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Double Series Representation o f 
Bounded Signals 

H. ELBR0ND JENSEN, TOM HOHOLDT, AND J0RN JUSTESEN 

Abstract -Series representations of the form 

f(f)- IE 2  a,,kv(t-n)e2n’k’ 

for bounded signals f(t) are studied, as are conditions on the unit function 
v(r), such that the coefficients a,, k  reveal the energy content of f(t) 
in the time interval n -(l/2) < t I n +(1/2) and frequency interval 
2m(k -(l/2)) I w I 2n(k +(1/2)). These conditions turn out to he 1) 
orthogonal&y, i.e., 

if n=k=O 

otherwise 

and 2) integrability, 

v(r) EL!(R) V(w) E L’(R). 
Based on these conditions a number of properties of the expansion are 
derived, including smmnabil i ty of the double series and energy and power 
estimations. A unit function u(t) is constructed which is optimal, within a 
restricted class, with respect to the duration of V(w), and also a unit 
function which is optimal with respect to the duration of u(t). Finally, 
some examples of the expansion are presented. 

I. INTR~IXJCZTI~N 

T  HE PROBLEM we consider is closely related to 
aspects of information theory and  signal analysis. We  

shall briefly sketch its origins. 
Many real signals that exhibit essentially time-varying 

properties nonetheless have properties that are described 
best in the frequency doma in. Important examples are 
speech and  signals obtained from pulse or carrier modu la- 
tion schemes. Several authors have suggested representa- 
tions which use both time  and  frequency as independent 
variables. In Gabor’s historic attempt to construct a  theory 
of information [l], a  representation of the form 

f(t) = fJ f a,,,u(t- n)e2nikt (1.1) 

with 

appears as an  essential step in the definition of a  unit of 
information. From the point of view of information the- 
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ory, this definition suffered primarily from the lack of 
appreciation of noise as a  lim iting factor. From a  signal 
analysis point of view, the ma jor defect in (1.1) was that 
the basis functions u( t - n)e2*jkt were not mutually or- 
thogonal. Gabor  correctly pointed out the significance of 
the uncertainty relations as a  lim itation on  the resolution 
of time-frequency representations. Shannon [2] gave the 
correct definition of the unit of information, but in his 
analysis of continuous channels he  relied on  the sampling 
expansion. This approach amounts to using 

sin at 
u(t) = ---p 

in (1.1). Although this makes the system of basis functions 
orthogonal, it is unsatisfactory in that the sampling expan- 
sion has poor  convergence properties. Lerner [3] gave a  
valuable discussion of time-frequency series expansions 
and  suggested a  method for orthogonalizing a  given system 
of functions. However, this approach does not lead to a  
function u(t) with the required properties. Lerner also 
rejected the uncertainty relations in this context by point- 
ing out that the frequency of a  harmonic signal may be  
determined from an  arbitrarily small segment. The  correct 
statement of the uncertainty relations for time  series ex- 
pansions was derived by Landau  and  Pollak [4], who 
determined the dimension of the space and  time  and  
frequency lim ited functions. The  set of orthogonal func- 
tions used in their analysis solves a  number  of problems 
related to signal analysis, but they do  not appear  to be  
useful in the present context. Recently, a  number  of papers 
have appeared which discuss Gabor  and  related series. In 
connection with problems in optics and  quantum optics 
[5]-[ll] the completeness of the system { u(t - n)ei2nkr}, 
n  E Z, k E Z, as well as the uniqueness of the coefficients 
a n,k, is discussed, and  the convergence properties of the 
double series are also treated in [12]. 

In the literature on  theoretical problems in signal analy- 
sis, attention shifted to integral transforms defining a  
power distribution in time  and  frequency. This shift is 
noticeable in the papers by Helstrom [13] and  Rihaaczek 
[14]. The  energy distribution may be  expressed by the 
W igner distribution 

W f(t,w) =Jw e  +‘7f( t + r/2)f( t - 7/2) dr. (1.2) 
--oo 

Many properties of this representation are discussed by 
Claasen and  Mecklenbraiiker [15]. An important aspect of 
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(1.2) is that, if f is time-limited to Ti I t 5 T, or 
frequency-limited to Q2, 5 o 5 at,, these properties are in- 
herited by Wf. However, Wr has the disturbing property 
that it may take on negative values. Indeed, Janssen [16] 
has proved that, for any compact set S c R2, a function f 
exists such that 

&(t,u)dtdw<O. 

For practical computations, some window function has to 
be introduced into (1.2), and in [17] Claasen and 
Meklenbraiiker discuss how the Wigner distribution may 
be computed as the squared magnitude of the short-time 
Fourier transform, 

F,(w) =jw e -‘“‘f(r)h(r- t) d7 
--oo 

(1.3) 

where h(t) is a time-limited window. In [18] Janssen 
compares the Wigner distribution with the classical Gabor 
series from a practical signal analysis point of view. 

The short-time Fourier transform has been widely used 
in the analysis of speech [19], usually without much 
mathematical justification. The rationale has been that 
many sounds of speech have rather well-defined power 
spectra and last long enough to allow the calculation of 
several spectra by (1.3). As pointed out by de Bruijn [20], 
this situation is even more obvious in music, where a 
time-frequency notation has been used for centuries. In 
this context, the short-time transform is also used for 
purposes of filtering and other types of signal processing. 
The emphasis is on the possibility of reconstructing the 
signal rather than on analysis [21]. For example, no atten- 
tion is paid to the orthogonality, or the lack of orthogonal- 
ity, of the time-shifted windows. 

