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Aperiodic Correlations and the Merit Factor of a 
Class of Binary Sequences 

the Rudin-Shapiro sequence [lo], which have been proposed for 
use in phasing multitone signals to minimize peak factors [ll]. 

TOM HIZIHOLDT, HELGE ELBR0ND JENSEN, II. CALCULATIONOFTHE~ERIODIC ComLATioNs AND 
AND JBRN JUSTESEN THEMERITFACTOR 

A&ret-A class of binary sequences of length N = 2m is considered, 
and it is shown that their aperiodic autocorrelations can be calculated 
recursively in a simple way. Based on this, the merit factor of the 
sequences is calculated and it is shown that the asymptotic value is 3. 
Finally, it is proved that the magnitude of the maximal aperiodic autocorre- 
lation is hounded by N”.9. 

I. INTRODUCTION 

The problem of finding + 1, - 1 sequences (xi), i = 0, 1, . . . , N 
- 1 for which the magnitudes of the aperiodic autocorrelations 

N-k-l 

ck= c x~x;+~, lsk<N-1 (1.1) 
i=o 

are small seems extremely difficult [l], and apart from the results 
on Barker sequences [2], [3] not much is known. In fact, no one 
has exhibited an infinite class of sequences for which one could 
actually calculate the correlations. In [4] Golay defined the merit 
factor of binary sequences by 

N-l 

F=N2 
i( i 

2x 4 (14 
k=l 

and conjectured that F I 12.32, for all binary sequences, with 
the exception of the Barker sequence of length 13, for which 
F = 14.08. In a recent paper Golay [5] argued that the merit 
factor of Legendre sequences, shifted by one quarter of their 
lengths, has the highly probable asymptotic value 6, but he did 
not prove this. 

For maximal-length shift register sequences, one can see from 
[6] that if one considers the ensemble consisting of all cyclic shifts 
of a maximal-length sequence, then the average value of 
(2C~:~c~)/N* is approximately l/3. Thus, there exist maximal- 
length sequences with merit factor of approximately 3. Skaug [7] 
has calculated the actual values of the aperiodic autocorrelations 
for a number of maximal-length shift register sequences, and 
from his calculations it seems possible that the magnitude of the 
largest correlation is of order fi. Based on results of Nieder- 
reiter [8], McEliece in [9] has proven a number of bounds, from 
which one can see that the magnitude of the largest aperiodic 
autocorrelation for maximal length shift register sequences of 
length N is bounded by fi log N. 

In this correspondence we consider sequences of length N = 2” 
defined recursively by 

- 1, 

x2,2 I ( - 1)‘+f(‘)X2,-,-1, OljI2’-1, 
i = O,l;. ‘,rn - 1, (1.3) 

where f is any function mapping the set of natural numbers into 
(0, l}. For these sequences we prove a simple recursion, which 
gives all the aperiodic autocorrelations, and based on this we 
calculate the merit factor and prove that the asymptotic value is 
3. Finally, we prove that the magnitude of maximal aperiodic 
autocorrelation is 0( N”,9). 

We note that if one chooses the function f as f(0) = f(2k - 1) 
= 0 and f(2k) = 1, k > 0, then we get the first 2”’ elements of 

Manuscript received January 23, 1984; revised January 3, 1985. 
T. Hnholdt and H. E. Jensen are with the Mathematical Institute, Technical 

University of Denmark, Building 303, DK-2800 Lyngby, Denmark. 
J. Justesen is with the Institute of Circuit Theory and Telecommunication, 

Technical University of Denmark, Building 343, DK-2800 Lyngby, Denmark. 

Theorem 2.1: The sequences defined by (1.3) have zero 
aperiodic autocorrelation for even shifts. 

Proof: Let C( m, k) denote the k th autocorrelation for a 
seqdence of length N = 2”. 

If k 2 N/2 we get 
N-k-l N-k-l 

C(m,k) = c X,Xi+k = c xixN/2+(k-N/2)+i 
i=o i=O 

N-k-l 

= c xixN,2-(k-N,2+i)-1( -l)k-N’2+i+‘(m-1) 
i=O 

N-k-l 

= ,go XiXN-k-i-l( -l)k+‘+‘(m-l). 

If k is even we get 
(N-k)/*-1 

C(m,k) = c XiXN-k-r-l( -l)i+‘(m-l) 
i=O 

N-k-l 

+ c XiXNekpipl( -l)‘+‘@+l) 
i=(N-k)/2 

(N-k)/2-1 

= c X,XNdkpi-l( -l)‘+‘(+ 
r=O 

(N-k)/*-1 

+ c xN-kpj-lx,( -l)N-J-l+f(m-l), 
j=O 

j:=N-k-i-1 
= 0. 

