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On the Decoding of Algebraic-Geometric Codes 
Tom Hoholdt, Member,  IEEE, and Ruud Pellikaan 

Abstract-This paper  provides a  survey of the existing liter- 
ature on  the decoding of algebraic-geometric codes.  Definitions, 
theorems, and  cross references will be  given. W e  show what has  
been  done,  discuss what still has  to be  done,  and  pose  some open  
problems. 

I. INTRODUCTION 

T HE THEORY of algebraic-geometric codes is a fascinat- 
ing topic where two extremes meet: the highly abstract 

and deep mathematics of modular curves and the very concrete 
problems in the engineering of information transmission. 

Algebraic curves over finite fields were used by Goppa 
[33]-[37] to construct codes. Nowadays these codes are called 
algebraic-geometric or geometr ic Goppa  codes. One type is 
obtained by evaluating (at points PI, . , P,) certain rational 
functions having zeros and poles prescribed by a given divisor 
G; and the other type, dual to the first, is obtained by 
computing residues of differential forms. The formal sum 
PI f. . + P, is denoted by D. The former code is denoted by 
CL (D, G) and the latter by Cn (D, G). We denote the Goppa  
designed minimum distance of these codes by SF, which is 
equal to n - deg (G) for the functional codes and equal to 
deg (G) - 2y+ 2 for the differential codes, where y is the genus  
of the curve. If the genus is zero, the curve is just the projective 
line, the functional codes are extended Reed-Solomon codes, 
and the differential codes classical Goppa codes. 

At the beginning of the 1980’s, Ihara [44], Tsfasman, 
Vlgduf, and Zink [107], [108] proved the existence of curves 
over finite fields with many rational points, giving asymptot- 
ically good codes. 

A first attempt to decode algebraic-geometric codes was 
made by Driencourt [15] for codes on elliptic curves. This 
algorithm corrects L(S, - 1)/41 errors. At the end of the 
1980’s, Justesen, Larsen, Jensen, Havemose, and H@holdt [41], 
[48] found for algebraic-geometric codes on plane curves 
a generalization of the decoding algorithm of Arimoto [3] 
and Peterson [78] for RS codes. This algorithm finds an 
error-locator polynomial in two variables which has the error 
positions among its zeros. This was generalized to arbitrary 
curves by Skorobogatov and Vllduf [lOO]. Independently 
Krachkovskii proved the same result, but his work was only 
published as a conference paper in Russian [56]. In this way 
one gets the basic and modi$ed decoding algorithm [ 1001, 
[107]. The basic algorithm d(F) depends on a suitable divisor 
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F and corrects L( SF - 1  - r)/2J errors. The modified algorithm 
of Skorobogatov and Vlgduf [loo] depends on an increasing 
sequence of divisors FI 5  . . . 5  F,, was extended by 
Duursma [ 161, [ 181 and corrects (Sr - 1)/2 - c errors, where 
a is the Clifsord defect. Only in very special cases is ~7 equal 
to zero and for plane curves a is roughly equal to y/4. It was 
shown that the modified algorithm does not always correct up 
to half the minimum distance, but the number of error patterns 
where the algorithm does not decode the error is relatively 
small [16], [47], [74]. 

It was shown by Pellikaan [72] that a  number of basic 
algorithms in parallel decodes (6~ - 1)/2 errors when a 
technical condition involving the Jacobian of the curve is 
fulfiled. The existence of a  sequence of divisors FI, . . . , F, on 
a maximal curve is proved such that at least one of the basic 
algorithms d( Fi) corrects a received word. The argument was 
generalized by Vlgduf [ 1091 for almost all curves. The smallest 
value for s was studied by Carbonne, Henocq, Rotillon, and 
Thiong-Ly [ll], [42], [43]. This algorithm is not effective, 
that is, the existence of these s divisors is guaranteed by a 
counting argument using the zeta function of the curve, but the 
actual construction of those was only achieved for hyperelliptic 
curves of genus at most 4 by Le Brigand [58], [59] and the 
Klein curve by Henocq and Rotillon [43], [81]. It looks like 
a difficult (possibly hopeless) problem in general, which is, 
moreover, obsolete from the decoding point of view, given 
the solutions of the decoding problem which we will discuss 
below. 

In his thesis Porter [79] gave another decoding algorithm 
generalizing the solution of the key equat ion with Euclid’s 
algorithm by Sugiyama, Kasahara, Hirasawa, and Namekawa 
[104]. The correctness of the algorithm and the fact that it 
decodes (SF - 1)/2 - c errors was shown in a paper of 
Porter, Shen, and Pellikaan [79], [80] and by Ehrhard [20], 
[21]. The latter proved moreover that the modified algorithm 
and Porter’s algorithm are equivalent. Euclid’s algorithm is 
replaced by the subresultant sequence [79], [94]. 

An effective algorithm which corrects (Sr - 1)/2 errors 
was given by Ehrhard [22]. The problem of finding the 
divisors FI, . . , F, in advance was circumvented by letting 
the algorithm find those divisors depending on the received 
word. 

An elegant solution of the decoding problem for algebraic- 
geometric codes by a majority vote for unknown syndromes 
was proposed by Feng and Rao [23]. They showed in collab- 
oration with Duursma [17], [18] that the algorithm corrects 
(Sr - 1)/2 errors. The origin of these methods stems from 
the decoding of cyclic codes beyond the BCH error-correcting 
capacity by Feng and Tzeng [28]. As a result of the majority 
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voting, it was noticed that sometimes one can even correct 
beyond half the Goppa designed minimum distance [24]. This 
was formalized by Kirfel and Pellikaan [53] who introduced 
the Feng-Rao designed minimum distance &n for one point 
codes Co (D, mp), which is determined by the semigroup 
of nongaps  of the point P. Shen and Tzeng [97] applied 
the majority voting scheme to Porter’s algorithm. Another 
contribution by Feng, Wei, Rao, and Tzeng [24], [25], [29], 
which resulted from decoding by majority voting, is that both 
the construction and the determination of the parameters of 
the codes can be done in an elementary way. 

The Berlekamp-Massey algorithm [5], [67] on l inear re- 
curring relations in one variable was generalized by Sakata 
[85], [86] to several variables, and will be called the algorithm 
of BMS. This algorithm was applied by Justesen, Larsen, 
Jensen, and Hoholdt [49] and Shen [95], [96] to get faster 
implementations of the modified algorithm, and later the 
majority voting was also incorporated by Sakata, Justesen, 
Madelung, Jensen, and Hoholdt [65], [89]-[91]. Using the 
block-Hankel structure of codes on plane curves, Feng, Wei, 
Rao, and Tzeng [29] could lower the complexity of the 
majority voting scheme as well. 

The error-locator ideal was determined by Saints and Hee- 
gard [83], [84] and Leonard [60] with the algorithm of 
BMS. The former authors enlarged the notion of algebraic- 
geometric codes in such a way that it gives a unified treat- 
ment of (multi)cyclic, Hyperbolic Cascaded Reed-Solomon, 
Reed-Muller, and AG codes. The latter author [61] used a 
change of an admissible order on the monomials to get a 
generalization of Forney’s algorithm for the error values. 

The basic algorithm can be phrased in terms of arbitrary 
linear codes by the notion of an error-correcting pair of 
Pellikaan [71], [74], [76], later independently found by Kijtter 
[54]. This has been applied to decode cyclic codes beyond 
their BCH error-correcting capacity by Duursma and Kbtter 
[19]. Majority voting was generalized to cyclic and AG codes 
with the notion of general ized Newton identities by Feng and 
Tzeng [20] and Shen and Tzeng [98], [99], and to arbitrary 
linear codes with the notion of an  error-correcting array and 
the shift bound  by Pellikaan [75], [77]. 

W ith the basic algorithm, Skorobogatov and Vladuf gave an 
algorithm to correct errors-and-erasures up to Sr - y. Several 
authors [26], [55], [88], [99] have papers in preparation which 
deal with the extension of the various decoding algorithms to 
error-and-erasure correction. We  will not survey these papers 
and only mention that as a result one now has soft-decision 
decoding algorithms for AG codes, by combining these ex- 
tensions with the general ized minimum distance algorithm of 
Fomey [31]. 

Some specific examples on the Klein curve are examined in 
detail. These examples are primarily chosen from a didactical 
point of view and not because the codes are good. We  want to 
illustrate the concepts and properties, and compare the distinct 
algorithms in these examples. 

As a reference on coding theory we use MacWill iams 
and Sloane [69]. There are some introductory works on the 
algebraic-geometric codes (see [37], [62]-[64]). For a self- 
contained treatment on algebraic curves over finite fields we 

recommend the books of Chevalley [ 121 and Stichtenoth [ 1021 
which treat curves from the algebraic point of view, that is, 
by function fields of one variable. A more geometric point 
of view is taken by Fulton [32]. Furthermore, we mention 
Moreno [70]. These books are sufficient to understand the 
papers concerning the decoding of algebraic-geometric codes. 
A standard reference of algebraic geometry for mathematicians 
is Hartshome [40]. Abhyankar [2] is written for engineers. 
For a deeper understanding of modular curves and their 
codes we mention the book of Tsfasman and Vlldul [107]. 
For computational algebra, that is, for Griibner bases and 
algorithms for computing them, we refer to Buchberger [lo] 
and Cox, Little, and O’Shea [14]. 

Notation: ff denotes a field, F, denotes the finite field with 
4 elements. Z  is the set of integers, N the set of positive 
integers, and No the set of nonnegative integers. Vectors will 
usually be row vectors, HT is the transpose of a  matrix H. 
The standard inner product of two vectors a and b is equal to 

abT = c aibi. 

The dual of a  subset A of E; is defined by 

Al = {b E IF: 1  baT = 0 for all o  E A}. 

The number of elements of a  set A is denoted by #A. If A 
is a  subset of a  vector space or semigroup, then (A) is the 
subspace or subsemigroup generated by A. 

Define the star multiplication a * b  of two elements a and b 
of Ey by coordinatewise multiplication, that is, (o* b)i = aibi. 
For two subsets A and B of Er we denote the set {u * b  1 a E 
A,b E B} by A * B. Define AL = {b E ‘7  1  baT = 
0 for all u  E A} for a  subset A of ‘Fy . 

II. THE DECODING PROBLEM 

In this paper, we consider error-correction using codes,  these 
are sets of words of a  fixed length n and with symbols from the 
finite field IF, with 4 elements. The Hamming distance d(a, b) 
between two words a and b  of I=: is by definition the number 
of positions where they differ. The weight wt (a) of a  word a 
is the number of nonzero positions. Let C be a code in ‘Fy, the 
minimum distance of C is the minimum distance between two 
distinct words of C and will be denoted by d(C) or d. If c is 
the transmitted word and c + e is the received word, then we 
call e  the error vector and {ilei #  0) the set of errorpositions, 
the ei’s are called the error values and wt (e) is the number  of 
errors of the received word. If y is the received word and the 
distance of y to the code C is t’, then there exists a codeword 
c’ and an error vector e’ such that y = c’ +e’ and wt (e’) = t’. 
If the number of errors is at most (d - 1)/2, then we are sure 
that c = c’ and e =.e’. In other words, the nearest codeword 
to y is unique when y has distance at most (d - 1)/2 to C. 

We  are only interested in l inear codes,  which are subspaces 
of IF:. The dimension of a  code C is denoted by It(C) or Ic. For 
linear codes, the minimum distance is equal to the minimum 
weight of a  nonzero word of C. The information rate k/n of 
the code is denoted by R. A generator  matrix of an [n, k] code 
C over IF, is a  Ic x n matrix G such that C = {zG ] z E IF:}. 
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Thus the map 

defined by E(z) = zG is linear and encodes words of length k 
as codewords of C of length n. Define C* = C U {?}. A map 

2):IF; - c* 

is called a decoder  for the code C if D(c) = c, for all c E C. 
We  allow the decoder to give as outcome “?,” when it fails 
to find a codeword. 

Defmition 2.1: A minimum distance decoder  for a  code C 
is a decoder 2) such that D(y) is a  closest codeword to y for 
all y. 

A decoding error of a decoder occurs when the decoded 
word is different from the transmitted word. A maximum- 
likelihood decoder  minimizes the probability of a  decoding 
error. Minimum-distance decoding is equivalent to maximum- 
likelihood decoding for a  q-ary symmetric channel.  In a q-ary 
symmetric channel the probability that a  symbol will be 
changed to another one is the same for all letters in the alphabet 
and does not depend on the position in the word. 

If C = {c E ‘FF 1 HcT = 0} for an (n - Ic) x n matrix 
H, then H is called a parity check matrix for C. We  have the 
standard bilinear form on Ey defined by 

abT = C aibi. 
i 

If A is a  subset of ‘Fy, then we define the dual Al of A 
in EF with respect to the standard bilinear form by Al = 
{b 1 abT = 0 for all a  E A}. So in this definition A is not 
necessarily linear but AL is always linear. Thus the rows 
hi, i = l,“‘, n - k of a  parity check matrix H of a linear 
code C form a basis for the dual of C. For a received word 
y E Fy and a parity check matrix H for a  code, the syndromes 
of y are by definition si(y) = hiyT, i = l,...,n - k. An 
important decoding method will be to consider an extension 
of the parity check matrix H to fi of size n x n such that 
the n  rows hi, i = l,..., n  are a basis for ‘FT and the first 
n  - k rows are from H. The n  syndromes si(e) = e@ for 
i = 1, . . , n  determine the error vector uniquely, but only 
the first n  - k syndromes are known, since si(e) = Si(y), 
for i = l,... , n  - Ic. The remaining syndromes are called 
unknown syndromes, and we will see how majority voting 
gives a procedure to compute the unknown syndromes for 
some classes of codes. 

The set of all words with the same syndrome as y is the 
coset y + C. An element of the coset y + C of minimal 
weight is called a coset leader. A simple minimum-distance 
decoder consists of an exhaustive search for a  coset leader. 
An alternative would be to make a list of all coset leaders. 
It is clear that both methods have exponential complexity as 
a function of the codelength, since either one has to search 
among 4 Rn elements of the coset of a  received word to find one 
of minimal weight, or one has to store q(leR)” coset leaders. 
There is a vast amount of literature on the various algorithms 
for minimum-distance decoders but they will not be discussed 

here. All known minimum-distance decoding algorithms have 
exponential complexity. 

If A is an algorithm which has as input a pair (C, y), where 
C is a linear code and y a word of the same length as C, then 
dc is the restriction of the algorithm A to C, that is, AC has 
as input a word y of the same length as C and as output 
d(C, y) computed by A. Consider the following problem: 
Find an algorithm A which has as input (C, y), where C 
is a linear code given say by a parity check matrix and y 
a (received) word of the same length as C, and as output 
a’word d(C,y) in C* such that & is a minimum-distance 
decoder for C. This problem is NP-hard (see [6] and also [4]). 
The McEliece cryptosystem [68] is based on this fact. The 
problem as posed above has two parts. First, the preprocessing 
part done at a  laboratory and a factory where for an appropriate 
code C a decoder dc is built and this is allowed to be time- 
consuming. Second, the actual operating of the many copies 
of the decoder for consumers which should work very fast. So 
one considers the problem of minimum-distance decoding with 
preprocessing. This problem also turns out to be hard (see [9]>. 

Thus the decoding algorithms which we will treat below 
have a twofold application: error-correction and cryptology. 
From the error-correction point of view, it seems pointless to 
decode a bad code, but if one wants to break the McEliece 
system one must be able to decode efficiently all, or almost 
all, codes, including bad codes. 

The known decoding algorithms which have polynomial 
complexity decode only up to a certain bound; for instance, 
up to half the (designed) minimum distance. 

Definition 2.2: A decoder 2) for a  code C is called a 
bounded  distance decoder which corrects t errors if 27(y) is 
a  nearest codeword for all y E ff; such that d(y, C) 5  t. A 
decoder 2, for a  code C of minimum distance d  decodes  up  
to half the minimum distance if 27(y) is the nearest codeword 
for all y E Ey such that d(y, C) 5  (d - 1)/2. 