Presently, instruments known as real-time spectrum 
analyzers are finding widespread application in the analy- 
sis of many different types of signals. A real-time measure- 
ment implies that the signal is segmented, a window func- 
tion is applied, and the result is transformed by a short-time 
Fourier transform. Usually, the processing is carried out 
by digital circuits. The results of such processing seem to 
be described best by a series of the form (1.1). Thus it 
appears desirable to resolve some of the problems encoun- 
tered in the early history of such representations; this is 
the subject of this paper. 

Our main concern is to construct unit functions u(t) 
such that a series representation of the form (1.1) holds for 
almost all bounded measurable functions f(t), with in- 
finite energy, and for which the coefficients an,k reflect 
essential time-frequency energy properties of f(t). Since, 
for this large class of functions, no unique mathematical 
setup is available for discussing spectral properties of f(t), 
the double series representation could be used as a defini- 
tion of the time-frequency spectrum of any bounded 
function f(t). To be more specific, the definition or inter- 
pretation we have in m ind is that ] a,, k]2 gives the energy 
of f(t) in the time interval n -(l/2) I t I n +(1/2) and 
frequency interval 2n( k -(l/2)) 5 w I 2r( k + (l/2)). Of 
course, this definition should correspond in a reasonable 

way to the results obtained by using Fourier series or 
Fourier transform on periodic and L2 functions, where the 
spectrum is well-defined. This implies some conditions on 
the unit function u(t). 

In Section II we derive two such unavoidable conditions, 
which turn out to be 1) orthogonality, i.e., 

and 2) the unit function u(t) and its Fourier transform 

V(o) =Jm f(t)eeiwfdt 
--oo 

both belong to L’(R). The coefficients a,, k are given by 

an,k = Jrn f(t)u(t - n)e21riktdt. (1.4) 
--oo 

Based on 1) and 2) and the definition (1.4), we investigate 
the series representation (1.1). 

In Section III we derive some consequences of the 
conditions on the unit function and prove that the system 
{ u(t - n)ei2rkt}, n E Z, k E Z is a complete orthonormal 
system in L2(R). We also discuss convergence properties 
of the expansion and mention that, if f(t) is periodic with 
period 1, then (1.1) is the ordinary Fourier series for f(t). 

In Section IV we consider energy and power estimations 
and show that 

1 
N+(1’2) -___ 

J 
f 2(t) dt = 0, 

2N+l -N-(1/2) 

which in the aforementioned case reduces to the ordinary 
Parseval equation. 

To prove results it is sometimes necessary to impose 
further conditions on the unit function u(t), and it is not 
obvious that functions exist satisfying the conditions. In 
Section V we prove that 1) and 2) imply that either the 
duration of u(t) or the duration of V(w) must be infinite, 
and we construct unit functions which are optimal with 
respect to the duration either of u(t) or of V(w), within a 
restricted class of possible unit functions. Finally, Section 
VI presents some examples of the expansion. 

II. CONDITIONS ON THE UNIT FUNCTION u(t) 

Unless otherwise stated, throughout the paper u(t) is 
assumed to be a real function. Let f(t) be a bounded 
function for which a series representation (1.1) holds. 
According to the interpretation stated in the introduction 
this implies that for each n, the sum 

f,(t)= F a,, ku (t - n) eik2nt 
k=-m 

shall give an approximate restriction of f(t) to the time 
interval [n -(l/2), n +(1/2)], and for each k, the sum 

M  
f”(t) = C a,,,u(t - n)ei2nkt 
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shall be  interpreted as an  approximately bandlimited com- 
ponent  of f(t). 

If f(t) E L2(R), then f(t) has a  well-defined spectrum 
using the ordinary Fourier transform, and  in this case the 
energy in a  certain time  interval, as well as the energy in a  
certain frequency band, has an  a priori mean ing. There- 
fore, if our expansion and  its interpretation are to have 
any practical mean ing, a  reasonable connection must exist 
between the two ways of calculating energy. 

To  this end, we shall formulate three requirements to the 
double series expansion, from which we derive three neces- 

for all f(t) E L2( R) for which the Fourier transform F(w) 
satisfies IF(w)1 I A,, o  E R. 

Lemma 2.1: If requirements 2) and  3) hold, then both 
u(t) and  the Fourier-transform V(o) are absolutely inte- 
grable functions. 

Proof: Consider for 1  E N the function f!(t) = Ag(t). 
lLPr,,] where g(t) = sgn u(t). For n = k = 0, we have from 
(2.2) 

sary conditions on  u(t). Then  later we return to the three 
requirements and  prove that these are satisfied for a  large From (2.6) it follows that [u,,,[~ < K + A for all such 

class of functions u(t). Our first requirement is as follows. functions jr(t), and  hence u(t) is absolutely integrable. 

1) For each f(t) E L2(R), an expansion of the form That V(w) is absolutely integrable follows in the same way 

(1.1) holds in the sense of L2 convergence, and  further- by considering functions f,(t) with Fourier transform 

more, F,(w) = A,V(w)/(I’(o)l.l[_,,,] for V(w) #  0  and  zero for 
V(w) = 0. In this case 

Irn fZ(t)dt= f E  lan,k12. (2.1) ’ ’ 
--oo n---M kc-a, 

Equation (2.1) states that the total energy of f(t) equals 
the energy which the double series expansion, with the 
stated interpretation, assigns to f(t). 

