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Maxentropic Markov Chains 
J0RN JUSTESEN AND TOM HBHOLDT 

Abstruct-The Markov chain that has maximum entropy for given first 
and second moments is determined. The solution provides a discrete analog 
to the continuous Gauss-Markov process. 

I. INTRODUCTION 

It is well known that random walks and similar Markov chains 
[l] can be used as approximations for or analogs to Brownian 
motion or diffusion which are more precisely described by con- 
tinuous stochastic processes. In cormection with digital system 
analysis it is also desirable to have Markov chains, which ap- 
proximate continuous processes with finite variance [2], [3]. 
Moreover, it is an important result in information theory [4] that 
Gauss-Markov processes have maximum entropy among all 
processes with given values of the first and second moments. 
Another application of maxentropic Markov chains appears in 
[5]. In [6] the maxentropic Markov chain was used in the deriva- 
tion of an upper bound to the entropy of certain spectrum 
shaping codes. 

II. MARKOV CHAINS WITH FINITE VARIANCE 
This paper considers Markov chains with a finite or denumer- 

able set of states 
SC { . . . ,~-l,ql,~l, ... >, 

and with transition probabilities 

if(iYk) E T, 
elsewhere. (2.1) 

The chain can be interpreted as representing a signal that changes 
as a function of time. When the chain is in state k, the signal is 
x(l) = k. The set T determines the possible transitions of the 
chain. This set may typically include all pairs such that ]j - kl = 
1 or all pairs for which ]j - kl I J for some integer J. 

We shall assume that the chain has a stationary distribution 
Pk = P[sk], i.e., 

F’k = 1, (2.2) 

(2.3) 

Clearly if Pk is a stationary distribution, then 

C?CPjk(k -j) = 0. 
j k  

(2.4) 

In particular we will be interested in the first and second mo- 
ments of the chain, i.e., 

P = &% 
k 

(2.5) 

o2 = zk2Pk - p2, (2.6) 

and 
k 

P2 = CPjCPjkCk -j>‘. 
j k  

(2.7) 
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Here, in addition to the variance of the chain, we have specified 
the variance of the increment. Alternatively, we could let the 
correlation between successive amplitudes be given, since we have 

p* = E[(x(t + 1) -X(t))‘] 

= 2(02 + PI’) - 2E[x(t + 1)x(t)] 

and therefore 

E[x(t + 1)x(t)] = a2 + /L2 - fp2. 

The entropy of the chain is 

H = - CqcPjk l”gPjk. 
j k  

(2.8) 

(2.9) 

We shall determine the transition probabilities that maximize the 
entropy, subject to the constraints (2.5)-(2.7). 

In [6] it was shown that the transition probabilities for the 
maxentropic chain in the binary case satisfy a difference equation 
of the form 

Pk,k+l ‘Pk+l,k = ak. 

This equation can be converted to a linear second-order dif- 
ference equation by using the substitution pk = tk/tkel, where 
Pk,k+l =Pk ad Pk+l,k = 1 - P~+~. This gives the equation 

tk+l - t, + (Yktk-1 = 0, 

which can be solved easily. If we express this system in matrix 
form we get 

(S - E)t = 0. 

In the following section we give a more general solution of a 
problem of this form. 

III. MARKOV CHAINS WITH A WEIGHT CONSTRAINT 

We consider Markov chains with a given set of states S = 
(Sl, S2,’ . ., sJ). A transition from sj to Sk can occur if (j, k) 
belongs to a finite set T. It is convenient to determine the 
maximum of H with respect to the probabilities qjk = P,pjk: 

Hz - c qjkl”g qjk cqji . 

(i ) 

(3 .I> 
(i,k)ET i 

We introduce a weight constraint of the form 

c qPjkwjk = (j gcTqjkwjk s W. (3.2) 
(i,k)ET 

The qjk satisfy the stationarity conditions 

Cqji = Cqij, 
i i 

(3.3) 

and the consistency condition 

Cqjk=l. 
i,k 

(3.4) 

The maximization problem is a natural generalization of a result 
of Shannon [7]. However, many of the details of the derivation 
are very similar to the calculation of the rate-distortion function 
for discrete memoryless sources [4]. In fact the problem stated 
above may be interpreted as a rate-distortion problem for a 
memoryless source, with the condition that the distributions of 
the source and reproducing alphabets are identical. 

