



f(u, λ, µ) = 0 ,

fu(u, λ, µ) φ − i β φ = 0 ,

φ∗φ0 − 1 = 0 ,

where
F : Rn × Cn × R2 × R → Rn × Cn × C ,

and to which we want to compute a solution family

( u , φ , β , λ , µ ) , with u ∈ Rn, φ ∈ Cn, β, λ, µ ∈ R .

Treat µ as an unknown, and add the continuation equation

(u−u0)∗u̇0 + (φ−φ0)∗φ̇0 +(β−β0)β̇0 + (λ−λ0)λ̇0 + (µ−µ0)µ̇0 − ∆s = 0 .
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EXERCISE. (Course demo pp3)

Investigate the Hopf bifurcations in the system

u′1(t) = u1 (1− u1) − p4 u1 u2 ,

u′2(t) = − 1
4
u2 + p4 u1 u2 − 3 u2 u3 − p1 (1− e−5u2) ,

u′3(t) = − 1
2
u3 + 3 u2 u3 .

This is the predator-prey model, where

u1 ∼ plankton, u2 ∼ fish, u3 ∼ sharks, λ ≡ p1 ∼ fishing quota.

(See also Figure 44.)
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Figure 62: A bifurcation diagram for the 3-species model; with p4 = 3 .
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Figure 63: Loci of Hopf bifurcations for the 3-species model.
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Figure 64: A bifurcation diagram for the 3-species model; with p4 = 4 .
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EXERCISE. (Course demo abc-hb)

Compute loci of Hopf bifurcation points for the A→ B → C reaction

u′1 = −u1 + D(1− u1)eu3 ,

u′2 = −u2 + D(1− u1)eu3 − Dσu2e
u3 ,

u′3 = −u3 − βu3 + DB(1− u1)eu3 + DBασu2e
u3 ,

with

α = 1 , σ = 0.04 , B = 8 ,

and varying D and β .
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Stationary solution family of the A→ B → C reaction for β = 1.15.
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Figure 65: A locus of Hopf bifurcations.
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Figure 66: Diagrams for β = 1.2 , 1.3 , 1.4 , 1.5 , 1.6 , 1.7 , 1.8 .
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Stable and Unstable Manifolds

◦ One can also use continuation to compute solution families of IVP.

◦ In particular, one can compute stable and unstable manifolds .
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Example: The Lorenz Equations

(Course demo lrz)

x′ = σ (y − x) ,

y′ = ρ x − y − x z ,

z′ = x y − β z ,

where
σ = 10 and β = 8/3 .
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Figure 67: Bifurcation diagram of the Lorenz equations.
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NOTE:

◦ The zero solution is unstable for ρ > 1 .

◦ Two nonzero stationary solutions bifurcate at ρ = 1 .

◦ The nonzero stationary solutions become unstable for ρ > ρH .

◦ At ρH ( ρH ≈ 24.7 ) there are Hopf bifurcations.

◦ Unstable periodic solutions emanate from each Hopf bifurcation.

◦ These families end in homoclinic orbits (infinite period) at ρ ≈ 13.9 .

◦ For ρ > ρH there is the famous Lorenz attractor.
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Figure 68: Unstable periodic orbits of the Lorenz equations.
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The Lorenz Manifold

(Course demo lrz-man)

◦ For ρ > 1 the origin is a saddle point .

◦ The Jacobian has two negative eigenvalues and one positive eigenvalue.

◦ The two negative eigenvalues give rise to a 2D stable manifold .

◦ This manifold is known as as the Lorenz Manifold .

◦ The Lorenz Manifold helps us understand the Lorenz attractor .
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The Lorenz Equations: rho = 60

Figure 69: Three orbits whose initial conditions agree to >11 decimal places !
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Figure 70: A small portion of a Lorenz Manifold · · ·
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Figure 71: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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Figure 72: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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Figure 73: Intersection of a Lorenz Manifold with a sphere (ρ = 35, R = 100).
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How was the Lorenz Manifold computed?

First compute an orbit u0(t) , for t from 0 to T0 (where T0 < 0) , with

u0(0) close to the origin 0 ,
and

u0(0) in the stable eigenspace spanned by v1 and v2 ,

that is,

u0(0) = 0 + ε

(
cos(2πθ)

|µ1|
v1 −

sin(2πθ)

|µ2|
v2

)
,

for, say, θ = 0 .
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Scale time

t → t

T0

,

Then the initial orbit satisfies

u′0(t) = T0 f( u0(t) ) , for 0 ≤ t ≤ 1 ,

and
u0(0) =

ε

|µ1|
v1 .

