
TABLE I 
(1) -c s, < s, -=c s, < s, < s, < G, 

Message Minimum Distance Squared 
Channel Words F= 1.1 F = 2 F = IO SingleReceiver 

1 46080 0.0225 0.0186 0.0080 0.0252 
2 23040 0.0247 0.0213 0.0127 0.0424 
3 7680 0.0252 0.0244 0.0201 0.0785 
4 1920 0.0257 0.028 1 0.0319 0.1634 
5 384 0.0262 0.0323 0.0505 0.3694 
6 64 0.0267 0.0371 0.0800 0.6667 

TABLE II 
(I) < G, < G, < G, < ‘& < G < G6 

Message Minimum Distance Squared 
Channel Words f = 1.1 F = 2 F = 10 Single Receiver 

1 46080 0.0243 0.0187 0.0084 0.0252 
2 23040 0.0247 0.0215 0.0133 0.0370 
3 5760 0.0252 0.0247 0.0211 0.0690 
4 960 0.0257 0.0283 0.0334 0.1429 
5 120 0.0262 0.0325 0.0529 0.4000 
6 12 0.0267 0.0374 0.0838 2.0000 

We list below achievable minimum distances and number of 
message words for certain ratios of minimum distance. The value 
F is the ratio of the square of the minimum distance of the first 
channel to that of the last. The minimum distance squared is also 
given for the optimal single receiver code with the given number 
of message words which may be generated by Gs. Each of these is 
an upper bound for the minimum distance squared for the 
corresponding channel. 
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Ternary Sequences with Perfect Periodic 
Autocorrelation 

TOM H0HOLDT AND J0RN JUSTESEN 

Abstract- We construct 0, + 1 sequences of length ( q2’+ ’ - l)/( 4 - I), 
where 4 = 2”, with out-of-phase periodic autocorrelation 0, and in-phase 
correlation q2’; such that the peak factor of radiation is (q”+’ - 1) 
A9 

2/+ I - q2'),which is close to 1 as q becomes large. 
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I. INTRODUCTION 

In several applications, including estimation of impulse- 
responses and detection of reflected waves, it is important to have 
periodic sequences {xi> of period N, with periodic autocorrelation 
function 

ifk=O (modN); 
if k # 0 (mod N). 

We shall say that such sequences have perfect autocorrelation. 
Further it is desirable that the peak factor N/M be as large as 
possible when the amplitudes are restricted to Jxil ,< 1. It is 
well-known that binary maximum length shift register sequences 
which have (x,] = I achieve a small out-of-phase correlation, but 
that it is not exactly 0. However, by allowing xi E (0, 1, - l}, it is 
possible to obtain sequences with perfect autocorrelation and a 
large peak factor. 

A large class of such ternary sequences was constructed by 
Ipatov [l], [2] using shift register sequences over GF(q’) for q 
odd. These sequences have length (q*‘+ ’ - l)/( q - I), but the 
construction depends heavily on the fact that q is odd. Moharir 
[3] has given necessary conditions for the existence of perfect 
ternary sequences and has observed that a construction based on 
difference sets is sometimes possible. Shedd and Sarwate [4] have 
constructed perfect ternary sequences of length 2” - 1, based on 
earlier work of Kasami, Gold, and Helleseth IS], using cross 
correlation of binary maximum length sequences. Sarwate and 
Pursley [6] have written an excellent survey on the subject. 

In this correspondence we combine ideas of [3] and [4] and use 
some facts on quadrics in PG (21,2”), the projective geometry of 
dimension 21 over GF (2”), to construct perfect ternary sequences 
of length 

(,y+ ’ - , py+ ’ - 1 

2S-1 ' 
with peak factor (2s)2’+ ’ _ (2s)2’ . 

The details of our construction are more difficult than those of 
[I], but the sequences may be generated more simply. The calcu- 
lation of the correlation between a received signal and the ternary 
sequence is also facilitated by the use of a binary ground field. 

In Section II we present the construction of ternary sequences 
with perfect autocorrelation. The proofs of certain properties of 
projective geometries over GF (2$) are postponed to Section III. 
In Section IV we present examples of the most important se- 
quences and details of their construction. 

