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Abstract-An algorithm that, for codes from a regular plane carve, 
corrects up to (d*/2) - (m2/S) + (m/4) - (9/8) errors, where d* is the 
designed distance and m is the degree of the curve was presented in an 
earlier work. It is now shown, that this bound is the best possible for the 
algorithm considered. 

where (R, p) runs through all possible values in No x NO. All possible 
means, that s,+,b+~ must be known, that is a + 01 + b + /3’ < j 
for all a and b in question. Index Terms-Decoding, algebraic geometry codes. 

I. INTRODUCTION 

An algorithm for decoding algebraic geometry codes constructed 
from plane curves was presented in [l]. The idea in the algorithm 
is to separate the calculation of error positions and error values. The 
calculation of the (possible) error positions is based upon solving a 
certain system of linear equations. These equations actually have a 
structure which makes it possible to find the desired solution by using 
an algorithm of Sakata, who in [2] gave the proper generalization 
of the Berlekamp-Massey algorithm to higher dimensions. The 
observation of this fact is the background for the algorithm presented 
in [3], which first of all brings down the decoding complexity and 
moreover gives a better bound for the number of correctable errors. 

The subject of this paper is the number of errors, which the 
algorithm can correct, and to explain things we will first briefly have 
to describe the code construction and the decoding procedure from 
[31. 

Let IF, be a finite field with 4 elements, and let C(Z, y) be 
a polynomial from ff4[~,y]. The curve C(Z,Y) = 0 is supposed 
to be regular, and if m denotes the degree of C(Z, y) then g = 
(m - l)(m - 2)/2 is the genus of the curve. With PI, Pz, . . . , P, 
we denote the points on the curve C(x,y) = 0, for which both 
coordinates are in F, and both are different from zero. 

It is convenient to choose an ordering of the pairs of natural 
numbers, and we choose the so called graduated total degree ordering 
<~,where (0,O) <~(1,0) <~(0,1) <T(2,0), .... 

Let j be a natural number m - 2 5 j 5 [(n - 1)/m] and let 
b?O(X,Yh Pl(GY), ... , vs(lc, y) denote the monomials zayb where 
(a, b) 5 T (O,.i). 

The code C*(j) is then given by its parity check matrix g 

(1.1) 

It now follows from [l] that the dimension of C*(j) is n - (mj - 
g + 1) and that 

dmin 2 d* = mj - 2g + 2. 

The number d* is the designed distance of the code. 

Manuscript received November 5, 1991; revised June 6, 1992. This work 
was presented in part at ITW-92, Salvador, Bahia, Brazil, June 21-26, 1992. 

H. E. Jensen and T. Hoholdt are with the Mathematical Institute, The 
Technical University of Denmark, Bld. 303, DK-2800 Lyngby, Denmark. 

J. Justesen is with the Institute of Circuit Theory and Telecommunication, 
The Technical University of Denmark, Bld. 343, DK-2800 Lyngby, Denmark. 

IEEE Log Number 9204212. 

In the decoding situation we receive a word r, and calculate the 
syndrome 3 = &‘. We number the coordinates in 2 in the same 
way as we numbered the rows in H, that is 8 = (s,b), where 

- (O,O) ST(%b) IT(O,d. 
The idea is now to find solutions (~(2, y) = C (r,+Py’ to 

ab 

c pabSa+a b+/3 = 0, 

ab 
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The equations in (1.2) are recursions, and the algorithm of Sakata 
[2] gives an efficient way to deal with such equations. The result 
of the algorithm is a list of polynomials (T(z, y), which in a certain 
sense gives minimal solutions to systems of equations (1.2). On this 
list, we pick out a polynomial go (2, y) of smallest degree, which is 
not the curve C(z, y) itself. One of the main results in [3] is now, 
that if the number of errors t satisfies 

2 
t<!$L+~-+, (1.3) 

then uo(z,,y,) = 0 for all errorpoints (z;,y;). Consequently the 
error points are among the points on the intersection between 00 (2, y) 
and the curve C(Z, y), and using this the error vector can be 
calculated with fairly small complexity. 