The initial orbit has length

L = T0

∫ 1

0
|| f(u0(s)) || ds .
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Thus the initial orbit corresponds to a solution X0 of the equation

F(X) = 0 ,

where

F(X) ≡



u′(t)− T f(u(t))

u(0) − ε
(

cos(θ)
|µ1| v1 − sin(θ)

|µ2| v2

)
T
∫ 1

0 || f(u) || ds − L

with X = ( u(·) , θ , T ) , (for given L and ε) ,

and

X0 = ( u0(·) , 0 , T0 ) .

276



As before, the continuation system is

F(Xk) = 0 ,

< Xk −Xk−1 , Ẋk−1 > − ∆s = 0 , ( ‖ Ẋk−1 ‖ = 1 ) ,

and

X = ( u(·) , θ , T ) , (keeping L and ε fixed) ,

or

X = ( u(·) , θ , L ) , (keeping T and ε fixed) ,

or ( for computing the starting orbit u0(t) ) ,

X = ( u(·) , L , T ) , (keeping θ and ε fixed) .

Other variations are possible · · · .
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NOTE:

◦ We do not just change the initial point (i.e., θ) and integrate !

◦ Every continuation step requires solving a “boundary value problem”.

◦ The continuation stepsize ∆s controls the change in X .

◦ X cannot suddenly change a lot in any continuation step.

◦ This allows the ”entire manifold ” to be computed.
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NOTE:

◦ As shown, crossings of the Lorenz manifold with a sphere can be located.

◦ Crossings of the Lorenz manifold with the plane z = ρ− 1 can be located.

◦ Connections between the origin and the nonzero equilibria can be located.

◦ There are subtle variations on the algorithm !

279



-300 -200 -100 0 100 200 300
X

-100

-50

0

50

100

Y

Lorenz Section: rho= 60

Figure 74: Crossings of the Lorenz Manifold with the plane z = ρ− 1
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Heteroclinic connections

◦ During the computation of the 2D stable manifold of the origin one can
locate heteroclinic orbits between the origin and the nonzero equilibria.

◦ The same heteroclinic orbits can be detected during the computation of
the 2D unstable manifold of the nonzero equilibria.
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Representation of the orbit family in the stable manifold.
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A heteroclinic connection in the Lorenz equations.
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Another heteroclinic connection in the Lorenz equations.
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· · · and another · · ·
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· · · and another · · ·
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This continuation located 512 connections!
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NOTE:

◦ The heteroclinic connections have a combinatorial structure .

◦ We can also continue the heteroclinic connections as ρ varies.

◦ They spawn homoclinic orbits , having their own combinatorial structure.

◦ These results shed some light on the Lorenz attractor as ρ changes.

More details: Nonlinearity 19, 2006, 2947-2972.
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Example: The CR3BP

• ”Small” Halo orbits have one real Floquet multiplier outside the unit circle.

• Such Halo orbits are unstable .

• They have a 2D unstable manifold .
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• The unstable manifold can be computed by continuation .

• First compute a starting orbit in the manifold.

• Then continue the orbit keeping, for example, x(1) fixed .
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Continuation, keeping the endpoint x(1) fixed.
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• Course demo r3b : ” auto H1a.auto ”

• The initial orbit can be taken to be much longer · · ·

• Continuation with x(1) fixed can lead to a Halo-to-torus connection!

• Course demo r3b : ” auto H1aX.auto ” (takes time!)

• Course demo r3b : ” auto H1bX.auto ” (takes time!)
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• The Halo-to-torus connection can be continued as a solution to

F( Xk ) = 0 ,

< Xk −Xk−1 , Ẋk−1 > − ∆s = 0 .

where

X = ( Halo orbit , Floquet function , connecting orbit) .
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In detail, the continuation system is

du

dτ
− Tuf(u(τ), µ, l) = 0,

u(1)− u(0) = 0,∫ 1

0
〈u(τ), u̇0(τ)〉dτ = 0,

dv

dτ
− TuDuf(u(τ), µ, l)v(τ) + λuv(τ) = 0,

v(1)− sv(0) = 0 (s = ±1),

〈v(0), v(0)〉 − 1 = 0,

dw

dτ
− Twf(w(τ), µ, 0) = 0,

w(0)− (u(0) + εv(0)) = 0,

w(1)x − xΣ = 0.
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The system has

18 ODEs , 20 boundary conditions , 1 integral constraint.

We need

20 + 1 + 1 - 18 = 4 free parameters.

Parameters:

◦ An orbit in the unstable manifold: Tw , l , Tu , xΣ

◦ Compute the unstable manifold: Tw , l , Tu , ε

◦ Follow a connecting orbit: λu , l , Tu , ε
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First Example · · ·
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Second Example · · ·
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