II. THE CONSTRUCTION 

For basic facts on difference sets, the reader is referred to [7]. 
Let D = (i,, i,; ., ik} be a Singer difference set with parameters 

4 
2/+1 _ , 

v= 
q-1 

) /+&IL A=4 
Z/-l _ 1 

q-l ’ q-l ’ 

where q is a prime power. Let xg denote the characteristic vector 
of D, that is 

n D = (XI,%,..., X”), xj = 1, i E D; 
0, i E D. 

It is well-known that the periodic autocorrelation 
0 

satisfies 

R(j) = c X,+jXi 
i=l 

j = 0 (mod u); 
j*O(modu). (1) 
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Let b denote another Singer difference-set, with the same param- 
eters as D, and let 0 denote the sequence obtained by cross 
correlation of xg and xi. The periodic autocorrelation of 0 is 
then (141) 

b(j) = 
k2 + (v - 1)X2, 

2kX + (v - 2)X2, 

The fact that makes our construction work is the following 
theorem. 

Theorem 1: Let D be a Singer difference set with parameters 

4 
21+1 _ 1 2/&l _ 1 

v= 
q-1 

, k=421- 
q-l ’ q-, 9 4=2”, 

then there exists another Singer difference set 6 with the same 
parameters, such that if 8 denotes the sequence obtained by cross 
correlating the characteristic vectors xg and xi of D and D, 0 
takes on only three values, namely, 

(q’+ ‘W’ - 1) whichappears 4’(4’- 1) 
q-1 2 times, 

4 2/-l _ 1 

q-1 

4 21-l 
which appears ~ 

q-1 
times, 

(q’- l)(q” + 1) 
which appears 4’(4’+ 1) 

q-1 2 times. 

(3) 
The proof of this theorem is given in Section III. Since 

(d-t ,%I- - 1) = q2’-’ - 1 _ q,-’ 
q-1 q-1 

and 

(q’- 1)(q’-’ + 1) q2’-’ - , 
q-l = q-l + 41-1, 

we obtain, by subtracting (q2’-’ - l)/(q - 1) from each ele- 
ment of 19, and then dividing all the elements by q’- ‘, a sequence 
B with elements 0 and + 1. 

Moreover the periodic autocorrelation of 8 is 

j=O(modv); 
j#O(modu). 

This follows from 

RB^( j) = R’(‘) ’ 

a% - 2a(A(a - x) + Ba + C(a + x)) 

X2 
2 

where 

9 2/-l _ 1 

a= 
q-1 

, x = q’-‘, 

“I = 4’(4’ - 1)  ) B = q2’ - 1  

2 q-l ’ 
c = 4’(4’ + 1) 

2 

and a straightforward calculation. 
Theorem 1 contains an existence statement, but the proof is by 

construction of the desired D. Some examples are given in 
Section IV. 

III. PROOF OF THEOREM 1 
The proof of Theorem 1 consists of two parts, which are 

formulated as follows. 

Theorem 2: Let D = (i,, i,; . ., ik) be a Singer difference set 
with parameters 

4 2/+1 _ , 2’6 I 

v= q-, ’ 
k=L 

q-,’ x= 
4 

then there exists r E (1,2; . ., v} such that if we construct (the 
hyperplanes of) PG(21, q) by cyclic shifts of D, the points 
corresponding to rD constitute a nondegenerate quadric in 
1x3 W, 4). 

Theorem 3: Let Q be a nondegenerate quadric of PG(21, q), 
q = 2”. The hyperplanes of PG (21, q) is then divided into 3 
classes; namely q’( q’ - I)/2 which have (q’ + 1)( q’- ’ - I)/( q 
- 1) points in common with Q, (q2’ - l)/(q - 1) yJ?h have 
( q2’- - l)/( 4 - 1) points m common with Q, q (q + 1)/2 
which have (q - l)(q’-’ + l)/(q - 1) points in common with 
Q. 