For details about this whole procedure we refer to [3]. The point 
here is to emphasize that the polynomial ~o(z, y) is determined as a 
minimal solution to a system of equations (1.2). 

Our aim is to settle the question, whether or not the bound (1.3) 
is the true bound for the decoding algorithm. The fact, that a certain 
line of reasoning leads to this bound does of course not exclude, that 
one by other arguments could improve the bound. As we shall see 
however, this is basically not possible. The algorithm of Sakata is 
cumbersome to analyze in detail. To avoid discussions, which are 
unimportant in this context, we will therefore look at the algorithm 
from [3] as follows: What we do is to find a solution with smallest 
possible leading term, not having the curve as a divisor, to systems 
of the form (1.2). The concept “smallest leading term” refers to 
the ordering < T of the exponents of monomials with non-zero 
coefficients in the considered polynomials cf. [3]. In case there are 
many such solutions, we pick out one of these at random. The 
polynomial determined is this way is the output of the algorithm. 
The algorithm succeeds, if the output has the errorpoints as zeros. If 
(1.3) holds, this is the case. The algorithm fails, if it is possible, that 
the output of the algorithm does not have the error points as zeros. 

II. WHEN WILL THE ALGORITHM FAIL 

We consider a code C”(j) as previously defined. The positions in 
codewords and error vectors are numbered by the points PI, . . . , P, . 
So an error-pattern, which we denote (x;, y;, e), i = 1, . . . t, is 
characterized by a number of rational points (x,, yz) on the curve 
and for each point a corresponding errorvalue e;. 

Let us consider the system (1.2) for a certain errorpattern and for 
polynomials of degree h. Further, let ~o(z, y), . . , ~~(z,y) be the 
monomials Pyb, a + b 2 j - h, ordered by the ordering < T of the 
pairs (a, b). Let g& denote the matrix 

=3--h = {Ps(Xt,Yi)l, F s = 0, . . . ) 1, i = 1, . . . t. (2.1) 

From Lemma 4.3 [l]) follows, that (1.2) is the same as 

(2.2) 
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where the vector on the left hand side means the coulumnvector, for 
which element number i is eig(x;, y;), i = 1, . . . t. 

We use the term error-locator to denote a polynomial ~(2, y), 
which does not have the curve C(Z, y) as divisor and for which 
(r(xZ, y;) = 0, i = 1, .. s , t. With p(g&) we denote the rank of 
the matrix &. 

Lemma 1: Let h be the smallest degree of an errorlocator. The 
algorithm succeeds in the following two situations: 

4 P@-~) = t, 
b) p(gFpla) < t, but there are no nonzero vectors of the form 

(e;g(x;, yZ)) in the nullspace of Fj--h, where deg[a(z, y)] 5 
h. 

Proof: The output go (z, y) of the algorithm is a polynomial 
with smallest leading term, such that u. (x, y) does not have the curve 
as divisor and satisfies the corresponding system of equations (1.2). 

The two conditions stated both insures, that any solution to (2.2) 
of degree h (or smaller) is an errorlocator (consequently there are no 
solutions with degree smaller than h). This proves the lemma. •I 

Lemma 2: Let h be the smallest degree of an errorlocator. The 
algorithm fails, if the following two conditions are satisfied 

a> P(&~) < 6 
b) there exists a polynomial $(s, y) with deg [+(z, y)] < h, such 

that (e,$(z;,y;))i = 1, .. . , t is a non zero vector in the 
nullspace of &,. 

Proof: In this situation, there are two possibilities. The first one 
is, that corresponding to degree h - 1 or smaller, the system (1.2) has 
a solution, which does not have the curve as divisor. In this situation, 
the, output 00 (2, y) is clearly not an errorlocator, by the definition 
of h. 

