
1762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 6, NOVEMBER 1995 

Generalized Berlekamp-Massey 
Decoding of Algebraic-Geometric 

Codes up to Half the Feng-Rao Bound 
Shojiro Sakata, Senior Member, IEEE, Helge Elbr@nd Jensen, and Tom Hgholdt, Member, IEEE 

Abstiuct-We treat a general class of algebraic-geometric codes 
and show how to decode these up to half the Feng-Rao bound, 
using an extension and modification of the Sakata algorithm. 
The Sakata algorithm is a generalization to N dimensions of the 
classical Berlekamp-Massey algorithm. 

Index Terms-Decoding, algebraic-geometric codes. 

I. INTRODUCTION 

E FFICIENT decoding of BCH- and Reed-Solomon codes 
can be done by using the Berlekamp-Massey algorithm 

[ 11, and it is natural to try to use the extension to N dimensions 
of Sakata [2] to decode algebraic-geometric codes. For codes 
from regular plane curves this was done in [3] and using 
the Feng-Rao majority scheme from [4], the procedure was 
extended in [S] and [6]. For a class of space curves the method 
of [3] was generalized in [7], but here the algorithm does not 
correct all errors up to half the minimum distance. 

In this paper we treat a general class of algebraic-geometric 
codes, the so-called one-point codes, and show how to decode 
these up to half the Feng-Rao bound, using an extension and 
modification of the Sakata algorithm. The complexity of the 
decoding algorithm is also calculated. 

The paper is organized as follows. In Section II we present 
the codes, and the special choice of a basis for the spaces 
needed, so that the decoding problem can be solved using 
the Sakata algorithm. In Section III we present the decod- 
ing algorithm, and Section IV contains calculation of the 
complexity. 

II. THE CODES 

We assume some familarity with the basic concepts of 
algebraic-geometric codes, e.g., [S] or [9]. 

Let PI, Pz,... , P,, P, be a set of F,-rational points on 
a nonsingular, irreducible curve 2 of genus g defined over 
IF,. We consider an algebraic-geometric code C of type 
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cL(D, G)’ = Ch(D, G), where 

D = PI + Pz + . *. + P, G=mP, 

The code C has length n, and for any y E Fy we have 

Y E c * 2 f (pj>Yj = 0, for all f E L(mP,). (1) 
j=l 

When 2g - 2 < m < n, the dimension of C is Ic = 
n - m + g - 1, and the minimum distance is lower-bounded by 
d* = m - 2g + 2. When m < 4g - 2 this estimate is improved 
by the Feng-Rao bound dFR, which we define later. One has 
dFR > d* with equality when m 2 4g - 2. 

Recall that a number oi is a nongup for P, if L(oiP,) # 
L((0; - l)P,). In th is case, there exists a function cpi E 
L(oiP,)\L((oi - l)P,), which means that cpi has a pole of 
order oi at P, and no other poles. It is well known that the 
nongaps satisfy 

0 = 01 < 02 < . . . < og < Og+l = 2g 

o;=i+g-1, fori>g+l. 

The functions cpi, i = 1, 2, . . . , m - g + 1 provide a basis for 
the space L(mP,). 

The nongap sequence-that is, the possible pole orders at 
P,-forms a semigroup under addition. Let al, a~, . . . , aN 
be a minimal set of generators for this semigroup, and let $j 
be a function with pole order aj at P, and no other poles. 
To any vector (Y = (aI, a~, . . . , a,) of nonnegative integers 
corresponds the function 

(2) 
j=l 

This function has a pole only at P,. The order of this pole 
is denoted O(a), and we have 

O(a) = 2 O!jUj. (3) 
j=l 

The set of functions fol where O(a) 5 m, span the space 
L(mP,). These functions are, however, not independent, 
since if O(a) = O(a’) then 

fg = cf,, + 9, where c E F, and OPm (g) < O(a). 
(4) 
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An important concept in decoding is the syndrome of a vector. 
Let y E I=;. With each function fey we associate the syndrome 
S,(y) defined by 

(5) 
j=l 

It follows from (1) and the remarks above that 

Y E c * S,(Y) = 0, for all a with O(a) < m. 

In the decoding situation we receive a vector r, which is the 
sum of an unknown codeword c and an unknown error vector 
e, that is T = c + e. We therefore have S,(e) = S,(T) for all 
Q  with O(a) 5 m, and the decoding problem is then, from 
the known terms S%(e), to find the vector e. 