Proof of Theorem 3: let Q be a nondegenerate quadric of 
PG (21, q) q = 2”. Following Dickson [8], we can choose coordi- 
nates such that Q has the equation xi + x,x2 + . . . + x2,- ,x2, 
= 0, and the equation of a hyperplane is 

aOx + a,x, + . f. + a2,x2! = 0, ai E GF(q), a * 0. 

Now we consider two cases. 
Case 1: a, = 0, of course there are (q2’ - l)/( q - 1) of these. 

We can without loss of generality assume that the hyperplane is 
= a2xz + .. 

% 
. + a2[x2/. Now if I = 1 we shall find the num- 

of common points of xi + x,x2 = 0 and x, = ax2 and it is 
easy to see that only (c a, a, 1) satisfies both equations. If I > 1 
we shall count the number of points in the set 

((%,X,,~~~, x2,)Ixl = a2xz + . . . + a2/xI 

and xi + ( a2x2 + . . . + a2,x2,)x2 + . . . + x2,- ,x2, = 0}, 

but for each point on the hyperplane xl = a2x2 + . . . + a2[x2, 
the last equation has exactly one solution x0, so the number of 
points in the set is ( q2’- ’ - I)/( q - 1). 

Case 2: a, * 0. We can assume that the hyperplane has the 
equation x0 = a,x, + . + a2,x2, so we shall count the number 
of points in the set 

{<x0, XI,“‘, x2,)1x0 = a,x, + ... + a2,x2, 

and (a,x, + . . . + a2,x21)2 + x1x2 + .. . + x2,-‘X21 = o}. 

Here the last equation is the equation of a nondegerate quadric Q 
in PG (2 1 - 1, q) and obviously the number of points in the set is 
equal to the number of points on Q. Now in the odd-dimensional 
projective space there are two kinds of quadrics, namely, the 
elliptic ones which contain ((q’ + 1)( q’-’ - l),)/(q - 1) points 
and hyperbolic ones which contain (q’ - 1)( q - ’ + l)/( q - 1) 
points. These numbers are due to Primrose [9]. 

To finish the proof of the theorem we only need to count the 
number of elliptic (or hyperbolic) quadrics of the form 

If I = 1 this is b,xt + h,x: + x,x2 = 0, which has a solution for 
q( q + I)/2 choices of (b,, b2), this follows for instance from [ 10, 



pp. 243-2441. If 1> 1 the quadric is given by 

ib’ o\lx, \ 

I 

b, x3 

( x,x3 ... X2’- I> 

0 . b,, , \ ;,‘-I / 

I 
b, 0 I 

’ x2 

b4 x4 

+ (X2X4 . . . X2’) 

\ 0 . b,, / \ X2’ 

1 x2 

x4 
+ (x,x3 ... x2,-,) . =o 

\ x2/ / 

so there is a one-to-one correspondence between these quadrics in 
PG(21- 1, q) and the quadric y,z: + y2z; + zlz2 in PG(I, q’), 
so by the above result the number of hyperbolic quadrics is 
q’( q’ + 1)/2. This completes the proof of Theorem 3. 0 

Proof of the Theorem 2: The Singer difference set D can be 
described by chasing a primitive element (Y of GF ( q2’+ ‘) and a 
fixed linear mapping L : GF ( q2’+ ‘) + GF (q), then D = 
(ilL(a’) = 0, i E (0, 1; . ., v - 1} 

k Now define f(x, y): [GF(q2 +‘)I2 + GF(q) by f(x, y) = 
L( xayh), where a and b are chosen such that 

a = (2”)” (mod q2’+’ - 1), 

b = (2”)” (mod q2’+’ - 1), for some m and n , 

a * b, (5) 
and such that 

r=(a+b)-‘isnotcongruenttoapowerof2 (modu). 

(6) 
Then it is easy to see that the mapping f (x, y) is bilinear and 
that {x] f (x, x) = O} constitutes a nondegenerate quad& in 
PG(21, q) consisting of the points corresponding to rD. 

The bilinearity is ensured by (5) and that the quadric is 
nondegenerate is ensured by (6) since r by definition then is a 
nonmultiplier [7, p. 1181. 