Concerning statements about the complexity of an algorithm 
we use the “big 0” notation. We  say f(n) =  O(g(n)) for 
n  ---t 00 if and only if there exists a constant C and an integer 
no such that f(n) < Cg(n) for all n  > no. All decoding 
algorithms for algebraic-geometric codes, which we will treat 
below, decode up to half the designed minimum distance and 
have complexity O(n3) or less for n  -+ co. Whether this is 
the case for all linear codes we pose as the following problem 
from [4] on decoding up to half the minimum distance (with 
preprocessing). 

Problem 2.3: Is there an algorithm A which has as input 
(C, y), where C is a linear code and y a word of the same 
length as C and as output a word d(C, y) in C* such 
that dc is a decoder for C which decodes up to half the 
minimum distance, and the complexity of the algorithm dc 
is polynomial as function of the codelength and independent 
of C? 

We  finish this section by showing a well-known fact that 
errors can be corrected if we have enough information about 
the error positions; in other words, if we have erasures only. 

Proposit ion 2.4: Let C be a linear code in FF  with parity 
check matrix H. Suppose we have a received word y with 
error vector e and we know a set J with at most d(C) - 1  
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elements which contains the set of error positions. Then the 
error-vector e is the unique solution of the following linear 
equations: 

HxT = HyT and x~j = 0, for all j $  J. 

It is clear that the error vector is a  solution. If x is another 
solution, then H(z - e)’ = 0. Therefore, z - e  is an element 
of C, and moreover it is supported at J. So its weight is at 
most d(C) - 1. Thus it must be zero; so x = e. 

Thus we have shown that we can reduce error decoding to 
the problem of finding the error positions. If we want to decode 
all received words with t errors, then there are (y) possible t 
sets of error positions one has to consider. This number grows 
exponentially with n  when t/n tends to a nonzero real number. 
From Proposition 2.4 above it is enough to find an (n, d  - 1, t) 
covering system: In other words, a  collection 3 of subsets J 
of (1,. . . , n}, such that all J E 3 have d  - 1  elements and 
every subset of { 1, . . . , n} of size t is contained in at least 
one J E J. The size of such a covering set is considerably 
smaller than the number of all possible t sets, but is at least 

(‘;)/(” t ‘). 

This number still grows exponentially with n. 
Most of the decoding algorithms which we will survey give 

a polynomial, a  vector, a  function, or an ideal of functions 
which locates the errors, that is, the set of zeros of the 
function(s) will contain the error positions. 

III. ALGEBRAIC-GEOMETRIC CODES 

For this section we refer to the work of Goppa [33]-[37], the 
survey papers on AG codes in this special issue and many other 
references [2], [12], [32], [62]-[64], [70], [102], [107]. By a 
curve over a field IF, we mean an affine or projective variety of 
dimension one, which is absolutely irreducible and nonsingular 
and whose defining equations are (homogeneous) polynomials 
with coefficients in IF,. For an algebraic curve X over the 
field ff p  we denote its function field by Fp(X). A rational 
point of a variety over IF, is a  point whose coordinates are 
in IF,. The  Frobenius map  of a variety over F, sends a point 
with coordinates (ai, . . . , a,) to (a:, . . . , a:) and similarly for 
homogeneous coordinates. A place of degree m of a variety 
X over IF, is a  set of m points of the variety which are 
rational over lFQm and which are cyclically permuted by the 
Frobenius map. W ith every place P of a curve X one can 
associate the valuation up on the field IF,(X) of rational 
functions on X which measures the order of zero or pole of a  
function at this place. A divisor is a  formal sum C mpP of 
places P with integer coefficients mp such that finitely many 
coefficients are nonzero. One can add divisors coefficientwise. 
One has a partial order on the divisors by comparing them 
coefficientwise. The support  of a divisor G is the set of places 
P, for which mp is nonzero. A divisor is called effective if 
all the coefficients are not negative. The degree of a divisor 
G of the form C mpP is by definition 

deg (G) = c mp deg (P). 

A rational function f has a divisor (f), given by 

(f) = c  ~P(f)P 

which we call the principal divisor of the function. The 
principal divisor of a  rational function f is the difference of 
two effective divisors, (f) = (f)c - (f)a, where (f)c is the 
divisor of zeros and (f )oo is the divisor of poles of f. Thus 

(f)~ = c ~p(f)P and (fJm = c --I~P(J')P. 
.UP(.f)>O 21P(.f)<O 

The degree of a  principal divisor is zero. Two divisors G and 
H are called equivalent if their difference is a principal divisor, 
this is denoted by G E H. 

For every divisor G one defines the finite-dimensional 
vector space L(G) over IF, of rational functions with zeros 
and poles prescribed by G as follows: 

L(G) = {f E F,(X) I f = 0 or (f) > -G}. 

The dimension of L(G) is denoted by Z(G). The Theorem of 
Riemann says that there exists a nonnegative integer m  such 
that for every divisor G 

Z(G) >deg(G)+l-m 

and the smallest nonnegative integer with this property is 
called the genus,  and is denoted by y(X) or y. The genus 
is zero if and only if the curve is the projective line. Curves 
of genus one are also called elliptic. The gonality of a curve 
is the smallest degree of a  divisor G such that Z(G) > 1, 
or equivalently, it is the smallest degree of a  nonconstant 
morphism from the curve to the projective line, and is denoted 
by r(X) or 7. The gonality is one if and only if the curve 
is the projective line. A curve which is not elliptic is called 
hyperelliptic if it has gonality two. 

Let X be a curve over IF,. Let PI, . . . , P, be n distinct 
rational points of X. We  denote the divisor PI f f . . +  P, by 
D. Let G be a divisor with support disjoint form the support 
of D. Then we can evaluate f at all Pi’s and consider the map 

eve: L(G) + Ey 

defined by evD (f) = (f(Pl), . . . , f(Pn)). This map is IF,- 
linear and injective when deg (G) < n. We  denote the image 
of this map by CL (D, G). This code is called an  algebraic- 
geometr ic or a general ized Reed-Solomon code on X. The 
following proposition is a direct consequence of the Theorem 
of Riemann-Roth. 

Proposit ion 3.1: The code CL (D, G) is If,-linear with pa- 
rameters [n, Ic, d] such that d  2 n-deg (G) and Ic > deg (G) + 
1 - y when deg (G) < n. Moreover if deg (G) > 2y - 2, then 
k = deg(G)+l-y. 

The Goppa  designed minimum distance of CL(D, G) is by 
definition n  - deg (G) and is denoted by Sr. The minimum 
distance of the dual of a  code can be estimated in terms of the 
minimal number of dependent columns of a  generator matrix 
of the code. Thus we have the following property: d(Cl) >  t 
ifandonlyifdim(C(I))=Ic-IforallIC{l,.+.,n}and 
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I 5  t, where C(I) is the subcode of words in C which are 
zero at all i E I. If 

Q=xP” 
iEI 

then Ch(D,G)(I) = CL(D, G - Q). The dimension of 
CL(D, G - Q) is deg (Q) = I smaller than the dimension 
of CL(D, G) if 1  < deg (G) - (27 - 2) and deg(G) < n. 
Thus the dual of CL(D, G) has at least minimum distance 
deg (G) - 27 + 2. 

Another way to get an estimate for the minimum distance 
of the dual code of CL(D, G) is with the help of differential 

forms, also called dzrerentials. Think of differentials as objects 
of the form f dg, where f and g are rational functions and 
dg is the differential of g, such that the map which sends 
g  to dg  is a  derivation. A derivation is If,-linear and the 
Leibniz rule d(fg) = fdg + gdf holds. We  denote the set 
of differentials on X by Rx. One can talk about zeros and 

’ poles of differentials. At every place P there exists a local 
parameter that is a  function u which has valuation 1 at P, 
and for every differential w there exists a function f such that 
w = f du. The valuation up(w) of w at P is now by definition 
up(f), so we say w has a zero of order p  if p  = up(f) > 0  
and w has a pole of order p  if p  = -up(f) > 0. The divisor 
(w) of w is by definition 

(w) = -j+(w)P. 

The divisor of a  differential is called canonical and always 
has degree 27 - 2. Any two canonical divisors are equivalent. 
In the same way as we have defined L(G) for functions, we 
now define the vector space R(G) of differentials with zeros 
and poles prescribed by G as 

O(G) = {w E Rx ) w = 0 or (w) > G}. 

Now one could have defined the genus as the dimension of the 
vector space of differentials without poles, that is, of n(O), 
where 0 is the divisor with coefficient 0  at every place. The 
dimension of 0(G) is called the index of speciality of G and 
is denoted by i(G). The Theorem of Riemann-Roth states that 

Z(G) = deg (G) + 1 - y + i(G). 

Furthermore, i(G) = I( K - G) for all divisors G and canonical 
divisors K. 

Let w be a differential form. If P is a  place of degree m  
and u is a local parameter at P, then there exists a rational 
function f such that w = fdu. This function f has a formal 
Laurent series 

2 aiu’ 
i=p 

where the coefficients ai are in lFpm and p  = up(w) and 
up  #  0. The residue of w at P is by definition Tr (a-l) and 
denoted by resp (w), where Tr is the trace map from IFqrn to 
IF,. If PI,. . . , P, are n distinct rational points on the curve 
and G is a divisor with none of the Pi in its support, then 
consider the map 

resD: R(G - D) - Fy 

defined by 

resD (w) = (resp, (w), :. . , respn (w)). 

Its image is denoted by Cn(D, G). Such codes are called 
geometr ic Goppa  or algebraic-geometric. As a corollary of 
the Theorem of Riemann-Roth we get 

Proposit ion 3.2: The code Ca(D, G) is If,-linear with pa- 
rameters [n, Ic, d] such that d  2 deg (G) - 27 + 2 and Ic 2 
n - deg (G) - 1  + y when deg (G) > 27 - 2. Moreover if 
deg (G) < n, then k = n - deg (G) - 1  + y. 

We  call deg (G) - 27  + 2  the Goppa  designed minimum 
distance of the code Co(D, G) and denote it by Sr as well. 

The fact that the jkzctional code Cl;(D, G) and the differ- 
ential code Ca(D, G) are dual codes is seen by the Residue 
Theorem, which states that the sum of all residues over all 
places of a  fixed differential is zero. That both the functional 
and the differential codes are called algebraic-geometric codes 
is justified by the fact that for every curve and every choice of 
n  rational points PI, . . . , P, there exists a canonical divisor 
K of a differential form w, which has simple poles at Pi with 
resesp% (w) = 1 for all i, such that CL(D, G) = Cn(D, K + 
D - G) for all divisors G. This fact also shows that it is not 
a  loss of generality to consider only decoding algorithms for 
the differential codes. 

In many papers one-point codes are considered, that is, 
codes of the form Ct(D,mP) or Cn(D,mP), where P is 
a  rational point which is distinct from all PI, . . , P, and 
m  an integer. Let m be a nonnegative integer. If l(mP) = 
l((m - l)P), then m  is called a (Weierstrass) gap  of P. The 
number of gaps of P is equal to the genus y of the curve, 
since Z(iP) = i + 1 - y if i > 27 - 2, and 

1 = Z(0) 5 l(P) I .‘. 5  I((27 - l)P) =  y. 

If m  E NO, then m  is a nongap of P if and only if there exists 
a rational function which has a pole of order m  at P and no 
other poles. If ml and mz are nongaps of P, then ml + mz 
is also a nongap of P, thus the nongaps form a semigroup in 
NJO. Let (pi Ii E N) be an enumeration of all the nongaps of 
P in increasing order, so p1  = 0. The semigroup of nongaps 
is always generated by p2,p3, ... ,py+2. Let g; E L(piP) 
be such that vp(gi) = -pi for i E lU The ring K,(P) of 
rational functions on the curve with only poles at P plays an 
important role. Now 

and 

Km(P) = ~qbz,g3,.~.,g,+zl 

F,[Yi, . . , Y,+,]/I --” Km(P) 

where the isomorphism is given by sending Yi to gi+i, and I 
is some ideal in the ring IF,[Yl, . . . , Yy+l] (see [SO]). If the 
semigroup of nongaps is generated by pi1, . . +  pil, then 

K,(P) = ~q[gil,..~,giil 

such that 

E,[Zl,... ,-&l/J g Km(P) 
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where the isomotphism is given by sending Zj to gi, , and J is 
some ideal in the ring F,[Zi, . . . , Zr]. This has the following 
geometric meaning: if P is a  point on the curve X then 
one can embed X \ {P} in affine space of dimension 1 with 
defining equations given by the elements of the ideal S. The 
corresponding projective curve has only P in the hyperplane 
at infinity. 

Example 3.3 Reed-Solomon Codes:  Let cy = (al, . . . , a,) 
be an n-tuple of n  distinct elements of IF,. Define the Ic- 
dimensional Reed-Solomon code over IF, by 

RSk (a) = {(f (4,. . . , f(a,)) I f E~,[Xl, deg(f)<k). 

Let 3: be an n-tuple of nonzero elements of IF,. The Ic- 
dimensional General ized Reed-Solomon code over IF, is de- 
fined by 

GRSc (a, x) 
= {(f (%)a> ‘. , f (anhI I f E F ,m[Xl, deg (f 1  < k>. 

Let g be a polynomial in F,[X] such that g(oi) = xi for all 
i. Let Pi = (e!i : 1) and P = (1 : 0) be the point at infinity of 
the projective line. Let D = PI +. .+P,. Let the divisor G on 
the projective line be defined by G = (k - l)P, - (g). Then 
GRSI, (a, 2) = CL (D, G). The set of extended Generalized 
RS codes is exactly the set of codes on the projective line. 
That is why the functional codes CL (D, G) on curves are 
called Generalized RS codes too by some authors. 

Example 3.4 Goppa  Codes:  Let L  = (~1, . . , a,} be a set 
of n  distinct elements of IFqrn. Let g  a polynomial in IFqrn [X] 
which is not zero at ai for all i. The (classical) Goppa  code 
I’(L, g) is defined by 

q-kg) = 
{ 

cEF:I I&-O(modg) . 
z I 

Let the Pi, P, and D be as in the previous example. If we take 
for E the divisor of zeros of g, then I’(L, g) =  Cn(D, E - P) 
and 

c E l?(L,g) if and only if c &dX E R(E-P-D). 

This is the reason that some authors extend the definiton of 
geometric Goppa codes to subfield subcodes of differential 
codes of the form Co( D, G). The duality between functional 
and differential codes is seen, for instance, by the well- 
known fact [69] that the parity check matrix of the Goppa 
code I’(L, g) is equal to the following generator matrix of a  
Generalized RS code: 

g(c+l 

( ! 

. . . 9bJ’ 
cqg(a$l . . . Qng(%y 

. . . 
r-1 “1 g(%-l ... 71 (p-1 

i 1 !dQrJ1 

where T  is the degree of the Goppa polynomial g. 

Example 3.5: Let X be a nonsingular projective plane 
curve of degree m  over IF,. Then the curve is also absolutely 
irreducible. Let the affine part of X be given by the equation 
F(X, Y) = 0, where F(X, Y) is a polynomial in the variables 
X and Y with coefficients in F,. The coordinate ring of this 
affine part is equal to IF, [X, Y]/(F). The cosets of X and 
Y modulo the ideal generated by F are denoted by x and y, 
respectively. Let H be the intersection divisor of the curve 
with the line at infinity. Then jH has degree jm and L(jH) 
is generated by all xayb such that a  + b  < j, a, b  E No, and 
the relations come from multiples of F. Thus Z(jH) = (ji2) 
if j < m, and 

=jm+l- (m-l)(m-2) 
2  

if j > m  (see [32], [48]). The genus of such a curve is 
(m - l)(m - 2)/2. 

