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The Merit Factor of B inary Sequences 
Related to D ifference Sets 
Jam M . Jensen, Helge Elbrand Jensen, and Tom Hoholdt 

Abstract -Long binary sequences related to cyclic difference 
sets are investigated. Among all known constructions of cyclic 
difference sets we show that only sequences constructed from 
Hadamard difference sets can have an asymptotic nonzero merit 
factor. Maximal length shift register sequences, Legendre, and 
twin-prime sequences are all constructed from Hadamard differ- 
ence sets. We prove that the asymptotic merit factor of any 
maximal length shift register sequence is three. For twin-prime 
sequences it is shown that the best asymptotic merit factor is 
six. This value is obtained by shifting the twin-prime sequence 
one quarter of its length. It turns out that Legendre sequences 
and twin-prime sequences have similar behavior. Based on the 
Jacobi symbol we investigate Jacobi sequences. The best asymp- 
totic merit factor is shown to be six. Through the introduction of 
product sequences, it is argued that the maximal merit factor 
among all sequences of length N is at least six when N is large. 
We also demonstrate that it is fairly easy to construct sequences 
of moderate composite length with merit factor close to six. 

Index Terms -Sequences, correlation, cyclic difference sets. 

I. INTRODUCTION 

L ET xi, 0 I j 5 N - 1, be a sequence of N elements of 
value + 1 or - 1. The aperiodic correlations are de- 

fined by 

N-k-l 

ck= c xjxj+k, k=l;..,N-1 (1.1) 
j=O 

and the merit factor of the sequence, introduced by Golay 
[l], is defined by 

(1.2) 

Binary sequences with small correlations play an impor- 
tant role in many communication systems, ranging from 
radar to modulation techniques and testing of systems [2]. 
The significance of the merit factor in these situations 
comes from the relation between the merit factor and the 
spectral properties of the signal corresponding to the 
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sequence. More precisely, let 
N-l 

Q( e’“) = jFo xjeijo (1.3) 

be the Fourier transform of the sequence xj. An easy 
calculation gives 

N-l 
2c 

k=l 

c:=~~2~[j8(e’~~12-N]2d~. (1.4) 

Hence the denominator in (1.2) measures-in terms of 
power-how much the amplitude spectrum of the signal 
deviates from the constant value N, and a sequence with 
maximal merit factor F gives a signal with maximally flat 
spectrum (for fixed N). The problem is then to find 
sequences with large merit factors. One way to do this is 
by computer search. For lengths N up to 40 [3], it is 
possible to carry out a complete search. Except for N = 11 
and N = 13, the maximal merit factor is in the interval 
from 3.3 to 9.85. For N = 11 one gets 12.1 and for N = 13 
the maximum is 14.08 [3]. In both cases these sequences 
are Barker sequences (binary sequences for which all 
aperiodic correlations are either 0 or + 1). 

For larger values of N, a complete search is not possi- 
ble. There are many results of partial searches ([ll, 141, [5], 
[6]). For lengths up to 117, the highest known merit factor 
is between 8 and 9.56 and for lengths from 118 to 200, the 
best factor known is close to 6. For N greater than 200 
various statistical search methods have been used, [41, [7], 
zing? sequences with a merit factor of no more 

Apart from different search methods, which have not 
led to a deeper theoretical understanding of the behavior 
of the merit factor, another approach is to look for 
general principles for construction of sequences of arbi- 
trary length with a reasonably high merit factor [9]. Yet 
another approach is to carry out a theoretical study of 
special classes of sequences, and this is the approach 
adapted here. 

The first problem in such an investigation is the lack of 
a simple analytical technique. Calculation of the merit 
factor is apparently a complicated process, which appears 
to be difficult to attack with analytical methods. In [lOI we 
proposed a general method for treating merit factors, and 
this method will be the basic tool in the present paper. 
The method, which only works for sequences with odd 
length N, is based on the knowledge of the Discrete 
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Fourier Transform (DFT) of the sequence, that is, the The method used in [lo] is as follows. Let F be the 
numbers merit factor of a sequence of odd length N. Then 

N-l 
Q(ej) = C xkef, j=O,*.*,N-1, (1.5) 

k=O 

N-l 
l/F= 2cc; [ Ii N* 

k=l 

where ej = expp(i2a/Nj). The method is technically rather 
complicated, involving many calculations. However, using 
this method it was possible to determine the asymptotic 
merit factor of Legendre sequences and offsets of such 
sequences. 