One way to do this, reasonably efficiently ([3]), is to 
consider recursions among the syndromes and from such 
equations determine an error locator, that is, a function which 
points out the positions where the coordinates in e are different 
from zero. This procedure, however, does not correct errors up 
to half the minimum distance. Another approach, which we 
use in this paper, is first to determine all syndromes S%(e), 
0 5 aj 5 q - 1, i = 1, . . , N. How this is done is explained 
in the next section, but let us here just suppose that we know 
all the syndromes. Then for each Pl we can form the sum 

(6) 
cy C?=l 

where the summation is over all vectors (Y with 1 5 os 5 q- 1, 
s  = I,... , N. By inserting (5) and (2) we get 

and hence el can be calculated. The last equality in (7) needs 
two comments. First, if Gs (Pj) # $s(Pr), then 

If j # 1, then for at least one s we have tis (Pj) # 
Gs(Pr). Because otherwise f%(Pj) = f%(Pl) for each a, and 
consequently there is a codeword with weight 2, and we will 
not consider such codes. 

The second remark is that in the calculations we have 
supposed that Gs(Pr) # 0 for all s = 1, . . . , N. If this is not 
the case the calculations should be slightly modified, which is 
done in Appendix I. In any case, knowing all syndromes we 
can find the error vector. 

III. THE ALGORITHM 

The decoding algorithm is a modification of the Sakata 
algorithm [2], and in the following we will assume some 
familiarity with this algorithm and use some of the results 
from [2]. 

The algorithm takes as input an N-dimensional array of 
elements from lF,, and produces as output a so-called minimal 
set of polynomials corresponding to linear recurring relations 
satisfied by the array. In order to describe the algorithm we 
have to introduce some notation from [2]. 

Let Ca be defined as the set of all N-tuples of nonnegative 
integers, that is Cc = Zr. For any subset I C_ Ca an array 
over the field K is a mapping u: l? -+ K, which is written 
u = (uz) where uZ = u(x), 3: E l? is the “value” of u at 
the point 2. 

We need a total ordering of the points of Ca, and here 
we choose-and that is an important choice-the ordering 
corresponding to the code described in Section II. This means 
that we define 

P = (Pl,... ,%V) <T q = (ql,“‘,!?N) 

O(P) < O(cd or O(P) = O(q) and 

PZ ‘c 41; Pi = qi, i < 1. 

This, in turn, also gives an ordering of the functions fa and 
the syndromes S,(e). It should be mentioned that Sakatas 
algorithm works for any admissible ordering of Co. 

It is convenient to represent linear recurring relations by 
N-variate polynomials cr E (Fq[x] = IF,[&, 112, . . . , $N]. Any 
such polynomial can be written as 

where rg is a finite subset of Co, such that a4 # 0 for q E rc. 
The maximum element in In with respect to the total order 
<T is called the degree of 0 and is written Deg (0). 

A polynomial 0 is said to be valid at a point p for an array 
U, if p > s = Deg (0) and 

(9) 

Here 2 is the natural partial order on Ca defined by p 2 q 
iff pi > qi for all i = l,..., N. Moreover, here and in the 
following we assume that r is of the form 

and write u = ui for the corresponding array. 
A polynomial cr is said to be valid for the array u = ui iff 

(9) holds for all points p where s < p <T I. 
To understand the whole setup better, let us consider the 

decoding situation where we look at the array of known 
syndromes S,(e) where O(a) < m. 

Inserting (5) in (9) and using (2) we get 
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where E = {jl,... , jt} denotes the positions for which the 
error vector is #O. It follows from this that if the function 

nmo - 

is zero at all error points Pj, , . . . , Pjt, then the polynomial 
cr in (8) satisfies all possible recurring relations (9) for that 
polynomial and the array considered. 

In the ordinary decoding procedures for AG codes the basic 
idea is to find a function like (11) with the error positions as 
zeros, by considering all possible equations (9) and take the 
“smallest” nonzero solution. It turns out ([3]) that in this way 
you can only be sure to get an error locator if the number of 
errors is somewhat smaller than half the minimum distance. 
However, using recurring relations like (9), it is possible-for 
errors up to half the minimum distance-to predict the value 
of the unknown syndromes and then correct all the errors using 
(7). How this is done will be explained in the following. 

Let us return to the general situation where we consider an 
array u = ‘~11. The set of valid polynomials for this array is 
denoted VALPOL(u). 

For an array u a minimal polynomial set is a finite subset 
F of IF,[s] such that 

1) 

F C_ VALPOL (u) 

2) Let 

S = {s = Des(g) 10 E F}. 