It is well-known that if requirement 1) holds, then the 
system { u(t - n)eik2at} is an  orthogonal normalized sys- 
tem in L2(R) and 

a n,k =  _ 
J 

M f(t)u(t- n)epik2”‘dt. 
-CC 

(2.4 
Hence our first condition on  u(t) is 

Jm u(t)u(t - n)eik2vtdt= (i’ 
--oo 3 

‘,‘,~e~~s~o (2.3) 

We shall refer to (2.3) as the orthogonality condition on 
u(t). Let us now suppose that requirement 1) is satisfied, 
and  again let f(t) E L*(R). In a  specific time  interval 
[n -(l/2), n  + (l/2)], f(t) has a  well-defined energy, 
name ly, 

J n;;;;f2(4 dt, (2.4) 

whereas the energy assigned to that time  interval by (1.1) is 

fi lan,ki2 (2.5) 
k=-m 

where a, k , is given by (2.2). The  optimal situation would, 
of course, be  that these two quantities and  corresponding 
quantities in the frequency doma in were always equal. This 
turns out to be  impossible, but we shall add  the following 
requirements. 

2) For each n E 2  and  A > 0, a  K > 0  exists such that 

Hence our second condition on  u(t) is that both u(t) 
and V(w) belong to L’(R). We shall refer to this as the 
integrability condition on u(t). This implies that both u(t) 
and V(w) are continuous. 

We  have thus seen that if the expansion (1.1) is to have a  
chance to give a  reasonable picture of spectral properties 
of f(t)-which for L* functions we have formulated in 
requirements l)-3)-then u(t) must satisfy both the or- 
thogonality and  the integrability conditions. Wh ile it is not 
difficult to find unit functions u(t) which have one  of 
these two properties, we have not been  able to find any 
standard function that has both properties, and  we should 
emphasize that it is by no  means  obvious apriori that such 
a  function exists and  that l)-3) can be  obtained. More- 
over, it is even less clear whether these conditions are 
sufficient for the existence of the expansion (1.1) for a  
wide class of merely boundedfunctions and are sufficient to 
ensure that (1.1) reflects spectral properties of f(t) in a  
reasonable way. These problems are discussed in the fol- 
lowing sections. 

III. CONSEQUENCES OF THE CONDITIONS ON THE 
UNIT FUNCTION 

We shall first obtain an  equivalent formulation of the 
orthogonality condition (see also [7]). Suppose that u(t) E 
L*(R). We have 

/ n;:::::‘f2(t) d  - f bn,ki2 <  K 
Jrn u(t)u(t-n)eik2”fdt 

(2.6) -m 
k=-cc 

for all f(t) E L2(R) with If(t)1 I A, t E R. 
3) For each k E 2  and  A, > 0, a  K, > 0  exists such that 

J 2~~~;~;;~~F(~)~2d~- E IQ~,,[~I<K, (2.7) 
n=--M 
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which shows that u(t) satisfies the orthogonality condition 
(2.3) if and only if 

E u(j+,)u(j+,-n)= o: 
1 

1 ifn=O 
(3.1) 

j=-a, ifn#O 

for almost all r E [O,l]. Next we consider the Zak trans- 
form of u(t), that is 

Vi(o) = E u(n + 7)einw. 
n=-CC 

(3.2) 

Theorem 3.1: If u(t) E L1(R)n L*(R), then u(t) satis- 
fies the orthogonality condition if and only if 

iV,(b~)I~=l fj u(n+T)ei’Ui2=l 
a=-CC 

for almost all r E [0, l] and almost all w E [ - V, VT]. 

Proof: For u(t) E L1(R) the series CF=‘=_,]u(r + n)] is 
convergent for almost all 7 E [O,l]. Hence we can change 
the order of summation in calculating ]V,(O)]~ from (3.2) 
and get 

IKW l”= f! 
[ 

5 V(j+7)V(j+7-n) einw. 
n=-m j=-m 1 

The result then follows from (3.1). 

This result will be our key to finding unit functions with 
the desired properties. At this point, we shall use (3.1) to 
prove a principal consequence of our main conditions. 

Theorem 3.2: Suppose that u(t) satisfies both the or- 
thogonality and the integrability condition. Then u(t) is 
neither time- nor band-limited. 

Proof: Suppose that u(t) is time-limited: that is, it 
equals zero outside a finite interval. Let K E Z and 7 E 
[O,l] be chosen in such a way that u(K + 7) # 0 and 
u( n + 7) = 0 for n > K. There is a number K, E Z such 
that u(n+T)=O for n<K;. Now, for n=K-K, the 
sum in (3.1) has only one term, u(K + 7)u(KI + r), and 
hence u( K, + 7) = 0 if K, < K. Continuing in this way we 
conclude that u( n + T) = 0 for n f K and, again from 
(3.1), ju(K + r)] =l. Since this holds for any K and r 
chosen as above, we have a contradiction because u(t) is 
continuous. Hence u(t) is not time-limited. 

Since { u(t - n)eik2nt} is a normalized orthogonal sys- 
tem, the Fourier transformed system { V(w - k2?r)e-‘““} 
has the same properties, and therefore an equation analo- 
gous to (3.1) holds for V(o). As before, we conclude that 
u(t) is not band-limited. 

Next we consider the completeness of the system 
{ u(t - n)eik2vf }. A related problem is discussed in [7]. 
Some of the steps in our proof will be used in other 
contexts. 

In the following theorem, u(t) is a unit function satisfy- 
ing the orthogonality and the integrability conditions, f(t) 
is a function in L”(R) and the coefficients a,,, k are 

defined by (2.2). Further, we deal with two functions 

h(t)= f Iu(t-n)l (3.3) 
n=-cc 

TAO= IE f(t+pMt+p-4 (3.4) 
p=-cc 

where n E Z. 

