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Fast Decoding of Algebraic-Geometric Codes 
up to the Designed Minimum Distance 

Shajiro Sakata, Senior Member, IEEE, J@n Justesen, Y. Madelung, 
Helhe Elbr@nd Jensen, and Tom Hoholdt, Member, ZEEE 

Abstract- We present a decoding algorithm for algebraic- 
geometric codes from regular plane curves, in particular the 
Hermitian curve, which corrects all error patternes of weight 
less than d*/2 with low complexity. The algorithm is based on 
the majority scheme of Feng and Rao and uses a modified version 
of Sakata’s generalization of the Berlekamp-Massey algorithm. 

Index Terms-Decoding, algebraic-geometric codes. 

I. INTRODUCTION 

that for algebraic-geometric codes from regular plane curves, 
all error patterns of weight less than d*/2 are corrected with 

T 

low complexity. In particular, we extend the algorithm of [4] 

HE KNOWN algorithms for decoding codes from al- 
gebraic geometry [l]-[4] do not correct all errors with 

such that for a class of codes from algebraic plane curves the 

weight up to half the designed distance of the code, even 

complexity of the decoding algorithm is O(n7i3). 

though Pellikaan [5] showed that this could be done. 
Recently Ehrhard [6], Feng and Rao [7], and Duursma [8] 

presented algorithms which correct all error patterns of weight 
less than d*/2, where d* is the designed distance of the code. 
These algorithms are based on Gaussian elimination and hence 
have complexity O(n3), where n is the length of the code. 

In this paper we used a modified version of the algorithm 
of Sakata [9] combined with the idea of Feng and Rao, such 

Let IF, be a finite field with 4 elements and let C(z, y) be 
a polynomial from F, [z, y]. 

The set of points (x:, y), where x and y are in the algebraic 
closure IF of IF,, for which C(z:, y) = 0 is called an affine 
curve. The points on the curve with both coordinates in F, 
are the rational points. The curve is regular if the projective 
closure is regular, in particular this implies that C(X, y) is 
absolutely irreducible. If the curve is regular and C(z, y) 
has degree m, then the genus g of the curve is given by 
g = (m - l)(m - 2)/2. 

Let C(z, y) = 0 be the equation of a regular curve, and 
let PI, Pz,... , P, be rational points on the curve. Let j be 
a natural number 

n-l 
m-2<j< - i 1 m 

ad let CPO(X, Y>, CPI(X, Y>,-.- , cp@(z, y) denote the monomi- 
als xayb, ordered with respect to the graduated total degree 
order IT where (1, 0) <T (0, l), such that (a, b) ST (0, j). 
The code C*(j) is then given by the parity check matrix H 

H= 

-cpo(pl> . . . cpo(Pn> 

cpl(Pl) ... cpl(Pn) 

i 1. 
(1) 

It now follows from [l], that the code C*(j) has dimension 
k = n - (mj - g + 1) and 

The paper is organized as follows. In Section II we present 
the codes from Hermitian curves and discuss the decoding 
problem for those. Section III describes how Sakata’s algo- 
rithm can be used to implement the idea of Feng and Rao 
and Section IV presents the new algorithm. In Section V we 
discuss the problem for general algebraic-geometric codes. 

II. THEDECODING PROBLEMFORACLASSOFPLANECURVES 

Before studying the Hermitian codes we briefly recall the 
setup from [4]. 
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dmin 2 d* = mj - 2g + 2. 

The number d* is the designed distance of the code. 
In the decoding situation we receive a word T, which is the 

sum of a codeword c and an error vector e. We calculate 
the syndrome HrT. If we number the coordinates of the 
syndrome vector, as we numbered the rows of EI and the 
errors occurred in the points with coordinates (zi, yi) i E I, 
T c_ (1, 2,. *. , a}, with values ei, it follows from (1) that 

(2) 

We shall refer to the S&‘s as defined by (2) as a syndrome for 
any a, b < 4 - 1, even if it is only possible to calculate those 
directly from the parity check matrix if a + b 5 j. 

It now follows from [4, Section V] that if all syndromes 
s,b a, b < 4 - 1 are known then the error values can be found 
by a fast transformation using of most (Clmq log 4 + Cprn2q) 
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additions and multiplications in IF,. The problem therefore is 
to determine the syndromes Sat, for a + b > j. 