Moreover it is a straightforward matter to verify that there 
indeed are choices of a and b which satisfy (5) and (6). This 
completes the proof of Theorem 2. 0 

Theorem 1 is now easily obtained. The Singer difference set D 
can be arbitrary, and we can then, according to Theorem 2 find a 
number r such that D = rD is a quadric of PG(21, q). Using 
Theorem 3 we then see that the sequence 8, obtained by cross 
correlating the sequences corresponding to D and D, has the 
properties claimed in the theorem. 

Iv. EXAMPLES REFERENCES 

If s = 1, that is q = 2, our construction gives sequences of 
length 22’+’ - 1. It is worth noting that the construction here 
coincides with that of [4], and that the choices of D and rD, 
corresponds to choosing words of the first and second order 
Reed-Muller codes, respectively. 

The first interesting new sequences are obtained by setting 
I= 1. We will now construct two examples in detail for this 
special case. 
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When I = 1 we are considering lines and quadrics in a projec- 
tive plane over GF (2”); in this case, it is easy to see [7] that as the 
nonmultiplier r of the construction we can choose r = - 1, SO 

that the quadric corresponds to -D, where D is the difference set 
that gives the lines of the geometry. More specificly if s = 2, we 
can as D use the (21,5, I)-Singer difference set (3,6,7,12, 14}, 
-D is then (7,9,14,15,18). 

The description is faciliated by introducing the cyclotomic 
classes (mod 21) that is C(j) = (j . 2’ (mod21), i = 0, 1,. . . > 
and it is seen that D = C(3) U C(7) and -D = C(7) U C(9). 

If we crosscorrelate the sequences corresponding to D and 
-D, it can be seen that ID + t f’ (- D)l is constant when t 

belongs to a given cyclotomic class. Moreover ] D + t f~ (- D)l = 
1 if t E -D, so since C(0) has size 1, C(3) has size 3 and only 
C(1) and C(5) have size 6, and since we know that the cross 
correlation takes on the value 0 six times,the value 1 five times, 
and the value 2 ten times, it is an easy matter to decide whether 
C(1) or C(5) corresponds to the value 2. One gets 

ID+tn (-D)l=O, 
if t E C(5) = (5,10,13,17,19,20} 

(D + t n (-D)l= 1, 
if t E C(7) U C(9) = (7,9,14,15,18} 

(D+tn(-D)I=2, 
iftEC(0)UC(1)UC(3)=(0,1,2,3,4,6,8,11,12,16} 

so the perfect ternary sequence is 
+++++-+o+o- ++-oo+ -o- -. 

Ifs = 3 we can, as D, use (9,18,36,41,57,65,69,71,72), and 
-D becomes (1,2,4,8,16,32,37,55,64). 

In this case all the cyclotomic classes except C(0) have size 9, 
and again we have ID + t I? (- D)l = 1 if t E - D. Since the 
cross correlation will have the value 0 in 28 cases then for t = 0: 
(D + t n ( - D)l = 0, which is also immediately seen from above. 

What remains is to find the three cyclotomic classes, where the 
cross correlation is 0. One finds that this is the case for C(1 l), 
C(25), C(l3), so we get 

ID + t n (-D)l= 0, for t = 0, 11, 22, 44, 15, 30, 60, 47, 
21, 42, 25, 50, 27, 54, 35, 70, 
67, 61, 49, 13, 26, 52, 31, 62, 
51, 29, 58, 43, 

and 
)D+tn(-D)l= I, for t =1, 2, 4, 8, 16, 32, 37, 55, 64. 

The perfect ternary sequence is therefore 

-oo+o+ ++o+ +--t-+-o+ +++--++--- 
+---o-t+-t-o++++--+++--t-----t 
-0-t +--t---+0+ +-++-++. 

As a concluding remark, we mention that the correlation of a 
received signal with the ternary sequences we have constructed 
can be obtained by correlating the received signal with the binary 
sequences given by D and D, subtracting them, and then scaling 
the result. 
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Fig. 1. Hierarchy of classes of binary sequences of period 2” - 1 
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On the Characterization of PN Sequences 

UNJENG CHENG, MEMBER,  IEEE, AND SOLOMON W. GOLOMB, 
FELLOW, IEEE 

A&raft-Balanced binary sequences of period 2” - 1 with the run 
property and the two-level autocorrelation property are not necessarily PN 
sequences. 