Theorem 3.3: Suppose that h(t) E L2([0, 11) or f(t) E 
L2( R). Then 

f,(t)= Ii a,,,u(t - n)eik2nt (3.5) 
k=-oo 

exists as an L* function. Further, 

f,(t) = 4 - nbb> 

f(f) = f f”W 
*=-cc 

(3.6) 

(3.7) 

for almost all t E R, where the convergence in the last sum 
is pointwise. 

Proof: Notice first that h(t) and w,(t) are finite al- 
most everywhere and both belong to L’([O,l]), because 
u(t) E L’(R) and f(t) is bounded. We have 

1 J (1 w, t e 
-ik2nt dl 

0 

= E J’rc t+p)u(t+p-n)ePik2”‘dt 
p=-m 0 

= lrn f(t)u(t - n)ewik2”‘dt = un,k 
--oo 

where the summation and integration can be interchanged 
by the bounded convergence theorem since h(t) E 
L’([O, 1]), Both assumptions imply that w,(r) E L2([0, 11). 
This gives (3.5), and moreover, if 

s,(t) = i an,k eik2nt, 
k=-p 

then s,(t)u(t - n) converges to w,(t)u(t - n) in L2-norm 
on R, because 

jrn Is,(l)u(t-n)-ww,(t)u(t-n)I*dt 
-03 

=i’ =t lu(t+z-n)121s,(t)-w~(t)12d~ 
= ilh(a- w,(t) (2dt 

where we have used (3.1). Hence (3.6) follows, and again 
using (3.1) we have 

E f,(t) = E ~nWu(~-n) 
n=-CC il=--00 

= f f f(t+p)u(t+p-n)u(t-n) 
p=-w n=--m 

=fW 
from (3.5) and (3.7) we get the following. 
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Corollary 3.4: If u(t) satisfies the orthogonality and  
integrability conditions, then { u(t - n)eik2nt} is a  com- 
plete, orthogonal system. 

This means  that requirement 1) from Section II holds. 
Requirement 2) holds if and  only if the functions w,(t) in 
(3.4), considered for all f(t) in question, has L* norms 
below some common bound.  This in turn is satisfied, if 
and  only if h(t) E L2([0, 11). Requirement 3) can be  treated 
in the same way because, for any f(t) E L2(R) with Four- 
ier transform F(U), we have for the coefficients (2.2) 

CZ~,~=/~ F(o)j7(w-2nk)e-‘““dw. 
-CC 

Therefore, if 

h,(w) = 5 IV(w -2nk) 1, 
k=-oo 

(3.8) 

we have the following. 

IV. ENERGY AND POWER ESTIMATIONS 

In this section, we only suppose that the considered 
functions f(t) belongs to L”O(R). The  integrability and  
orthogonality conditions are supposed to hold, the func- 
tion h(t) in (3.3) is supposed to be  in L2([0,1]), and  the 
notation is as before. 

If, for N E N, we put 

SNW = 2 f*(t) (4.1) 
n=-N 

where f,(t) is given by (3.5), then we can think of am as 
an  approximated reconstruction of f(t) from the coeffi- 
cients a, k. The  problem we shall consider in the following 
is, how “good” this approximation is in terms of the 
concept of energy. More precisely, we will estimate the 
energy of f(t) - am in the interval [ - N - (l/2), 
N + (l/2)], cf., the interpretation of the coefficients a,, k. 
We  have from (3.7) 

Corollary 3.5: Suppose that u(t) satisfies the ortho- 
/ N+w2) (f(t)-.sN(t))2dt 

gonality and  the integrability condition. Then  require- - N -(l/2) 
ments 2) and  3) hold if and  only if the function (3.3) 
belongs to L2([0, 11) and  the function (3.8) belongs to 
L2([ - r, -77 I). 

= /;;y;*)(, FNf&i)*“. (4.2) 
iI> 

Let us just suppose that f(t) E L”O( R). Still, u(t) satis- To  estimate the right side of (4.2), we shall assume that a  
fies our ma in conditions and  constant K exists such that 

u”,~= (Co f(t)u(t - n)ePik2”‘dt. (3.9) 

We will consider the double sums If If(t)1 I A, it follows from (3.4) and  (3.6), that If,(t)/ I 
AKlu(t - n)l. Consequently, we have from (4.2) 

a,,,u(t - n)eik2st (3.10) J n=--oo k=-oo 
-“N’y;;*,‘f w %4o)*d~ 

E IE a,,,u(t- n)eik2rf. (3.11) I ( c  lu(~-n)l)*d~ 
k=-cc n-cc 

It is important for our whole setup and  the interpretation 
of the coefficients that these two sums in some reasonable 
sense “equal” the function f(t). 

Let us suppose that h(t) in (3.3) belongs to L2([0,1]). 
Then,  according to Theorem 3.3 the double sum (3.10) 
equals f(t) almost everywhere, if the inner sum is L2-con- 
vergent on  R and the outer sum is pointwise convergent. A 
similar procedure does not seem possible for (3.11). How- 
ever, one  can prove that both (3.10) and  (3.11) are summa- 
ble with sum :(f(t’)+ f(t-)) for each t E R\Z, if f(t) is 
piecewise continuous. A short proof of this is given in 
Appendix I. However, here we shall note that if we sup- 
pose that Cc= _  ,u(t + n) = 1  and  consider a  function f 
which is periodic with period 1, then (3.9) becomes 

a n,k= / 
,f (t)e-‘k2n’ dt, 

(4.4) 
To  make the following calculations more clear, let us for 
some fixed t E [ - l/2,1/2] put b4 = lu(t - q)l. For the 
integrand on  the right side of (4.4), we then have 

It ( c  bn-P)* 
p=-N Inl>N 

From the inequality [22, p. 2461  it follows 
and  hence a, k equals the k’th Fourier coefficient of f(t) 
for all n E Z,’ so (3.11) is reduced to the ordinary Fourier 
series for f(t). 