N-l 
Ck +CNmk)*+ c (ck -+,,-k)* 2N2 

k=l Ii 
A Legendre sequence has length equal to an odd prime 

N, and is defined by the Legendre symbols 

N-l N-l 

C lQ(ej)14+ jFolQ(-EI)14 2N3-1 
j=O I/ 

=(S+S,)/2N3+1, (1.9) 
j=O;**,N-1. (1.6) where 

x0 = 1, 1, xi = 
if j is a square (mod N) 

-1, if j is a nonsquare (mod N ) . 

N-l N-l 

S= C IQ(ej)14 and 
j=O 

s,= jFo I Q( - Ej) 14* which gives 

(l-7) 

Since, by interpolation, 

this gives S, = 16(A + B + C + D)/N4, where 

C=-7 Nc1 ~~Q(EJI’ Q(%)i?(+&b + i&b>Qkb&c 

a,b,c=O cEb - %)+c - %> 
b#a#c 

N2 1 N-1 4~Q<%)~*~Q(%) I2 
D=-2’z = 

E&b + Q2(%)~2kz)~if + Q”k>~‘<%>~,“. (1 lo> 
a,b=O h--b)* 

a#b 

An “offset” sequence is one in which a fraction f of its 
For Legendre sequences, it is known that 

elements is chopped off at one end of the sequence and Q(l) = 1, 
appended at the other, in other words, a cyclic shift of fN 
places. 

In [lo] it was proved that, if F is the merit factor for 
N + 00 for an offset Legendre sequence corresponding to 
the fraction f, then 

l/F=2/3-41f(+8f2, Ifls l/2. (l-8) 

This gives the highest merit factor F = 6 for 1 f I= l/4. 
The formula (1.8) was obtained earlier by Golay [ll] using 
probability theory and an “external” assumption. This 
was that, for the asymptotic case, one can consider the 
correlations ck in (1.1) to be independent random vari- 
ables, which they certainly are not for fixed N. Neverthe- 
less, Golay was able to obtain the correct asymptotic 
formula in this case. 

Q( ej) = 
l+xjm, if N = 1 (mod4) 

1iix,m, if N = 3 (mod4) ’ 
j # 0. (1.11) 

For N = 3 (mod4) it follows from (l.ll), that 
)Q(E~)[ isindependentof j=l;-.,N-1. (1.12) 

This property highly facilitates the calculations in (1.9), 
and it turns out that the case N = 1 (mod4) asymptoti- 
cally can be treated as if (1.12) were satisfied. 

In this paper we use (1.9) to determine the asymptotic 
merit factor of several classes of binary sequences. In 
Section II we note that sequences for which (1.12) holds 
arise from cyclic difference sets, a very well-studied sub- 
ject with a long tradition. Among all known constructions 
of cyclic difference sets we show that only the Hadamard 
difference sets have the possibility of producing se- 
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quences with an asymptotic nonzero merit factor. Three 
classes of sequences constructed from Hadamard differ- 
ence sets are: maximal length shift register sequences, 
Legendre sequences, and twin-prime sequences. In Section 
III we prove that the asymptotic merit factor of any cyclic 
shifted maximal length shift register sequence is 3. In 
Section V we show that the asymptotic merit factor of a 
twin-prime sequence is given by the formula (1.8). 

In Section IV we introduce Jacobi sequences defined by 
use of the Jacobi symbol, known from number theory. 
Jacobi sequences are closely related to Legendre se- 
quences. This relation is formulated through the notion of 
the product of two sequences. The product is defined for 
any two sequences of length Ni and N, with gcd(N,, N2) 
= 1, and the product sequence has length N = N,*N,. 
One interesting fact about this construction is a very 
simple formula for the DFT of the product sequence in 
terms of the DFT of the two “factors.” Also in Section IV 
we introduce modified Jacobi sequences, which contain 
twin-prime sequences as a special case. The merit factor 
of a modified Jacobi sequence is better than the merit 
factor of the corresponding Jacobi sequence. In Section V 
we use (1.9) to determine the asymptotic merit factor of 
the product of two Legendre sequences, which in fact is 
the same as a Jacobi sequence, and cyclic shifts of such 
sequences. We also treat modified Jacobi sequences, and 
the result for both types of sequences is again the formula 
(1.8). 

II. SEQUENCES FROM CYCLICDIFFERENCE SETS 

We recall the definition of a cyclic difference set [131: A 
set D = (iI, i,, * * * , ik} of k residues mod u is called a 
(v, k, M-difference set, if the equation x - y = j (mod U) 
has exactly h solutions (x, y) E D X D for each 
jE{l,2;**, u - 1). If D is a difference set, we construct a 
binary sequence x,, n = 0,l; . *,u - 1, by 

x, = -1, if nED 
1, if n@D. (2.1) 

The periodic correlations, ej = CY,~X,X~+~, where the in- 
dexes are calculated modulo U, are given by [13] 

if j=O 
if jE{l;*.,v-l}. 