We recall that a polynomial 

is said to give recursions among the Sab’s if 

~f&+ib+j = 0 
i,j 

for all a, b, where the indices are calculated modulo 4 - 1. 
It is easy to see that the curve polynomial C(x, y) gives 

recursions but usually we need more. We will use [4, Theorem 
51 which we state here as 

Theorem 1: Suppose that the curve polynomial 
form 

C(x, y) = c clkxlyk + xm 
Z+k<m-l 

and that a polynomial 

is of the 

0(x, Y) = c mkxlYk 
l+k<h 

where c,,h # 0 gives recursions among the Sab’s. 
If C(x, y) and 0(x, y) do not have a common factor then 

all Sab’s can be determined from S&a + b 5 j, using at most 
A . m2q2 additions and multiplications in F,. 

The problem is then to find a polynomial ~(2, y); this 
is actually an error locator polynomial. In [4, Theorem 31 
we showed how a modified version of Sakata’s algorithm 
[9] could be used to find such a n(x, y) provided that the 
number of errors was bounded by d* /2 - m2/2. Moreover, 
it also follows from [4, Theorem 31 that if all syndromes 
S a, b, where a + b 5 j + m, could be used as input to the 
algorithm, then a polynomial (~(5, y) of the proper form could 
be determined, provided that the number of errors were less 
than d*/2. Therefore, what remains to be done is, given the 
number of errors is less than d* /2, to find a method for finding 
the syndromes S,, b j < a + b 5 j + m, from the syndromes 
S,, b a + b 5 j. That this indeed is possible is the main result 
of Feng and Rao [7], but their method has complexity 0(n3). 
In the next section we show how the algorithm of [4] can 
be used to implement the idea of Feng and Rao with lower 
complexity. In particular, we treat the codes C*(j) coming 
from the Hermitian curves, that is where 

C(x, y) = xr+l - yr - y (3) 

where T is a power of a prime and 4 = r2. It is well known 
[lo] that this curve is regular and has r3 rational points. 

The equation of this curve has the form used in Theorem 1 
with m = T + 1 and the corresponding recursion therefore is 

S a+m, b - - &, b+m-1 + sa, b+l (4) 

which in turn means that the syndromes we need to find are 
the S&‘s where 

j<a+blj+m, O<a<m. 

III. FINDING THE NEEDED UNKNOWN SYNDROMES 

In order to describe the method, we have to explain the algo- 
rithm of Sakata in some detail. The algorithm was developed to 
find recursions consistent with a given two-dimensional array. 
More precisely, let 

u = {%l,PZ ) (Pl, P2) IT (Ql, q2) 

be an array of elements from some field F. We are then 
interested in the set S of polynomials 

f(x, Y> = ~.flk&/” (5) 
4 k 

which give a linear recursion among the elements of the array 
U, that is 

cfi, k’W+a, k+O = o (6) 
1, k 

for all (a, ,@ where (o + a, ,8 + b) ST (ql, q2) and xayb is 
the leading term of f(x, y) which means that 

f(X, y) = c .fik&/le 

and fab # 0. 

(4 k)lT(a> b) 

A minimal set for U is a set F of polynomials from S 

F = {f(l), . . . , f’“‘} 

with leading terms xsI’)ys?), such that 

$) > $’ > . . . > $1 = 0 and 

0 = $1 < ,p < . . . < ,p 

and, if we define 

A = {(h, r)lh < s(li) and T < st+i) 
for some i where 0 < i < V} (8) 

then no proper polynomial in S has leading term with exponent 
in A. 

Sakata’s algorithm generates a minimal set F for a given 
array U. A step in the algorithm consists reading the next 
element of the array, with respect to the total order <T and 
then finding a minimal set for the array of elements read so far. 

At each step, the current set of polynomials in F are tested 
on the new element ua, b, and if some f(j) is not consistent, 
that is if 

~.f/,‘~W+a, k+p # 0, where 
1, k 

then the set F is updated. 
The details of the updating may be found in [9]. The 

important fact here is the increase of the size of A set. We 
denote the minimal set for the array 

(slj)+a s , F’+P) = (a, b) 

(9) 

u = l%l>PZ 1 (PI, P2) IT (a, b) 

as F,, b and the corresponding A set as defined by (8) as A,, b. 



The crucial fact is [9, Lemma 41 which we formulate here as 
Lemma 2: Suppose f(j) is not consistent with u,, b then 

every consistent f with leading term xtlytz satisfies ti 2 

a t,:Y’,mpke~ tZt,‘f ‘wi ti: 
- 2 +1. . 

A(j) = {(ti, ts)lti 5 a - sy’ and ta 5 b - $‘}\A,, b 

(10) 

then the increase of the size of the A set is at least 1 A(j) 1. 
In the decoding case it follows from [4, Theorem 11, that the 

A set for the full array of syndromes S,, b 0 5 a, b < q - 1 is 
equal to the number t of errors that have occurred. This fact, 
combined with the bound on the increase of the size of the A 
set at a given stage in the algorithm, puts restrictions on the 
number of polynomials in F,, b that are not consistent. This, 
as will be made precise below, enables us to determine the 
syndromes S,, b a + b < j + m. This observation is the main 
idea of [7], translated into the language of the present setup. 