If 0 < k < N/2 we get 
N-k-l 

C(m,k) = c XiXj+k 
r=O 

N/2-k-l N/2-1 N-k-l 

= c XiXi+k + c XiXi+k ’ c xixz+k 
i=O r=N/Z-k i=N/2 

k-l 

= ccrn - 1, k) + c XN/2-k+iXN/2+r 
i=O 

N/2-k-l 

+ c xi+N/2xi+kiN/2 
i=O 

k-l 

=Xx N/2-k+rXN/2+r + c(m - l,k) 
i=O 

N/2-k-l 

+ c XN/2-i-1XN/2~k~iCl(-1)k 
i=o 

k-l 

=c XN/2-k+rXN/2+i + ctm - l,k) 
i=o 

N/2-k-l 

+ c Xj+kXj(-l)k, j := N/2 - k - i - 1 

j=O 

k-1 

=c XN/2-k+rXN/2+, +(l +(-l)k)C(m - 1,k). 
i=O 

(2.1) 
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If k is even we have But, for i < N/4 we have 
k-l 

c 
x 

xN/2-k+ixN/2+i 
N/2+i = xN/2-i-1 t-11 

i+f(m-1) 

i=o = (-1) i+f(m-1) 

k/2-1 
xN/4+(N/4-i-1) 

k-l 

=c xN/2-k+ixN/2+i ’ ,=~,2xN/2-k+ixN/2+i = (-1) 
i+f(m-1) 

xN/4-(N/4-i-1)-1 
i=o 

.(-I) 
N/4-i-l+/(m-2) 

k/2-1 

=c X,,+k+iXN,2-,-~( -l)i+‘(m-l) 
i=O 

= + +m-l)+f(~-n 
I (2.3) 

k/2-1 Therefore, for 1 < N/4 we get 
+ c xN/2-j-1XN/2+k-j-ll j:= k - 1 - i 

j-0 C( m, l) = - C( m - 1, N/2 - 1)( - l)f(m-1)+‘(m-2) 

k/2-1 

= c x,.$,2-k+&,,2-j-1( -l)i+‘(m-l) 
i=O 

and therefore (2.2a) is proved. A similar calculation gives (2.2d). 
Next we consider C(m,2”-’ - I), 0 ( 1~ N/4, I odd. From 
(2.1) we see that 

k/2-1 

+ c xN/2-j-lxN/2-k+j 
(-l)k-j-l+f(m-l) 

j-0 

N/2-l-l 

C(m,2”-’ - I> = c x/+ixN/2+i 
i=O 

= 0. 

So, for k even, (2.1) becomes 

N/4-1-1 N/4-1 

= c x/+ixN/2+i ’ c x/+ixN/2+i 
i=O i-N/4-I 

C(m,k) = 2C(m - l,k), m 2 3, N/2-I-l 

+ c xl+ixN/2+z’ 
and since .C(2,2) = 1 . (- 1) f(‘)+f(l)(l - i) = 0, we get by in- i-N/4 

duction that C(m, k) = 0 for k even, and hence the theorem is But for i < N/4 we have from (2.3) that xN,2+i = 
proved. .ex;( _ l)f(m-l)+/(m-2), and so 

Since xN 2,.+*,xN-l 
reversing d 

is obtained from x0, xl!. . ., xN,2-1 by 
e order of the symbols and changmg the sign of C(m,2”-l _ l) = ( -l)/(m-l)+f(m-2) 

alternate symbols, it follows from, for example, [12, eqs. (5.16) l-l 
and (5.20)] and Theorem 2.1 that -Ctm - 2y1) - c xN/4+ixN/4+i+l 

xO,xl,“‘,xN/Z-1 ad xN/2,“‘,xN-l 
i i=O 1 

N/2-I-1 

are a pair of complementary sequences. 
We will now consider the correlations for odd k and prove the 

+ c xl+iXN/2+i. 
i=N/4 

following theorem. 

