
the expression on the right in (A5) is finite, and so the integral in where 
(3) converges in quadratic mean. 
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Determination of the Merit Factor of 
Legendre Sequences 

TOM H0HOLDT AND HELGE E. JENSEN 

Abstract -Golay has used the ergodicity postulate to calculate that the 
merit factor F of a Legendre sequence offset by a fraction f of its length 
has an asymptotic value given by l/F= (2/3)-41fj+ 8f2, IfI I l/2, 
which gives F= 6 for IfI =1/4. Here this is proved without using the 
ergodicity postulate. 

I. INTRODUCTION 

The merit factor of a sequence of N elements x, , 0 I j I N - 1 
of value + 1 or - 1, is defined by 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988 161 

N-k-l 

Ck = c x,x,+k. 
j=O 

(1.2) 

Legendre sequences have length p (an odd prime) and are 
defined by 

x,=1 and xi= 1, if j is a square (mod p) , 

-1, if j is a nonsquare (mod p) 

(1.3) 
An “offset” sequence is one in which a fraction f of its elements 
is chopped off at one end of the Legendre sequence and appended 
at the other. Golay arrived at the formula 

l/F=(2/3)-4)fl+8f2, (1.4 

which we prove to be correct without using the ergodicity pos- 
tulate. 

In Section II we present a method for calculating the merit 
factor of any odd-length sequence, and in Section III we use the 
method in the case of offset Legendre sequences. 

Odlyzko has told us that Stephens announced an independent 
solution of the problem for Legendre sequences. More recently, 
Van Lint informed us that Heath-Brown and Birch have also 
announced a proof. 

II. CALCULATION OF THE MERIT FACTOR FOR AN 
ODD-LENGTH SEQUENCE 

Let (xj), j = 0,l; . ., N - 1 be any &- 1 sequence of odd length 
N. Let Q(z) = x0 + xiz + . . . + x,,+ iZ”“-’ be the z transform 
of the sequence. A straightforward calculation yields 

+ cN-l(e i(N-l)e + ,-Wl)e), (2.1) 

and therefore by putting ej = e(2ni/N)‘j, 
N-l N-l N-I 

1 lQ(c;)14 = N3 +2N c ckcNmk -t2N c c: 
j=O .  k=l k=l 

and 
N-l N-l N-l 

c lQ( - cj)14= N3 +2N( -l)N c ckcNpk +2N c c;. 
j=O k=l k-l 

Since N is odd, we get 

N-l 

2c ‘:=& ~~11Q(~j)14+Nf11Q(-t,)14 -N2. (2.2) 
k=l J-0 j=O 

F=N2 

We put s=Cy&i(]Q(~,)]~ + ]Q(- c,)]~) and obtain 

1/F=S/2N3 -1. (2.3) 

It now follows from a well-known interpolation formula [4, p. 891 
that 
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and therefore, 
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Case 3: Note that a = b = c # d. We get 

(2.5) 

so that N-l 1 

4 =( c __ 

N-l I-0 1+9 

Q( cj) (2.6) 
k=O 

(2.7) 

The inner sum in (2.7) can be calculated. The result depends, 
of course, on the relations between a, b, c, and d. In all cases we 
use partial fraction expansion of 

which corresponds to the term in the inner sum. 
Case 1: Note that a, b, c, and d are mutually different: 

(z+r,)(z+~,)(z+E,)(Z+cd)’ 

N-l 1 

c 

E 1 fJ -.J.-.- 

‘h + ‘J j=O 

but here the term in the brackets is zero, so the whole sum has 
value zero. 

Case 2: We have a = c, and a, b, and d are mutually differ- 
ent. We get 

and here (Ye = ez/(e,, - crr)(ed - eu) and 

(see [5, p. 1051). Therefore, the sum in this case is 

N* 1 1 

4 (w 
. , ~ . 

60) (Cd - 60) 

where 

Here 

(1 +I,)3 - (1: C/l 1 
is calculated by using the fact that the l/(1 + E,) are the roots of 
P(z)=zN((z~‘-l)N-l), and hence the l/(l+~,)~ are the 
roots of P, (z), where 

p,(u3) =~(u)P(cu)P(c~u) and 
1 fi c=--+j- 
2 2’ 

In Case 3, therefore, we obtain that the sum is 

3 - 
i L(Ed - %I . 

Case 4: We have a = b + c = d; we get 

where a2 = cz/(c, - cc)2 and q, = ef/(e, - cc)*, so the sum in 
this case is 

Case 5: We have a = b = c = d. Here we consider 
N-l C2.62 N-l 1 

c o ’ =I~o~=$$N4+;N2), 
J=o (f, + cJ4 / 

which follows easily from [6, p. 2231. Note that we here include 
z; cc from (2.7) in the inner sum. 
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Using these results, we obtain and 

S,=$(A+B+C+D) N-l 1 

c- v=l 1% - II2 
=;N2-;. (3.7) 

where 
N-l 

c lQ(dl” a=0 

C=-; Nf’ ~]Q(c,)]’ Q(~,>e(Z,>~,~,+e(Eb)Q<E,)~,E, 
n,b,c=O (Zb-Ea)(cc--f,) 
a#bZc 

a#b 

III. OFFSET LEGEND= SEQUENCES 

We now treat Legendre sequences as defined by (1.3). Long 
ago Gauss [7] knew that 

Q<li =l, QtEj) = 
i 

l+xjfi, if N =l (mod4), 
1+ jx,fi if Ng3(mod4), 

j#O. 
J ’ 

(3.1) 

Let .Q; (z) denote the .z transform of an offset Legendre sequence 
arising from t cyclic left shifts of a Legendre sequence. We  then 
have 

Therefore, 

and  

Qt(cjj> =‘~‘Q(‘j>. (3.2) 

IQ,(l)1 =1 (3.3) 

lQt('j)l'= 
1+N+2xj& if N = 1 (mod4), 
1+I?, if N = 3 (mod4), 

j+ 0, 

(3.4) 

which yields 

L N2+4xJN3/2+6N+4xjf i+1, 

if N=l (mod4), j#O. (3.5) 
N2 t2N+l, 

if N = 3 (mod4), 

We  are only interested in asymptotic results, so in the following 
calculations we, neglect all but the highest (in N) order term of 
Qt<cji>, l’Qt(~~j)I’v 4  lQt(cj)14. 