Let us again consider the codes from the Hermitian curve. 
We have already noted that the syndromes satisfy 

or 

&-km, b + &> b+m-1 + sa, b+l (11) 

S a+m, b-m+1 = sa, b + sa, b-m+2, if b > m - 1. (12) 

Now suppose we have all the syndromes S,, b 

(0, j) IT (a, b) <T (41, q2) ST (0, j + m). 

We will then show how S,,, 92 can be determined. We first 
note that if q1 > m, then S,, , 42 can be calculated using (11) 
so we only need to consider the case where q1 < m. Let us 
consider the polynomials in Fql, 92 = {f(l), . . . , f(“)} where 
we can assume without loss of generality the coefficients of 
the leading terms are all 1. Suppose that for some 1 < i < v 

(i) we can find QI > 0 and ,8 > 0 such that a: + si = q1 and 
p + sp = q2. We can then form the sum 

c f$%+,, k+p = -vi (13) 
(2, k)<&f), sg)) 

and if by chance f ci) is consistent with S,,, 42 the value of 
wi is exactly S,,, q2. 

We will also consider the case where it is possible to find 
cy 2 0 and p > 0 such that 

cl! + sp =ql+m and ,S+St)=qa--m+l 

and then form the sum 

c f$h+a, k+p - ‘941,qz--m+2 = -wi. (14) 
(I, k)<&+, 84”) 

Here if by chance f ci) is consistent with Snl+m, Q2--m+i then 
it follows from (12) that the value of wi is S,, , 42. 

In order to use (14) one should argue that the syndromes 
that appear are all known, but this is the case since either 

(1 + a, b + k) <T (41, q2) 
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in which case the involved syndromes can be calculated by 
(11). 

The remaining part of this section is devoted to estimate the 
number of cases where (13) and (14) can be calculated and 
compare this with the number of cases where the polynomials 
are consistent. This will finally yield a method for determining, 
under certain conditions, the correct values S,, , 92. 

Let (41, 42) satisfy q1 < m and 

(0, j) CT (41, q2) IT (0, j f m>. 

It follows from the structure of Sakata’s algorithm, that there 
exists an i, 1 5 i 5 v such that (13) can be calculated. On 
the other hand, it can be shown that if j 2 2m - 3 then there 
exists an i, 1 < i 5 V, such that (14) can be calculated. 

Now let 

Kl = {(xc, Y)lO i x I 41 A 0 5 y 5 q2) 

K2 = {(x, y)lo I x < mAOIy<q2-m+l} 

and put K = K1 U K2. K2 can be empty (42 < m - I), but 
only in the case where j < 2m - 3. Let 

Ai = {(x, y) E Klx + sf’ I q1 A y + s$j) 5 q2} 

B; = {(x, y) E K/x + sf’ 5 q1 + m A y 

+ 3;) 5 q2 - m + 1) 

and let 

Lemma 3: If .I’ < ql + q2 5 j + m and q1 < m, then 

lK(1 > 2 T . 
i 1 

Proof First, if K2 # 0 

IKI = (41 + l)(q2 + 1) + (m - q1 - 1)(q2 - m + 2) 

=m(ql+qa)-m2+3m-ql--1 

2 m(j + 1) - m2 + 3m - (ql + 1) 

>mj-m2+3m=d*>2 

Second, if K2 = 0 then q2 5 m - 2 SO 

P-1 = (a+ l)(q2 + 1) > (ql + 1)(q2 + 1) 

+(m-ql-l)(q2-m+2)>2 

as shown above. n 
Lemma 4: If j < q1 + q2 5 j + m and q1 < m, then 

or IK’I 2 WI - Wh,,,I~ 
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Proof Suppose (x, y) E K, (x, y) @  K’, and (x, y) @  This in general implies that if we put 
A 4142, then for each i = l,...,v we have 

2 + sp > q1 or y + 3;’ > q2 
Kr= UK, 

i#-t 

and then for the correct values S4192 we have @ ,I < f IK’I 

x + sp > 41 + m or y + s2 (‘) > q2 - m + 1. 
and for all the other values we have lE-,1 I > f IK’I since 
EY, 2 KY, so the correct value have the minimal IrYI or 

If (x, y) E KI, then the inequality x + sp’ > q1 is satisfied equivalently the maximal I K7 I. 