Theorem 2.2: For m > 3, 0 < 2k + 1 < 2m-2, the autocorre- 
Therefore, by (2.3) 

lations for the sequences defined by (1.3) satisfy C(m,2”‘-l - I) 

C(m,2k + 1) = (_ l)f(w+fm-2) 

= -q m - 1,2m-1 - 2k - I)( -qf(m-l)+f(m-*) (2Ja) N/2-I-l 

.[-C(m - 2,l) - C(m - l,/)] + C x,+~x~,~+~. 
C(m,2”‘-’ - 2k - 1) i=N/4 

=[-C(m-1,2k+l)-2C(m-2,2k+l)] Now 

~(-l)/(m-l)+/(m-2) N/2-I-l 

(2’2b) c x/+ixN/2+i 
i=N/4 

C(m,2”‘-l + 2k + 1) 
N/2-I-1 

= [C(m - 1,2k + 1) - 2C(m - 2,2k + l)] = c xi+,xN,2~,~,(-lji+~(~-l) 
.(+m-l)+/w) (2.2c) 

i=N/4 

N/4-I-l 

C(m,2” - 2k - 1) = c xN,2-j-1xj+,( - 1) -j+fCm-l), 
j=O 

= C( m - 1,2”-’ - 2k - l)( -l)'(m-1)+'(m-2). (2.&l) j:=N/2-l-1-i 

N/4-l-l 
Proof: If 1 < N/2 is odd we get from (2.1) that = c xN,4+(N,4-j-l)xj+,( -1)-j+‘(+*) 

r-i j=O 

c(m, 0 = c xN/2-C-ixN/2+i 
i=o 

N/2-(N/2-1)-1 

= 
c xi+(N/2-/)xN/2+i. 

i=O 

N/4-I-l 

= c xN,4-(N,4-j-1)-1( -1)-j-1+‘(m-2) 



IEEE TRANSACTIONSONlNFORMATIONTHEORY,VOL. IT-&NO. 4,JULY1985 551 

N/4-I-l 
= -(-l)/(w+/w) 

c XjXj+l 
j=O 

and therefore 

max IC(m,l)l< mlaxiC(m - l,r)j. (3.1) 
1<2”-2 

= -( 4f(m-l)+f(m-2) C(m - 2,l). From this we derive the following. 

So we get 2) If 2m-2 < 2k + 1 < 5 . 2”-4 we get 

C(m,2”-’ - l) = [-C(m - 1,Z) -2C(m - 2,1)] 
C(m,2k + 1) 

.( +m-l)+fw) = C( m  _ 2,2k + 1 - 2+2)( -l)f(m-1)+/(m-3) 
3 

and hence (2.2b) is proved. A similar calculation gives (2.2~) and 
+2c( m - 3,2~ + 1 - 2m-2)( -l)f(mp2)+f(m-3) 

the proof of the theorem is finished. -2C(m-3,3.2”-3-2k-1) 
Let S(m) = ZEi’C’(m, k). For the sequences defined by (1.3) 

the merit factor is 
.( _l)/(m-l)+f(m-2)+f(m-3)+f(m-4) 

F(m) = (2”)/2S( m). and therefore 

Theorem 2.3: 2m~*<lc5.2m-4’C(m,~)’ max 

S(m) = 2S(m - 1) + 8S(m - 2), m23 

F(m) = 3/(1-(-4)“). 

< mltilC(m - 2,1)1+ 4mlaxlC(m - 3,1)1. (3.2) 

3) If 5 .2”-4 < 2k + 1 < 3 . 2”-3 we get 
Proof: C( m,Fk + 1) 

N-l N/4-1 

S(m)= c C’(m,k)= c b2(m,k)+C2(m,N-k) = qm - 3,3 . y-3 _ 2k - I)[ -(-l)f(m-1)+f(m-4) 

k=l k=l 

+C2(m,N/2 - k) + C2(m,N/2 + k), 

so, using Theorems 2.1 and 2.2 we get 

-2( _ l)f(m-l)+f(m-2)+f(m-3)+f(m-4) 1 
+2C(m - 3,2k + 1 _ 2”-2)( 4)f(m-1)+‘(m-3) 

N/4-1 

c C2(m - l,N/2 - k) + C2(m - l,N/2 - k) 
+C(m - 4,3. 2m-3 - 

S(m) = 
2k _ I)[ -2, -l)f(m-1)+f(m-4) 

k=l 
+4~~~~f(m-l)+f(m-2,+f(m-3)+/(m-4) I. 