Example 3.6: Many papers on the decoding of codes on 
curves use the Hermitian curve as an example which is given 
by the homogeneous equation 

X r+l + y’+l + y-+1 = 0 

over [F,, where 4 = r2. This curve has r3 + 1 rational points 
over [F, and genus T(T - 1)/2. This curve is isomorphic to 
the curve with affine equation 

yr+y=x'+l 

which has exactly one point P at infinity and n  = r3 rational 
points PI,..., P, in the affine plane. The semigroup of 
nongaps at P is generated by r and r + 1 and the corresponding 
functions are x and y, so 

Km(P) = F,[x, Y] = F,[X, Y]/I 

where 1 is the ideal of IF, [X, Y] generated by Y’ + Y - Xr+‘. 
Hermitian codes are codes of the form CL (PI f. . . +  P,, mP) 
(see 1411, [481, 1 

Example 3.7: 
equation 

641, [651, [951, 1961, [loll, UO61, [1121). 
The Klein quartic over Fs has the affine 

X3Y$Y3fX=0. 

It has genus y = 3, and three points RI = (1 : 0  : 0), 
R2 = (0 : 1  : 0), and R3 = (0 : 0  : 1) which are rational over 
IFz, and 21 points PI,. . . , Pzl which are rational over Fs, but 
not over Fz. The codes 

c(m) = &(Pl f . . . + P23, mp) 

where 4 < m  < 23, P22 = R3, P23 = RI, and P = R2 
have parameters [23,25 - m, >rn - 41. This curve has been 
studied most often in papers on AG codes and their decoding 
[16], [18], [25], [38], [43], [63], [81], [98]. In these papers, 
however, one considers codes of the form Cn(D, G), where 
D = PI +  ... + P21 and G = m(R1 + R2 + R3). In [60], 
[61] and the following decoding algorithms the codes C(m) 
are used as an example. 



H0HOLDT AND PELLIKAAN: ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES 1595 

The homogeneous equation of the Klein quartic is 

X3Y+Y3Z+Z3X=0 

and from this we readily see that the intersection divisor of the 
curve with the line with equation X = 0 is equal to 3R3 + Rz, 
with the line Y = 0 is 3R1 + R3, and with the line Z  = 0 
is 3Rz + RI. The function x is the quotient of X and 2, so 
the principal divisors of x is 

equal to 3& + RI and is therefore a canonical divisor. Since 
(x) =  3R3 - RI - 2R 2 and (y) = 2R1 + R3 - 3R2 we get 

Y 
0 

- 
X 

= (y) - (x) =  3R1 - R2 - 2R3. 

We show below that (dx) = 4R2 + 2R3 - 2R1 and therefore 

( ) ;dx =  Rl +3R2. 

(x) =  (3R3 + Rz) - (3Rz + RI) =  3R3 - RI - 2R2. At a point Q with local parameter t, we have that 

Similarly, if y = Y/Z, then 

(y) = 2R1f R3 - 3R2 

(xy) = RI +  4R3 - 5R2 

(y2) = 4R1+ 2R3 - 6R2 

(x’y) = 7R3 - 7R2 

x= c a$  
QP 

where p  = vQ(x), so  

dx  = c ia&ldt 
izp, i is odd 

and in general 

(x”yj) = (3i +  j)R3 + (2~’ - i)R1 - (2i +  3j)Rz. 

since the characteristic is even. Thus if p  is odd, then 
vQ(dx) = p - 1; if p  is even, then vQ(dx) > p; and if p  
is nonnegative, then vQ(dx) 2 0. Thus 

The nongaps at P = R2 less than or equal to 2y+ 1 = 7 are 
0,3,5,6, and 7, and the corresponding functions are g1 = 1, 
g2 = y, ga = xy, g4 = y2, and g5 = x2y. Furthermore, 
g3j-2 = yJ, g3j-1 = x2yj--l, and g3.j = xyj for j > 2. There 
are some obvious equations between the gi such as 

(dx) = 2R3 - 2R1 - 2R2 + A 

where A is an effective divisor, since (x) = 3R3 - RI - 2R2. 
Let t = x/y. Then t is a  local parameter at Rz, so 

9295 = 932 Q4 = 922 Lb-2 = 9; Q3j-1 = 959:-2 

and 

Q3’ = 939$-l. 3 

From the affine equation of the Klein quartic follows 

and 
x = t-2 +  a-It-l +  a0  +. . . 

y = t-3 + a-lt-2 + uot-l + a1 + ‘. . . 

9; + Q3 + Q3Ll5 = 0 

The equation x3y + y3 + x = 0 implies y4t3 + y3 + yt =  0, 
that is, t = y2 (1 + yt3). Substituting the formal power series 
in t for y gives 

and there is another equation which is more difficult to find 

92393  + Q5 + s; = 0 

t = (t-6 + u21t-4 + ait- + UT + u;t2 + u3t4 + uy f.. .) 
. (a1t + uot3 + u1t3 + . . .) 

(see [61]). One can show that all equations are consequences 
of these equations, thus 

and therefore ai = 0 for all i < 5 and a5 = 1. Thus 

&a(P) = h[g2,g3,g5] = ES[zl, zZ,z,]/J 

x = tp2 + t5 + higher order terms, so 
dx = (t4 + higher order terms) dt. 

where 

J = (2123 + 222, zl” + 22 + z2z3,2,322 + 23 + 2,“). 

Therefore, (dz) =  2R3-2R1+4Rz+B, where B is effective, 
but deg (dx) = 2y - 2  = 4, so we must have that B = 0, 
which proves the desired result. 

A point R on the affine plane model of the curve with 
coordinates (a, b) has coordinates (b, ab, a2b) on the model 
in affine S-space. RI and R2 are the only points on the plane 
model at the line at infinity 2 = 0. RI is a  zero of gs , gs, and 
g5 + 1, so the corresponding point in S-space has coordinates 
(O,O, 1). The point P = R2 is a  pole of gz, gs, and g5, and is 
therefore the unique point at infinity of the curve in 3-space 
(see [84] for a  description of IFs[g2, gs, g5 + 11). 

Example 3.8: The curve with equation 

YS+Y =x2(x8+x) 

The effective canonical divisors are exactly the intersection 
divisors of the projective plane curve with a line. The intersec- 
tion divisor of the curve and the line with equation Z  = 0 is 

over IFs has 64 rational points PI, . . . , PG4 in the affine plane 
and one rational point P at infinity, and genus y = 14. This 
is the first in the series of curves connected with the Suzuki 
group considered in [39]. At P, the semigroup of nongaps 
is generated by 8, 10, 12, 13 and the corresponding functions 
are x,y,x5 + y4 and xy? + x2’ + y16. The corresponding 
codes C& (D, mP), D = PI + . . . + P64 have parameters 
[64, 277  - m, >m - 261  for 26 < m  < 64. 



Example 3.9: Let r be a prime power such that r z 
l(mod 3). The curve in affine 3-space over IF,, 4 = r2, defined 
by the Kummer extensions 

Y ?-fl = X’ + x, 

z r+l= -KY’ - yx’ - 1 

has (4 - 1)2 rational points and genus r3 + r2 - 3 (see [ 1 lo]). 
The functions x, y, and z have a common pole at P and 
their pole orders at P are (r + 1)2, r(r + l), and r(r + 2), 
respectively, and these three numbers are the generators of the 
semigroup of nongaps at P. 

Define for a received word y and a divisor F the kernel 

K(Y, F) = {f E  L(F) 1 c yif(Pi)g(E) = 0 

for all g E L(G - F)}. 

Denote K(y, F) by K(y) or K(F) for short in situations 
where F or y, respectively, is fixed. Thus K(y, F) is an object 
we can compute as soon as we receive the word y. It contains 
all error-locator functions of L(F) hence 

L(F - Q) C_ K(Y, F). 

Co(D,G) is equal to deg(G) - 2y + 2. 

IV. THE BASIC AND MODIFIED ALGORITHM 

Recall that the Goppa designed minimum distance Sr of 

The right-hand side is an object we know, and the left-hand 
side is the part we want to know. We assumed that deg (F) > 
t + y. Suppose, moreover, that deg (G - F) > t + 2y - 2, then 

. Co(Q, G - F) = 0. If f E K(y, F), then 

0 = C yJ(P,)g(Pi) = C eif(fi)i)g(Pi) 
iEI 
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Let y be a received word with error-vector e of t errors, 
where t 5 (Sr - 1)/2. So y = c + e for a codeword c in 
Co(D,G) and wt (e) = t. Let I = {i 1 ei # 0) be the 
set of error positions. We have explained in Section II how 
we can get the error values if we have found a set J of 
at most d - 1 elements which contains the error positions. 
We will discuss in the following the basic and modijed 
algorithm for the code Co(D, G) as presented in [48], [56], 
[ 1001 and which are generalizations of the decoding algorithm 
of Arimoto-Peterson [3], [78] for RS codes. Under certain 
assumptions both algorithms find, for a received word y, a 
rational function f which is zero at all error positions. Such 
functions are called error-locator functions. We do not assume 
that the set of zeros of an error-locator function is equal 
to the set of error positions, as is the case for error-locator 
polynomials for RS and BCH codes. On a curve of genus 
y > 0, if one has found a function f which is zero at t 
prescribed points, then in most cases such a function has y 
zeros more. This is the reason that the basic and modified 
algorithm does not decode up to half the Goppa designed 
minimum distance. 

Let F be any divisor with support which is disjoint’from the 
support of D. Let Q be the divisor of error positions defined by 

Q = cp”. 
iEI 

The set of error-locator functions in L(F) is a subspace of 
L(F) defined by imposing t linear conditions and is equal to 
L(F - Q). We want to find a nonzero error-locator function 
in L(F), so L(F - Q) should be nonzero for all choices of 
Q. This is the case if the dimension of L(F) is at least t + 1, 
which is satisfied if the degree of F is at least t + y, by the 
Theorem of Riemann. 

If f E L(F) and g E L(G - F), then fg E L(G), so 
the corresponding word evD (fg) is an element of CL(D, G), 
which is the dual of Co(D, G), thus evD (fg)cT = 0. If 
moreover f is zero at all error positions, then 

C yif(Pi)g(Pi) = C eif(PiMPi) 

= C eif(Pi)g(Pi) = 0 
&I 

for all g E L(G - F). The word 2u with entries wi = e;f(Pi) 
is an element of the dual of CL(Q, G - F), and we saw that 
this dual is zero. Thus eif(Pi) = 0 for all i E I, so f is zero 
at all error positions. Therefore, L(F - Q) = K(y, F). 

Two assumptions were made on the degree of F. First, 
deg (F) 2 y+t and secondly, deg (G-F) > 2y-2+t, which 
conflict each other when t is too large. The largest possible 
value for t which meets both assumptions is L(Sr - 1 - ~)/a]. 
Let H be a parity check matrix for Co( D, G). Let t = 
L(&-1-~)/21. T k a e a d’ ivisor F of degree tfy with support 
disjoint from D. One can show that such divisors always exist. 
We consider the construction of such a divisor F and finding 
bases for the vector spaces L(F) and L(G - F) as part of the 
preprocessing of the following decoding algorithm. 

Algorithm 4.1 Basic Algorithm /t(F): 

1) 
2) 

3) 

4) 

5) 
6) 
7) 

Input: y (a received word) 
Compute the kernel K(y, F). If K(y, F) = 0, then goto 
6), else 
Take a nonzero element f of K(y, F) and let 

Compute the solution space L(y) of all 2 such that: 
Ha? = HyT and xj = 0 for all j $! J 
If L(y) has the unique solution ~0, then goto 7), else 
output: ? 
output: y - 560. 

The assumptions on the degree of F also imply that a 
nonzero element of K(y) has at most (Sr - 1) zeros, so we can 
use Proposition 2.4 to get the error values. The computation 
of the kernel K(y) requires solving a set of l(F) linear 
homogeneous equations in I( G - F) unknowns, since we have 
computed a basis for L(F) and one for L(G - F) in the 
preprocessing. The error values can be computed by solving a 
linear system of n - k equations in at most Sr - 1 unknowns. 
Thus we have sketched the proof of the following proposition 
(see [481, [561, [lOOI>. 
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Theorem 4.2: The basic algorithm corrects L(sr - l-y)/21 
errors. The complexity of the algorithm is at most 0 (n3). 

Remark 4.3: The Goppa designed minimum distance is 
negative for functional codes CL (D, G) with deg (G) > 
deg (D) = n. The minimum distance of codes CL( D, G) such 
that G is abundant ,  that is, equivalent to a divisor of the form 
D + A, where A is an effective divisor of degree a, is at least 
r - a, where r is the gonality of the curve. If the curve has 
at least n  + 2 points, then abundant divisors could be used to 
show that there exists a divisor F such that the basic algorithm 
A(F) corrects L(Sr - 1  - y + r)/2J errors (see [731). 

Remark 4.4: If F is an arbitrary divisor, then there exists a 
divisor F’ which is equivalent with F and has support disjoint 
from the support of D. But one can define K(y, F) even when 
the support 

K(Y,F) = 

then fg is 

of F is not disjoint from the support of D. If 

{f E L(F) ( c  yi(fg)(pi) = 0  

for all g  E L(G - F)} 

well-defined at all points Pi, for all f E L(F) 
and g E L(G - F). This follows since fg E L(G) and 
G is assumed to have disjoint support from the support of 
D (see [18]). If f E L(F - Q) and g E L(G - F), then 
f g  E L(G - Q). Now fg is zero at all error positions because 
G has disjoint support from the support of D and SO 

C Yd(fg)(Pi)) = C ei((fs)(Pi)) 
= C ei((fg)(Pi)) = 0 . 

iEI 

Therefore, it still follows that L(F - Q) C K(y, F). The ele- 
ments of L(F - Q) are, by definition, error-locator functions. 
Notice that the assumption deg (G - F) > 2y - 2  + t implies 
that R(G - F - Q) = 0 for every divisor Q of t error positions. 
The following lemma gives a weakening of the assumptions 
for the basic algorithm (see [16], [18], [21]). 

Lemma 4.5: Let N be a parity check matrix of the code 
Co(D, G). Let y be a received word. Let e  be the error vector 
and Q the divisor of error positions and let F be an arbitrary 
divisor. 

1) (Existence) If R(G - F - Q) = 0, then K(y, F) = 
L(F - Q), so all elements of the kernel K(y, F) are 
error locator functions. Moreover, if L(F - Q) #  0, 
then there exists a nonzero element of K(y, F). 

2) (Uniqueness) If R(G - F - Q) =  0, L(F - Q) #  0  
and f is a  nonzero element of K(y, F) with set of zero 
positions J = {j 1  f(Pj) = 0}, then the set of equations 
HxT = HyT and xj = 0 for all j 6  J has the unique 
solution x = e. 

Remark 4.6: The following heuristic argument shows that 
the basic algorithm corrects L(Sr - 1)/21 errors most of the 
time, but it has not been made precise yet. If t = l(& - 1)/21 
and F is a  divisor of degree t + y, then L(F - Q) # 0 for all 
divisors Q of t error positions. The set of divisors Q of degree 
t such that R(G - F - Q) # 0 defines a hypersurface in the 
variety of all effective divisors of degree t. If this hypersurface 
is irreducble, then the percentage of error patterns of weight t 
where the basic algorithm fails for this reason is roughly l/q. 

It may be the case that R(G - F - Q) # 0 and we still 
have K(y, F) = L(F - Q). The following is more precise 
and comes from [ 181. 

Proposit ion 4.7: Let F be a divisor with support which is 
disjoint from the support of D. Then 

K(y, F) = L(F - Q) if and only if 
e  * CL(Q, F) n Cn(Q, G  - F) = 0. 

The basic algorithm depends on the choice of the divisor 
F. So one may try to find a divisor which has a larger 
dimension than is expected from its degree. We  took the 
lower bound deg (F) + 1 - y for the dimension of F, but 
Z(F) = deg (F) + 1 - y + i(F). A divisor F is called special 
if both Z(F) and i(F) are not zero. The degree of a  special 
divisor is between 0 and 27  - 2. Clifford’s Theorem gives an 
upper bound for the dimension of a  divisor 

ifO<deg(F)<2y-2 then Z(F)S--- deg  (F) +  1  
2 

and equality holds only for certain divisors on hyperelliptic 
curves. 