We note first that -H is a convex function of the qjk, so the 
problem can be treated as an ordinary convex program [8]. When 
the wjk are given, there is a minimum value W,, of the left-hand 
side of (3.2), subject to the constraints (3.3) and (3.4), which may 
be determined by linear programming. For a certain value of W, 
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the solution to the problem of maximizing H, becomes 
%%.A to the maxentropic chain without the constraint (3.2). 
Between these two values, H is an increasing function of W, and 
the solution always lies on the boundary given by equality in 
(3.2). It turns out that the constraints qjk 2 0 are always satis- 
fied, and thus they need not be included in the variational 
problem. 

It follows from the convexity of -H, that any local maximum 
of H is global, and we shall see that with the exception of the 
case W = W,,, such a local maximum exists. We determine the 
maximum by introducing Lagrange multipliers, (s, ck, n), where 
s I 0, and finding a stationary point of 

+6k Cqik - Cqki +q c qjk’ 
( i i 1 (j,k)ET 

We get 
ar 

(3.5) 

- = -log&, + Sb%$k + s; - .& + ?,, 
aqjk 

and thus 

Pjk = exp ( Syk) vk/Avj, 

where 

(3.6) 

Vk = exptk and x = exp(-q). 

When these transition probabilities are used, the relations 

CPjk = 1, Cqpjk = ‘k 
k j 

become 

and 

(3.7) 

c 6 exp ( swjk)/vk = hPk/vk. (3.8) 

We may interprete (3.7) and (3.8) as indicating that the vectors 
{ v, } and {Pi/vi } are right and left eigenvectors of the matrix 
Q = {exp (SW+)} and A is the corresponding eigenvalue. 

By applying the well-known argument [4] we see that H + s W 
is maximized and that this quantity is the H-axis intercept of the 
line with slope -s through ( W, H). Thus -s is the slope of the 
tangent to the H-versus-W curve in this point. Using (3.6) we can 
calculate H as 

H= -~~~pjk(swjk+logvk-loguj-logA) 
i k 

= k,gA -SW+ ~~$pjk(logv, - logvj) 
i k 

so that 
H=logh-SW. (3.9) 

Thus log A = H + s W is maximized, and we conclude that h 
is the largest eigenvalue of the nonnegative irreducible matrix Q. 
This also ensures, at least in the finite case, that the q’s and the 
vector {vi} are positive. We can now summerize the results as 
follows. 

Theorem I: Let the set of states and the set of possible transi- 
tions of a Markov chain be given, and let a set of weights wjk be 
associated with the transitions. The maximal entropy H of the 
chain is then determined parametrically as a function of the 
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average weight W by 
H = logh - SW, 

where h is the largest eigenvalue of the matrix Q = (exp (SW@}. 
The transition probabilities of the maxentropic chain are 

Pjk = exP (s~k)vk/hv, 3 

where {vi } is the right eigenvector corresponding to the eigen- 
value A, and the stationary probabilities are 

p, = vjq, 
where { I$} is the corresponding left eigenvector. 

We note that the function H(W) is enveloped by the family of 
straight lines passing through the point (0, A) with slope -s as s 
runs through the interval [ - cc, 01. For all values of s > - cc the 
eigenvector {v.} is strictly positive, by the Perron-Frobenius 
theorem, and thus pjk > 0. Thus a chain with a reduced number 
of states can occur only for s = - 00, corresponding to W = W,,. 

We shall now apply the above results to the specific problem 
discussed in Section II. We prefer to rewrite the constraints on 
the moments as 

(3.10) 

Cqjk(j- k)' 5 ~'9 
j,k 

(3.11) 

and 

i Eq,k( j2 + k*) I a* + p* = 8. (3.12) 

The problem is simplified if we consider H to be a function of 
,u,p2 and ur2 rather than u2. Theorem 1 can be extended to 
include several constraints, and we find that the maximal entropy 
is obtained by taking 

Pjk = Qjkvk/‘vj 7 (3.13) 

where {vi} is the eigenvector corresponding to the maximal 
eigenvalue X of the matrix 

Q= {Qjk} = 
exp ($s( j2 + k2) + $r( j + k) + t( j - k)‘), 

(j,k)ET, 
0, elsewhere, 

(3.14) 

where s I 0, t 5 0. The entropy is 

H=logA-sd2-rp-tp2 (3.15) 

and -(s, r, t) are partial derivativies of H with respect to a’*, p, 
and p2. 