;cll( ~kbz)2+( ~k~n)2~4~lb%~2 (4.6) 
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and in the same way hence Is&t)1 I AK2. Therefore, 

2 ( i bn)2s ,z, ( nimbn)2 
k=-2N-1 n=--M 

-1 

14 c (kbJ2. (4.7) 
k=-cm 

We put bq = jl_/:/21~(t - q)l dt, q E 2. Then by rewriting 

Using (4.4)-(4.7), we have thus proved the following. 
we get 

Theorem 4.1: If If(t)]< A, t ER, and u(t) satisfies 
(4.3), then 

n~N11J,>N+~,2tu’f-n’ldf 

/ N+(1’2) (f(t)-+,(t))*dt 
- N - (l/2) 

2N+l 

= c jkjb,+(2N+l)* f b,. 
jkl=l lkl=2N+2 

< 8A2K2 f k*jI::z”(t - k)2dt (4.8) Since the series Cy= _ mbq is convergent, we conclude from 
k=-oo this and (4.11), that 

for all N E N. 

The interesting thing about this result is that, in terms of 
u(t) and some constants, it gives an upper bound for 
N + cc for the energy error (4.2). Concerning the “sharp- 
ness” of (4.8), we should add that in the last inequality in 
(4.6) the constant 4 is the best possible [22], and the two 
sums in this inequality are, roughly speaking, of the same 
order. 

Unfortunately, (4.8) and the condition u(t) E L’(R) do 
not ensure-which would be preferable-that (4.2) stays 
bounded for N -+ cc since the right side of (4.8) m ight be 
infinite for u(t) E L’(R). Actually, it converges if and only 
if jzt2u(t)* dt < cc, and a later result, Theorem 5.2, will 
then show that it is not possible to obtain “good” esti- 
mates of the type (4.8) in both time and frequency do- 
mains. However, in terms of power-which to some extent 
is a more natural concept to use when considering func- 
tions with infinite energy-the situation is completely 
satisfactory, as the following result shows. 

Parseual’s Equation: If If(d(t))l< A, t E R and u(t) 
satisfies (4.3) we have 

1 
s s;(t)dt+O, 

2N+1 l’l’N+1/2 
for N-+cc. (4.12) 

Moreover, using the Cauchy-Schwarz inequality, we ob- 
tain 

J -N;;c;;2,if2(+ s:(t) Idt 
= / -N~~(~~2,1(SN(t)-f(t))2 

Now, f(t) is bounded and generally, if ck is a sequence 
of positive numbers with ck + 0 for k --, cc, then 
(l/N)Cf=r,c, -+ 0 for N --) cc. Using this we conclude from 
the above inequality and (4.4) and (4.5) that 

1 
-~ N+(1’2) f*(t) dt = 0. (4.9) ~ N+(1’2) If”(t)--s$(t)Idt+O, 

J 2N+1 -N-(1/2) 
forN-ec, 

Proof: We use the notation as above. We have 

..~Nk~~,u~,k12-~~~~~~2,/2n,dtl 

(4.13) 

which concludes the proof of the theorem. 

We shall make two comments on this result. First, in the 
case where f(t) is periodic with period 1, it follows-using 

= 
/s 

O” s$(t)dt-/-N;~c;;2J’(t)dt~ 
the last remarks in Section III-that (4.9) is the ordinary 

-cc Parseval equation. Second, we can say that the validity of 
Parseval’s equation is equivalent to the orthogonality con- 

5 s N;‘::;2~~f2(t)-~;(t)~dt+j- s;(t) dt. 
dition on u(t) and the condition u(t) E L’(R). It follows 

l’l’N+(lP) from the discussion in Section II that (4.9) can never hold 
if u(t) is not in r?(R). On the other hand, we have proved 

(4.10) (4.9) f or all f(t) E Lm(R), if (4.3) holds. Of course, (4.3) is 
Let us first consider the last sum. We have from the not the same as u(t) E L’(R), but we consider the dif- 
assumptions If,(t)1 = Iw,(t)u(t - n)l< AKlu(t - n)j and ference as a more or less “proof-technical” issue, where we 
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have stated the assumption (4.3) to make proofs and  
arguments reasonable to handle in this context. 

V. THE CHOICE OF THE UNIT FUNCTION 

Up to now we have derived various results concerning 
the double sum expansion assuming the orthogonality and  
the integrability condition on  the unit function u(t). We 
have actually not proved that those conditions can be  
satisfied simultaneously, nor have we discussed what possi- 
bilities there are for the choice of u(t). 

We shall here ma inly restrict ourselves to considering a  
special class of functions, the choice of which is motivated 
by the following considerations. Recall, with the previous 
notation, that u(t) satisfies the orthogonality condition if 
and  only if 

lw4 I=1 (5.1) 

for almost all r E [0, l] and  o  E [ - ?T, a]. 
To  decide whether functions satisfying the integrability 

and  orthogonality conditions exist, we consider unit func- 
tions such that V,(w) is a  rational function of er“. The  
condition (5.1) implies that V,(o) may be  interpreted as 
the transfer function of a  not necessarily causal discrete 
stable all-pass filter. It is well-known [23] that for such a  
filter, the poles must be  located within the unit circle, and  
the zeros must be  the reciprocals of the poles. Consider 

e-ikcy( e’w) 

VT(O) = 
elkUP (e-j”) 

where P,(z) is a  polynomial of degree 2k +l. If for 7  = 0, 
po(e’“) = eika, we have V,(o) = 1. Thus in the lim it r + 1, 
we should-provided continuity of V,(o) as a  function 
of T-get V,(w)= e’O, which is satisfied if Pi(z) = 
z~~+‘P 1( z-l). For 7  approaching 1, the poles and  zeros 
converge towards the unit circle and  cancel for 7  = 1. 