for i = 1 but not for i = V, hence there exists a largest i such These arguments show that the syndrome S4142 can be 

that x+sf) > q1 and x+sr+‘) < q1 but then y+s.$+‘) > q2, 
determined by the following procedure: use (13) or (14) to 

and therefore (41 - x, q2 - y) E Aqlq2. obtain the different values al, . . , up. Put 

If (z, y) E Kz\Kl, then the inequality x + .sy) > q1 + m 
is satisfied for i = 1 but not for i = u, so arguing as before 
we get 

(ql+m-x,qz-m+l-y)EA,,,,. Let y be the value for which I KY1 is maximal. We then have 

In this manner we have established an injective mapping from 
that Sqlq2 = ay. 

K\(K’ U Aqlq2) into A,,,, and the lemma follows. 
On calculating (13) or (14) we often have freedom in 

If we combine the two lemmas in the situation where the 
selecting f ci). However, it can be shown that if 

number t of errors, that has occurred, satisfy CA1 n Ai)\Aq,q2 f 0 

d* - 1 
t< - 

L 1 

f ci) and f(i) give the same ai. This fact is useful in the 
2 implementation of the algorithm. 

with the fact that I Aqlqz I 5 t we get in particular that 
We also note that the procedure described above can be 

(K’( > 1. 
continued beyond the point (0, j +m) in order to obtain all the 

Now let al, a2,“. , up be the different values obtained by 
syndromes S,) b a, b < q - 1. In this case, the corresponding F 

either using (13) or (14) and let 
set is a GrSbner basis of the ideal of error locator polynomials, 
whose common zeros just coincide with the error locations. 

Ki= (L!/%!!yJ \AqlqQ> j=112,‘..,p. Lerc*(j)tfC~~h~~~~~~~~~fn~~ectionIIfrom 

We then have the Hermitian curve. 
xT+1 -yv-y=o 

where r is a power of a prime and q = r2. We also suppose that 
K’= UKi. 

j=l 

If for all j, 1 5 j 5 p, we had aj # Sqlq2 then the next A 
set, A’, would be increased with K’ by Lemma 2. But then 

2r-l<j< 

P’l 2 lAq1ml+ W’l 2 km1 + IKI - W,,,,I 
by Lemma 4, and therefore 

IA’1 2 IKI - IAqlqsl L d* - t > t 

in contradiction with the fact that I A’1 5 t. 
This means that at least one of the ai’s, say al, is equal to 

S q1 qZ. Moreover, we have that the A set is increased with 
P 

El = UK, 
j=2 

and therefore 1 Aqlq2 1 + I K1 I 5 t, so 

I%1 I t - lAq1q2l < ; - lAqlqz) I ;lK’l 

by Lemmas 3 and 4, so 

IKll > +‘I. 

1) Calculate the syndromes Sab a + b 5 j. 
2) Calculate the syndromes S,b a + b 5 j + m by using 

either the procedure described in Section III or the equation 
of the curve. The syndromes are calculated one at a time, 
according to the total order, and after each calculation Sakata’s 
algorithm is used to update the minimal set. 

3) From the minimal set {f cl), . . . , f cV)} corresponding to 
the array S& a+ b 5 j +m, the polynomial f (WI by (7) has the 
form needed to get, together with C(x, y), and using Theorem 
1, all the syndromes Sab 0 5 a < q - 1, 0 5 b < q - 1. 

4) Use a two-dimensional Fourier transform to obtain the 
error values, as described in [4]. 

The step that determines the complexity of the algorithm 
is step 2). It follows from the calculations in [4, p. 1161 
with j + m substituted for j that the total number of F, 
multiplications and additions is bounded above by A. r3j2. In 
the interesting case where n N r3 we get A.n.n413 = A.n7f3. 

The algorithm is implemented in the case r = 16, j = 57 
which gives a (4096, 3146, 731) code over IFss. The details 
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b 
5 

b- a6 

0 1 2 3 4 5 6 a 

Fig. 1. Syndromes Sab used as input. 

can be found in [ 111. We illustrate the algorithm here in the 
example below. 

Example: We consider the code C*(5) from the Hermitian 
curve x5 + y4 + y = 0 over Fia. It has 64 points of the form 
(ai, aj), where Q! is a primitive element of Era, (w4+a+l = 0, 
so we get a (64, 44, 15) code over IFm. 

Let us consider a seven-error pattern where the errors are 
located at the points 

Pl = (a, Yl) = (1, a> 

p2 = (52, Y2) = (a8, a3) 

p3 = (x37 Y3) = (Q, Q7) 

p4 = (24, Y4) = (a2, a3) 

p5 = (x5, Y5) = (& a3> 

p6 = (x6, YS) = (a51 a3) 

P7 = (XT, y7) = (CP, a3). 