Suppose this is not the case and let g(x, y) be an errorlocator with 
smallest leading term. Then, by (2), the polynomials 

4x3 Y) + %Nx, Y), ff E F,, (2.3) 

are all solutions to (1.2) with the same leading term as o(x, y), and 
only for cy = 0 such a polynomial is an errorlocator. So either the 
output has smaller leading term than ~(z, y), and is hence not an 
errorlocator, or (TO(X, y) is picked out from a set of polynomials-at 
least those in (2.3)-with the same leading term as a(z,y). This 
proves the lemma. 0 

Of course, condition b) implies a), but it is not true that given t 
error positions satisfying a), there always exist error values such that 
b) holds. 

Referring to the above lemma and the proof, it is of course possible, 
that one in the situation corresponding to (2.3) by chance picks out 
an errorlocator among the solutions with smallest leading term. But 
it is very unlikely, and therefore, we say that the algorithm fails in 
these situations. (Lemma 2.2 is treated as Proposition 4 in [5]). 

The important term in the decoding process is the rank of matrices 
Ej-,. The key to estimation of this number is the result in the 
following lemma, which is based on algebraic geometry. By C’, 
we denote the projective closure of the curve C, and by ~(2, y, Z) 
the homogenous version of u(x, y). The errorpoints are Pi = 
(Z&Y&l), i = 1, *** ,t. 

Lemma 3: Let ~(2, y, Z) be an errorlocator of degree h < j/2, 
and let PI, -a- ,Pt, &I, ..e , QU be the points in the algebraic 
closure of F,, in which O(Z, y, Z) intersects C’. Suppose, that 
j - h 2 m - 2. Then, for s = 0, 1, we have 

/&,+,) = t - P’, 

where p’ is the dimension of the projective space of homogenous 
polynomials of degree m - 3 - (j - 2h) - s passing through the 
points Qr, ... QU. 

Proof: Let h’ = j - h + s and let V,l denote the vector space of 
polynomials, modulo the curve C/(x, y, z), passing through the points 
PI, .‘. , Pt. The space of all polynomials of degree h’, modulo the 
curve, has dimension mh’ - g + 1 ([l], Section II. since h’ 2 m - 2) 

and hence, 

dim(Vht) = mh’ -g + 1 - ~(g~-~+~). (2.5) 

The polynomial ,~-*~+~,(x,y, 2) belongs to V&r, and intersects 
the curve in mh’ points, counted with multiplicity. Let RI, . . . , R; 
denote the intersection points, which are not the points PI, . . . , Pt. 
According to the Riemann-Roth Theorem we have 

dim(Vh,)=mh’-g+l-t+p;, (2.6) 

where pi is the dimension of polynomials of degree m - 3 pass- 
ing through RI, e . . , R,. These polynomials are all of the form 
z~-~~+~u~(x, y, z), where gr(~, y, 2) has degree m - 3 - (j - 
2h) - s, and has Qr, ... ,QU as zeros. Therefore, pi = p’ and by 
comparing (2.5) and (2.6), the lemma follows. 0 

As a consequence, p(E&) = t if p’ = 0, and the simplest way 
to insure that p’ = 0 is to demand that 

m(m - 3 - (j - 2h)) < mh - t, (2.7) 

According to the theorem of Bezout, the left-hand side of (2.7) is the 
number of points in which a polynomial of degree m - 3 - (j - 2h) 
intersects the curve C’, and the right-hand side is the number of 
points &I, . . . , QU. So clearly, if (2.7) holds, we have p’ = 0. 
The bound (1.3)-and the bound in [l]-is based on this line of 
reasoning. 