Remark 4.8: If we take for the basic algorithm a special 
divisor F and assume Z(F) > t, instead of deg (F) 2  t +  y, 
and moreover deg (G - F) > 2y - 2  + t, then t 5  (Sr - 1)/3 
(see [72]). 

Another way to improve the basic algorithm is to apply 
it with a sequence of divisors Fl, . . . , F,. In the modified 
algorithm [ 1001 consider a sequence of divisors Fl 5  . . . 5  
F, 5 G and take a nonzero function of K(y, Fi) for the 
smallest value of i such that the corresponding kernel is not 
zero, and continue as in the basic algorithm for Fi. If G  = jH, 
then the sequence of divisors Fi =  iH for i = 0, 1, . . . , j is 
used. 

Definition 4.9: Let m  be the degree of H. Define 

s(H) =  max im+m+l 
2 

1  - l(iH) ) i E Z}. 

From [loo] we quote 
Theorem 4.10: The modified algorithm corrects [(Sr - 

1)/2 - s(H)] errors. The complexity of the algorithm is at 
most 0 (n3). 

Remark 4.11: The number s(H) is about y/4 for plane 
curves. In the original decoding algorithm [48] the codes 
were defined on affine plane curves and were of the form 
Co (D, jH), where H is the intersection divisor of the curve 
with the line at infinity. This can be done similarly for one- 
point codes Co (D, j P), where H = P is a  rational point and 
not equal to one of the Pi in D, and the sequence of divisors 
is now given by Fi =  iP for i = 0, 1, . . . , j. 

The modified algorithm was extended in [ 161, [ 181 by means 
of the following definition. 

Dejinition 4.12: The  Clifford defect a(E) of a divisor E 
such that 0  < deg (E) < 2y - 2  is defined by 

o(E) =  q  + I- l(E). 
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Remark 4.13: It follows from Clifford’s Theorem that o(E) 
is not negative. Suppose that the designed minimum distance 
of Cn(D, G) is odd. If Z  = {Ea, El, .. . , ,X-r} is a  set of 
divisors such that deg (Ei) = 2y - 2  - 2i, then define aa 
to be the maximum over all a(&) for i = 0, 1, . . . , y - 1. 
Let Fa,Fi,... , FY be a sequence of divisors, with supports 
disjoint from the support of D, defined recursively by letting 
Fo be a divisor of degree (6~ - 1)/2, and Fi be a divisor which 
is equivalent to G- Fi-l- Ei-1. Let t = (Sr - 1)/2- re(E). 
Then 0(G - Fo - Q) =  0, L(F:, - Q) #  0, and for any 
divisor Q of t error positions 

if L(Fi - Q) = 0, then R(G - Fi+l - Q) =  0. 

Thus we can take a nonzero function in K(y, F;) for the 
smallest i such that the kernel is not zero and proceed with the 
basic algorithm for this Fi. If the designed minimum distance 
is even, define similiarly, a  sequence of divisors Fl, . . . , Fy 
for a  given set E = {El, . . . , E,-1) of divisors such that 
deg (Ei) = 2y - 1  - 2i, and (~1 (E) is the maximum over all 
a(E;) for i = l,...,y - 1. 

In this way the following theorem is obtained (see [ 161, 
IN). 

Theorem 4.14: The extended modified algorithm corrects 
(b - 1)/Z - ai(E) errors, where i = 0 when the Goppa 
designed minimum distance is odd and i = 1 otherwise. The 
complexity of the algorithm is at most 0 (n3). 

Remark 4.15: Only curves of genus 0 and (hyper)elliptic 
curves have the property that there exists a divisor H such 
that a(H) = 0 or a(E) = 0. The Clifford defect is computed 
for several curves [ 161, [52] and is about y/4 for plane curves. 

Example 4.16: The code C(m) from the Klein quartic, 
see Example 3.7, has designed distance Sr = m  - 4, and 
is therefore t = L(m - 5)/21-error-correcting, but since 
(Sr - 1  - y)/2 = (m - 8)/2 the basic algorithm corrects 
t - 2  errors when m  is odd and t - 1  errors when t is even. 
The modified algorithm corrects t - 1  errors by Theorem 4.10, 
since s(P) = 1. Let E0 = 4P, El = 2P, and Ez = 0, and 
let E = { Ea, El, Ez}. Then (~0 (E) = 1, the corresponding 
divisors Fi are Fo = tP, FI = (t + l)P, F2 = (t + 2)P, and 
F3 = (t + 3) P, and the extended modified algorithm corrects 
t - 1  errors by Theorem 4.14, when m  is odd. If m  is even 
one can take El = P, E2 = 3P, and & = {El, Ez}. Then 
cl(&) = l/2, the corresponding divisors F; are FI =  (t +  1) P, 
F2  = (t + 2) P, and F3 = (t + 3) P, and the extended modified 
algorithm corrects t errors. 

Example 4.17: The code C(ll) from the Klein quartic, 
see Example 3.7, has designed distance Sr = 7, and is 
therefore 3-error-correcting, but since [(SF - 1  - r)/2j = 1 
the basic algorithm only corrects one error. Let F = 4P. Then 
G-F = 7P. The functions 1, y form a basis for L(4P), which 
is equal to L(3P), and the functions 1, y, zy, y2, and x2y 
give a basis for L(7P). Let 

IF8 = F2[T]/(T3 + T + 1) 

and let [ be the class of T in Fa. Then t is a  primitive element 
of IFS. 

The basic algorithm A(3P) corrects all received words with 
one error (as well as those with at most three errors when the 
error positions lie on a line with equation Y + cZ = 0). 

Now we consider the basic algorithm A (5P). Let (&I, Qa) 
be a couple of two distinct points of the points PI, . . , P23 and 
let Q = Qi + &a. Then L(5P - Q) #  0. If 0(6P - Q) #  0, 
then 6P - Q is a canonical divisor and equivalent to 3P + RI. 
So Q + RI is equivalent to 3P. Thus there exists a nonzero 
function in L(3P) which is zero at RI. So this function is equal 
to a nonzero scalar multiple of y and furthermore Qr = R3, 
Q2 = RI. Now 

CL(Q, 5P) = CL(Q, 6P) = Cd&, f3’) 
is generated by (l,l). Therefore 

K(y, 5P) =  L(5P - Q) 

for a  received word y with Q. as error positions and error 
vector e if and only if 

e  * CL(Q, 5P) n  Cn(Q, 6P) =  0. 

However, by Proposition 4.7, this is equivalent to ei #  ez. 
Thus the number of decoding failures of the basic algorithm 
A (5P) to decode two errors is equal to 7 out of (223) * 72, the 
number of all possible error vectors with two errors, which is 
approximately 0.06%. 

We  will consider the following 2-error-pattern where Qi = 
(1, <) and Qa = (<“, 1) and the corresponding error values 
are ei = E and ea = E4 with respect to d(5P). In order to 
compute K(y, 5P) we take 1, y, zy as basis for L(5P) and 
1, y, zy, y2 as basis for L(6P). Now K(y, 5P) is by definition 
equal to the set of all a0 + al y + assy such that 

and this has as basis f = E4 + [y + zy. The zeros of f are 
(1, <), (r2, l), (r5, t5), and ([“, E6). The function f has pole- 
order 5 at P, so one expects a fifth zero, and indeed one has 
to count the zero (t2, 1) with multiplicity two, so 

(f) = (1, I) + 2K2, 1) + E”? t5) + (P, E6) - 5P. 

In order to find the error values we apply Proposition 2.4 where 
the parity check matrix H of C( 11) is obtained by evaluating 
the basis 1, y, zy, y2, ~‘y, xy2, y3, x2y2, zy3 of L( 11P). 
One gets the following system of linear equations: 

1  1 1 1 
I 1  t5 9  \ e l 

e2 

0 = 
e3 

e4 

I 
1 
6 

i4 

E4 

0  

which indeed has (5, e4, 0, O)T as the unique solution. 
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The modified algorithm corrects two errors for the code 
C(ll) by Theorem 4.10 with the divisors 3P, 5P, and 6P, 
since s(P) = 1. Let Eo = 4P, El = 2P, and E2 = 0; and let 
E = { Eo, El, E2). Then ~70 (E) = 1, and the corresponding 
divisors Fi are Fo = 3P, Fl = 4P, F2  = 5P, and 
F3 = 6P. The extended modified algorithm corrects two 
errors by Theorem 4.14 and is, in fact, the same as the 
modified algorithm, since L(4P) = L(3P). In the following 
we will completely describe the instances where the modified 
algorithm fails to correct three errors with respect to the code 
C(11). 

Let (Qi, Qs, Qs) be a 3-tuple of distinct points of the points 
PI,... , P23 and let Q = Qi + Qz + Qs. If the three points 
Qi, Qs, and Qs are collinear with RI, then we have seen 
that A (3P) corrects the errors. If L(5P - Q) = 0, then 
s2(5P-Q) = 0, and L(GP-Q) is always nonzero. Thus in this 
case A (6P) corrects these three errors. This leaves the case 
L(3P-Q) = 0 and L(5P-Q) # 0 and 0(6P-Q) #  0. Note 
that for every effective divisor R of degree 3 on a nonsingular 
plane curve of degree 4, we have that R(R) # 0 if and only if 
there exists a rational point E such that E+ R is canonical; that 
is, it is the intersection divisor of the curve with a line. Thus 
there exists an effective divisor R of degree 3 and a rational 
point E such that E + R is collinear and 6P is equivalent 
with Q + R. So there exists a nonzero rational function g such 
that (g) = Q + R - 6P. If P is in the support of R, then 
R = R’ + P where R’ is an effective divisor of degree 2, 
hence (g) = Q + R’ - 5P, so  g  is of the form a0 + aiy + my. 
The function g is zero at R’ which is collinear with P. So 

= 0, g  = (ui + ~)y; and Qi = R3 = (0 : 0  : l), 
z2 = RI =  (1 : 0  : 0), and Qs and R’ are on the line 
with equation al + X = 0. If P is not in the support of R, 
then g is of the form aa + uiy + usxy + y2. So the quadratic 
form aa + uiY + a2XY +Y2 is zero at R which is a divisor of 
degree 3. That implies that the form is reducible and is of the 
form (b + Y)(c + Y) with b  and c elements of Es, or au = 0 
and ua # 0. If g  = (b + y)(c + y), then Q is on the line 
with equation b  + Y = 0 and R is on the line c + Y = 0. So 
b  + y is a nonzero element of L(3P - Q), which contradicts 
the assumptions. If g  = (ur + uax + y)y and us # 0, then 
Qr = R3, Qs = RI, and Qs + R is the intersection divisor 
of the line ai + aaX + Y = 0 with the quartic. Thus there 
are exactly 21 triples Q out of (“3’)) the number of three error 
positions such that L(3P - Q) = 0, L(5P - Q) # 0, and 
0(6P - Q) #  0. 

Now let Qi = RI, QZ = R3, and Q3 = (a, b) with 
u3b  + b3  + a = 0, ab  # 0, and a, b  E IFS. The code 
Ch(Q, 5P) is equal to CL(Q, 6P) and is generated by (1, 1,0) 
and (O,O, 1). The code Co(Q, 6P) is generated by (l,l, 0). 
Therefore, K(y, 5P) = L(5P - Q) for a  received word y with 
Q as error positions and error vector e if and only if 

e  * CL(Q, 5P) n  &(Q, 6P) =  0  

if and only if el #  e2. Thus the number of decoding failures is 
equal to 21* 72 out of (7) * 73, the number of all possible error 
vectors with three errors (which is less than 0.2%). In Section 
VIII we consider the 3-error pattern Q1 = RI, Qz = R3, and 

Qs = (1, [) and el = e2 = es = 1 as an example where other 
algorithms succeed and the modified algorithm fails. 

If we consider the 3-error pattern from [61] where Qi = 
(l,[), Qz = (t2, l), and Qs = (<, l), and the corresponding 
error values are 1, E3, and <, then it turns out that K(y, 3P) =  
K(y,5P) = 0 but K(y,6P) =  (E + c3y + y’). So taking 
f = < + t3y + y2, which has as the zeros (<, l), (t2, l), 
(t4, l), as well as (l,t), (E4,t), (t5, 0. The error values are 
obtained by Proposition 2.4. This example will be considered 
in Sections VIII and X. 

Example 4.18: Consider the code C(23) from the Klein 
quartic. It has dimension 2, and designed minimum distance 
19, and is therefore g-error-correcting. However, it is possible 
to choose an error pattern of weight 9 where the modified 
algorithm fails. Let Qi, Qs, and Qa be the affine points on 
the quartic and the line with equation X + 1 = 0, that is Qi = 
(l,E), &a = (1,t2), and Qs = (1,t4). Let Q4 = (t6,t3), 
Q5 = (?, t4)> Qs = (t4, t3), Q7 = (I, t”), Qs = (t3,t3), 
and Qs = (t2, 1). These six points together with the points R1 
and R3 lie on the intersection of the quartic and the quadric 
with equation 

Y2 + (5XY + t3Yz + [XZ = 0  

(see [42], [43]). Put 

Q=&Qi. 
i=l 

The function 

f =  Y(” + UY” + t5xY + t3Y + Ex) 

has as divisor Q + 2R3 - llP, so f is a  nonzero element of 
L(llP - Q). N ow L(lOP - Q) = 0, since otherwise there 
exists a rational point E such that 1OP z Q + E. Therefore, 
11P E P + Q + E, which gives Q + 2R3 z P + Q  + E. So 
2R3 E Q + E, in contradiction to the fact that 2  is a gap at 
R3 (or that the curve is not hyperelliptic). The vector space 
0(12P-Q) is not zero, since 12P-Q E Pt2R3 < P+3R3 
is a  canonical divisor. Finally it can be seen that Ca(Q, 12P) 
is generated by e= (~3,~,~3,1,~,~2,~3,~2,1). Thus since it 
is obvious that the all ones vector is an element of CL (Q, 11 P) 
we have that 

e * CL(Q, lip) n  Cdl2P, Q) #  0  

which means that the kernel K(e, 11P) contains functions 
which are not error locators by Proposition 4.7. 

Example 4.19: We  refer to [ 161, [ 181 for a  worked-out 
example of a  Hermitian code where the number of decoding 
failures of the modified algoritithm is computed. 

Problem 4.20: What is the number of correctable error 
patterns when the basic and modified algorithm is used? A 
start has been made to investigate this question [16], [18], 
[47], [74], but a  thorough investigation is still lacking. 
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V. DECODING AND THE JACOBIAN OF A CURVE 

We give an upper bound for the number s of divisors 
F l,..., F, which are needed in order that for each received 
word y, with at most [(S, - 1)/2] errors, at least one of the 
basic algorithms d(Fi) will correct y (see [72], [109]). 

We  consider the decoding of codes of the form Ca (D, G). 
Assume deg (G) > 2y - 2. Let t = [(&- - 1)/2]. Suppose 
that Sr is odd for simplicity. Let Fl, . . . , F, be a collection of 
effective divisors of degree t + y, then l(Fi) >  t, so  L(Fi - Q) 
is not zero for all i and all divisors Q of t error positions. Let 
y be a received word with divisor of error positions Q. If there 
exsits an index i such that R(G - Fi - Q) =  0, then d(Fi) 
will decode y by Lemma 4.5. So suppose on the contrary 
that R(G - Fi - Q) is not zero for all i. Then there exists a 
differential form wi such that (wi) > G - Fi - Q, that is, there 
exists an effective divisor Ei such that 

(wi) =  Ei +  G  - Fi - Q. 