Then for any s and t 

3) Let 

A = A(F) = x0 \ u {t E Co 1 s 5 t}. 
SES 

Then there exists no polynomial g E VALPOL (u) such that 
D%(g) E A. 

It follows that the word minimal in the term minimal 
polynomial set refers to the degrees of the polynomials in 
the set. 

The algorithm of Sakata takes as input the elements of an 
array u = ui and produces as output a minimal polynomial 
set for the array. The algorithm considers the elements of the 
array step by step. At each step, one has a minimal polynomial 
set F for the part of the array seen so far. When the next 
element of the array is taken into consideration, the algorithm 
starts to check if the polynomials g E F are still valid for the 
new array. If this is not the case, they are updated and a new 
minimal polynomial set and a new A-set is produced. 

The details of the algorithm can be found in [2]. Actually, 
we need a small modification of the algorithm, but before 
we explain this, we will emphasize the following result ([2, 
Lemma 2]), which is essential for the whole process. 

Lemma 1: Let Deg (c) = s. If 0 E VALPOL (u”) and 
g $ VALPOL (&+I ), then there exists no polynomial g E 
VALPOL (uQ+l), such that Deg (g) 5 q - s. 

Here q + 1 denotes the next point of q with respect to the 
total order. 

Let us next go to the decoding situation where the array 
consists of the known syndromes S,(e). With t we denote the 
number of errors, and Pj, , . . . , Pjt corresponds to the positions 
where the errors occur. We assume that all syndromes SE(e), 
where O(a) 5 m’, are known, and we want to find S,(e) for 
O(a) = m’. Here m ’ > m. There can be many syndromes 
corresponding to the same pole order. But if O(a) = O(a’), 
then we have an identity (4) between f% and fg,, and hence 
also an identity for the syndromes 

Sa=cSaf + c  cpsp. (12) -_ 
O(P)<%?.) - 

We want to have a way to distinguish between functions 
or syndromes, which are dependent-in the sense of (4) or 
(12)-and those, which are independent. 

To this end we choose a set C’ C Co such that C’ contains 
exactly one element z corresponding to each poleorder O(Z). 
Let T denote the total order on CO where zTy iff ~1 > y1 or 
2; = y;, i = 1,. ‘. ) k and x,++~ > yl~+~. Corresponding to the 
pole order O(E) we then take the element x’, such that z’Ty 
for all other vectors y with O(y) = 0(x’). 

In the Sakata algorithm we now only consider polynomials, 
for which the degree belongs to C’. This is possible according 
to (4). As a consequence, we shall use C’ instead of CO in the 
definition of A = A(F), which means that different points in 
A corresponds to functions with different pole orders. And 
such functions are independent, a fact we use in the next 
lemma, which like Lemma 1 is essential for the whole setup. 

Lemma 2: At each step of the algorithm the number of 
points in the A-set is at most t. 

Proof Let R denote the ring of functions, which have 
no poles outside P,, and let I s R be the ideal of those 
functions, which are zero at the error points Pj,, . ’ . , Pj,. 
Then the dimension of R\I, as a vector space over IF,, is 
equal to t. Now, for each a E A we take a polynomial aZ 
with Deg (0%) = a, the corresponding function g3 E [w and 
the image [g&l E R/I. Here 9% $! I, because otherwise the 
expressions (10) were zero, and hence a% was valid. The same 
holds for any linear combination of functions goi. Therefore, 
the number of elements in A is at most the dime&on of R/I, 
that is at most t. 0 

Let us return to the decoding situation as explained after 
Lemma 1. Let 7 E C’ satisfy O(r) = m ’. Put 7(O) = 7 
and let $I), ~(~1, . . . be all the other elements of CO with 
pole order m’. With F = {g(l), . . . , o(li)} we denote a 
minimal polynomial set for the array So, O(p) < m ’, where 
Deg (u(~)) E C’. W e may suppose without loss of generality 
that all U’S have leading coefficient 1. 