A function constructed in this way can be  continuous in 
both doma ins, but the sidelobes will decrease slowly for 7  
close to 1. This property appears to be  a  consequence of 
the orthogonality condition, and  the situation is not im- 
proved by taking a  polynomial of higher degree. 

We  prefer the simple case, 

v,(u) = 1-t 4+-iw 
l+ a!(7)eiw 

where (~(7) is a  function mapp ing [O,l] 
(5.2) and  [24, p. 401, it follows that 

0, 
u(n + 7) = 

i 

449  
(l-a”(7)><- 4x 

(5.2) 
onto itself. From 

ifn<-1 
if n=-1, 

ifn>-1 

7  E [O,l[ (5.3) 
and  

A direct calculation gives 

fJ lu(n-t7)/=a(7)+ fJ (l-a*(7))((~(7))~ 
n=--00 TlsO 

i 

1+2ff(7), . = 
1, 

;: ii:; ;;. (5.5) 

Hence, if we choose a  continuous increasing function (Y(T) 
mapping [O,l] into itself, then u(t) is continuous, satisfies 
the orthogonality condition, and  u(t) E L’(R). 

What is left to consider is therefore the condition 
V(w) E Lt( R). F irst, we remark that, for a( 7) = 7, a  direct 
calculation will show-evaluating (5.4)-that V(w) is not 
in L’(R). Hence the continuity of u(t) is not sufficient. A 
well-known and  unsolved problem is how to give necessary 
and  sufficient conditions in the time  doma in for the Four- 
ier transform V(o) of a  function u(t) for it to be  ab- 
solutely integrable. However, we shall use the following 
result, which follows from [25, theorem 681. 

Lemma 5.1: Suppose that u(t) is a  continuous piece- 
wise C1 function for which u(t) E L2(R)n L]-(R) and 
u’(t) E L2(R). Then  V(o) E L’(R). 

By direct calculation, we find from (5.3) 

lrn u’(t)*dt 
-CC 

=/1a’(7)2dT+i1 ~o[-2.(+‘(~)(-c44’ 
0 

-n(l-n”(7))(II~~7))n-‘~~(?)12d7 

1 
= a’7 s (I[ 

2 1+4a2(7)+ E (L?‘(r))“-’ 
n=l 

-in -(n +2)a2(T))2] d7. (5.6) 

From ordinary power-series expansions, we next conclude 
that 

Jrn u’(tJ2dt = 2/01 ld;;:j dr. 
-CC 

(5.7) 

Consequently, we shall choose a( 7) in such a  way that also 
the integral (5.7) is convergent. Doing this, u(t) satisfies 
the orthogonality and  integrability condition, (4.3) holds, 
and  requirements l)-3) from Section II hold. The  last 
claim follows from Corollaries 3.4 and  3.5, if we can prove 
that the function (3.8), that is, 

h,(o)= f IV(w2mk)l 
k=-cc 

belongs to L2([ - T, ~1). Now for some constants K,, K, 
we have 

l” h;(w)dwsK, f 
--n 

k’/” jV(w -2nk) 12dw + K, 
k3-00 --s 

which follows from (4.6) and  (4.7) with just one  term in the 
outer sum. However, when u’(t) E L2( R), then WV(W) E 
L2(R), and therefore the right side is finite. 
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Indeed, it is possible to choose (Y(T) such that (5.7) is 
convergent. For instance, direct calculation shows that any 
a( 7) = 1 - (1 - ~)p, p > 1 will do. We shall therefore ask 
which other conditions would be preferable. 

It is fairly obvious that to have a completely satisfactory 
double series expansion, the unit function u(t) should be 
both time- and band-limited. This is impossible, as is 
well-known, and by Theorem 3.2 u(t) cannot have any of 
these properties in our situation. However, u(t) and V(w) 
should both be of what is called “short duration.” In 
connection with the problem considered here, the obvious 
way to interpret the term short duration is deduced from 
the inequality (4.8) from Section IV. Here we proved that 
the expression 

8A2K2 f k2j112 u(t - k)2dt 
k=-cc - l/2 

(5.8) 

gives an upper bound for the energy error over arbitrary 
large intervals between signals bounded by A and recon- 
structions from the double sum expansion. Therefore, as a 
measure of the duration of u(t) we shall use 

(5.9) 
Of course, (5.8) and (5.9)-besides the constant 
8A2K2 -are in general not equal, but both expressions 
measure the same behavior of u(t), and (5.9) is a more 
familiar term in problems concerning spectral estimations. 

A discussion parallel to the one in Section IV can be 
carried out in the frequency domain for bounded L2 
signals. Hence 

8K;A: g p”]” IV(w-2rp)12dw (5 .lO) 
p=-* -77 

gives an upper bound-over all L2 signals f(t) for which 
the Fourier transform F(w) is bounded by Al-for the 
energy error over arbitrary large intervals between F(w) 
and the reconstruction from the double series expansion. 
Hence we shall use 

jm o*[V(o) 12do 
-cc 

(5.11) 

which is usually called the energy moment of u(t) as the 
measure of the duration of V(w). 