In [1] a hierarchy of classes of binary sequences of period 
2” - 1 was presented, and several conjectures about the intersec- 
tions of these classes were offered. The hierarchy is summarized 
in Fig. 1, where U is the class of all binary sequences of period 
2” - 1, and PN is the class of maximum-length shift register 
sequences of period 2” - 1. The intermediate classes are R (the 
“run property”), M  (the “multiplier property,” referring to se- 
quences which are constant on cyclotomic cosets), S (the span-n 
property), and C (the two-level correlation property). For de- 
tailed definitions, see [ 11. 

The possibility that R n M  = PN is belied by numerous 
counter-examples, first occurring at n = 5. A small class of 
counter-examples to S n M  = PN is described in [1], with the 
first instance at tl = 7. 

It was conjectured in [l] (the “strong conjecture”) that R n C 
= PN. A counter-example has been found with n = 7, i.e., with 
period 127. For this period Baumert [2] determined six types of 
two-level correlation sequences which he designated by the letters 
A, B, C, D, E, F. A member of type E, not listed explicitly in [2] 
(it is a decimation of the example presented there), provides the 
first counter-example to R n C = PN. Explicitly, the sequence is 

111110111100111111100100101110101011110001100000 
100110111001100011011011101001000110100001010100 
1101001010001110110000101000000. 

In [3, ch. 31, it is shown that all PN sequences have the three 
“randomness properties” U, R, and C (designated in [3] as the 
properties R - 1, R - 2, and R - 3, respectively), and the im- 
pression is given that any sequence with these three properties 
must be a PN sequence. The counter-example above shows that 
this is not the case. 

A complete search of the cases n < 8, and partial searches for 
n > 9, have thus far failed to uncover any counter-examples to 
the “weak conjecture” S n C = PN. On the other hand, no proof 
of this conjecture has as yet been discovered. 
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A Low-Rate Bound for Asymmetric Error-Correcting 
Codes 

J. MARTIN BORDEN, MEMBER,  IEEE 

AMruct-We prove a Plotkin-type bound for binary codes which cor- 
rect asymmetric errors. This bound shows that it is possible to correct as 
many as 1 / 3 asymmetric errors per code symbol, and no more. The result 
is obtained by estimating the solution of a linear program. 

I. INTRODUCTION 

Binary codes designed to correct asymmetric errors (of type 
1 + 0 exclusively) which occur on the Z channel have been 
studied by a number of researchers. The asymmetric-error-cor- 
recting ability of such an “asymmetric code” is determined by its 
asymmetric distance d,. This is the minimum value of the asym- 
metric distance d,(q, xI) taken over all pairs of distinct code- 
words x, and xj, where 

da(x;txJ) = l/Q{d,(xi,xj) + IW(xi) - w(xj)l}> (1) 

d, is the familiar Hamming distance and w is the weight func- 
tion. It is well-known and relatively easy to prove using the 
combinatorial significance of d, that a code can correct e asym- 
metric errors if and only if d, > e + 1 [2]. 

In this correspondence we prove the following low-rate bound. 

Theorem: The parameters of a length n code containing M 
codewords and having asymmetric distance d, satisfy M < 
4d,/(3d, - n) (provided n < 3d,), or equivalently, d,/n < 
M/(3M - 4). On the other hand, for all values of M, there exists 
a code whose parameters satisfy da/n >, l/3. 

It is interesting to make comparisons between bounds for 
asymmetric coding and bounds for the familiar “symmetric cod- 
ing” (where errors of both types 1 + 0 and 0 + 1 occur). The 
well-known Plotkin bound shows that d,/n < M/(2M - 2); 
also, there are codes with arbitrarily large M such that d,/n > 
l/2 [9]. Thus there are arbitrarily large codes which can correct 
l/3 asymmetric errors per code letter, whereas the corresponding 
fraction for symmetric codes is only l/4 (since d, is roughly 
twice the number of correctable symmetric errors). 

Manuscript received May 26, 1982; September 23, 1982. 
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