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An Explicit Construction of a Sequence of Codes
Attaining the Tsfasman–Vlădu̧t–Zink Bound

The First Steps
Conny Voss and Tom Høholdt,Member, IEEE

Abstract—We present a sequence of codes attaining the Tsfas-
man–Vlăduţ–Zink bound. The construction is based on the tower
of Artin–Schreier extensions recently described by Garcia and
Stichtenoth. We also determine the dual codes. The first steps of
the constructions are explicitely given as generator matrices.

Index Terms—Algebraic geometric codes, asymptotically good
codes.

I. INTRODUCTION

L ET be the finite field of cardinality and let
be a sequence of algebraic function fields overwhere

has genus and places of degree one
such that and

(1)

It is well known (see [6], [8]) that in this situation one
can construct asymptotically good sequences of algebraic
geometric (geometric Goppa) codes over

Let is a function field of genus
over and

The Drinfeld–Vlădu̧t bound (see [1]) tells us that

and it was shown by Ihara [3] and Tsfasman, Vl˘adu̧t, and Zink
[7] that, if is a square

For a square, and the
Tsfasman–Vl̆adu̧t–Zink (TVZ) theorem [7] says that the pa-
rameters of the related algebraic geometric codes are better
than the Gilbert–Varshamov bound in a certain range of the
rate. In [4] and [9] it is shown how to reach the TVZ bound
with a polynomial construction but the complexity of this
algorithm is so high that the actual construction, i.e., generator
or parity-check matrices of the code, is intractable. In a recent
preprint by Feng and Rao [10], the authors claimed to have
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found asymptotically good codes in an elementary way using
socalled generalized Klein curves which are defined by the
equations

over GF Pellikaan tried to figure out whether their claim
was correct (the curves are asymptotically bad as recently
found out by Garcia and Stichtenoth) and suggested the curves
with equations

over GF

It turned out that this gave a tower of Artin–Schreier
extensions which enabled Garcia and Stichtenoth to generalize
to an arbitrary square powerand to calculate the genera and
the number of -rational points and therefore to prove that
the curves were asymptotically good, so we have a tower of
function fields over reaching the Drinfeld–Vl̆adu̧t
bound The function fields of this tower are
defined in the following way:

Definition 1.1: Let be the rational function
field over For let

where satisfies the equation

with

In this paper we first present sequences of asymptotically
good algebraic geometric codes related to the function field
tower of Garcia and Stichtenoth, and we determine their dual
codes as well.

For a function field an algebraic geometric code
is of the form with where
the ’s are pairwise-distinct places of degree one in ,
and a divisor of such that

Then

For applications of such codes in practice one needs an
explicit description, which means an explicit basis for the
vector space or a generator matrix of the code
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Fig. 1.

The second function field in the tower is the Hermitian
function field and the related codes in our sequences are the
well-known Hermitian codes (see, e.g., [6]). In the second part
of this paper we will describe the codes corresponding to

in detail by constructing a basis of and a generator
matrix for As in the Hermitian case, it turns out that the
dual codes of the codes are of the same type.

From the special case , where and is
the pole of in , we get the pole numbers of While
in the pole numbers of the pole of are generated by
only two numbers, namely, and ; it turns out that in

one in general needs more than three numbers to generate
the whole set of pole numbers.

Our bases for the vector spaces consist of monomial
expressions in and (where negative exponents are
possible) which makes it easy to give a generator matrix
for the codes One could maybe hope that, in a similar
manner, a general description of the spaces for
would be possible, but unfortunately already for monomial
expressions in and are not sufficient to generate
the whole space.

II. PRELIMINARIES

We start with some notation and definitions that are used
throughout this paper. Many of them are the same as in [2].

function fields as defined in Definition 1.1;
genus of ;
set of places of the function field ;
number of places of degree one;
normalized discrete valuation associated with

;
different of the extension ;

conorm of a divisor of in ;
restriction of a place to

.

We recall some properties of the function fields (see
[2, Lemmas 2.1, 2.2]).

Lemma 2.1:

i) Suppose that a place is a simple pole
of in Then the extension has degree

and is totally ramified in
The place lying above is a simple pole
of

ii) For all there is a unique place which
is a common zero of the functions Its
degree is For , the place is
also a zero of , and we have In the
extension the place splits into places of

of degree one (one of them being ).

We introduce the following sets of places and divisors:
Definition 2.2: See Fig. 1.

i) For , let

and

and

ii) For , let
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and

iii) Let

and

and

and for , let

and

iv) For and let

and

and for and , let

and

v) Let denote the pole of in and for
, let be the unique extension of in

III. SEQUENCES OFASYMPTOTICALLY

GOOD CODES AND THEIR DUALS

Definition 3.1: For we denote the zero of
in by We define

with

and for

where

for

Definition 3.2: For we define the algebraic geometric
codes

Observe that the codes are generalized Reed–Solomon
codes and the codes are Hermitian codes (see [6]).

For and the
code is an code of length ,
dimension and minimum distance

, where

and (see [2, Theorem 2.10])

if mod

if mod .

Thus for the codes we get

and the right-hand side is in the limit as , which
exactly is the Tsfasman–Vlădu̧t–Zink bound.

In the following, we want to determine the dual codes of the
codes From [6, Proposition II.2.10], we know that

is again an algebraic geometric code with

(2)

where is a Weil differential of such that

and for all (3)

( is the local component of at the place ).
In order to determine the codes we therefore have to find

a Weil differential of with the property (3) and to determine
its divisor. Since the divisor of such a differential depends on
the different of we first compute the different.