(2.2a) 

Thus the periodic correlations take on only two values. 
This in fact characterize the sequences coming from cyclic 
difference set. [13]. Moreover, since 

condition (2.2a) is equivalent to the statement that ]Q(ej)l 
is independent of j=1,2;**,N-1. 

In the following we use the notation xN for a sequence 
x0, x1,‘. ‘,xN-l* 

In order to decide which difference sets one shall 
investigate with respect to the merit factor, we need the 
following theorem. 

Theorem 2.1: Consider an infinite number of binary 
sequences xN of increasing length N. For each N, let FN 
denote the merit factor of the sequence, and let DN 
denote the number of -1’s in the sequence xN. Suppose 
that D,/N + a for N -+m. If a # l/2, then FN + 0 for 
N+m. 

Proof If x,,,=x~,x~;~*,x~-~, we have 

(N-20,)*=(x,+x,+ *e. +x&* 
N-l 

= N+2 c ci. q (2.3) 

From the Cauchy-Schwartz inequality, it follows that 

1~11cj~dRq~11c.?)“2 

and hence from (2.3) 

1 
F,> 

[(N-2DN)*- N12 [IV(~-~D,,‘N)*-~]~ 

2N*(N-1) = 2(N-1) ’ 

which gives the desired conclusion. 
Many classes of difference sets are known [13l. By 

examining these sets, it follows from Theorem 2.1 that 
only the Hadamard difference sets that have parameters 
(v, k, A) = (4t - 1,2t - 1, t - 1) can give sequences with an 
asymptotic merit factor different from zero. The 
Hadamard difference sets can be classified according to 
the value of v = 4t - 1 from [13]. 

Case a) u = 2” - 1: Then there exist the Singer differ- 
ence sets and the Gordon-Mills-Welch difference sets. 

Case b) v is a prime: Then the quadratic residues 
modulo u give a difference set and, if v = 4x2 +27, there 
exists another class called Hall-sets. 

Case c) v = p(p + 2) where both p and p + 2 are primes: 
Then there exist the twin-prime difference sets. 

We consider three classes of sequences coming from 
these difference sets, one class from each case. The 
sequences arising from Singer difference sets are the 
maximal length shift register sequences (ML-sequences) 
and the sequences from the quadratic residues are the 
Legendre sequences. The sequences from c) are defined 
by 

j=O,p+2,2(p+2);**, 

(P-,l)(p+2), 
j=p,2p;*.,(p+l)p, (2.4) 

where ( - ) denotes the Legendre symbol. 
The following theorems summarize the results. 

Theorem 2.2: The asymptotic merit factor of any maxi- 
mal length shift register sequence is 3. 

Proofi See Theorem 3.7 in Section III. q 



620 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

Sarwate showed in [12] that among all the 2” - 1 cyclic 
shifted versions of a ML-sequence there exists at least 
one sequence with a merit factor of 3 or more. In order to 
actually find such a sequence, one has to make a com- 
puter search, [12]. However, since a cyclic shifted ML- 
sequence again is a ML-sequence, it follows from Theo- 
rem 2.2 that the merit factor of all these sequences is 3. 

The merit factor of Legendre sequences was deter- 
mined in [lo]. For completeness we state the result in the 
next theorem. 

Theorem 2.3: The asymptotic merit factor F of a Leg- 
endre sequence shifted t places is given by the formula 

l/F=2/3-4)fI+8f2, If Is l/Z 
where f = t/N. 

Theorem 2.4: The asymptotic merit factor F of a twin- 
prime sequence shifted t places is given by the formula 

l/F=2/3-41fI+8f2, If II l/2, 
where f = t/N. 

Proof: Follows from Theorem 5.1 in Section V by 
setting q equaI to p + 2. 

For both Legendre- and twin-prime sequences the best 
possible merit factor is 6, and this value is obtained by 
shifting the sequence one quarter of its length. In Sec- 
tions IV and V we explain why Legendre sequences and 
twin-prime sequences have the same asymptotic merit 
factor. 

The asymptotic merit factor for Hall sequences and 
Gordon-Mills-Welch sequences are currently unknown. 
The GMW-sequences have the ML-sequences as a special 
case, and these are treated next. 0’ 

III. THE ASYMPTOTIC MERIT FACTOR OF MAXIMAL 

LENGTH SHIFT REGISTER SEQUENCES 

Let (1! be a primitive element of the finite field GF(2”) 
and /3 a fixed element of GF(2”). A maximal length shift 
register sequence-a ML-sequence-can be defined as 

xj = ( - l)tw), j=O,l;** ,N=2”-1, (3.1) 

where tr(x) denotes the trace-function from GF(2? to 
GF(2). For the basic facts of these sequences see [14]. 