But (2.7) is a sufficient, not a necessary condition for p’ = 0. 
If you run the algorithm on a computer, which we have done for a 
specific code C*(j), you will observe that in general the algorithm 
corrects errors up to half the minimum distance, and even beyond 
half the.minimum distance. The reason for this seems to be, that in 
general at least one of the conditions in Lemma 1 holds, Actually, an 
errorpattern shall be rather cleverly selected to make the algorithm 
break down. One way to do this is explained in the next section, 

III. THE CONSTRUCTION 

In this section, we consider codes C*(j) constructed from a 
Hermitian curve (cf. [l]) 

Y r+1 -$--x=0 (3.1) 

of degree m = r + 1. Over the field GF[r3] this curve has r3 
rational points, of which r3 - r has both coordinates different from 
zero. The code considered has therefore length n = r3 - T. An 
important property is that the n rational points lie on r2 - T lines, 
where each line intersects the curve in m rational points. We denote 
these lines 1, (2, y), . . e ,1, (z, y). These lines have no rational points 
in common. 

Lemma 4: Let p be a number with 1 5 p < m, and let 
u = (1/2)p(p + 1). Then there exist rational points Pi, . a - , PL on 
the curve C, such that any polynomial passing through Pi, . . . , PL 
has degree at least p. 
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Proof Let G be the matrix (2.1) corresponding to j - h = p - 1 
and some points?;, . . . , Ph. Looking for a polynomial (~(2, y) = 
c ~,t,a?y~, a + b 5 p - 1, passing through P;, . . ’ , PL, is the 
same as looking for solutions to 

ga = 0, (3.2) 

where c = (CT&) is the vector of coefficients in the polynomial. The 
matrix g is an u x v-matrix, so the points Pl, . . . , PL must be 
chosen in such a way, that the rank of G equals 21. Suppose, that this 
is not the case for the points considered, and let s denote the first 
row in GT, which is dependent of the proceeding rows. This means, 
that any=polynomial of degree p - 1 or smaller, which passes through 
P{, ... , PL-l, also has Pi as a zero. The number of points P,’ with 
the property is at most (p - l)m, by the theorem of Hezout. Therefore 
we can find a rational point P,” on the curve, such that there exists 
a polynomial of degree < p - 1, passing through P;, . . . , PipI, but 
not passing through Pf. By substituting Pi with Pi’, the first s rows 
in ST are then linearly independent, and continuing in this way, the 
lemma follows. 

We are now ready to introduce our construction. We consider 
C*(j), where as usual m - 2 5 j < r2 - r, m = r + 1. 
Choose first p2 < m and take points P{, ’ ‘. , PL where v = 
(1/2)pa(pa + 1) with the property in lemma 3.1. Let G(x,y) be 
a polynomial of degree pa passing through these points. Among 
the lines fr (z, y), . . . , !, (2, y) we choose pl .lines, which does 
not pass through any of the intersection points of $(x, y) with the 
curve C(x, y). Let PI, . . . , Pk, where Ic = prm, be the k rational 
points from the curve on the lines. The points 

PI, ... ,Pk, P;, “’ ,P;. (3.3) 

are then the type of errorpoints we consider. For any choice of error 
values we have the following lemma. q 

Lemma 5: The smallest degree of an errorlocator is h = pl + pz. 

Proof: Suppose, that a(~, y) is an errorlocator, and let ul(~, y) 
be the product of the polynomials corresponding to the pr lines. It fol- 
lows from the theorem of Noether, that ~(2, y) = gr (2, y)ga(x, y). 
Since ua (2, y) has the points Pi, . . . , PL as zeros, it follows from 
Lemma 4, that the degree of (T(z, y) is at least ~2. This proves the 
lemma. q 

Let us now especially suppose that 

h=pl+pz <j/2, p2 = m - 3 - (j - 2h). (3.4) 

We have an errorlocator g(~, y) = (T~(z, y)(~a(s, y) as in the proof 
of Lemma 5, and h is the smallest degree of an errorlocator. Now, 
consider Lemma 3 in the situation s = 0. For the term p’ we have 
p’ > 0, because 02 (2, y, z), the homogenous version of ga(r, y), is 
an element in the vectorspace for which p’ denotes the dimension. 
Consequently, 