Now, take o(i) with Deg (gci)) = s ci) and suppose that 
sci) < +-y(j). Then we can test the polynomial 0(i) at the point 
#).-We do not know S,(j) yet, but there are two possibilities, 
either 0(i) is valid at $1 or it is not. If it turns out that g(i) 
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is valid at 7(j), then (9) holds, that is Theorem I: Suppose that the number t of errors satisfies 

s,w + c @q+y(J)--s(4 = 0 (13) 
~cr,(,)\dl) 

d FR - 1 t< ~ 
L I 2 (19) 

and from this equation we can calculate S,(j) and then SY is 
determined by (12). 

and let 1 E {l,... ,p} be the number for which IL1 1 is 
maximal. Then for the syndrome Sy we have 

If c(‘) is not valid at the point 7(j), that is, if (13) does not 
hold for the correct value of SYcLj, then c(‘) must be updated. 
This updating will increase the size of the A-set, and we can 
use Lemma 1 to estimate how much the A-set is increased. 
First, however, we will introduce some notation. 

We put 

K(7) = (5 E C’ 1 37(j) : z  < 7(j) A 7(j) - cc E C’}. (14) 

Note that since there is one-to-one correspondence between 
pole orders and elements in C’, the elements of K(7) reflects 
the pole orders T = O(Z) for which there is a pole order s 
such that T + s = O(r) = m’. 

Next, for each ,ci) with Deg (a(i)) = s(~), we check if there 
is a 7(j) with 7(j) > s(~) and r(j) - sci) E C’. If such a r(j) 
exists, we use (13) and (12) to predict the value of sT and 
we put 

sy = WI. (20) 

This is a surprising result and we want to emphasize that 
the basic idea is due to Feng and Rao. The setup and the 
proofs are different from those in the Feng-Rao paper, but it 
is always much easier to prove theorems when you know what 
you should look for. To see why the result is true we state first 
the following result, which is proved in Appendix II. 

Lemma 3: Let K’ = L1 U L2 U . . . U L, and put K” = 
K’\A. Then 

IW”I 2 lK(~)l - 214. (21) 

Ki = {z E K(7) 1 z  < 7(j) - s(j)}. (15) 

If such a 7(j) does not exist, then u(i) is not used to find the 
correct value of SY 

Proof of Theorem I: Suppose first that SY was different 
from all the values wi, . . . , wp. Then the next A-set, which 
we denote A’, is increased with at least K” according to the 
arguments in relation with (16). But then, using Lemma 3 we 
have 

IA’1 2 IAl + IK”I 2 IAl + IK(7)I - 44 

Let vi denote the value of SY predicted by g(‘), if this 
situation occurs. If v; turns out to be wrong, then according 
to Lemma 1, all the points in Ki belongs to the new A-set. 
Therefore, if we put 

and from this follows, using the definition (17), the assumption 
(19) and Lemma 2 that 

iA’1 2 IK(7)I - A 2 dFR - t > t. 

K; = Ki\A (16) 

then the A-set increases at least with Ki, if w; is not the correct 
value. Of course, K,! can be empty. 

Let WI,“., wp be the different predictions vi for Sy ob- 
tained in the way described above, and for each j = 1, . . . , p 
let Lj denote the union of the sets (16) for which wi = wj. 

We define the Feng-Rao distance, dFR, for the code in 
question by 

But this is in contradiction with Lemma 2. So one of the values 
W,“‘,Wp, say wr, is the correct one. 

Now,put& = LzU...ULn.Sincews,..~ wn are different 
from ST the A-set will increase with at least Ll. So by Lemma 
2 we have 

IAl + IElI I t 

from which follows, using Lemma 3 and (17) 

(17) 

where K(r) is defined in (14). It will be clear below, why 
dFR is the relevant number to consider in this context. In 
Appendix II we prove that 

ILlI < t - IAl < 9 - IAl 5 ;lK”l. (22) 

Since I1 u L1 = K”, we must have JL1 I > i IK”I. But this 
gives us a general insight. Because if we, for any j = 2, . . . , p, 

Put 

(18) Lj = U Li 
i#j 

with equality if m 2 4g - 2. As it is well known, m - 2g + 2 
is the designed distance for the code, but the true minimum 
distance might be larger. Now we are able to formulate the 
main result in the paper, which gives a very simple way to 
find the correct value of the next syndrome 

then zj > L1 and therefore lj I > i IK”l. So the conclusion 
is in general that the correct value wl corresponds to the 
minimal value of I&l, that is, the maximal value of IL1 I. This 
moves the theorem. 
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IV. THE COMPLEXITY 

The complete decoding algorithm can now be described as 
follows: 

1) Calculate the syndromes SE, where O(a) 5 m, using 
(4) and (5). 

2) Use Sakata’s algorithm to find a reduced minimal poly- 
nomial set for the array of known syndromes where 
reduced means-that the degrees of all polynomials be- 
long to C’. 