It is known [13], [14], that these sequences arise from a 
difference set with parameters (2” - 1,2”-’ - 1,2”-* - 1) 
and hence it follows ‘from (2.2a) and (2.2b) that 

Q(l) = 1, 

lQ(~~)l’=2”=N+l, j=1,2;**,N-1. (3.2) 

The property (3.2) is not sufficient to determine the merit 
factor using (1.9). However, by invoking the shift- and 
add-property of these sequences, it is possible to carry 
through the calculations. 

The shift- and add-property states [14, Theorem 10.61 
that there exists a permutation r of (1,2, * * a, N - 1) such 

that 
x,x,+, = Xm+Tr(,p 

forall mE{O,l;*., N-l} and s#O. (3.3) 

Moreover, using (3.1), it is seen that this permutation 
satisfies 

avT(s) = (ys + 1) forsE{l;**,N-1). P-4) 
We will now calculate the asymptotic merit factor of a 
ML-sequence using (1.9). 

It is easily seen from (3.2) that 
N-l 

s= C IQ(~~)~~=N~+o(N~). P-5) 
j=O 

The sums A, B, C, and D from (1.101 are now treated in 
a series of lemmas. 

The lemmas below follow from (3.5). 
Lemma 3.1: For any ML-sequence A = l/48 N 7 + 

O(N6>. 
Lemma 3.2: for any ML-sequence B = O(N”/*). 

Proofi 

B=-T Nc’ ~Q(EJ\* 
a,b=O 

azb 

. iZ(%)Q(%) (1+ Eb-a) + Q(%)&) (1+ E,-b) 
11 - e&al* I1 - +bl* 

Nf’ lQ(4 I*~~~ $Q(%)Q(%a) 
a=0 

N-1 l++ 
lQQ)12k~l mQEklZe(Ek) 

N-l 

+ c ,Q(.,,*;~: ~&dCi?ha) IJ 
a=1 

Using 
N-l 1 
c -i&2-; 

k=’ Il-E,l* 

from [lo] and 

l~k)I~=~+l, 
it is seen that the first sum is O(N5/*). The second sum is 
O(N7/*> by the same observations and using 

N-l 

c Q(%>Q(G,) = - Q(l>Q(Q>. 
a=1 

We split the C-sum in the two parts, C, and C,, in 
which it is written in (1.10). Arguing as in the proof of 
lemma 3.2, it is easy to see. 

Lemma 3.3: For any NL-sequence, C, = O(N1”*). 
The second part, C,, is treated below. First, however, 

to simplify the calculations we need a rewriting of the 



D-sum. We split this sum in two parts: where the indexes of the sequence are calculated mod N. 
Using the shift- and add-property (3.3), we get 

D,=-N* c 
N-1 ,Q(%),*,Q(%),*%Eb (3 6a) 

N-l N-l 

a,b=O (Ea--b)2 ’ 
a#b 

Q(E,)i&,+k) = c Xp+a&*EiP + c Ekp 
p=o p=o 

and s=l 

-,“’ “f’ Nc1 ““;;‘,“i;a+d . 
N-l 

D,= (3.6b) =g(Ek) c peel. 
s=l 

a=0 k=l 
Substitution of this into (3.8) and summing over i gives 

We want to express D, in terms of the cyclic correla- 
tions of the sequence. Substituting 

N-l 

~Q(E~)[“= c 13,e{, Z=a,b, 
j=O - 

N3 N-1 N-1 &k) &) 
C,+D,=-7 c c - 

2 k=’ I=’ cEk-l) cE[--l) 

into (3.6a) and using a rewriting similar to that used in the 
proof of Lemma 3.2, we get 

N-lN-1 1 

D,=N* c c ~ 
a=,, k-1 iI-- ekl* 

S=l 

Since from (3.2) 
N-l 1 

/Q(Ek),=d= and c - 
k=’ Ie,-11’ N1ogN 

N-l N-l N-l 

N2 + N c e,(ei + EL-,) + c c djC?&-, 
from [lo], it follows that 

j=l j=l I=1 IC, + D,I I N6(log N)* 
N-l 1 N-l N-l 

=Ns c 4 N-l 

----+N3 c c e;- 
k=’ Il-ekl* 11-eEk12’ 

max 
k,l=l;..,N-1 (I c epp- . (3.9) 

k=l j=l s=l II 

To finish the estimations we prove the following lemma. 
Lemma 3.5: 

IN-1 I 

by summing over a. Using that 

which can be seen from [lo], we get 

From (2.2), we have that ej = - 1 and therefore the fol- 
lowing lemma holds. 