The natural optimization problem then consists of m ini- 
m izing the sum of (5.9) and (5.11) or, as in connection with 
the uncertainty relations [20], the square root of the prod- 
uct of those two integrals. This problem, however, has no 
solution, since one by direct calculation and use of the 
Cauchy-Schwartz inequality can show, that the sum of 
(5.9) and (5.11) is infinite for unit functions of the form 
(5.3). One could be tempted from this to conclude that the 
class of functions of the form (5.3) is, not representative of 
the actual possibilities. It turns out that the result is 
completely general, as stated in the next theorem. 

Theorem 5.2: If a unit function u(t) satisfies both the 
orthogonality and the integrability condition, then the sum 
of (5.9) and (5.11) is infinite. 

This result can be found in [26], where the proof, how- 
ever, contains a gap. This gap has recently been corrected 
by Coifman and Semmes. Since we consider the result 
striking and since the proof does not appear in the litera- 
ture, we shall give a sketch of the proof in Appendix II. 
We would like to thank Coifman and Semmes for their 
courtesy in letting us include this as yet unpublished proof. 

The above theorem gives useful information about how 
rapidly a function can decrease in both time and frequency 
domains, when the orthogonality condition must be satis- 
fied. This, of course, has influence on the sharpness which 
is possible in time-frequency analysis of signals with in- 
finite energy. We shall point out two possibilities. 

First, one can choose the function of the form (5.3), 
which m inimizes the integral (5.11). Doing this, we obtain 
the unit function which, in the class considered, gives the 
best spectrum. Both the orthogonality and integrability 
conditions are satisfied and hence also the previously 
stated consequences of this. 

M inimizing (5.11) is by (5.7), the same as m inimizing 

/ 
1 ay T)’ 

0 l-c+) d7, (5.12) 

and here we shall use the calculus of variation. The Euler 
differential equation for the problem is 

d(T)” 2fx’( r) 

l-a(r)2 - I-ar2(r) 
a’(7) = c 

where c is a constant. This gives 

a’(7) =cl l-(Y(7) 7 
which has the solutions 

arcsincw(7) = cl7 + c2. 
The initial conditions ar(0) = 0, ar(1) = 1 give c2 = 0, cl = 
r/2, and hence a( 7) = sin( rr/2). 

Therefore, our first choice of unit function is 
0, ifn<-1 

u(n + 7)= 

i 

sin(Tr/2), if n=-1, 
cos2 ( 77r/2) ( - sin ( rn/2)) ” , ifn>-1 

7 E [O,l[. (5.13) 
The graph of u(t) is shown in Fig. 1. The function u(t) is 
continuous and differentiable except for t = k 1. 

Next, let us make the following remark. Up to now we 
have only considered real functions u(t). However, there 
are no principal difficulties in carrying out the discussion 
for complex u(t). The same results and estimates will hold. 
Therefore, we can turn things around and consider a class 
of functions whose Fourier transforms are determined as 
in (5.3), and among these functions choose the one, which 
m inimizes the integral (5.9). The result of doing this-we 
omit the details-is the unit function 

l+ sin WeiZnt 

u(t) = &rzT 2 e-““dw. (5.14) 
0 1 + sin -e-i2at 

4 
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2 3 4 5 6 7 8 9 I0 

Fig. 1. Graph of unit function. 

This function has complex values. It satisfies both the 
orthogonality and  integrability conditions and  the conse- 
quences of this, and  using this unit function, it is certain 
that the left side of (4.8) is bounded  for N + cc with one  
and  the same bound  for any bounded signal, especially 
those with infinite energy which are the ma in objects of 
this investigation. 

F inally, it should be  remarked that in many respects it 
would be  preferable with a  unit function which, besides 
satisfying the orthogonality and  the integrability condition, 
is real and  even. However, we have not yet been  able to 
decide whether such a  function exists or not. 

VI. EXAMPLES AND APPLICATIONS 

As discussed in the Introduction, the orthonormal sys- 
tem of functions studied in the previous sections was 
motivated by an  application to real-time spectrum analysis 
of time-varying signals. We  shall present several examples 
of expansions of finite energy signals in series of the 
form (1.1). The  coefficients were computed by sampling 
f( t)u( t - n) and  using the fast Fourier transform. 

To  give an  illustration of the results, we have collected 
the terms corresponding to the same real frequency 2rk 
and time  n  into the function 

g;,,(t) =u(t-n)(a,,ke*“ik’+an,~ke-2~ik’) 

which is always real. 
In the figures g;,k is represented by 

g  n,O =c1 n,O 
g  n,k = an,ke2nikt + an,-ke-2nik’, k>O, n-$st<n+$ 

which is plotted in the rectangle (n, k) for 0  I k I K and  
0  4  n  I N. Thus g,, k provides information about the 
frequency, magn itude, and  phase of the corresponding 
term in the series expansion. 

F ig. 2  illustrates the series expansion of a  segment of a  
square wave with frequency 4.2~. It may be  noted that 
most of the energy is found in the terms k = 2  and  k = 6 
as should be  expected from the Fourier series of the square 
wave. No disturbing transients exist at the endpoints of the 

Fig. 2. Series expansion of square wave. 

segment. This series was calculated for a  number  of values 
of the frequency to confirm that no  critical changes in the 
coefficients occurred. 

F ig. 3  similarly illustrates the series obtained by expan- 
ding a  segment of a  harmonic function which contains a  
180” phase shift. The  result indicates a  narrow spectrum 
except for interval containing the phase shift where higher 
frequency terms appear.  F ig. 4  represents a  series obtained 
from a  band-limited function with cutoff f requency 5m 
and  approximately constant energy spectrum at lower fre- 
quencies. Again, the expected properties of the signal is 
brought out by the coefficients without significant artificial 
effects introduced by the signal processing. 
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Fig. 3. Series expansion of phase shift signal. 