3) Use Theorem 1 to find Sy, where O(7) = m + 1 and 
7 E C’. 

4) Calculate all ST(i) using (12). 

Repeat step 2) to step 4) until all syndromes ST where 
O(7) 5 dFR + 49, are known, (which means that 2g new 
syndromes must be calculated). 

5) Calculate the remaining symdromes using (12) and (13) 
with polynomials from the last minimal set. 

6) Calculate the error values using (7). 
We shall make a few comments to the steps above. Let us 

first consider a reduced minimal set 

F = {&), . . . , $‘}. 

We claim that the number of elements in F is at most al, 
where al is the lowest nonzero pole order. Suppose it is not 
like that. Then there are two polynomials, say ~(~1 and & 
with CK(~) = Deg (~(~1) and &) = Deg (a(j)), such that 

O(a (4 ) = O(a(j)) modal. (23) 

Now, a(‘) (“;d &) belong both to C’, so if a(i) = 
(,W 1 ,.-,Qj$ >9 ff (j) = (a?), . . . , ~g)) then a?) and a?) 
are as big as possible for the pole orders in question. Then 

(4 (23) implies that u1 = Q~ (j), 1 = 2,. . . , N, and therefore a(i) 
and &) cannot both be minimal, which proves the claim. 

The next comment is to emphasize that when we carry out 
step 3), each minimal polynomial is used at most once to 
find a candidate value for SX The last comment is connected 
with step 5). When we know the syndromes up to pole order 
m  - 2g + 2 + 49, which is 5 dFR + 49, then all polynomials 
in the minimal set are valid for all the remaining syndromes 
(see, e.g., [lo, Proposition 4.61 about this) and hence one can 
proceed as described. 

Following these comments we will estimate the complexity 
of the decoding procedure by counting the number of IF, 
multiplications and additions in the different steps. 

It is convenient to distinguish between independent syn- 
dromes and dependent syndromes. For a E C’ we call S, an 
independent syndrome. All the dependent syndromes can be 
calculated from the independent syndromes by simple linear 
combinations (12). The number of terms on the right-hand side 
in (12) is at most r = O(a). So if A(r) denotes the number 
of syndromes with order T, then the complexity of finding all 
the dependent syndromes of order r is 

rA(r). (24) 

In the following, we first focus on the independent syndromes, 
and then later we find the complexity related to the dependent 
syndromes. 

1) There are m - g + 1 independent syndromes S, with 
O(a) 5 m, and the calculation here costs (m - g + 1) . 2n. 
operations. 

2) The number of polynomials in a reduced minimal set is 
at most the smallest pole order, denoted al. Let c be such 
a polynomial and let h = O(Deg (0)). The number of terms 
in 0 is at most the number of pole orders smaller than or 
equal to h, and this number is h - g + 1. From ([2, p. 2281) 
follows that one iteration of Sakata’s algorithm has complexity 
O(al(r - g + l)), w h ere r is the pole order in question. The 
complexity of finding a reduced minimal polynomial set for 
the array of known syndromes is O(al(m - g + 1)2). 

3) To calculate the candidate values for SZ where O(7) = 
m  + 1 costs at most al (m - g) operations. Moreover, we must 
find the number of elements in the sets Ki, which costs at 
most al . d operations where d = dFR. 

We must repeat calculation of new syndromes and updating 
of the reduced minimal set up to pole order d + 4g. 

The complexity of doing this is 

O((d - 4g - m) . al . (m - g)) 

+ O((d - 4g - m) . al . d) + O(ul(d + 3g + 1)2). 

Using the upper bound n for both m  and d, the complexity of 
the steps considered so far is at most O(ul . YX”). 

4) and 5) Let us now consider the dependent syndromes. 
And further let us remark that when we use polynomials in 
the minimal set to find new syndromes directly-as stated in 
step 5)-then we consider linear expressions like (12). From 
the point of view of complexity we can therefore treat these 
syndromes in the same way as the dependent syndromes. 

To calculate all dependent syndromes of order r costs r(Ar) 
operations, as stated in (24). By summing up rA(r) over all 
pole orders, we get an upper bound on the complexity we are 
looking for at this step. If r = xlu1 + . . + XNUN then 

CA,.r=C(XlUl+...+XNUN) 
T 

x1=0 IN=0 

= q”-le ai 2 xi 
i=l x;=o 

and the magnitude of this is qN+‘(ul + . . . + UN). 
6) The magnitude for calculating the error values using (6) 

is 72. qN . N operations. This process can often be speeded up 
by using a fast transform, but so far we have used the above 
expression as a measure for the complexity. 

