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An Explicit Construction of a Sequence of Codes
Attaining the Tsfasman—-¥du—Zink Bound
The First Steps

Conny Voss and Tom Hgholdiember, IEEE

Abstract—\We present a sequence of codes attaining the Tsfas-found asymptotically good codes in an elementary way using

man-VIadut-Zink bound. The construction is based on the tower ggcalled generalized Klein curves which are defined by the
of Artin—Schreier extensions recently described by Garcia and equations

Stichtenoth. We also determine the dual codes. The first steps of

. L . . . 3 3 .
the constructions are epr|C|ter given as generator matrices TP +xi +wig = ()7 7= ]_7 ceem — 1

Index Terms—Algebraic geometric codes, asymptotically good . . . . .
codes. over GF(8). Pellikaan tried to figure out whether their claim

was correct (the curves are asymptotically bad as recently

found out by Garcia and Stichtenoth) and suggested the curves

I. INTRODUCTION with equations
ET F; be the finite field of cardinality and let(£;);>1 5 5 )

be a sequence of algebraic function fields ovewhere ~ Zit1%i T % T Ziy1 =0, 1=1,---,m — 1 over GR4).

F;/F; has genusgy; and N; = N(F;) places of degree one

It turned out that this gave a tower of Artin—Schreier
such thatg; — oo and

extensions which enabled Garcia and Stichtenoth to generalize
lim N;/g; > 1. (1) toan arbitrary square powerand to calculate the genera and
i—o0 the number ofF-rational points and therefore to prove that
It is well known (see [6], [8]) that in this situation onethe curves were asymptotically good, so we have a tower of
can construct asymptotically good sequences of algebréigction fields(F;);>, overF . reaching the Drinfeld—\Adu

geometric (geometric Goppa) codes o¥gr bound A(¢?) = ¢ — 1. The function fields of this tower are
Let N;(g) := max{N(F)|F- is a function field of genus defined in the following way:
g over F;} and Definition 1.1: Let I} := F2(x;) be the rational function

field overF .. Forn > 1 let
A(l) := lim sup Ni(g)/9g.

g=ee Fn-l—l =r, (Zn-l—l)
The Drinfeld—VEdu bound (see [1]) tells us that where z,,, satisfies the equation
< —
A(l) < \/Z 1 Z’;Il-i—l + Pl = xz—l—l
and it was shown by lhara [3] and Tsfasmanadlf; and Zink . h
[7] that, if I = ¢? is a square wit
A(q2) —g—1. Xn = zZp/tn—1 (forn >2).
For [ a square] > 49 and lim;_.o N;/g; = A(l) the In this paper we first present sequences of asymptotically

Tsfasman-\Adu-Zink (TVZ) theorem [7] says that the pa_good algebrai.c geomeftric codes related to the function field
rameters of the related algebraic geometric codes are belfyyer of Garcia and Stichtenoth, and we determine their dual
than the Gilbert—Varshamov bound in a certain range of tG@des as well. . .

rate. In [4] and [9] it is shown how to reach the TVZ bound For & function fieldF;/F . an algebraic geometric cod
with a polynomial construction but the complexity of thidS of the formC; = Cp(D;, Gi) with D; = Py+- - -+, where
algorithm is so high that the actual construction, i.e., generaff £;'s are pairwise-distinct places of degree oneiF z,

or parity-check matrices of the code, is intractable. In a receiftd G @ divisor of 1%, /F ;> such thatupp(G;) Nsupp(D;) =
preprint by Feng and Rao [10], the authors claimed to hafle Then
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Fig. 1.

The second function field> in the tower is the Hermitian  cong, /5, (A) conorm of a divisord of £}, in £, (k<n);
function field and the related codé€s in our sequences are the PN Fj, restriction of a placeP € P(F,) to
well-known Hermitian codes (see, e.g., [6]). In the second part Ly (n>k).
of this paper we will describe the codég corresponding to
F3; in detail by constructing a basis 8f(G3) and a generator
matrix for C5. As in the Hermitian case, it turns out that th
dual codes of the codess are of the same type.

From the special cas@'s = sP-., wheres >0 and P, is
the pole ofz; in £3, we get the pole numbers dt... While
in F, the pole numbers of the pole af, are generated by
only two numbers, namely; and ¢ + 1; it turns out that in

We recall some properties of the function fiellg'F - (see
42, Lemmas 2.1, 2.2]).