Lemma 3.4: For any ML-sequence D, = l/12 N 7 + 
O(N6>. 
The remaining terms, that is C, and D,, can be treated 
together since 

N-l 1 N-l I s=l I 
* jFl t9T-2,’ c j(N- j)e,‘. (3.7) The proof of this lemma relies on the fact that the sums 

j=l are related to character sums, since the multiplicative 
character Gk is defined as $k(ap> = EP 115 p. 1871. 

If we consider the polynomial g(x) = xNel(x + l>*, we 
have 

N-l N-l 

c Ek 
7r(s)+Tr(N-s) = 

c +k(das)) (3.10) 
s=l s=l 

N* N-1 N-1 N-1 Q”(~,)i&,+k)i&,+d 
since 

C*+D*=-T c c c 
a=0 k=l I=1 (Ek-l)(E/-l) ’ 

g(d) = asN-y as + l)* 

(3.8) 

by the same kind of rewriting as in Lemma 3.2. 
Here the summation over k # I yields C, and k = 1 

yields D,. We first calculate Q(E,@(E,+~), and get 
N-l 

Q(~a>i%,+k) = c XmXp~~-P~iP 
m,p=O 

N-l 

= c XpXp+s~~~~p, 
s,p=o 
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and 

= a-S ((YS + 1)’ = (US + l)( (y-s + 1) = (yQ(S). Cy+-s), 

where we have used (3.4). 
We now invoke 115, Theorem 5.411, using the fact that 

$k has order m = N/gcd(N, k) so m is odd and g(x) is 
not an mth power of a polynomial. Moreover, since g(x) 
has only two roots, we get from the theorem that 

N-l 

c Ek 
Tr(s)+Tr(N-s) &G-i. 

s=l 

For the second statement in the lemma we let, for fixed 
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1, k E (1,2; * a, N-l}, 1# k, h(x) be the polynomial 
h(x) = 
x + l)k+lxW- ‘P 

We then have 

since 

N-l N-l c l ps). ey-s) = (3.11) 
s=l 

El ww)) 

= (ff T(S’)k( (r?Tw)l 

again using (3.4). 
Now I,$ has order N, and h(x) is not an Nth power of 

a polynomial. Since h(x) has only two roots, Theorem 
5.41 of 1151 again gives the result. 

Lemma 3.6 below follows from (3.9) and Lemma 3.5. 
Lemma 3.6: For any ML-sequence, 

C, + D, = 0( N13’2(log N)*). 

We can now prove the main result of this section. 

Theorem 3.7: The asymptotic merit factor of any ML- 
sequence is 3. 

The theorem follows from (1.9), (3.5), and Lemmas 
3.1-3.4, and 3.6. We note that the result is independent 
of cyclic shifts, since a cyclic shift of a ML-sequence is a 
ML-sequence. 

IV. THE PRODU(JT. CONSTRUCTION AND 

JACOBI SEQUENCES 

We first recall the product construction [161. 
Definition 4.1: Let x = x0, xi;**, xN1-i and y = 

Yo, Yl,’ - a, yNz-i be two sequences with gcd(N,, N,) =l. 
The product sequence z = zo, zi, . * 0, zN- i of length N = 
Ni * N2 is defined by 

Zl = Xll’ Yr,, I=O,l;-*,N-1, (4.1) 

where 1, = 1 (mod Ni> and 1, = 1 (mod N,). 
The product sequence is denoted by z = x8 y. The 

construction is illustrated in the following. 
Example 4.1: Let x=x,,x,,x,=l 1 -1 and y= 

Y,, Yl,’ . *, yg=l 1 1 - 1 1 - 1 -1. To construct 
the product sequence we consider the 3 x 7 matrix 

i 

1 1 1 -1 1 -1 -1 
1 1 1 -1 1 -1 -1 ) 

-1 -1 -1 1 -1 1 1 I 
where the first row is xOy, the second row is x,y and the 
third row is x2y. The product sequence t = x&y is 

1 1 -1 -1 1 1 -1 1 -1 1 
-1 -1 -1 -1 -1 1 1 1 1 -1 1, 

which one obtains from the above matrix by reading off 
along the extended diagonal starting at the upper left 
corner. 

The basic properties of the product construction are 
formulated in the next theorem, where capital letters 
denote the discrete Fourier transforms. 

Theorem 4.2: Let x and y be sequences of length Ni 
and N2, for which the product z = x9 y of length N = 
N,*N, is defined. For j=O,l;**,N-1 let ji= jmodN, 
and j,=jmodN,. 