A n 
VI 

-- - 

” ” 

Fig. 4. Series expansion of band-limited signal. 

If u(t) is interpreted as a pulse shape used in pulse 
position modulation, the condition 

Jm u(t)u(t+n)dt=O 
-CO 

indicates the absence of intersymbol interference. This 
condition is commonly used in the design of signals for 
data communication. However, the orthogonality of pulses 

modulated to other frequency bands suggests that such 
pulse shapes would be useful when several mutually syn- 
chroniied channels are frequency multiplexed. The usual 
approach in frequency division multiplexing is to use sharp 
filters for separating the channels, but this method requires 
a significant amount of bandwidth in excess of the theoret- 
ical m inimum. Our results indicate that the interference 
from adjacent channels can be controlled by the use of 
pulses which satisfy the orthogonality conditions studied 
here. 
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APPENDIX I 
PROOFOFTEE SUMMABILITYRESULTS 

Let v(t) satisfy the ortbogonality and integrability conditions, 
and suppose. furthermore that the series XT= _ *v( t + n) in a 
neighborhood of each t,, E 10, i[ has a convergent majorant. Let 
a n,k be given by (3.9), where f(t) is bounded and piecewise 
continuous. 

Let us consider the sum, 

w,(t) = f f(t+p)v(t-n+p). 
p=-02 

(1.1) 

From the above assumptioti it follows that the lim its W, (t: ) and 
wn (to ) both exist, and we have 

Wn(G) = Ii ~f(oo+P)+)4fo-n+P) 
p=-co 

and the analogous expression for w, (1, ). Now it can be seen that 
w,,(t) E L’([O, l]), and therefore it follows from the Fejer theorem 
that the Fourier series for w,(t) is summable at i, with sum 
$( w,, (t,+ ) + w,( t; )). Therefore, in the sense of summability we 
have 

5 a,, kv( t, - n) ei2wkto = 
k=-cc 

and hence 

E 2 a,, g ( i, - n ) ei2nkto 
n--m n=-c.3 

since the integrability condition allows changing the order of 
summation, and then using the orthogonabty. 
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For the double sum 

E IE an,kv( t - n) erk2nf, 
k=-m j,-m 

one first considers 

g(s) = E f(s)u(s-n)v(j-n), SER 
il=-CC 

and prove that g(s) E L’(R) and therefore 

E a,, kv( t - n) eik2nr =  / m  g(s +t)epikZnsds. 
n=--m -cc 

Moreover, the function h(s) defined by 

h(s)= -f g(s+t+m) 
l?l=--m 

can be seen to belong to L’(R) and to be periodic with period 1. 
From the fact that an easy calculation shows that h(O+ ) and 

h (O- ) both exist it then follows from the Fejtr theorem applied 
to h(s) that in the sense of summabihty we have 

5 5 an.kv(t-n)e’2”k’=, I(f(t+)+f(~-)) 
k=-m ,,c-* L 

APPENDIX II 
PROOF OF THEOREM 5.2 (DUE TO COIFMAN 

AND SEMMES) 

Suppose, that the sum of (5.9) and (5.11) is finite. If 

V(T,W) =Cv(n+7)einw, (11.1) 

this implies that 8,V and 6’,V’ exist and are square integrable 
over any bounded, measurable set in R2. Hence there is a 
number r, such that, for Olr~r, and (Q,w~)E[-1,21x 
[-377,377], we have 

Define the function V, by 

Then V, is continuous, and by the Cauchy-Schwarz inequality 
and (11.2) one gets 

Jw - woI I r/S 

+ I dr’ 
IT’- ToI s  2r / lw,,- w 

0 
I ~ 2*d4( JJx+7 0”) I 1 

5845 jiTeT 0 ,~2r dTd+W)h4* 
Iw - woI s, 2r 

+( &v)(T,W)*) <l/4. 1 

The continuity of V, and the condition v( 7, w) = 1 almost every- 
where (the orthogonahty condition) then implies that ly( 7, w)l> 
l/2 for ah (7,~) E[-1,2]X[-36,3?r]. 

The next important step is that, since V, is continuous and 
bounded below by a constant greater than zero, a  cont inuous 
function (P,(T, o) exists [27, ch. I] such that 

vr( 7, W) = e’pr(T,o), forall(l,o) E[1,2]X[-3?r,37r]. 
(11.3) 

We  have v(T,O f2s) =v(T,w), and therefore f$(T,W+297) = 
v,( 7, o), which gives 

(p,(T,W+2?r) =cp,(T,Ld)+i2?rk(T,U) (11.4) 

where k(T, w) is constant, because 91, is continuous. 
Moreover, we have V(T + 1, w) = eKiwV(T, w), from which, by 

the definition of V,, one derives (V,(T + 1, o)- eCfwc(T, w)l I r. 
By choosing r small enough, one can then prove that 

‘pr(T+l,W) =%( T,w)-iiw+i2d(~,w)+$(~,w) (11.5) 

where, by continuity of cp,, the function Z(T, w) is constant, and 

I#(T,w)(5n/2. (11.6) 

The statements (11.4)-(11.6) all hold in the rectangle [ -1,2] X 
[ - 312,37r] and therefore especially in the boundary of [0, l] X 
[ - B, Q]. From (11.4) and (11.5) follows 

cp,(l,r) = cp,(O, - r) + i2?rk +  is +  i2al+ J/(0, - T) 

cp,(l,lr) =cp,(O, - ~)+i2~k-i~+i2nZ+ $(O,lr), 

but this contradicts (11.6). This contradiction proves the theorem. 
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