Comparing the degrees of the divisors in this equality gives 
that deg (Ei) = y - 1  for all i. Two divisors are equivalent 
if their difference is a principal divisor, this indeed defines 
an equivalence relation on the set of divisors and we denote 
the class of a  divisor D by [D]. All canonical divisors, that is, 
divisors of nonzero differential forms, are equivalent and form 
the canonical class K. Thus [Ei - Fi] =  K - [G - Q] does not 
depend on i, so [E; - Ej] = [F; - Fj] for all i and j. The set 
of all divisors on a curve is a free abelian group with the set of 
places of the curve as its generator. The principal divisors form 
a subgroup so we can form the quotient of divisors modulo 
the principal divisors and we get in this way the Picurd group, 
its elements being divisor classes. The divisors of degree zero 
on the curve X modulo the principal divisors form a subgroup 
of the Picard group which is called the class group or the 
Jacobian of the curve and we will denote it by J(X). We  
denote the set of all effective divisors of degree lo by Dk. So 
Ei is an element of dim&l and Fi is an element of Dt+y, 
and furthermore Ei - Ej and Fi - Fj represent the same class 
in J(X) for all i, j. Now consider the map 

defined by 

4i(Dl,..’ ,Ds) = (PI - Dz], . . . , P-1 - Dsl). 

It follows that 

It is an easy consequence of the Riemann-Roth Theorem that 
the map $$ is surjective for all lo 2 y and s. Now suppose 
that $&, is not surjective, then we could have started with 
an s-tuple (Fl , . . . , F,) such that $~t+~(Fl, . . . , F,) is not in 
the image of +&, . In this way we would have obtained a 
contradiction with the assumption that R(G - Fi - Q) is not 
zero for all i. Thus there exists an i such that 0( G - Fi - Q) =  
0, and therefore d(Fi) corrects the errors of y. We  have 
sketched the proof from [72] of the following proposition. 

Proposit ion 5.1: Let (Fl , . . . , F,) be an s-tuple of effective 
divisors of degree t + y such that @+,(Fl , . . . , F,) is not in 
the image of $&,. Then for every received word y with .at 
most [(S, - 1)/2J errors there is at least one i such that the 
basic algorithm d(Fi) corrects y. 

The objects DI, and J(X) are finite for curves over finite 
fields and can be computed by means of the zeta function of 
the curve X which is defined by 

co 
Z(X,T) =  &T” 

k=O 

where al, is the number of elements of Dk. The zeta function 
is a rational function 

P(T) 
z(x’ T, = (1 - T)(l - qT) ’ 

The numerator P(T) is a  polynomial in T with integer 
coefficients of degree 2y and 

P(T) =  n(l- criT)(l - &T) 
i=l 

where the modulus of the pi is equal to fi. The number of 
elements of J(X) is equal to P(1). W ith the help of these 
properties of the zeta function it was shown that +7-l is not 
surjective for all maximal curves [72], for all curves when 
4 > 37, and for all curves of genus y 2 To(q) when q  > 16 
[ 1091. As a result of the above we have 

Theorem 5.2: There exist s divisors Fl, . . , F, such that 
for every received word with at most [(SF - 1)/2J errors, at 
least one of the basic algorithms d( Fl), . . . , d(F,) corrects 
the error with respect to the code Cn(D, G) over IF,, for 
all q  > 37 and divisors G such that deg (G) > 2y - 2. 
Furthermore, s = 0 (n) and the complexity of the algorithm 
is 0 (n4) for n  4 00. 

Remark 5.3: In [16], [21] it was shown that the condition 
deg (G) > 4y - 2  in [72] could be replaced by deg (G) > 
27  - 2. 

Remark 5.4: If the curve has gonality r and has at least two 
rational points, then $J;-~ is not surjective and there exist 27 
divisors Fl , . . . , Fz,, which are known explicitly, such that 
the corresponding basic algorithms, run in parallel, correct 
[(Sr - 1  - y + 7)/2J errors (see [21]). 

Remark 5.5: Several authors have investigated the smallest 
value of s such that $&, is not surjective [ll], [42], [43], 
[811. 

Remark 5.6: In the basic algorithm it is assumed that the 
divisor F has support disjoint from the support of D. But 
if (Fl,..., F,) is an s-tuple of divisors which satifies the 
conditions of Proposition 5.1, then there exists an s-tuple 
(F:,..-, F,‘) such that F,! is equivalent with Fi and has support 
disjoint from the support of D, for all i. This new s-tuple has 
all required properties. Alternatively, we allow the Fi to have 
a nonempty intersection with D and apply Remark 4.4. One 
may consider the actual construction of such an s-tuple as part 
of the preprocessing of the algorithm, but it is done effectively 
only for hyperelliptic curves of genus at most 4 [58], [59] and 
the Klein quartic over Fs [43], [81]. It looks like a difficult 
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(possibly hopeless) problem in general, which is, moreover, 
obsolete from the decoding point of view, given the solutions 
of the decoding problem [17], [22], [23] which we will discuss 
in Sections VII and VIII. 

Example 5.7: The zeta function of the Klein quartic over 
IFs is equal to 

(1 + 5T + 8T2)3 
(1 - T)(l - 8T) 

so its Jacobian has 143 elements. One can take s = 3 and if 
the Goppa designed minimum distance is equal to 2t + 1, then 
the following three divisors 

FI =  K + R3 - (1, E) +  (t - l)P 

F2 = (1, E”) +  (E3, E2) +  (t4, t”) +  K5,C1) -i- (t - l)P 
F3=K+Rl-R3+(t-1)P 

where K is a  canonical divisor, have the property that for 
every received word with at most t errors at least one of the 
algorihtms A(F& A(F2), or A(F3) will correct the errors 
(see [4x 1431). 

VI. THE KEY EQUATION 

Around the same time that the paper [48] on the decoding 
algorithm for plane curves was published, Porter [79] found 
another decoding algorithm which was a generalization of 
solving the key equation of classical Goppa codes by Euclid’s 
algorithm in the ring of polynomials in one variable [104]. 
The correctness of the proposed algorithm was proved in [20], 
Pll, W I, P41-WI. 

One can view the ring of polynomials in one variable as 
the ring of rational functions on the projective line with only 
poles at the point at infinity. The ring of polynomials in one 
variable is replaced by the ring K,(P) of rational functions 
on the curve with only poles at a  fixed rational point P, where 
P is not equal to one of the points Pi used to construct the 
geometric Goppa code. The degree or weight of a  function 
f E K,(P) is by definition equal to --up(f), the pole order 
of f at P, and is denoted by deg (f) or w(f). We  will use 
the notation w(f) in the rest of this paper. The ring K,(P) 
with this weight function is not an Eucl idean domain unless 
the genus of the curve is zero, but it still has very similar 
properties. For all f, g  E K,(P) we have that 

w(fg) = w(f) + w(g) 
W  + 9) I max{w(f), w(g)) 

if w(f) = w(g), then there exists a X E ‘Ft 
such that w(f - Xg) < w(f). 

First, one can show that for arbitrary geometric Goppa codes 
one may assume, when the number of rational points on the 
curve is greater than n., that the divisor G in the definition 
of the code Co(D, G) is of the form E - ,LLP, where E is 
an effective divisor and p a positive integer. Second, one 
can show that there always exist n  independent differentials 
El,“‘,& E R(-D - ,uP) such that resp%(Ej) is 1  if i = j 

and 0 otherwise. For every differential w E R(E - ,LLP - D) 
we have 

If we let 

w = C resp% (w)e(. 

E(Y) = c YiG 

then resD(e(y)) = y. Therefore, the map E is the right inverse 
of resD and 

E(Y) E R(E - pP - 0) if and only if y E Co(D, E - pP). 

Suppose that E is the diviscr of zeros of a  function g E 
K,(P) which has not a zero at Pi for all i. We  want to 
define the syndrome of a received word. In order to represent 
the syndrome as a rational function, one proves the existence 
of a  particular differential 7  first. The syndrome S(y) of a  
received word y is now defined as follows: 

dpi) - 9  
S(Y)rl = CYi g(pi) Ei. 

The syndrome is an element of the ring K,(P). If E is the 
divisor of zeros of g  E K,(P), then 

y E Co(D, E - pP) if and only if S(y) = 0 (mod g). 

For simplicity, assume that 7 is a differential such that 
(7) = (27 - 2)P. Notice that this assumption is satisfied for 
the Hermitian curves but not for the Klein quartic. 

Now one searches for solutions of the key equation, that is, 
for pairs (f, T) with f, T  E K,(P) such that there exists an 
a E K,(P) with the property 

fS(y) = r + ag. 

A solution is called valid if, moreover 

w(r) - w(f)I 2y- 2+p. 

A valid solution (f, r) is called minimal if w(f) is minimal 
among all the weights of f’ such that (f’, T’) is a valid 
solution. In this way we get [20], [21], [80]: 

Theorem 6.1: Let y E IF” with y = c + e, where c is a 
codeword of CQ(D, E - pP) and e is an error vector. 

1) (Existence) There exists a valid solution (f, r) of the 
key equation of y such that 

rn E 0(-D - ,uP) and resD 
f 

2) (Uniqueness) Let t = (Sr - 1)/2 - g, where Sr is the 
Goppa-designed minimun distance of the code and 0 is 
the Clifford defect of P. Suppose wt (e) < t. If (f, T-) is 
a  minimal valid solution of the key equation of y, then 

TQ E 0(-D - pP) and resD 
f 
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Example 6.2: The above is a direct generalization of clas- 
sical Goppa codes, see Example 3.4. Consider the projective 
line. Let al,..., a, be 72’ distinct elements of IF,. Let P; = 
( ai : l), P = (1 : 0) the point at infinity and D = PI +  . . . +  
P,. Then we can take 7 = dX and E; = dX/(X - a;) to get 
the desired properties. 

Remark 6.3: The explicit computation of the differentials 
El,“‘,%, and finding formulas for the syndromes is, in 
general, quite elaborate, but we consider this as part of the 
preprocessing of the algorithm. For the Hermitian codes this 
has been done in [95], [96]. 

Remark 6.4: Euclid’s algorithm gives in the case of classi- 
cal Goppa codes a sequence of solutions of the key equation, 
and the first valid solution in this sequence is also a minimal 
valid solution. The ring K,(P) is not a  Euclidean ring 
whenever the genus is not zero. The sequence of solutions 
in the Euclidean algorithm is replaced by an algorithm giving 
the so called subresultant sequence (see [30], [79], [94], [96]). 

Example 6.5: The above algorithm is worked out in detail 
for Hermitian curves and their codes in [SO], [94]-[96]. 

The equivalence of the modified algorithm and the decoding 
by solving the key equation for one point codes was shown in 
[20], [21] and will be discussed in the next section. 

VII. IMPROVEMENTOFTHE MODIFIED ALGORITHM 

In this section we compare Porter’s and the modified al- 
gorithm [20], [22] and give Ehrhard’s algorithm [22] which 
gives an effective solution of the decoding of AG codes. 

The value f(P) of a rational function f at a  point P is only 
defined in case that f does not have a pole at P. We have 
seen in Remark 4.4 how we can redefine the kernel K(F) in 
such a way that the divisor F is allowed to have a nonempty 
intersection with the support of D. We follow the alternative 
of [22] where the fact is used that the residue map is always 
defined for every differential form and any point. 

The code Ca(D, G) is the image under the residue map 

resD: S1(G - D) +  Ey 

and this map is injective if we assume deg (G) > 2y - 2. There 
exists a divisor G’ 2 G such that reso: n(G’ - D) + Ey is 
surjective. Moreover, there exists a linear map 

‘F; - O(G’ - D), y H 7/Y 

such that reso(qY) = y for all y. The map E of the last section 
is a more explicit description of such a map. Let F be a divisor 
such that deg (F) < SF or equivalently deg (G - F) > 2y  - 2. 
Then 

Q(G - D - F) n  0(G’ - F) =  Q(G - F) =  0. 

Thus R(G - D - F) + n(G’ - F) is a  direct sum, that 
is, for every element w in this sum there exist unique a E 
R(G-D-F)andp~R(G’-F)suchthatw=a+P.Let 

T: R(G - D - F) +  Q(G’ -F) ---+ R(G’ -F) 

be the projection along R(G - D - F). Define 

K’(Y, F) 
= {f E L(F) 1  fqy E R(G - D - F) +  0(G’ - F)} 

which we denote by K’(F) for short when the received word 
y is fixed. 

Remark 7.1: It is shown in [20], [21] that K(F) =  K’(F) 
when F has support disjoint from the support of D and 

deg (F) >  max{ deg (G’), deg (G - D)}. 

It was noted in [ 181 that one can always work with K(F) in- 
stead of K’(F), see  also Remark 4.4. We  denote the dimension 
of K(F) by k(F). 

The following result, which is similar to Theorem 6.1 2), 
is from [20], [21]. 

Proposit ion 7.2: Suppose L(F - Q) # 0 and R(G - F - 
Q) = 0. If f is a  nonzero element of K(F), then 

resD 

is the error vector of y. 
Remark 7.3: We  compare the modified algorithm and 

Porter’s algorithm in the special case that G = mP and there 
exists a differential 7  with divisor (27 - 2)P (see [20], [21]). If 
f is a  nonzero element of K(jP) for the smallest j such that 
K(jP) is not zero, then there exists an T  E K,(P) such that 
(f, r) is a  valid solution of the key equation. Conversely, if 
(f, T) is a valid solution of the key equation and j = deg (f ), 
then f is a  nonzero element of K(jP), and j is the smallest 
integer such that K(jP) is not zero. 

Remark 7.4: Let t = [(SF - 1)/a]. In the approach of 
Section V, the sequence of divisors (Fl , . . . , F,) is fixed and 
should be found before the algorithm is executed. It works for 
all received words with at most t errors. In the following we 
explain Ehrhard’s algorithm [22] which produces a sequence 
of divisors (Fl , . . . , F,) which depends on the received word y 
and has the property that the basic algorithm A(F,) decodes y 
when there are at most t errors. In this way, the elaborate prob- 
lem of constructing the sequence of divisors is circumvented, 
although this algorithm still has the complexity of solving a 
system of linear equations. Consider the following algorithm 
B(F) which depends on the choice of a  divisor F. 

Algorithm 7.5: 

1) 
2) 
3) 

4) 
5) 
6) 
7) 

Input: y. 
Set j: = 1 and FI := F. 
Look for an index i such that k(Fj - Pi) <  k(Fj) - 2. 
If there is such an i, then: 
set Fj+l =  Fj - Pi, j := j +  1 and goto 3), else 
If k(Fj) = 0, then goto 5) , else goto 6). 
output: ?  
e := resD(r(fqy)/f) for some nonzero f E K(Fj). 

Output: y - e. 
An alternative of the above algorithm is to apply the basic 

algorithm A(Fj) at line 6) (see [ 181). We  quote the following 
proposition from [22]. 

Theorem 7.6: Let X be a curve of genus y, and C = 
Co (D, G) an algebraic-geometric code of Goppa-designed 
minimum distance Sr > 67. Let F be any divisor of degree 
2y + t, where t = l(Sr - 1)/Z]. Then B(F) is a  decoder for 
C which corrects t errors with complexity 0 (n”). 
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T 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
n.T 2 3 4 5 4 4 4 5 4 7 8 6 8 8 9 10 12 8 

6FR 234444444666888888 
b? -0 12 3 4 5 6 7 8 

Remark 7.7: Using Clifford’s Theorem one can show that 
the assumption “Sr > 67” can be replaced by the weaker 
condition “6, > 47” (see [18]). 

Remark 7.8: If one applies both the algorithms B(F) and 
B(G - F) for a  divisor F such that deg (F) = y + t, then it is 
enough to assume that Sr > 4y - 27, where 7 is the gonality 
of the curve (see [ 181). Moreover, it is shown in an example 
that this cannot be improved. 

In the next section another solution of the decoding problem 
of AG codes will be considered. 