This is ahowed by crude estimations where we only consider 
the numerical value and use 

(3.6) 

Here (3.6) follows from 
(N-UP 1 

-- -= 
c v,Jr . u=l 

I I 
sin - 

N 

Hence if we use that ~/TX I sin x 4~~ for x E [0, n/2] and the 
logarithmic bound on the partial sum of the harmonic series, we 
get the result. Also, note from [6, p. 2241 that (l/12) N* -(l/12) 
of’(3.7) may be replaced by (1/4)Cf_;‘l/(sin2 (TV/N). 

In the sequel we use - to indicate that lower order terms are 
neglected. We  now treat each of the expressions A, B, C, and  D 
singly: 

A by(3.5) 

N* 
B -- .2 

8  

N-l 
t 

.z .c-‘8x X N+E 
.NC bbaub 

a,b=O 
n#b 

CL+_:, +  cf:t, +  c;-b +  c’,:;, 

(l- caPb)* xuxb 
a#b 

4 .@N2) (3.8) 

where we use (3.7) and the fact (e.g., [3]) that (ck + c,+k] I3 for 
Legendre sequences. 

The sum C is again 0( N6). This can be seen by summing first 
with respect to a, using Cc:iil/(l - ek) = (N - 1)/2, and then 
using a rewriting similar to the one that gave the two last 
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expressions in B. To treat D, we have 

3N2 “2’ lQA~,~*lQ~(41* 
D=4 a,b=O I1 - %-b,* 

a#b 

,“’ Nf1 lQ,(f,>,‘,Q,(Eb)12+2ReQt2(~b>Q:(E,).eb-u 

4 o.b=O I1 - %-bl* 
U#h 

3N2 N-l 1 

4 N3C 

N-l I+ $!+l + cl’;l 
I~. -4.3 c 

k=l ,l- Ek,2 k=l II- %A* 

+; ;N*-;+(2t-1)(2t-2)-(2t-l)(N-1)) 
i 

since the last sums equals 

c j(~~f~i-1+,l’~J-1)+2t-l 

I 

=~N2-~+22~2j-2(2t-1)(N-1)+(2t- l)(N-1) 
j=l 

=$N*-;+(2t-1)(2t-2)-(2t-l)(N-1). 

We can now summarize. By (2.3), we have 

l/F=& (S)-1 

=&(N3+Sl)-1 

-1 

=5+8(;)2-4(;) 

= ; + 8f2 -4,f, 

where IfI = t/N in agreement with Golay’s result. 

IV. CONCLUSION 

The formula (2.2) that was used in our calculations grew out of 
an attempt to calculate the merit factor using integrals. If, as 
before, Q(z) is the z transform of the sequence x0, xi,. . . , x,,,- i, 
simple calculations give 

$-&2”iP(eie)l 
N-l 

4d9=N2+2 c c;. 
k=l 

(4.1) 

This also follows from (2.1) by means of Parseval’s formula. 
Polynomials with & 1 coefficients considered on the unit circle 

in the complex plane have been intensively studied by Littlewood 
and many others. Unfortunately, there have been no results on 
integrals of the type (4.1), which can give new information on the 
behavior of the merit factor. (The situation will probably turn out 
to be the reverse.) However, one can try to evaluate the integral 
using interpolation, and the result [8, theorem 2.61 then gives 

(2.2) for odd N. This identity can also be verified by direct 
calculation (easy-when you know the result). The method then 
depends on our knowledge of the values of Q(z) for z = 
exp(i2rk/N), k = O,l;. ., N - 1. For Legendre sequences these 
values are known and simple to deal with, but in other situations 
it should be possible to obtain new information using this method. 

The method used by Golay in [3] is quite different. He assumes 
-and this is the ergodicity postulate-that if you are only 
interested in asymptotic results, it is allowed to treat the correla- 
tions as independent random variables. With this assumption you 
can then use the machinery of probability theory. For Legendre 
sequences, offset or not, this turns out to give the correct result. 

In [2] the same method leads to the general conclusion that the 
maximal value of the merit factor tends to 12.32.. . when the 
length tends to infinity. We doubt that this is true and, therefore, 
also doubt that the ergodicity postulate can be used in general. 

Concerning the terms A, B, C, D at the end of Section II, we 
find it probable that, for sequences with good merit factor, the 
contributions from B and C will vanish asymptotically. Hence, 
the merit factor probably never exceeds the value 6. 

This belief is supported, or at least is not rejected, by the result 
in [9]. Here the merit factor is calculated for several good 
sequences with lengths greater than 100. In every case the result 
is either strictly smaller than or suspiciously close to 6. We 
therefore make a new conjecture concerning the merit factor 
problem, namely, that asymptotically the maximum value of the 
merit factor is 6 and hence that offset Legendre sequences are 
optimal. 
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Bounds for the Size of Radar Arrays 

A. BLOKHUIS AND H. J. TIERSMA 

Abstract -Improved upper and lower bounds for the size of radar arrays 
are presented. 

INTRODUCTION 

From [l] we recall the following definitions. 
Definition 1: A radar array is an N X M matrix of ones and 

zeros, with a single one per column, such that the horizontal 
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