It follows from the Perron-Frobenius theorem that the maxi- 
mal eigenvalue of the Q matrix is unique, and that the corre- 
sponding eigenvector has positive coordinates, so for the maxen- 
tropic chain all states and all transitions have positive probabil- 
ities. Consequently, if more states are added, we get a strictly 
larger entropy. It can be proved that for the infinite Q matrix a 
Perron-Frobenius theorem still holds [9], [lo], and that the chain 
defined by (3.13) with an infinite number of states is the maxen- 
tropic chain. 
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(and apparently optimistic) outer bound for some cases, de- 
termining the actual capacity region of the Gaussian broadcast 
channel with feedback remains an open problem. 

II. GAUSSIAN BROADCAST CHANNEL 
An Achievable Region and Outer Bound for the 

Gaussian Broadcast Channel with Feedback Consider the channel shown in Fig. 1. A single transmitter 
wishes to send separate data to two receivers using the discrete- 

LAWRENCE H. OZAROW, MEMBER, IEEE, AND time additive white Gaussian channel shown. At any time the 
S. K. LEUNG-YAN-CHEONG transmitter has available the prior channel outputs of both re- 

ceivers. We assume that information is transmitted on a block 
Abstract-A deterministic coding scheme is presented for additive white basis, and that for each block we impose an average power 

Gaussian broadcast channels with two receivers and feedback from the constraint of the form 
receivers to the transmitter. The region of data rates at which reliable 
communication is possible is larger than that of the corresponding channel 
without feedback. This is the first example showing that the capacity region 
of degraded broadcast channels can be enlarged with feedback. where the expectation (denoted by an overbar) is carried out over 

I. INTRODUCTION the ensemble of messages and channel noise. If m, and m2 are 

It is well known that the capacity region of discrete-time 
the messages to be sent to the first and second receiver respec- 

memoryless multiple access channels can be enlarged by the use 
tively, then the rates achieved are defined by 

of feedback [l]-[3]. This effect is intuitively reasonable, since the 
introduction of feedback completes a pair of communication 

Ri = i log M, nats/transmission, i = 1,2, 

links between the transmitters, allowing collaboration. 
Until the appearance of [5] a similar enlargement of broadcast 

where M, = ]]mJ, that is the number of possible values of mi. 

channels had not been reported. Indeed, since only one trans- 
We take all logarithms to be natural, so that rates are given in 

mitter is present in the broadcast situation, it had not been at all 
natural units. 

clear that enlargement should occur. Furthermore, El-Gamal [4] 
A rate pair( R,, R2) is achievable if for any e > 0, there exists 

had shown that for cascaded broadcast channels (“physically 
a code with some sufficiently large block length N, for which the 

degraded” channels) it does not. 
number of codewords to each receiver satisfies 

In [5] Dueck showed by example that the capacity region of A4, 2 eNRl, i = 1,2, 
broadcast channels can be enlarged with feedback. In this corre- 
spondence we will give a constructive scheme for additive and 
Gaussian broadcast channels which, except in the physically 
degraded case, enlarges the capacity region over that obtained 

Pr [receiver i incorrectly decodes M i for i = 1 or 2] < c . 

without feedback. Since all Gaussian channels are degraded The capacity region of the channel is the closure of the set of 
(generalizing the usual definition of degraded channels to encom- achievable rate pairs. 
pass continuous alphabets), these results show that the negative Returning to the channel, as shown in the figure, the real 
result obtained in [4] does not extend beyond the physically number xL- is corrupted by the addition of a common noise 
degraded case. component’ nk and two separate noise components ni k (i = 1,2) 

The coding scheme described here is similar to one presented with resnective variances u’. a?. and u?. We assume that each r I II L 

in [3] for the Gaussian multiple access channel, and both are noise process is white and that the three are mutually indepen- 
based on the scheme proposed by Schalkwijk and Kailath [6], [7] dent. The capacity region of the channel in the absence of 
for the band-limited Gaussian channel with one transmitter and feedback is the subset of the positive quadrant bounded by the 
one receiver. While the scheme in [3] was shown to achieve the R, and R, axes, and the curve are described parametrically by 
capacity region of the multiple access channel, no such result is 
claimed for the broadcast channel. Although our achievable 
region will be shown to lie surprisingly close to an easily obtained 
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