VIII. MAJORITY VOTING FOR UNK+NOWN SYNDROMES 

In this section it is shown how for one-point codes one can 
extend the parity check matrix H with rows hi, i = 1, . . . , n  - 
k to an n x n matrix fi with rows hi , i = 1, . . . , n. This is 
done in such a way that the unknown syndromes s;(e) =  hieT, 
i > n  - Ic can be obtained recursively from known syndromes 
si(e) =  si(y), 1 < i 5  n-k by a majority vote (see [23], [17], 
[18] and also [53], [75]. This procedure has its predecessor 
in what is called threshold, majority logic [66] or sequential 
code  reduction decoding [82] and the decoding of cyclic codes 
beyond the BCH error-correcting capacity [28]. 

Let (pi 1  i E N) be the nongap sequence of P, that is to say 
pi < pi+1 and {pi 1  i E fW} is the semigroup of nongaps at P. 
The code CQ(D, mP) is denoted by C(m). Abbreviate C(pr) 
by C, from now on. Let gi be a rational function which has 
a pole of order pi at P and no other poles. Then gi, . . . , gr is 
a  basis for L(p,P). Let h; = evD (gi). Let H, be the T  x n  
matrix with h;, 1  5 i 5  T  as rows. Then H, is a parity check 
matrix of the code C,. Note that the rows of H, need not to be 
independent. Define a matrix of syndromes (sij (e) 1  i, j E n/) 
with respect to an error vector e by 

Sij(e) = 2  w i(fi)g j(Pz) 
kl 

If y is a  received word with error vector e with respect to 
the code C, and p; + pj 5 pr, then gigj E L(p,P), so  
si.j (e) = Sij(y). Thus sij(e) is a  known entry of the matrix 
of syndromes for all i, j such that pi + pj 5 pr. Abbreviate 
sij(e) and s,(e) by sij and sT, respectively. 

Dejintion 8.1: Define the set of pairs N, by 

NT- = { (i,.d E N2 1  pi + pj = p7+1}.  

Let n, be the number of elements of N, and define the 
Feng-Rao designed minimum distance &R(r) of C, by 

&n(r) = min{ 12, 1 s 2 r }. 

Remark 8.2: From the fact that decoding by majority voting 
for unknown syndromes corrects 1(&n(r) - 1)/2] errors, 
which is discussed later in this section, it follows that the 
minimum distance of C, is at least &R(r), but it is also 
possible to give a direct proof first (see [53], [75]). 

Remark 8.3: One has that &n 2 Sr and equality holds if 
r > 3y - 2. Note that the definition of &n depends only 
on the semigroup of nongaps of P. It has been computed 
for semigroups with two generators and more generally for 
telescopic semigroups [53]. In many examples SFR is strictly 
greater than Sr for small r. 

Example 8.4: The nongap sequence at the point P of the 
Suzuki curve of Example 3.8 is generated by 8, 10, 12, and 
13. The following table (see the top of this page) compares 
the Goppa and the Feng-Rao designed minimum distance of 
C, in the range 4 5 r 5  21. If r > 41, then ~FR = Sr. 

Remark 8.5: The entries of the matrix of syndromes with 
index (i, j) E N, are the first unknown syndromes we 
encounter with respect to the code C,. As soon as we know 
one sij with (i,j) E N,, we know all the others sitjl 
with (i’, j’) E N,, since each one of the functions gigj, 
gi/gjt, or gr+i is a  generator of the one-dimensional vector 
space L(p,+lP) modulo L(p,P). In other words, there exist 
pij, pijt E IF, such that pi,j is not zero and 

gigj = /&j&+1 + c pijm 

l<r 

for all i, j with pi + pj = P~+~. Therefore 

sij = &%+1 + c Pijlsl 

l<r 

and this relation is the same for all error vectors. Consider 
the matrix 

S(i,j) = (S$,jl ) 1  I i’ 5 i, 1  5 j’ 5 j). 

If pi + pj = pr+l, then all entries of this matrix, except sij, 
are known. 

Sl,l ... 

i: 

Sl,j-1 312 

si-l,l . . . si-l,j-1 si-1,j 

sq . . . Si,j-1 ? 

Remark 8.6: If pi + pi = pr, then S(i, j) is a  matrix of the 
linear map from L(pjP) to L(piP) which is used to compute 
the kernel K(y, pjP) in the basic algorithm A(pjP) for the 
code C, = Co (D, pr P). The rectangular submatrices S(i, j) 
with pi + pj = pp, is the collection of matrices which one 
encounters in the modified algorithm for C,. If g  is a nonzero 
error locator function in L( pj P) and 

j 
g  = c hlz 

kl 
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then the columns of the matrix S(i, j) are dependent 

I=1 

Dejintion 8.7: If (i, J’) E N,, that is to say pi + pj = pr+i, 
andthethreematricesS(i-l,j-l),S(i-l,j),andS(i,j-l) 
have equal rank, then (i, J’) is called a candidate with respect 
to Cr. If (i, j) is a  candidate, then there is a unique value .a& to 
assign to the unknown entry sij such that the matrices S(i,j) 
and S(i - 1, j - 1) have equal rank. The element sij is called the 
predicted or candidate value of the unknown syndrome sij. A 
candidate is called correct or true when s$ = s;j and incorrect 
or false otherwise. Denote the number of true candidates by 
T and the number of false candidates by F. An entry (i, j) 
is called a discrepancy if the three matrices S(i - 1,j - l), 
S(i - 1, j), and S(i, j - 1) have equal rank and the matrices 
S(i, j) and S(i - 1,j - 1) do not have equal rank. 

Remark 8.8: The discrepancies are the pivots if one applies 
Gaussian elimination (without interchanging rows or columns) 
to the matrix of syndromes. The total number of discrepancies 
is equal to the rank of the matrix of syndromes. Furthermore, 
this matrix can be written as a triple product of matrices with 
the diagonal matrix in the middle and the entries of the error- 
vector e on the diagonal (see [3], [78]). Therefore, the total 
number of discrepancies is at most equal to wt (e), the number 
of errors. 

Let y be a received word with error vector e which has 
at most (n, - 1)/2 errors with respect to the code Cr. Then 
all syndromes sij such that pi + pj < pr are known, and 
the remaining syndromes are unknown. Denote the number of 
known discrepancies by K. A candidate is incorrect if and 
only if it is a  discrepancy, so 

K + F 5 total number of discrepancies 5 wt (e). 

If entry (i, j) is a  known discrepancy, then all entries (i, j’) 
in the ith row with j’ > j, and all entries (i’, j) in the jth 
column with i’ > i are not candidates. If (i, j) E N, is not a  
candidate, then there is at least one known discrepancy in the 
same row or column. Thus the number of pairs (i, j) E N, 
which are not candidates is at most 2K. The number of pairs 
(i, j) E Nr which are candidates is equal to T + F. Therefore 

n, = # candidates + # noncandidates < (T + F) +  2K. 

Furthermore, we assumed that 

# errors = wt(e) < (n, - 1)/2. 

Combining the above four inequalities gives 

F < T. 

There is no direct way to see whether a candidate is true or 
false. But we assigned a, predicted value sij of the syndrome 
si,j to every candidate, and this gives a predicted value or 
vote s,+i(i, j) for s,+~ by Remark 8.5. All T true candidates 
yielded the same, correct, value for s,+i. Thus a proof of the 
following has been given. 

Proposit ion 8.9: If the number of errors of a  received word 
with respect to the code C, is at most (n, - 1)/2, then the 
majority of the candidates vote for the correct value of s,+i. 

In this way, all unknown syndromes can be found by 
induction and from this the error vector is obtained, as was 
remarked in Section II. Thus the proof of the following 
theorem from [17], [18], [23] has been sketched (see also 
L531, [751). 

Theorem 8.10: Majority voting for unknown syndromes 
corrects 1(&n - 1)/2J errors with complexity c3 (n3). 

Example 8.11: Consider the following error pattern from 
[61] for the code C(11) on the Klein quartic with error 
positions Qi = (l,<), &a = (t2, l), and Qs = (<, 1) and 
error values el = 1, ea = E3, and es = <. It was shown in 
Example 4.17 that the modified algorithm corrects this pattern. 
In the following matrix we denote Ei by i, and 0 by *. The 
matrix of known syndromes with respect to the functions 1, 
y, xy, y2, x2y, xy2, y3, x2y2, xy3 and y4 is 

* 306*514*- 
36514*- 
0 5 4 * - 
6  1 * + 
* 4  - 
5  * 
1  - 
4  
* 
- 

The known discrepancies are located at the entries (1,2), 
(2, l), and (3,3). Thus there are no candidates in the first, 
second, and third row, and there are no candidates in the first, 
second, and third column. Notice that pg  = 11, so C(ll) = Cs 
and the set Na consists of the pairs (1, lo), (2,7), (3,5), (4,4), 
(5,3), (7,2), and (10,l). There is exactly one candidate at 
the entry with index (4,4) indicated by a plus sign +, the 
noncandidates are indicated by a minus sign -. For the first 
three rows we have that 

Esil + 13si2 + Si4 = 0, for all I 5  i 5  3. 

This corresponds to the error-locator function <+c3 y+ y2. This 
gives the correct value t5 for s+, so si,ic, ~2,7, s4,4, k7,2, and 
siu,i all have the value E5, and ~3,s = 55,s = c*. The number 
of known discrepancies is 3, this is equal to the number of 
errors, so there are no other discrepancies. Thus in the next 
steps of the procedure, all entries, except in the first, second, 
and third row and column are candidates, and the voting is 
unanimous. In this way we get all unknown syndromes. 

Example 8.12: Consider the following error pattern for the 
code C( 11) on the Klein quartic which error positions &I = 
RI, &a = R3, and Qa = (1,E) and error values el = E3, 
ea = <, and ea = 1. Example 4.17 showed that the modified 
algorithm corrects this pattern since el #  ea. The matrix of 
known syndromes with respect to the functions 1, y, xy, y2, 
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x2y, xy2, y3, x2y2, xy3, and y4 is 
* 1  1 2 0 2 3 2 3 -’ 
122323- 
1 2 2 3 + 
2  3  3  + 
0  2 + 
2  3  
3  - 
2  
3  
- 

Notice that the syndrome which corresponds to the function 
xiyj is equal to [j for all j > 0 and 2i #  j, since those 
functions are zero at &I and &a. The known discrepancies 
are located at the entries (2,l) and (1,2). Thus there are 
no candidates in the first and second row, and there are no 
candidates in the first and second column. There are exactly 
three candidates at the entries (3,5), (4,4), and (5,3), giving 
the predictions E2, E4, and t2, respectively, for s:,~, and three 
times the same vote sia(i, j) = t4 for the syndrome ~12 
corresponding to y*. The next step gives again unanimous 
voting which results in the following matrix: 

* 1120232343- 
12232343- 
122323+ 
23343+ 
0  2  2  3  +  
2  3  3  +  
3  4  +  
2  3  
3  - 
4  
3  

As before, the known discrepancies are located at the entries 
(2,l) and (1,2). Thus there are exactly five candidate at 
the entries (3,7), (4,6), (5,5), (6,4), and (7,3), giving the 
predictions t4, E4, 1, t4, and c4, respectively, for s:,~. Which, 
in turn, give sib(i,j), the respective votes E*, E4, 0, t4, and 
E4 for the syndrome 514 corresponding to xy*. The majority 
voting gives ~14 = E4. 

ExumpZe 8.13: Consider the same code C( 11) and the same 
error positions but with error values ei = ea = es = 1. 
Example 4.17 showed that the modified algorithm fails for 
this pattern. The matrix of known syndromes with respect to 
the functions 1, y, xy, y2, x2y, xy2, y3, x2y2, xy3, and y4 is 

011232323- 
122323- 
1 2 2 3 - 
2  3  3  + 
3  2  - 
2  3  
3  - 
2  
3  

L-- 

The known discrepancies are located at the entries (1, l), 
(5,2), and (2,5). Thus there are no candidates in the first, 
second, and fifth row, and there are no candidates in the first, 
second, and fifth column. There is exactly one candidate at the 
entry with index (4,4). The number of known discrepancies 
is 3. This is equal to the number of errors, so there are no 
other discrepancies. Thus in the next steps of the procedure 
all entries, except in the first, second, and fifth row and column 
are candidates, and the voting is unanimous. 

Example 8.14: Consider the error pattern for the code 
C(23) on the Klein quartic which was discussed in Example 
4.18 and Example 7.9, where it was shown that the modified 
algorithm fails and Ehrhard’s algorithms manages to correct 
this error. The matrix of known syndromes with respect to 
the functions 1, y, xy, y2, x2y, xy2, y3, x2y2, xy3, y4, x2 y3, 
xy4, y5, x2y4, xy5, y6, x2y5, xy6, y7, x2y6, xy7, and ys is 
(see top of the following page) 

All entries in the upper left comer of the matrix are zero, 
denoted by *. This is in agreement with the fact that the error 
vector e is an element of Co(Q, 12P), so s;,j = 0 for all i,j 
such that pi + pj I: 12. The nineth column depends on the 
previous ones, since 

f = lxy + t3y2 + (x2y + t2xy2 + y3 + c5x2y2 + xy3 

is an error-locator function, see Example 4.18. So 

K(Y, 1W = (1, f). 

The tenth column depends on the previous columns and one 
relation corresponds with the function 

g = y + pxy + t4x2y + E3xy2 + t3y3 + (x2y2 + y4 

which is not an error-locator function. Now it follows that 

~5(12P - Q) = U’) and Kb, 12p) = (1, f,d. 

Beware that at this point of the algorithm it cannot be decided 
whether the functions f and g are error-locators or not, unless 
we know already the error positions. 

There are nine known discrepancies and they are located at 
the entrks (1, ll), (2,8>, (3,6), (4,5), (5,4), (f&3), (7,7), 
(8,2), and (11,l). Thus there is exactly one candidate at the 
entry (10, lo), which gives as outcome that siu = 0. The 
number of known discrepancies is 9 and equal to the number 
of errors, so there are no other discrepancies. Thus in the next 
steps the voting is unanimous. 

Remark 8.15: In order to give an example where the mod- 
ified algorithms fails and the majority voting succeeds and is 
not unanimous we need to look at codes on a curve of higher 
genus such as the Hermitian curve [23], [18], [57]. 

Remark 8.16: The Fundamental Iterative Algorithm [27] 
and the Modified Fundamental Iterative Algorithm [23] are 
generalizations of Gaussian elimination for a  partial matrix to 
get the unknown syndromes. 

Remark 8.17: It is not neccessaty to compute all unknown 
syndromes, one could stop as soon as one has the unknown 
syndromes s,+i, . . . , s,+~ and apply the basic algorithm to the 
code CT+y. A more efficient stop criterion is treated in [ 1051. 
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I* * * * * * * * * * 2 0 3 6 1 1 3 6 * 4  1 -’ 
* * * * * * * 20361136*41- 
* * * * * 20361136041- 
* * * * 20361136*41- 
* * * 20361130045- 
* * 20361136041- 
* * 0361136*41- 
* 2361130045- 
* 061136041- 
* 31136* 4 1 + 
26130045- 
0136041- 
316*41- 
63045- 
1 6 4 1 - 
1  * 1  - 
6  1 - 
* - 
4  

\--. 

Remark 8.18: We have seen that the decoding by majority 
voting gave a new bound for geometric Goppa codes and this 
is the basis of an elementary treatment of these codes in [24], 
W I, W ? . 

Remark 8.19: The majority voting scheme is also incor- 
porated in Porter’s algorithm. See also the treatment of an 
example with an Hermitian code. 

Remark 8.20: Suppose that C’ is a subcode of C and that 
we have a decoding algorithm for C’. A coset decoding 
algorithm has as input a received word y with error vector 
e with respect to C and gives as output a word y’ which 
has the same coset as e with respect to C’. Coset decoding is 
applied to Hermitian codes in [ 1121. A different but equivalent 
point of view with respect to majority voting for syndromes 
is taken in [ 171, [ 181, where the computation of y’ is done by 
a majority vote. This is called majority coset decoding. 