+[C(m - 1,k) +2C(m - 2,k)12 

+[C(m - 1,k) -2C(m - 2,k)]’ 
N/4-1 

= C 2C2(m-l,N/2-k) 

The absolute value of the quantity in the first bracket is either 3 
or 1. Correspondingly, the absolute value of the quantity in the 
second bracket is 2 or 6. We conclude that either 

max 52m-~<l<3.2m-)‘C(m~~)’ 
k=l 

+2C2( m - 1, k) + 8C2( m - 2, k) 
5 5m/ax/C(m - 3:Z)l+ 2mlawlC(m - 4,Z)l (3.3) 

or 
=2S(m-1)+8S(m-2). 

max 
From this we get 5.2m-4<l<3.2m~~‘C(m~z)’ 

S(m) = 4”(2S(2) + S(3))/96 +( -2)“(4S(2) - S(3))/24. I 3mlaxjC(m - 3,1)1+ 6ml=IC(m - 4,1)/. (3.4) 

Now S(2) = 2 and S(3) = 12, so 4) If3.2m-3 < 2k + 1 < 7 . 2m-4 we get 

S(m) =a.4m -a(-2)“, C(m,2k + 1) 

which in turn gives F(m) = 3/(1 - (- i)“) and the theorem is 
moved. 

= qm - 3,2k + 1 _ 3. 2”-‘)[(-l)l(m-1)+f’m-4’ 

Obviouslv. the asvmntotic value of the merit factor is 3. 
+2~~~~f(m-l)+f(m-2)+f(m-3)+/(m-4) 1 

One could’ hope thaiby starting with a sequence (e.g., a Barker 
sequence) with a high merit factor, and then applying the process +C(m - 4),2k + 1 - 3.2 +3)[ -2(-l)f(m-l)+f(m-4) 

of reversing an sign changing, it would be possible to generate 
long sequences with a high merit factor. Unfortunately, this is not 

+4( _ l)/(m~l)+f(m-2)+/(m-3)+/(m4) 13 
the case. By calculations similar to those above, we can prove so that 
that no matter what the starting sequence is, the asymptotic value 
of the merit factor is at most 3. max 3.2m-‘<l<7.2m-r’C(m~~)’ 

III. BOUNDSONTHEMAGNITUDEOFTHELARGEST I 3mpxlC(m - 3,1)/+ 6m,pxjC(m - 4,1)1. (3.5) 
APERIODICAUTOCOFWELATION 

Based on the recursions in Theorem 2.2, one can derive further 5) If 7 . 2m-4 < 2k + 1 < 2”-’ we have 
recursions. 

1) If 0 < 2k + 1 < 2mP2 we have C(m,2k + 1) = C(m - 2,2k + 1 - 2m~2)(-l)‘~m~1~~‘~m~3~ 

C(m,2k + 1) +2C(m - 3,2k + 1 - 3. 2m-3) 

= -C(m - l,V-’ - 2k - l)( -l)f(m-1)+f(m-2) ~t~l)f(m-l)+f(m-2)+f(m-3)+/(m-4) 
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so that 

max 
7.-p-4 <1<2m-l Ic(m,oI 

I m,axlC(m - 2,1)1-t 2m,mlC(m - 3,1)1. (3.6) 

Exactly the same expressions can be derived for 2 k + 1 > 2”-‘. 
In case 3), by considering the sequence given by a, = 

max{5a,_, + 2anp4, 3anp3 + 6ane4}, one can see that 
maxlC( m, /)I is bounded by (a constant times) the maximum of 
the solutions to (3.3) and (3.4) with equality. 

Of the difference equations connected with the inequalities 
(3.1)-(3.6), it is the characteristic equation for (3.4) whose roots 
have maximal magnitude, and this is bounded by 1.85, so we 
conclude that 

mkxxIC(m,k)l I A(1.85)” = A .(2m)‘0g21’85, 

so 

maxIC(m,k)I< A .iV”.9. 
k 

(3.7) 

The bound in (3.7) may seem rather crude, and indeed it is 
possible to obtain better bounds by further iterations of the 
equations in Theorem 2.2. Nevertheless, it is not possible to 
obtain a significant general improvement, as we shall now see. 

We consider the sequences defined by (1.3), where we choose 
the function f, such that f(2p) = 0 and f(2p + 1) = 1. 
Let 

From the recursions in Theorem 2.2 one easily obtains 

cm = -cm-, - 2c,-, - 4c,,-,. 

The greatest magnitude of the roots of the corresponding char- 
acteristic equation is 1.65, so C, is of order (1.65)“l, which in 

turn gives N”.73, so this is comparable to the bound given by 
(3.7). 

Of course, it is possible that by choosing a less regular function 
f, one would be able to obtain better results, but there is no 
evidence of that. All the sequences defined by (1.3) have the same 
merit factor, which leads us to believe that significant improve- 
ments in (3.7) are unlikely. 
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