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II. THE SEQUENCESANDTHEIRAUTOCORRELATIONS 
The sequences considered in [3] are defined recursively by 

X” = 1 

x2’+,=(-l)‘+‘(i)xz’-j-1, OljI2’-1, i=O,l;.., 

(2.1) 
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where f is any function mapping the set of natural numbers into 
(0, l}. We shall need the following fact from [3]: 

1131 x2”1+ I 
= -x,( 4)fw-l)+/w) 

I 9 if i < 2”‘-l, m 2 1. 

(2.2) 
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We define 
2m-k-1 

C(mtk) = C XiXi+k, (2.3) 
i-0 
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then C(m, k) = 0 if k is even and 

jC(m, k)J I A . (2”‘)“‘9, (2.4) 

where A is a constant. Based on these, we will prove that the 
autocorrelations, that is, 

(2.5) 
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for the infinite sequences defined by (2.1) are zero if k # 0. To 
see this we define for fixed k 

Ak = f xix,+k (2.6) 
i=O 

and then prove the following theorem. 

Theorem: For the sequences defined by (2.1) we have 

IAkl I lc(m,k)l+ lC(m - 1, k)l 
+ -*. +lC(j, k)( + 2mk + 1, 

where m + 1 = Ilog, (N + k + 1)1 and j = [log, k] 

Proof: The proof is by induction on m, and the start is 
obvious. So, suppose we have proved the theorem for all N, 
where [log, (N + k + I)1 I p, and let us consider the case 
where [log, (N + k + I)] = p + 1. 

We have to consider the four cases 

1) k > 2” - 1; 
2) k I 2” - 1, N + k -c 2P + 2P-‘; 
3) 21’-r I k I 2 P - 1, N + k 2 2” + 2P-‘; 
4) k I 2P-’ - 1, N + k 2 2P + 2P-‘. 

In case 1) we must have N < 2P - 1 < k and the theorem is 
obvious. In case 2) we have 

N-2P+k 
A, = C(p, k) + c xi + 2P - kxi + 2P, 

i=O 

which, for N + k < 2P + 2P-r and N 2 2J’, using (2.2), yields 

k-l N-2P 
A, = C( p, k) + c xi + 2P - kx, + 2J’ + c x~x,+~. 

i=O i=O 

This proves the statement by the induction hypothesis. If N < 2P 
and k I 2” - 1 the statement is trivial. Case 3) follows im- 
mediately from the fact that N - 2P + k + 1 I 2k. 
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Case 4), which is the only difficult one,  can be  seen as follows: 

k-l 2/‘~‘-k-1 N?-k-2.P-2pm’ 

A, =  C(p,k) +  c x, + 2” - kx, +  2” + c x, +  2”x, +  2” + k +  c x, + 2p + 2 P-l - kxi + 2P + 2P-’ 
i=o i=o i - 0  
k-l 2P-‘-1 

=C(p,k)+ ~~~+t~-kx,+2~+C(p-l,k)+(-l)~ c x,x,+~, 
r=O ,=2’+‘-(N+k)-1 ’ 

where we have used (2.2) in the third sum, and  in the last sum the 
definition (2.1) and  the substitution j: 2P-i - i - 1. W e  then 
get 

A, =  C(P, k) +  C(P - 1, k) 
km- 1  

+ c x, + 2” - kx, +  2” + (-l)‘C(p - 1, k) 
I=0 

2/J--‘-1 2”‘‘-(N+k) 

+(-I)/‘ c x,xj+k - c-l>” c x,x,+A. 
,=2P-‘-k J=o 

The sums in the third and  fifth term on  the right side have at 
most k terms and  [log, (2”+’ - (N + k) +  k +  I)] 5  p. So, if 
k is odd  the statement follows, and  if k is even we use (2.3) and  
the proof of the theorem is finished. 

Based on  the theorem it is straightforward to see that for the 
sequences def ined by (2.1) we have 

1  N 
C, =  ,limm z ,g x,x,+& = 0, if k #  0. 

l-0 

Moreover,  since the power spectral density S(w) can be  def ined 
as 

S(w) = g  C,k,e’kW, 
k=-m 

we have S(w) = 1. 
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has a Cram&-Hida representation of finite multiplicity, an exact expres- 
sion for the coding capacity is given. 

I. INTRODUCTION 

Consider a  message X = (X,, 0  I r I T) transmitted through 
a  noisy channel  with output Y = (Y,, 0  I t I T) given by 

dx = X, dt +  u(t) dw, O<t<T, (1.1) 
where a( .) is a  nonrandom cont inuous function and  is noncon-  
stant and  bounded  away from zero, W  is standard W iener 
process, and  X is adapted to Y. X is subject to the power 
constraint 

s ‘X; dt I P,T, a.s. (1.4 
0 

where p0  is a  positive constant. This channel  is an  example of a  
mismatched t ime-continuous Gaussian feedback channel  
(MCGF). It is said to be  mismatched because the power cdn- 
straint is not expressed in terms of the covariance of the noise 
process N, =  /,f u( s) d&. , but&r terms of the covariance of some 
other noise process, namely, N, =  y. 

Mismatched channels can arise in jamming situations, in prob- 
lems where there is insufficient knowledge of the environment,  or 
where one  prefers to use a  constraint not expreSsed in terms of 
the channel  noise. Various special cases have been  treated (see, 
for example, Fano [5], Gallager [6], Ihara [9], and  Glonti [7]). 
General  results on  the information capacity for such channels 
have been  obtained by Baker [2], [3]. Here we are interested in 
evaluating the coding capacity of mismatched Gaussian channels.  
The main result of this correspondence is Theorem 1, which 
represents an  extension of the coding capacity results of 
McKeague [ll], [12] in two directions: to mismatched Gaussian 
channels and  to nonwhite Gaussian channels,  respectively. In 
Sections II and  III we deal with mismatched Gaussian channels 
without feedback. In Section IV we treat the feedback case under  
the assumption that the Gaussian noise process has a  
Cramer-Hida representat ion of finite multiplicity satisfying some 
assumptions on  the representation. As an  illustration of Theorem 
1  (see Example 2  in Section IV) we note that the coding capacity 
of the channel  in the example is given by 

co = 
PO 

2jif,U2( 1) . 

II. THE MISMATCHED CHANNEL W ITHOUT FEEDBACK FOR 
FINITE TIME INTERVALS 

Let N = (N,, 0  5  t I T) be  a  Gaussian noise process with 
reproducing kernel Hilbert space (RKHS) denoted (H, (( . 11). 
Throughout  this section T remains fixed. The distribution in- 
duced by N on  the cylindrical u-algebra B, of Iw to, ‘1  is denoted 
pN. For a  message X E Iw to. ‘1, the received signal is given by 

y=x,+N,, OstsT. 

The distribution of Y on  B, is given by 

PY,O> = k%v{.Y: x +Y E 01, D E B,. 
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