Problem 8.21: What is the relation between Ehrhard’s de- 
coding algorithm and majority voting? 

Problem 8.22: Does majority voting correct more than 
[(SFR - 1)/2j errors? 

IX. LINEAR RECURRING RELATIONS IN SEVERAL VARIABLES 

relations satisfied by the array. In order to describe the 
algorithm some notation from [86] is required. 

Let Cc be defined as the set of all N-tuples of nonnegative 
integers, that is CO = 1”1;. For any subset I & CO, an array 
over the field F  is a mapping U: l? -+ ff, which is written 
u = (ucy ) where U, = u(a), a  E I’, is the value of the array 
of the point CX, and F is called the domain of U. 

A well-ordering of the elements in CO is required. 
Defintion 9.1: A well-ordering <T of the elements in CO 

is called admissible if the following holds: 
1) For any cr E &: (O,...,O) <T a. 
2) For any a,P,y E cu: if Q: <T p, then o+y <T @+r. 
Remark 9.2: A total order satisfying 1) and 2) is sometimes 

called a monomial  or reduct ion order in the Grobner-basis 
literature [lo], [14]. 

Example 9.3: The lexicographic order <L is defined by 
(iI,... > iN> <L (jl, . ‘. ,j~)ifandonlyifii =ji,...ir-r = 
jr-i and ii <  jl for some 1 2  1  5  N. The total degree lexico- 
graphic order <D is defined by (il, . . . , iN> <D (ji, . . . , Jo) 
if and only if 

The BerlekampMassey algorithm [5], [67] on linear re- 
or 

curring relations in one variable was generalized to two 
and several variables, respectively, by Sakata [85], [86], and xi1 = CJ'~ md(il,...,iN)<~ (jl,...,j~) . 

will be called the algorithm of BMS. This algorithm was 
subsequently used to get fast implementations of the modified The lexicographic order and ‘the total degree lexicographic 
algorithm in [49] and [45], [46], of Porter’s algorithm in [96] order are the most common admissible orders. 
and the majority-voting scheme in [49], [65], [89], [90], [91]. It is convenient to represent l inear recurring relations by 
In this section an outline of the algorithm is given. means of N-variate polynomials f E F[Z] = IF[Zi , . . . , Z,] . 

The algorithm takes as input an N-dimensional array of Any such polynomial can be written as 
elements of a  field F  and produces as output a so-called 
minimal set of polynomials corresponding to linear recurring f=~.fLd” 
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0 1 E3 1 1 1 9 1 0 1 E5 1 t 1 E4 I E4 1 0 

where 2” z z”l . . . ZmN 
1 N , the sum is taken over all a  in Cc, 

and fo! = 0 for all but finitely many o. The finite subset If of 
CO of all a  such that fa # 0 is called the support of f. The 
maximum element in If with respect to the total order <T is 
called the <T-degree of f and is written as Deg (f), not to 
be confused with deg (f) which denotes the ordinary degree 
of the polynomial f. A polynomial f is said to be valid at a  
point /3 for an array u, if /3 2 Deg (f) and 

f[u]p := ~fuu,+p-, = 0 

where g = Deg (f) and the sum is taken over all Q: such that 
Q! + p - 0  E I?. Here > is the natural partial order on CO 
defined by a 2 ,f3 if and only if (Yi 2  /?; for all i = l,...,N. 

A polynomial f is said to be valid for an array u if f is 
valid at point p  for u  for all /3 2 Deg (f ), and the set of valid 
polynomials for an array u is denoted VALPOL(u). 

Dejintion 9.4: For an  array u  over F, a minimalpolynomial 
set is a  finite subset 3 of IF[Z] such that: 

1) 3  c VALPOL(u). 
2) Let S = {Deg (f) 1 f E 3}, then for any 0 and 7, if 

c E S and r > 0 then r #  S. 
3) If g  E VALPOL(u), then there exists a 0 E S such 

that ~7 < Deg (g). 
Remark 9.5: Let A = A(3) be the complement of { 7  E 

CO 1 g 5 7 for some (T E S} in CO. The third condition can 
now be rephrased by saying that there exists no polynomial 
g  E VALPOL( u such that Deg (g) E A. This set A is ) 
called the delta set or the footprint [7] of 3. It is seen from 
this that the word “minimal” in the term “minimal polynomial 
set” refers to the Degree’s of the polynomials in the’ set 3. 

The algorithm of BMS (Berlekamp-Massey-Sakata) takes 
as input the elements of an array u and produces as output a 
minimal polynomial set for the array. The algorithm considers 
the elements of the array step by step. At each step one has a 
minimal polynomial set 3  for the part of the array seen so far. 
When the next element of the array is taken into consideration, 
the algorithm starts to check if the polynomials f E 3 are still 
valid for the new array. If this is not the case, they are updated 
and a new polynomial set and a new A-set is produced. 

Any element Q E CO has an immediate successor with 
respect to the well order <T, which we denote by a: + 1, and 
when it has an immediate predecessor  we denote it by N - 1. 
If u  is an array with domain I‘, then up  is the restriction of 
u to the domain {cy E I ] Q <T p}, that is, U@(Q) = u(a) 
for all ac E I? such that Q! <T p. The updating is based on 
[86, Lemma 61. 

Lemma9.6:  Let f(Z),g(Z) E IF[Z], Deg(f) = U, and 
Deg (g) = 7. Suppose that f is valid for the array up-l but 

~fu%c,t~-r = df #  0  

and that g is valid for u7-l but 

c ga%!+y-T = 4, #  0. 

If p  >T y, then 

h(f,s)=ZP-"f- +4-Tg 
9  

is valid at p  and Deg (h( f, g)) = p, where p = max{a, p  - 
7  + T>. 

This construction of h  is called the Berlekamp Procedure. 
The fundamental lemma that corresponds to Massey’s Theorem 
in the one-dimensional case is [86, Lemma 21. 

Lema 9.7: If 

f E VALPOL(u@) and f @  VALPOL(uP+l) 

then there exists no polynomial g  E VALPOL(ufl+l) 
that Deg  (9) I P - Deg  (f 1. 

The algorithm works with two sets 3 and 6 , where 

such 

3 is 
a minimal polynomial set for the part of the array seen so far 
and the set 4  contains polynomials which are to be used in 
the Berlekamp procedure, that is, polynomials which failed to 
be valid, together with the point where this happened. 

One should note that if VALPOL(u) is an ideal, which is 
the case relevant for decoding, the output of the algorithm of 
BMS is a Griibner basis for that ideal, see Section XI. 

We  will not present the algorithm in detail and refer the 
interested reader to [86] (see also [84]). However, we do give 
an example. 

Example 9.8: Define a weighted degree or order w on 
M$ by w(ii,ia,is) = 3ii + 5i2 + 7is. The total order <T 
used in the following example is a weighted lexicograjc 
order defined by ( il,i2,i3) <T (jl,j2,j3) if and only if 
W(il,i2,i3) < w(jl,j2,j3) Or ( W(il,iZ,i3) = w(jl,j2,j3) 

and (il , i2, ia) <L (ji, j2, js) ). The reason for this ordering 
will be clear from the next section. 

As input to the algorithm of BMS take the three-dimensional 
array over lFs given by the first table at the top of this page. 

In this table and the continuation of this example below the 
abbreviation ijlc is used for the index (i, j, k). The algorithm 
gives (see the table at the top of the following page): 

Thus #A(3) = 3. 
Remark 9.9: A general implementation of the algorithm of 

BMS is given in [I]. 
Remark 9.10: The problem solved by the algorithm of BMS 

could of course be treated by solving a system of linear 
equations. The point here is that this algorithm, in many cases, 
has lower complexity. 

X. FASTER DECODING 

The basic and the modified algorithm as well as the majority 
scheme have the complexity of solving systems of linear 
equations, both for finding the error locations and the error 
values. If one uses the special structure of the syndrome 
matrix, the complexity of the decoding can be improved. 
This is done in [29], using the block-Hankel structure. The 
algorithm of BMS is used to get fast implementations of, the 
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I Point I J= I 
000 
100 
010 
200 
001 
110 
300 
020 
101 
210 

1 

t3z1 + q, t4z1 + z2 

t3Z1 + Z;,t4Z1 + zZ,z3 

F3Z1+Z:,E4+E4Z1+z2,z3 

~+E3zl+z~,~6+E4Z1+z2,z3 

E+F3z1 +-q,P +t4z1 +zz,z3 

E+~3Z1+z~,~6+E4Z1+z2,E+z3 

E+E3Z1 +z?,z1(F +t4z1 +z2),t+z3 

6 I 
0 
1 

W,z 
LZ,2 

Lz:,~4z1 + z2 

1,F3Z1 + Z,2,E4Z1 + z2 

1,t3z1 + Zf,E4Z1 + z2 

1,E3Z1 + ZI,E4Z1 + z2 

Z,2,E4Z1 + z2,P + E4Z1 + z2 

modified algorithm in [49] and [45], [46], Porter’s algorithm in 
[96], and the majority-voting scheme in [49], [65], [89]-[91]. 
In this section it is shown how the latter is used for decoding 
one-point codes up to half of the Feng-Rao distance. The 
section is based on [90]. 

Consider codes of the form 

c = C,l(D, “P) = Cn(D, “P) 

where P is not in the support of D = PI + . . . + P,. 
Let ui,u2,“., UN be a minimal set of generators for the 
semigroup of nongaps at P in increasing order, and let gi be a 
function with pole order ai at P and with no other poles. Then 
to any vector Q  = (ai, , aN) of integers there corresponds 
the function 

having only poles at P of order 

w(ga) = w(a) := -&,aj. 
j=l 

The functions g”, with w(a) < m, span the space L(mP), but 
are not necessarily independent. In Section VI the following 
property was mentioned. 

Lemma 10.1: If w(a) = w(Q’), then there exists c E E% 
and a rational function g such that 

ga = cg”’ fg, and w(g) < W(Q). 

For fixed function g” we associate with each word y E Ey 
a syndrome so(y) by 

N 

%x(Y) = ~&vj)Y,. 
j=l 

Then it follows that 

c E C if and only if s,(c) = 0 for all Q: with W(Q) < m. 

In the decoding situation y = c + e is received and here 
s,(c + e) = s,(e) if w(a) 5 m. These can be easily 
calculated. It was mentioned in Section II that the error vector 
is determined when all syndromes are known. The following 
variation of the Discrete Fourier Transform method [7] gives 
an explicit formula. 

Proposition 10.2: Assume that that all coordinates of the 
points Pl are nonzero. If all syndromes 

s,(e),0 < ai 5 q - 2, i = l;..,N 

are known, then 

ez = (-1)’ C s,(e)g-“(4) 
a 

where the summation extends over all vectors CE with 0 5 
“j 2 q-2. 

Remark 10.3: In light of this it suffices to know all syn- 
dromes in order to calculate the error magnitudes (and hence 
positions, as well). But the algorithm of BMS provides effi- 
cient means for finding them all. Alternatively, it is possible 
to use the algorithm of BMS (with majority voting) to get 
a Grijbner basis for the ideal of error locators. From this it 
is then possible to find the error positions and then the error 
magnitudes. This approach was used in [60], [83], [84], see 
Section XI. 

Choose a well-ordering on CO corresponding to the code by 
defining a <T p if and only if W(Q) < w(p) or w(o) = w(p) 
and there exists an I such that al < PI and ai = pi for 
all i < 1. Moreover, choose a subset C’ of Co, such that C’ 
contains exactly one element corresponding to each pole order. 

In the algorithm of BMS only consider polynomials for 
which the <T-degree belongs to C’, which is possible by 
Lemma 10.1. As a consequence, use C’ instead of CO in 
the definition of A = A(3), which means that mutually 
distinct points in A correspond to functions with mutually 
distinct pole orders. With this modification, and the array of 
known syndromes as input to the algorithm, one can prove the 
following lemma from [90]. 

Lemma 10.4:’ Suppose that the number of errors that oc- 
curred is equal to t and at most [(SF, - 1)/2]. Then, at each 
step in the algorithm the number of points in the A-set is at 
most t. 

Let s, = s,(e). Suppose now all syndromes s, are known, 
where W(Q) < m’, and all se, where’a E C and w(a) = m’, 
are to be determined. 

Let y E C’ satisfy w(y) = m’.Putye =~andletyl,yz,... 
be all other elements of Cc with order m’. 

Let3= {fl,fi,..., fk} denote a minimal polynomial set 
for the array s with values s, in the domain I = {a 1 w(a) < 
m’}, where deg (fi) E C’. Suppose without loss of generality 
that all f; have leading coefficient 1. 
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Let deg (fi) = oi and suppose gi 5  ~j, then it is possible 
to calculate 

where I; is the support of fi with ci deleted, and denote it 
by s;; If fi is valid at rj, then 

syj - s’ y3 = m3 = 0  
so the value of the sum ~4~ is equal to sy, . Thus it is possible to 
use .s;~ combined with the syndrome equation corresponding 
to Lemma 10.1 to give predictions of sy. 

To state the results precisely put 

K(y) = {o E C’ 1 Q: 5 “ij and 15’ - a  E C’ for some j}. 

For each ci with deg (fi) = gi check if there is a rj with 
rj 2  r~i and yj - gi E C’. If this is the case use s’ y3 to get a 
prediction of sy, if not the fi is not used. Put 

Ki = {cr. E K(y) 1  a  5  rj - q} 

and let W I,“., wl be the different predictions ~i for sy 
obtained by the above method. 

For each p = 1,...,1, let 

L, =  u  Ki \A. 
v, =wp 

Then the following theorem holds (see [90]). 
Theorem 10.5: Suppose that the number t of errors satifies 

t 5  (fief - 1)/2. Let p  E (1,. . . ,1} be the index for which 
the number of elements of L, is maximal. Then sy = wp. 

Here 

SFR = min{ #K(p) ) p  E C’ and w(p) >  m } 

which is equivalent to the definition in Section VIII (see [90]). 
The algorithm works for the following reason. If one 

chooses a wrong value ‘ui of the unknown syndrome, then 
by Lemma 9.7 the A-set is increased by K; \ A. So it can 
be seen that the next A-set has size greater than t, violating 
Lemma 10.4. 

Example 10.6: This is a continuation of the example from 
the Klein quartic as in Examples 3.7, 4.17, and 8.11. The 
semigroup of nongaps at P is generated by the numbers 3, 
5, and 7. The corresponding functions are y, xy, and x2y; 
and these will be denoted by the variables 21, 22, and Z’s, 
respectively. For the code C( 11) we consider the 3-error 
pattern from [61] where Qi = (l,<), Qz = (<“, l), and 
Qs = (E, 1) and the corresponding error values are 1, t3, 
and E, respectively. From this the following syndromes are 
obtained (see table at the top of this page). 

Note that the syndromes so20 and slal are equal, since both 
212s and 2; represent x 2 2 It was mentioned in Example y . 
4.17 that the modified algorithm already corrects this error 
pattern, but it is illustrative to see how the implementation 
of the algorithm of BMS in the majority-voting scheme gives 
all the unknown syndromes and the error-locator ideal. If we 
want to decode this using the method described above we first 
use the algorithm of BMS on the known syndromes as we did 
in Example 9.8. This points out the reason for the choice of 
the total order. The output of the algorithm of BMS on the 
known syndromes was 

At the point 400 corresponding to pole-order 12, the poly- 
nomial [ + E3Zi + 2; predicts the value c5 for s4ac. At the 
point 011, also corresponding to pole-order 12, the polynomial 
[ + 2s predicts the value 5 for soil. From the equation 
of the curve it follows that Z2Z3 = Z2 + 2: and so 
sali = soi0 + ~400. Hence the prediction at ~400 also gives 
so11 = 1 + 5‘s = E4. By analyzing Ki it can be seen that 
the correct value for sali is c4, and hence s4ca = t5. The 
following update of the algorithm of BMS gives the set F  
with the elements 

E + 53z1 + zl” 
@-I + t4z,2 + ZlZ2 

(E + Z,) + C4(C6 + t4z1 + Z2) = I + <Zl + c4z2 + z3. 