1) The periodic correlations are 

ej(z) =ejfx)ej2(Y)T j=O,l;** ,N-1. (4.2) 

2) Let s and t be integers such that sN, + tN2 = 1. 
Then 

Z(Ej) = X(EtN2.j,)Y(E~N~~j2)~ j=O,l;**,N-1. 

(4.3) 

Proof: 1) See [161. 2) Since (N,, N,) = 1, the numbers 
s and t exist. By the Chinese remainder theorem, we have 
j = j,. tN2 + j, . sN, (mod N). Using this we get 

N-l N-l 

z(Ej) = c zlEi[= c fl(etN2.j,)1(E,N,-j2)1 
I=0 I=0 

N,-1 N,-1 

= C C Xl,Y12(EtN2~jl)11(E~Nt~j2)12 
I, = 0. I, = 0 

=X(e tN2.jl)Y(EsNl.jz)o 

Note that etNZ, resp. l sN1, is a power of a complex root of 
unity of order N,, resp. N,, so by (4.3) the DFT of the 
product can be computed from the DFT of the factors. 

Jacobi symbols are known from number theory. These 
symbols are usually denoted in the same way as Legendre 
symbols. If N = pq, where p and q are different primes, 
the Jacobi symbol (j/N) is defined by 

(t)=(;)(f), (4.4) 

where the terms on the right-hand side are the Legendre 
symbols defined in (1.6) and (1.7). We recall that if p is a 
prime and gcd(j,p) > 1, then (j/p) = 1. With this nota- 
tion, a Jacobi sequence t = zs, zl,. * *, zN-i of length N = 
pq is defined by 

1=0,1;*-,N-1. (4.5) 

It is easily seen, from (4.1) and (4.4), that a Jacobi 
sequence is the product of two Legendre sequences, that 
is, z = x9y. Hence the DFT of a Jacobi sequence can be 
calculated from (1.11) and Theorem 4.2. This result can 
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be formulated as follows: 
j=O 

j=p,2p,***,(q-l)~ 

j=q,Q,*-*,(P-l)q 

where ji= j(modp), j,= j(modq), j=l;**,N-1, and 
where ti, t2 E {k 1, f il. To see this, consider for example 
the case where p z 1 (mod4) and q = 3 (mod4). From 
(1.11) and (4.3) we have, for (j, N) = 1, 

z( Ej) = (l + xtqj,fi)(l + iYspjz\l;;) 

=(I+ xtqxj,Ji;)(l+iY,Yj*\l;;)~ 

which gives (4.6) for (I = xtq and t2 = iySP. 
In Fig. 1 the merit factors of some Jacobi sequences of 

length p(p +4) = N are plotted as a function of log, N. 
The merit factor was calculated for each cyclic shift of a 
Jacobi sequence and only the largest merit factor is plot- 
ted in the figure. For example, the best merit factor is 
3.30 for a length 77 sequence shifted 61 places. For a 
length 13 x 17 = 221 Jacobi sequence shifted 66 places, 
the merit factor is 1.66. Also, as indicated in the figure, 
the merit factor seems to increase (although slowly) with 
increasing length. This behavior of shifted Jacobi se- 
quences is quite different from the behavior of shifted 
Legendre sequences of comparable length where the 
highest merit factor is close to 6. In order to get better 
sequences, one can note that in the case q = p + 2 the 
Jacobi sequence (4.5) is not identical with the twin-prime 
sequence (2.4), and therefore does not satisfy the condi- 
tion (1.12). We have therefore considered modifications 
of Jacobi sequences. 

A modified Jacobi sequence t= z~,z~,*~~,z~-~ of 
length N = pq, where p and q are different primes, is 
defined as 

I +1, j=O,s,2q,***,(p-l)q, 

i 

-1, zj = 
j=p,2p,-**,(q-l)p, 

(4.7) 
gcd( j, N) = 1. 

This construction is similar to the method used in 1171 for 
construction of arrays. For q = p + 2, the definition (4.7) 
is the same as (2.4). 

In Fig. 1 the merit factors of some modified Jacobi 
sequences of length N = p(p + 4) are plotted in the same 
way as for Jacobi sequences. For example the merit factor 
is 5.09 for a length 77 sequence shifted 17 places. For a 
length 13 X 17 = 221 modified Jacobi sequence shifted 58 
places, the merit factor is 5.72. (The corresponding num- 
bers for Jacobi sequences are 3.30 and 1.66, respectively). 
The figure also indicates that the merit factor of modified 
Jacobi sequences of length p(p +4) increases smoothly 
and rapidly to the value six. (This can also be observed for 

other values of q as well). However, when q - p = 0 
(mod41 it appears that the merit factor of modified Jacobi 
sequences increases more rapidly than for sequences 
where q - p = 2 (mod4), e.g., compare the curve for 
twin-prime sequences in Fig. 1 with the curve for modi- 
fied Jacobi sequences. We have not yet been able to give 
a reasonable explanation of this phenomenon. 