Proposition 3.3: For we have
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Proof: For we have for the different (see [6,
Corollary III.4.11])

By [2], all places of appearing in the different of
over are totally ramified in , and

and for

The proposition now follows by induction.
Next we determine the principal divisor of in
Lemma 3.4: For we have

Proof: By Lemma 2.1 and Definition 2.2 we obviously
get

and

Observing that for and we have
, the assertion follows immediately by

induction.
Lemma 3.5: Let Then for

i)

ii)

Proof:

i) is an immediate consequence of Lemma 3.4.
ii) For the differential we have

and therefore for its divisor in
By [6, Remark IV.3.7.(c)]

and we obtain the assertion from Proposition 3.3.

Obviously is a Weil differential of with
property (3), and hence we get with (2) and Lemma 3.5 the
following result for the dual codes of the codes :

Theorem 3.6:For we have

with

where

if mod
if mod .

for

Remark 3.7: It is well known that the dual code of a
Hermitian code again is a Hermitian code, namely, for

one has (see [6, Proposition VII.4.2])

with

From Theorem 3.6 we get a similar result for the codes,
that is

with and
For it is not completely true that the dual codes are of

the same type as the codes, since the divisors prescribe
in addition some zeros for the functions.

IV. THE CODES RELATED TO

Our next aim is to describe the codes corresponding to
explicitely which means that we want to determine

a basis for a space and a generator matrix for
Since we are only dealing with the codes related to, we set

where

and

Then by Definition 3.2

is an code with

and

(4)
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We want to construct a basis of where all
elements are of the form

with

With Lemma 2.1 we get for the principal divisors of
and in

(5)

and from the valuations of and at the different
places we get the conditions on the exponents such
that The difficult part is to find enough
linearly independent elements of that form.

Definition 4.1: We define the following sets:

Lemma 4.2: For and we
have

Proof: Trivial.
Theorem 4.3:The set

is a basis of over
Proof: Using (5) and Definition 4.1 one can easily verify

that

for

which means that
Let Then

and from Lemma 4.2 we obtain that all elements in
have different orders at , which implies that they are
linearly independent. (Observe that for we
have and

.)
Since the dimension of is

(see (4)) it remains to prove that In order to
count the elements of we need some preparations.

Definition 4.4: For we define

i)

ii)

if

if

if

For we have (see [6, p. 212)

(6)

and it is easy to check that for

(7)

Now we set (for and as usual)

and

Lemma 4.5:
i) if or .
ii) if and .
iii) If then

and or

and or

and

Proof: We write with
Recall that

From this follows that and if then
and or and If then

thus i) and ii) now follow immediately.
Suppose i) and ii) yield either and

or For we have

and

that implies

and since also If then

hence and if then

hence
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Definition 4.6: We define the set

The following remark is easy to check.
Remark 4.7:

i)

ii)

iii)

With Remark 4.7 ii) and Definition 4.4 i) we obtain

(8)

(Observe that in the definition of we have .)
By Remark 4.7 i), ii) and Definition 4.4 ii) follows

where

if and
else

Thus by (7)

(9)

Finally, from Remark 4.7 iii) we get

(10)

Lemma 4.8:For we have

and

Proof: We write again with
As and we have

Therefore,

and hence

Moreover,

thus

which implies

The next proposition finishes the proof of Theorem 4.3.
Proposition 4.9:

Proof: First we consider the case Using (8)–(10)
we find

(11)

For and it is easy to verify by (7) that
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The assertion for is now an immediate consequence of
(11), (6), and Lemma 4.8. Let now Using (8)–(10),
Lemma 4.5 iii), and (6) we obtain

Corollary 4.10: The pole numbes of in are of the
form

with

Example 4.11:It is well known that the pole numbers of
in the Hermitian function field are generated byand ,

which implies that the set generated by and is a
subset of the pole numbers of in One would perhaps
guess that there is just one other generator needed to get the
whole set, but that is not true as the following examples show.

For the generators are: .
For the generators are: .
For the generators are: .
Our next aim is to specify a generator matrix for the codes

First we introduce some new notations. We define for
the set

and

For and let be the
common zero of , and From the equations
of the function fields and over follows obviously
that such places exist and that for

We define moreover and
the common zero of and for

Now we can rewrite the divisor as

Next we fix some ordering on the set

and define for with
the vector

where

if
if and or
if and

Corollary 4.12: Let

with for Then the
matrix whose rows are is a generator matrix of

Proof: This is an immediate consequence of Theorem
4.3 and the fact, that for we have

The codes from considered here are better than BCH
codes, and are comparable with the codes coming from the
function field studied by Petersen and Sørensen in [5]. These
codes over have and

where the codes we consider have and

Finally, we give an example showing that one cannot find
analogous bases for the spaces with By
an analogous basis we mean a set of linearly independent
functions of the form

(12)

Example 4.13:We consider the function field Its
genus is and the pole numbers of the functions

that are of the form (12) are

From the Weierstrass Gap Theorem (see [6, Theorem I.6.7])
we see that three pole numbers are missing.

Remark 4.14:Already in this simple example we see, that
the functions of the type (12) only generate a subspace of

for An idea could be to consider sequences
of subcodes of the codes in Definition 3.2 replacing the
spaces by the largest subspaces generated by functions
as in (12). However, after computing many examples of such
subcodes in and , to us such an attempt appears not very
promising, since we got the impression that those subcodes
are asymptotically bad.
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[1] V. G. Drinfeld and S. G.Vlăduţ, “Number of points of an algebraic
curve” Func. Anal., vol. 17, pp. 53–54, 1983.

[2] A. Garcia and H. Stichtenoth, “A tower of Artin–Schreier extensions of
function fields attaining the Drinfeld–Vlădu̧t bound,”Inventiones Math.,
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