The corresponding error values are ei = a?, ea = a8, 
e3 = a7, e4 = a, e5 + 1, es = CX~, and e7 = c?‘. 

The known part of the two-dimensional syndrome array is 
shown in Fig. 1. Here Ss, 0 and S,, i are calculated by using 
the equation of the curve. When Sakata’s algorithm is used on 
this array the output is 

F = {cx + ox + ally + cx4x2 + xy + cx3x3 + (ugx2y + x4, 

a4 + a72 + ay + cY3x2 + dxy + x2y, 

CP + Q13X + a13y + alOxy + y”} 

so /Al = 6. 
This first unknown syndrome is S4, a. For this, estimates 

can be obtained from all the polynomials in F and these yield 
the same value 06, which then is the correct value. It turns out 
that for all syndromes until S’s, 4 there is only one possibility. 
One obtains S3,3 = Q~,S~,~ = c?,S~,~ = c~~,S~,n = 
Cr11,S7 13 = S2,4 + S2,1 = 
a13, 5512 = SO,6 + SO,, = 

aS,s6,1 = &,5 + 51,2 = 
a, and S4, a = alo. For S’s, 4 

one gets al = Q, obtained from f c2) and fc3) using (13) with 
/KII = 8 and aa = CX~ with JKa] = 1 obtained from f(l) 
using (14). 

The value for Sa, 4 is therefore S3, 4 = a. The F set, which 
now is updated, becomes 

F = {y + y4 + x5, CY.~ + cx7x + ay + a3x2 + a4xy + x2y, 

CP + o!13x + cd3y + alOxy + y2} 

0 12 3 4 5 6 7 8 91O‘a 

Fig. 2. Syndromes after step 2). 

For Ss, s . + . SO, ia it turns out that these three polynomials 
give the same value, so when step 2) of the algorithm is 
finished we have the syndrome array shown in Fig. 2. 

Step 3) in the algorithm now uses the polynomial C(x, y), 
i.e., y + y4 + x5 together with fc2) = & + cx13x + cx13y + 
cvi”xy + y2 to get the full array as shown in Fig. 3. 

To illustrate step 4) in the algorithm we calculate the error 
value at the point (1, CX). This is found as 

14 14 14 

c sab(l)-a(Q )-b = ~~-b~s,b 
a, b=O b=O a=0 

=Q -O . a6 + ,-I . a7 + a-2. aS + Q-3. a9 

+ Q-4Q10 + Q-5 . & + ,--6. a12 + a-7. J3 

+ Q@Ql4 + (y-g.1 + (J-10. a + a-11 . /g 

+a -12a3 + ,-13. a4 + a-14. a5 = Q6. 

V. GENERAL ALGEBRAIC GEOMETRY CODES 

Feng and Rao consider codes Co(D, G) from a general 
nonsingular curve x over IF,, where the divisor D is D = 
p1+ P2 + . . . + P, with the Pi’s are rational points on x and 
G  = a + Q, where Q  is another rational point. We have only 
treated the corresponding codes from the Hermitian curve of 
degree r+l, with Q  = P, and a = (r+l)j. The restriction on 
the number a is not important, the algorithm is easily modified 
to cover all a’s. However, in order to use the two-dimensional 
version of Sakata’s algorithm it is crucial that the space L(aQ) 
has a basis of the form I$+“, where the orders of cp and $ 
at their pole Q  are coprime integers (c, d). This is indeed 
the case for the Hermitian curve. Other cases as considered 
in [ 131 and [ 141 can also be handled by our algorithm if 
one chooses the total order defined by (c, d) instead of the 
graduated total degree order, the details of this can be found in 
[15]. We also note that the method can be extended to decode 
up to half the Feng and Rao distance, see [16], which is better 
then the estimate given here when j < 3/2m. Furthermore, 
it is shown in [3] that the space L(aQ) always has a basis 
of the form (~2 . . ‘p$’ (with N 2 g), and hence any one- 
point AG code can be decoded by the N-dimensional version 

and now IAl = 7. of Sakata’s algorithm (but with higher complexity than in the 
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and 

[II 

PI 

[31 

141 

[51 

[61 

[71 

PI 

[91 

b 

14 

13 

12 

11 

10 

9 

8 

0 1 2 3 4 5 6 I 8 9 10 11 12 13 14 a 

Fig. 3. The full syndrome array. 

two-dimensional case). Such cases are treated in [17] and [18], 
in general in [ 191. 
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