In the next section we determine the asymptotic behav- 
ior of the merit factor for Jacobi sequences and modified 
Jacobi sequences. Two such sequences are only different 
on a small fraction of the positions, but nevertheless, this 
fraction is too large to conclude that the two classes have 
the same asymptotic behavior (and for moderate lengths 
we have seen a significant difference). It is therefore 
necessary to determine the DFT of a modified Jacobi 
sequence. 

If z = x@ y is a Jacobi sequence of length N = pq, and 
u is the modified Jacobi sequence (4.7), we have u = z + u, 
where 

/ 
l- f. 

i 1 P ’ 
~=4,2q,***,(P-l)q, 

VI = ( 
-l- L 

i I 
l=p,2p;**,(q-l)p, 

(4.8) 

4 ’ 
1 0, otherwise. 

For j=O, l;**, N-l let ji= jmodp, jz= jmodq. For 
the DFT of the sequence v, we then have 

Using (1.111, there exist elements ql, q2 E {+ 1, f il 
such that 

V( Ej) = 

1 

P-4, j= 0, 

- 4 + 171xj,JF 9 j=4,2q;~-,(p--l)q, 

P + q2Yj2&9 j=p,2p;*-,(q-l)P, 

tlxj,fi+ q2Yj2fi, gcd(j,N) ~1. 

(4.9) 

The DFT of the modified Jacobi sequence u is then 
V(Ej)=Z(Ej)+V(Ej), (4.10) 



624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

I: : : : : : : : : . Y, 
I I, 5 6 7 8 9 10 11 12 13 14 

log2N 

Fig. 1. Merit factor of: 1) Jacobi sequences, 2) modified Jacobi se- 
quences, 3) twin-prime sequences. 

where the terms on the right-hand side are given by (4.6) 
and (4.9). 

In the next section we shall further need a bound on 
the cyclic correlations 13~ of Jacobi and modified Jacobi 
sequences. For Jacobi sequences it immediately follows 
from Theorem 4.2, that 

lejl I P + 4, j=l;*.,N-1. (4.11) 

For a modified Jacobi sequence, which is different from 
the Jacobi sequence in at most p + q positions, it follows 
from (4.11) that 

lejl~3(P+q)T j=l;**,N-1. (4.12) 

V. THE ASYMPTOTIC MERIT FACTOR OF JACOBI AND 

MODIFIED JACOBI SEQUENCES 

Based on the formulas (4.6), (4.9), and (4.10), we shall 
in this section (under some conditions on p and q) 
determine the asymptotic merit factor of the sequences 
constructed in Section IV. One way to do this is to treat 
the sums A, B, C, D from (1.10) for each type of 
sequence as we did in Section III. However, we will use a 
slightly different procedure that explains the result better. 

If the sequence in question is z= z,,, zi; . *,zN-i, it 
follows from (4.6), (4.9), and (4.10) that there is an 5 E 
{ + 1, f i} such that 

Q(  ej) = 1+ tzjfi + aj, j21, (5.1) 
where the correction terms aj satisfy the inequalities 

IajIS2(fi+fi), ifgcd(j,N)=l, (5.2) 
lajl~~+max(2~+q,2~+P}, 

ifgcd(j,N)>l. (5.3) 
The bounds on the correction terms are chosen such 

that they are satisfied for both Jacobi sequences and 
modified Jacobi sequences. Hence we treat both types of 
sequences simultaneously. 

We will also treat shifted versions of the sequences, and 
by (1.9) the. merit factor of the sequence z shifted t 
positions is 

l/F=& [ ii~1’~Q.(~j)14+~Q~(-~j,“j-l, (5.4) 
j=O 

where Q ,(ej)= E,:‘Q(E~) is the DFT of the shifted 
sequence.The numbers Q2,( - ej> can be calculated from 
Q t(ej), j = 0, 1, * * *, N - 1, as in (1.10). 