Altogether, the complexity for the whole decoding proce- 
dure is upper-bounded by 

O(Ul . ?I”) + o[qN+l (a + . . . + UN)] + o(n . N. qN) (25) 

where 0( ) in each case means that the number of operations 
is bounded by a fixed number multiplied by the term inside 
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the brackets. How good or small this complexity is depends 
on the special code construction. We illustrate by an example. 

Example: Let us consider the curve in the affine 3-space 
over F 9, q = r2, defined by 

Y r+l = XT + x 2 r+l - - -xyr - yxr - 1. 

It follows from [ 141 that if T E 1 mod 3, then the curve has 
(r” - 1)2 /=,-rational points and has genus r3 + r2 - T. At Pm, 
the common pole of x, y, and z, the functions x, y, and z have 
pole orders (T+ 1)2, r(r+ l), and r(r+2), respectively. If we 
express all the terms in (25) using the code length n, we get 

O(n112 . n2) + O(n2 .3. n112) + O(n .3. n312) 

so in this case the complexity is O(n5i2). 

APPENDIX I 
CALCULATION OF THE ERROR VALUES 

GIVEN S,, 0 5 CQ 5 q - 1 

In Section II we explained how to calculate the error value 
el at a point Pl, where $s (Pl) # 0 for all s = 1, . . , N. Here 
we will first treat the case, where $J~ (Pl) = 0 for some, but 
not all s. Among all points with this property we introduce a 
partial order given by P < Q, iff &(P) = I,!J~ (Q) for all i 
where $i(Q) # 0. 

Now look at PZ where +il ( PL) # 0, . . . , $J;, (Pi) # 0 and 
&(Pl) = 0 for i E T = (1, 2,...,N}\{il,...,i,}. We form 
the sum 

E s=l 

where the summation is over all vectors a’ = (a;), where 
ug=Oifj~Tandl<al<q-lifj@T.Thesumequals 

which we write as 

ejcj. 
j=l 

If &,(Pj) = &,(Pl) for i = l,...,r we have cj = (-l)‘, 
and otherwise we have cj = 0. Consequently, cj # 0 iff 
Pj < 4, and the sum is therefore 

(--llT a+ C ej . [ 1 p3 <pt 
Now, if the point Pl is minimal with respect to the partial 
order, we get in this way el directly. So, in general, if we 
do the calculations according to the partial order starting with 
minimal elements, the terms in the expression above are all 
known except el, which can therefore be calculated. 

What is left is to consider the situation, where tis (Pl) = 0 
for all s = I,... , N. Clearly, there is at most one such 
point Q  (otherwise the minimum distance is 2), and by the 

procedure described above all error values eP, P # Q, has 
been calculated. Since 

So = 2 ej 
j=l 

it is easy to calculate eQ. 

APPENDIX II 

A. Proof of Lemma 3 

We must prove that if K” = (UKi)\& where K; is given 
by (1% then IK”I 2 lK(7)l - 214. 

To see this, let z E K(7), z $ A. Since z E K(7) 
there is a uniquely determined 7(j), such that x 6 7(j) (and 
7(j) - x E C’). Moreover, since x $Z UKi we know that 
x < 7(d - ,(4 is not satisfied for any i. Consequently, 
7(j) - x > 0 and for all i’s the statement 7(j) - x > ~(~1 
is false. This, however, tells us that 7(j) - x E A. In this 
way, we construct a mapping from K(y)\(K” U A) into A. 
This mapping is injective, since if 7(j) - x = 7(r) - y then 
O(x) = O(y) and, consequently, x = y, since x, y E C’. But 
then IAl > IK(7)I - IK” U Al, and the lemma follows. 

B. Proof of (18) 

= ;l&y 1{xEC’(3r(~)3y~E’:x+y=r(j)}l 

O(r)>m 
= m>i; I{s is a nongap) 3 nongap t : 5 + t = r}. 

Now, there are at most g gaps < T, and for each nongap 
s 5 r, the number r - s is a gap in at most g cases. From this 
follows that &n 2 r + 1 - 2g and therefore don > m $2 - 29. 
Moreover, the above argument leads to equality if all gaps are 
“used,” so to speak, and this is the case if m + 1 - og > 29. 
Since og 5 2g - 1 (cf. the beginning of Section II) we have 
equality if m  > 4g - 2. 
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