Corresponding to pole-order 13 are the points 201 and 120 and 
from the curve it follows that ZiZz = ZfZ3, so s12a = ~201. 
At 201 the polynomial 5  + E3Z1 + Zf predicts the value 1 
for ~201. At 120 the polynomial t6Z1 + c4ZF + 2122 predicts 
the value E4 for ~201 = ~120. Analyzing the the two sets Ki 
shows that ~201 = ~120 = 1, and the following update of the 
algorithm of BMS gives the set F  with the elements 

<+E3Z, +zl” 
(pzl + c4z,2 + ZlZ2) + (p + J4Z1 + Z2) 

1+ [Zl + t4z2 + z3. 

Thus 

F = {I + t3z1 + z,z, I? + c3z1 + z2 

+ E4Zf + ZlZ2, 1+/z1+~4~2+~3}. 

From here on it turns out that the possible predictions all give 
the same values. Indeed, this F-set is now a basis for the ideal 
of error locators and the common zeros are the error positions. 
It is possible to continue and get all the syndromes and then 
use Proposition 10.2 to get the correct error values. 
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Example 10.7: The codes from Example 3.8 can be de- 
coded using the four-dimensional version of the algorithm of 
BMS, and the decoding is then done up to half the Feng-Rao 
bound which is sometimes greater than the Goppa bound in 
the range r < 40, see Example 8.4. 

Remark 10.8: One should be a little careful when talking 
about complexity, and in particular the use of the “big 0” 
notation. Regular affine plane curves have at most q2  rational 
points over IF,, so the length of the code is bounded above 
by this. Thus one could say that the algorithm BMS has 
complexity 0 (n7i3) for plane curves, but then q  is not fixed 
and one is comparing codes over distinct alphabets. In this 
way, one is counting a multiplication in, for instance, F2 and 
in Es56 both as one unit. If one fixes q, then in an asymptotic 
sense the algorithm of BMS is not faster than solving systems 
of linear equations. What makes sense here is to compare 
different decoding algorithms for the same class of codes and 
counting the actual number of additions and multiplications. 

The complexity, in terms of the number of additions and 
multiplications in F,, for the whole decoding procedure de- 
scribed above has the following upper bound: 

Aaln2 + BqN+‘(al +  . . . +  aN) + CnNqN 

where A, B, and C are (small) constants. How good or bad this 
is of course depends on the actual situation. For the Hermitian 
curve we have n  = r3 and q  = r2, and N = 2, ai = r and 
a2 = r+ 1 if P is the point at infinity. If we express the above 
upper bound for the complexity in terms of n  we get A~rz~/~. 
If we express the complexity in n of codes on curves in affine 
S-space we get Asn ‘I2 If one continues in this way one gets . 
A-n 3- * as the total number of additions and multiplications 
for the algorithm for curves in affine r-space (see [45], [46]). 

The algorithm of BMS has also been used in [96] to obtain 
the same decoding complexity for codes on Hermitian curves 
using Porter’s algorithm. 

Remark 10.9: The procedure described above was imple- 
mented in [65] for codes from Hermitian curves over F256, and 
the general algorithm of BMS was recently implemented in [ 11. 
The decoding algorithm for N > 2 has yet to be implemented. 

Remark 10. IO: The general problem of solving linear equa- 
tions can be done faster than Gaussian elimination. Its com- 
plexity can be reduced from 0 (n3) to 0 (n2.38), where n  is 
the number of variables (see [92], [103] for survey papers on 
this topic). 

Problem 10.11: Is there a decoding algorithm which de- 
codes all algebraic-geometric codes up to half the designed 
minimum distance with complexity 0 (n2) for n  4  oo?  

Problem 10.11: Apart from the complexity one should also 
investigate the actual performance of a  decoding algorithm, 
that is to say the error probability of decoding (see [51]). As 
a start one needs to know the weight enumerator of the code 
(see [50], [107]). For both problems not much is known. 

XI. ERROR-LOCATOR IDEALSAND GROBNER BASES 

The solution of the key equation for cyclic and RS 
codes can be done by Euclid’s algorithm [104] or by the 
Berlekamp-Massey algorithm [5], [67] for polynomials in one 

variable. The first algorithm has as output the greatest common 
divisor of two polynomials f and g, that is, a  generator of 
the ideal generated by f and g. The polynomials generated at 
intermediate steps are elements of this ideal, and their degrees 
are decreasing. In the second, the intermediate polynomials 
generally have increasing degrees and are seldom elements 
of this ideal. 

Dejinition 11.1: Let <T be an admissible order on N(gN, see 
Section IX. The set of monomials in the variables Zi , . . . , ZN 
is denoted by M(N). We  say Z” <T Zfl if and only if 
a  <T p. If 

and Xp # 0, then {Za 1 X, # 0) is called the support  of f 
and is denoted by supp (f ), the leading monomial  of f is Zfl 
and is denoted by lm (f) and XpZp is called the leading term 
of f and is denoted by It (f). Let B a finite set of polynomials. 
We  say that f reduces to g with respect to f3 if there exists a 
monomial Z” in the support of f and an element b  E B such 
that lm (b) 5 Z” and 

g=j’-X,zb. 
1t 0)) 

This is denoted by f -+B g, or f + g for short. If f = g or 
there is a sequence fi, . . . , fk such that f = fl, g = fk and 
fi +n fi+l for all 1  2 i < Ic, then we denote this by f --+g g. 
The ideal generated by 8 is denoted by (a). If f +E 0, then 
f E (B). A finite set B in IF[Zi , . . . , Zm] is called a Grijbner 
basis if the converse holds as well; that is to say, if f +k 0 
for all f E (a). 

The following theorem characterizes Griibner bases (see 
UOI, U41). 

Theorem 11.2: Let B be a finite set in IF[Zi, . . . , Z,]. Then 
23 is a Grijbner basis if and only if 

{Wf) I f E (B), f #  01 
= {lm(b)m 1 b  E l3, b  #  0, m E M(N)}. 

Rem&k 11.3: Buchberger’s algorithm [lo], [14] is a  com- 
mon generalization of Euclid’s algorithm for polynomials in 
one variable and Gaussian elimination for polynomials in 
several variables of degree one, to polynomials in several 
variables and arbitrary degree. The output of this algorithm 
is a Grijbner basis of the ideal generated by a given set 
of polynomials as input. From start to finish the set of 
polynomials generates the same ideal. The complexity of 
Buchberger’s algorithm is not polynomial. The algorithm of 
BMS gives as output a minimal polynomial set, and in the 
intermediate steps the sets are Grobner bases of the ideals 
they generate, but these ideals vary. The algorithm of BMS 
has polynomial complexity. 

Remark 11.4: In [30] another method for solving the same 
problem as the algorithm of BMS is developed. It is a  variation 
of the Grobner basis algorithm and has therefore in general 
higher complexity. 
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Remark 11.5: In [84] the authors also use the algorithm 
of BMS to decode algebraic-geometric codes Ca(D, G), up 
to half the Feng-Rao bound. In their method, the voting 
procedure is replaced by a threshold rule. The updating in 
the algorithm of BMS is done for each of the predictions 
of the unknown syndrome and the correct value is then the 
only one where the new S-set has size less than or equal to 
t = 1(&n - 1)/2]. The paper also relates the calculation of 
the ideal of error locators to general Grobner basis techniques, 
since in the decoding situation the algorithm of BMS indeed 
gives a Grobner basis. 

In [60], [61], Grijbner basis theory is also applied to give a 
basis for the ideal of error locators with respect to a (weighted) 
total degree lexicographic order. Moreover, [61] produces a 
second Griibner basis with respect to a lexicographic order 
and this is subsequently used to give a generalized Fomey 
formula for the error values. An analysis of the complexity 
of this formula and a comparison with the discrete Fourier 
transform method remains to be done. 

Remark 11.6: The algorithm of BMS was already used to 
decode multicyclic codes (see [87] and also [83]). Multicyclic, 
Hyperbolic Cascaded RS, Reed-Muller, and AG codes were 
treated in a unified way in [84] and also in [25], [77]. 

XII. DECODING LINEAR CODES UP 

TO HALF THE MINIMUM DISTANCE 

In this section the literature on decoding up to half the 
minimum distance by error location and majority voting for 
unknown syndromes for arbitrary linear codes is surveyed. 

The following definition generalizes the ingredients neces- 
sary for the basic algorithm [71], [74], [76]. The same kind of 
reasoning was published in [54]. 

Dejinition 12.1: Let C be an IF ,-linear code of length n. Let 
A and B be Fpm -linear codes of length n, then (A, B) is called 
a t-error-correcting pair for C over IFqm, if the following 
conditions hold: 

1) C c: (A* B)I 
2) k(A) >  t 
3) d(Bl) > t 
4) d(A) +  d(C) >  n. 
Remark 12.2: Suppose (A, B) is a t-error-correcting pair 

for C. Let y be a received word with at most t errors. Define 
the kernel K(y) as in the case for the basic algorithm by 

’ K(Y) = { a  E A 1 c yia;bi = 0 for all bEB}. 

If A * B C Cl and y is a word with error e, then K(y) =  
K(e). Suppose J is a  subset of {l,..‘,n}. Define 

A(J) = {u E A ) aj = 0 for all j E J}. 

If I is the set of error positions, then 

Condition 3) guarantees that K(y) = A(1). A nonzero element 
a of K(y) is ensured by condition 2). The set of zeros of 
a  contains I and condition 4) implies that a  has at most 
d(C) - 1  zeros. The error values can be found by Proposition 

2.4. The Basic Algorithm is defined now and one can show 
the following theorem along the same lines (see [74]). 

Proposit ion 12.3: If C is an If,-linear code of length n and 
(A, B) is a  t-error-correcting pair for C over Fqrn, then the 
basic algorithm corrects all words with at most t errors with 
complexity 0 ( (mn)3). 

Example 12.4: Classical Goppa  codes (see Example 3.4): 
Let a = (ai,... , a,) be an n-tuple of n  distinct elements 
of F,. Let L  = {ai, . . , o,, } and g a polynomial of 
degree T  which has no zeros in L. Let A = R&+1(@) and 
B = GR&(cr,z), where t = 1~/2] and xi = g(ai)-‘. Then 
(A, B) is a  t-error-correcting pair for the classical Goppa code 
r(L7 9). 

Remark 12.5: The condition A * B c Cl is easy to fulfill 
for algebraic-geometric codes. Suppose we want to decode 
the code C = Co (D, G). It was remarked already that the 
dual of this code is CL(D, G). Let F be any divisor with 
support disjoint from the support of D, then G - F has also 
support disjoint from the support of D. Moreover, if f E L(F) 
and g E L(G - F), then fg E L(G). If a  = evD (f) and 
b  = evD (g), then a + b = evD (fg). Thus 

CL(D, F) * CL(D, G  - F) c Cl;(D, G) =  &(D, G)+ 

W ith the above estimates for the dimension and minimum 
distance of AG codes we have the following proposition from 
[711, [741. 

Proposit ion 12.6: Let F and G be divisors with support 
disjoint from D. Let A = CL(D, F), B = CL(D, G  - F), 
and C = Cn(D,G). Then 

1) A * B c Cl. 
2) If t + y 5 deg(F) < n, then k(A) >  t. 
3) If deg (G - F) > t + 2y - 2, then d(Bl) >  t. 
4) If deg (G - F) > 2y - 2, then d(A) +  d(C) >  n. 
Remark 12.7: Every algebraic-geometric code over IF, has 

a l(& - 1  - 7)/21- error-correcting pair over IF, if deg (G) > 
2y - 2. See [74]. 

Remark 12.8: Every algebraic-geometric code over IF, has 
a L(Sr - 1)/2J-error-correcting pair over IF4” if 

m.,,g ,(2 (;) + (,;,) +1) 
by the same counting argument with the zeta function and 
the Jacobian as was explained in Section V (see [76]). The 
existence of the pair (A, B) is not effectively given. 

Remark 12.9: The number of decoding failures of received 
words with t errors is investigated in [74] under the assumption 
that there exists a pair (A, B) which satisfies conditions l), 2), 
and 4) for a  linear code C of minimum distance 2t +  1. 

Remark 12.10: It is not true that every linear code of 
minimum distance d has a l(d - 1)/2]-error-correcting pair. 
An [n, n  - 4,5] code has a 2-error-correcting pair if and only if 
it is an Extended Generalized RS code or, what is the same, an 
algebraic-geometric code on a curve of genus zero (see [76]). 

Remark 12.11: Error-correcting pairs have been found for 
many cyclic codes to decode beyond the BCH error-correcting 
capacity [19]. Majority voting for unkown syndromes has 
been generalized for arbitrary linear codes as well, with the 
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notion of an error-correcting array (see [53, 751).  The  most 
general scheme for getting bounds on the minimum distance 
and decoding up to half this bound is found in the notion of 
the shift bound  (see [77], [98], [99]). This is implcit in [28]. 

XIII. CONCLUSION 

The development of an algorithm has three steps 

EC 

First one proves its existence, but it is intractable; thereafter 
one tries to find an effective algorithm, but it is not good 
enough for practical implementation or not fast enough to 
compete with other algorithms; and at last one finds an 
algorithm which is efJicient (see [13]). The decoding of RS 
codes is in the third step. The decoding of algebraic-geometric 
codes has just finished the second stage and is at the start of 
the third step. The basic and modified algorithm of Section IV 
and the decoding by solving the key equation of Section VI 
are effective, but they do not decode up to half the minimum 
distance. The algorithm which uses many divisors in parallel 
of Section V corrects errors up to half the designed minimum 
distance, but it is an existence proof and the algorithm is not 
effective. Both the improvement of the modified algorithm of 
Section VII and the decoding by majority voting of Section 
VIII are effective and decode up to half the designed minimum 
distance. The effective algorithms are made efficient by the use 
of linear recurring sequences in several variables of Sections 
IX and X. 

Who  was first? Amazingly often the same idea or solution of 
a  problem is found independently by several persons, roughly 
at the same time but at distinct places. A classical example is 
the discovery of non-Euclidean geometry. In the history of the 
decoding of linear codes one sees this phenomenon already 
in the decoding of RS codes by Arimoto [3] and Peterson 
[78], and later by the decoding of algebraic-geometric codes 
by Justesen et ai. [48], Krachkovskii [56], and Porter [79], 
and finally the algorithms of Ehrhard [22] and Feng-Rao 
[23]. Although we do not advocate the view of Sheldrake 
[93] on morphic resonance which says that “If someone has 
discovered something for the first time, the same solution will 
be found more easily after that by everybody else,” it remains a 
somewhat mysterious phenomenon, of which one may say “It 
is in the air,” or, which has a very down-to-earth explanation, 
“If everyone in the field is looking at a  solution of a  certain 
problem, then it is not a  surprise that at a  certain moment 
several persons find similar solutions.” 

At the beginning of the invention of RS codes the engi- 
neering community had the impression that these codes would 
never be used in practice, since it used advanced mathematics 
such as Galois fields. It was considered quite an esoteric 
subject, nice for research but of no practical importance. 
This has dramatically changed after the development of chip 
technology and fast decoding algorithms, the application to 
the compact disc player and the error correction in deep-space 
information transmission (see [ 11 I]). One might hope that the 
attitude toward algebraic-geometric codes, which is considered 

to be a difficult and remote topic nowadays, will change too 
for the better in the future. 

At the moment there are two conflicting predictions con- 
cerning the practical use of algebraic-geometric codes. One 
forecast is saying that they will not be used since RS codes are 
good enough for the coming 50 years. Although the parameters 
of AG codes, for instance the Hermitian codes, are superior to 
those of RS codes, the decoding algorithms for the latter are 
much faster than the present algorithms for the former codes. 
We  think that it is safe to wager with Blahut [8] on the second 
prediction which says that algebraic-geometric codes will be 
used in practice within 20 years. 
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