Now, let us assume that the correction terms aj are so 
small that they can be disregarded in the calculation of 
(5.4). This means that instead of Q(ej) we can consider 

Q(Ej) = 1+ &Zjfi. (5.5) 

This, however, is exactly the same expression as the DFT 
of a Legendre sequence. The calculations in [lo] are only 
based on the formula (5.5), the interpolation formula 

&kL (5.6) 

and the fact that the cyclic correlations of the sequence 
are small compared to N. For the sequences z considered 
here, we have the estimations (4.11) and (4.12). There- 
fore, if we assume that (p + q)/N + 0 for N + ~0, then it 
follows from the calculations in [lo] that the expression 

l/P = ~~~(~~~(ej)14+~~~(-ej)~4)-1 (5*7) 

gives the asymptotic formula (1.8). Here Q t(ej) = Ejfg(Ej) 
and similarly for Q ,< - ej>. We now find simple conditions 
on p and q under which (5.4) and (5.7) are asymptotically 
equal. To this end, it is sufficient to consider the un- 
shifted sequence. 

From (5.1) and (5.5), we have 

Q(Ej> = Q(Ej) + aj 

and, if we define bj such that 

Q(  - ej) = o( - l j) + bj, 

then direct calculations give 

l/F -l/F = G /2N3, 
where 

(5.8) 

(5.9) 
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Clearly I&ej)l I 2&. Using (5.2) and (5.3), it follows 
that the first sum in (5.10) is upper bounded by 

G,=(N-(p+q-1))[16(p2+q2+6N+4fi(p+q)) 

+6*4N*4(p + q +2fi) 

+4(4N+(p+q+2~))2(\/;;+~)~.2] 

+(p+q-1)[(fi+m)2+24N(fl+m)2 

+4(4N+(fi+m)‘)(fi+m)2fl], 

where m = max{2\/;T + q, 2fi + p}. Examining these 
terms and recalling that N = pq, it follows that, if 
(p+qj5/N3-+0 as N-+m, then G l/N3+0 as N-+P 

Let us next consider the second sum in (5.10). To 
estimate the terms bj in (5. 9>, we use the interpolation 
formula 

From this and (5.6), we then have 

IbjI < 2(logN)* m [={la,l) 
and 

I~( - Ej) I I 4~ log N, 

where we have used that 
N-l 1 

j=. (l+Ejl INlogN, c- 

which can be proved in the same way as (3.6) of [lo]. We 
can then proceed as with G ,. The conclusion is that, if 

(p+q)“log”N 
N3 --+O' for N+oo, (5.11) 

then the second sum in (5.10) divided by N3 goes to zero 
for N going to infinity. Thus we have proved the following 
theorem. 

Theorem 5.1: Let the numbers p and q satisfy the 
condition (5.11), where N = pq. The asymptotic merit 
factor F of a Jacobi or modified Jacobi sequence shifted t 
places is given by the formula 

l/F=2/3-41fI+8f2, If Is l/2, (5.12) 
where f = t/N. 

One consequence of the condition (5.11) is that both p 
and q shall increase; moreover, if q is the smallest, then 
P E[q,q 3/2-*] for a fixed S > 0. The estimations used to 
derive (5.11) are crude, and clearly the condition can be 
weakened somewhat. It should also be remarked that if 
instead of the procedure used here one directly examines 
the sums in (l.lO), one gets, still by crude estimations, a 
weaker condition than (5.11). For instance instead of 
PE[q,q 3’2-6], it suffices with p E[q, qze8]. However, 
such improvements are not of importance. 

The way Theorem 5.1 was proved also shows that, if 
one considers the product of finitely many Legendre 
sequences, then (under certain conditions) the formula 
(5.12) is again obtained. The reason is that the DFT of 
this sequence is obtained from Theorem 4.2, and there- 
fore one gets an expression of the form (5.1) where the 
correction terms aj can be disregarded under conditions 
similar to (5.11). This means that, for any sufficiently 
large N, we can construct a sequence of length N with 
merit factor close to 6. 

VI. CONCLUSIONANDREMARKS 

In this paper we have investigated the merit factor of 
long binary sequences constructed from cyclic Hadamard 
difference sets. We have shown that the asmptotic merit 
factor of any maximal length shift register sequence is 3 
and that the asymptotic merit factor of a twin-prime 
sequence is 6 for the optimal shift. Legendre sequences 
are known [lo] to also have merit factor 6 for the optimal 
shift. It is currently an open problem to find the asymp- 
totic merit factor for sequences constructed from GMW 
and Hall difference sets. The asymptotic merit factor of a 
Jacobi sequence, modified or not, was shown to be 6 for 
the optimal shift. Thus we have demonstrated large classes 
of long binary sequences with merit factor 6, which is the 
highest value presently known. Using the product con- 
struction and Legendre sequences, we have argued that 
the largest possible merit factor is at least 6 for N suffi- 
ciently large. Finally, by introducing modified Jacobi se- 
quences, we have demonstrated that it is fairly easy to 
construct sequences with merit factor close to 6 for mod- 
erate composite lengths. 
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