P&j < 6 (3.5) 

which means that the first condition in Lemma 2 is satisfied. There- 
fore, we first find the smallest number of points for which the 
above construction is possible. The number of errorpoints is t = 
plm + (1/2)pz(pa + l), which we under the conditions (3.4) can 
rewrite as 

t=(h-m+3+j-2h)m 

++(m-n-j+2h)(m-3-j+2h+l). (3.6) 

Considered as a function of h, this is a polynomial of degree 
two of the form 2h2 + (-m + 2m. - 6 - 2j + 1)h + . . . . Without 

restrictions, the minimum value of (3.6) is therefore obtained for 

+E$++, m-3 
P2 = - 2 + 1, 

p+- ---. 3(m 4 - 3) 2 1 (3.7) 

Inserting this in t = plm + (1/2)pz (~2 + l), we find the minimum 
value 

to = mj _ 3m(m - 3) m -- 
2 4 2 

m.i =-- m(m-3) m2 3m 

2 2 -4+4 

3(m - 3) -~+$(m-3)2+~+l 

mj 2g - 2 =--- 
2 2 

-$+Z.p, 

that is, 

(3.8) 

when m and j are given; it is a course not always possible to obtain 
(3.8) with natural numbers h, pl, and ~2’. The bound will be somewhat 
greater. But to avoid unnecessary details we formulate the result 
as follows. 

Theorem I: Consider a Hermitian curve C of degree m, where 
m is odd, and a code C*(j), where j - r?$ is even and where 
(3/2)m - (3/2) < j < m2 - 3m + 2. If 

there exists an errorpattern (z;, y;, e;), i = 1, . . . , t, for which the 
decoding algorithm fails. 

Proof: Suppose first that t = to in (3.9). Using the previously 
stated construction with pl and pz from (3.7), we obtain t points 
(x,, yz). Remark first, that pl and pa are indeed natural numbers. 
Moreover, it follows from the inequality j < m2 - (3/2) m + (l/2) 
that 

(m - l)(m - 2) _ ,,,( ?q + 1) > $ - zef3 - +, 

which shows that it is possible to choose the pl lines as wanted. The 
smallest degree of an errorlocator is h = pl + pa, and as proved 
before in (3.5) we have p(&) < t. Consequently there exists a 
vector c = (c;) # 0, such that &lag = 0. Therefore, if we for some 
errorvalues ei can prove, that there exists a polynomial $(z, y) with 
deg[ti(z,y)] < h and 

e;$(x;,yi) = ct, i = 1, ... ,t, (3.10) 

then, by Lemma 2, the theorem is proved in the case t = to. 
We will prove, that the polynomial $(z, y) introduced just before 
Lemma 5 will do the job. To see this, consider first any index i 
corresponding to one of the “independent” points Pi, . . . , Pd. And 
let us suppose that cz # 0. This means, that column number i in 
the matrix i&, is a linear combination of the other columns. This 
again means, that any polynomial of degree j - h or smaller passing 
through the other errorpoints necessarily also passes through P,‘. 
However, this contradicts the way in which the points P{, . . , PL 
are chosen. Therefore c, = 0. Now, consider (3.10). We have just 
proved, that for any i corresponding to Pi, . . . , PL the equality is 
satisfied for any choice of the e,. For the remaining points, we put 



e, = cs/~(zs,ys), and here $(z,,y,) # 0 by the choice of the [3] J. Justesen, K. J. Larsen, H. Jensen, and T. Hoholdt, “Fast decoding 
points PI, .” , Pk. Remark, that deg[G(z,y)] = pa < h, by the of codes from algebraic plane curves,” IEEE Trans. Inform. Theory, 

assumption j 2 (3/2) m-(3/2). If t > to we simply add points with vol. 38, pp. 111-120, Jan. 1992. 

errorvalue zero to the previously stated construction. This concludes 
[4] A.N. Skorobogatov and S. G. Vladut, “On the decoding of al- 

gebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 36, 
the proof of the theorem. 0 pp. 1051-1061, Sept. 1990. 

We have used the Hermitian curve because the rational points on 
[5] I. M. Duursma, “Algebraic decoding using special divisors,” preprint, 

Eindhoven Univ. of Technol., The Netherlands, 1991. 
this are so easy to handle, but this is probably also the case for many 
other curves. 

For a code C*(j) from a Hermitian curve, we have however 
more information in the decoding situation than the syndromes 
s ab, a + b < j, and this can be used to get a minor improvement. 
This fact has no influence on the general results for the algorithm 
as previously described, but since the extra information is readily 
available in this specific situation we will make some comments 
about it. 

Phased Burst Error-Correcting Array Codes 

Rodney M. Goodman, Robert J. McEliece, and Masahiro Sayano 

From the curve equation yr+l - 2’ - z = 0 follows, in general, Abstract-Various aspects of single phased burst error-correcting array 
that codes are explored. These codes are composed of two-dimensional arrays 

with row and column parities with a diagonally cyclic readout order; they 
SC, b+r+l = sa+, b + s,+l b. are capable of correcting a single burst error along one diagonal. Optimal 

codeword sizes are found to have dimensions RI x n:! such that 122 is 

Therefore, when we are decoding a code C*(j), we know the the smallest prime number larger than nl. These codes are capable of 

syndromes Sab, a + b 5 j and Sej+i, Sij, ... ,S3--1.T+r. Using 
reaching the Singleton bound. A  new type of error, approximate errors 
is defined; in q-ary applications, these errors cause data to be slightly 

all these syndromes as input to the algorithm one can realize, either corrupted and thererfore still close to the true data level. Phased burst 
by theoretical arguments or by experiments in concrete situations, that array codes can be tailored to correct these codes with even higher rates 
an error pattern as the one in Theorem 1 will be correctly decoded. than before. 

To construct examples where the algorithm breaks down also with Index Tems- Error-correcting codes, array codes, phased burst cor- 
this extended input, one must change things a little. rection, approximate errors. 

We choose the error points in the same way as before, but such 
that the smallest degree h of an error locator satisfies 

I. INTR~D~JCTI~N 

h = p1 +p2, pz = m  - 3 - (j - 2h) - 1. (3.11) In computer memory and communications applications, informa- 

Let us now imagine, that we run the algorithm with all syndromes 
tion can be corrupted by bursts of noise which occur within one of 

$Yi) 
a + b < j + 1, as input. Then, with notation as above, because of 

many predetermined sectors or time intervals. These noise patterns 

the r&k of the matrixF is smaller that t (cf. Lemma 3). 
will be called phased burst errors [l] because although the noise 

One can then, as before, ~find~&&& pattern for which the algorithm 
pattern may be random at each burst, its duration and starting 
points are restricted to certain intervals. Noise sources which can 

fails, and therefore of course the algorithm also fails if the input is generate these errors include line noise, synchronization errors in 
the syndromes Sat,, a + b 2 j, and Saj+l, ... ,SjwYr+l. To find demodulation, timing errors in multivalued memories, and backscatter 
the smallest number of points for which this construction is possible, radar signals. These errors are often periodic in time (or, in the case 
we shall minimize an expression corresponding to (3.6). Carrying of memories, in position) and can be long in duration. (See Fig. 1). 
out the calculations one obtains A motivation for studying this problem is the encoding of multi- 

level random access memories, where each cell contains more than 
(3.12) one bit of data. These memories use dynamic RAM cells to store 

one of several discrete voltages. An experimental 4-Mbit chip with 
which is a somewhat greater bound than (3.8). But the difference is 16 possible voltage levels (4 bits worth of data) stored in each cell 
not significant compared to the bound itself, and we will not discuss was reported in [2]. Voltage levels in each cell are stored and sensed 
this problem further. by ramping the voltages on pertinent row and column select lines. 

This situation can only occur if m  2 6, so the smallest case in 
characteristic 2 is T = 8, which gives codes of length 504 over Manuscript received November 4, 1991. R.M. Goodman and M. Sayano 
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