Lemma 2.1:

i) Suppose that a plac® € P(F,) is a simple pole
of z,, in F,,. Then the extensiod’, /[, has degree
[Fry1: 1] = g and P is totally ramified inf}, 1 /F,.
The placeP’ € P(F,,4+1) lying abover is a simple pole

. of z,41.
F3 one in general needs more than three numbers to generat ntl . . :
the whole set of pole numbers. |(|J) I_:or all n > 1 there is a unique plac@n € P(F,,) which
is a common zero of the functions, 2o, 23, -, z,. ItS

Our bases for the vector spac€87s) consist of monomial
expressions iy, z2, and zz (where negative exponents are
possible) which makes it easy to give a generator matrix
for the codesCs;. One could maybe hope that, in a similar
manner, a general description of the spacé§;) for i > 1 ) . .
would be possible, but unfortunately already @ monomial Ve introduce the following sets of places and divisors:
eXpressions in, s, xs, andz, are not sufficient to generate  Pefinition 2.2: See Fig. 1.
the whole space. i) Forn > 3, let

degree isdeg Q,, = 1. For 1 < k < n, the placeq,, is
also a zero ofrx, and we haverg, (z1) = ¢* L. In the
extensionF;, 1/ F;, the place@,, splits intog places of
L, 11 of degree one (one of them beilg,+1).

Il. PRELIMINARIES 5(()") = {P €P(F)|PNF,_i =Qn_y andP # Q,}
We start with some notation and definitions that are used
throughout this paper. Many of them are the same as in [2]. and

E“_L > 1‘ function flglds a.s defined in Definition 1.1, P Z P
gi = g(F;) genus ofF;/F z; 0
P(F) set of places of the function fielf/F ; pesg
N; = N(F;) number of places® € P(F;) of degree one;
p normalized discrete valuation associated with i) For 1 < < [(n —3)/2], let

p-

Diff (F,,/F},) different of the extensiod, /Fy, (k< n); S = (P e P(F,)|PNF,_, € S"TY
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and

iii) Let
T .= (P e P(F)|PNF, =Q, andP # Q,}

and
E® = Z p
rPeT(2)

and forn > 3, let
T .= {P e P(F,)|P N F_, € T}

and
EM = Z P.
reT(n)

iv) Forn > 4 andn = 0 mod 2, let

U, = {P € P(F)|\PN Fo_y € 8071 0}

and

M

n—1 """

>r
PeUl™,
and forn > 5andl <i < |[(n—2)/2], let
USH = {P e P(F)|PNF,y € USTYY
and

M2(?-|)—1 =

> P

reulil,

v) Let P, € P(F}) denote the pole of; in £} and for
n > 2, let PCEZ}) be the unique extension @, in Fj,.

Ill. SEQUENCES OFASYMPTOTICALLY
GooD CODES AND THEIR DUALS

Definition 3.1: For o € F 2 we denote the zero af; — «
in Fy by P,. We define

>

acF 2\ {0}

G® :=sP® with 0<s< P +¢*—q-2

Coan/Fl (Pa)

and forn > 3

DM =Qu+ D"+ Y conp,/p, (Fa)

a€F 2\ {0}
L(n=3)/2]
G = Z miMQ(Z)_l +rE™ 4 spM)
i=1
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where

. -3
0<m; < g%t mrlszs{”2 J

0<r<¢"t4q¢g2-g-2
0<s< ¢ +¢" —q-2.

Definition 3.2: For: > 1 we define the algebraic geometric
codes

C; == C (DD, W),

Observe that the codes; are generalized Reed—Solomon
codes and the codés, are Hermitian codes (see [6]).

Fori > 3 and2g; — 2< deg G < (¢? — 1)¢" ! + ¢ the
codeC; is an[n;, k;, d;] code of lengthn; = (¢ —1)¢"~* +¢,
dimensionk; = deg G® + 1 — g; and minimum distance
di > n; — deg G, where

4 L(i—3)/2] '
deg G = (¢—1) Z m;q’ +(q—1)r+s
j=1

and (see [2, Theorem 2.10])

¢ +ql— %q(i/2)+l

g+ ¢ — gtD/2 _24(-1/2 4 1 if {=1mod2
9i = ‘ ‘
— 2gi2 g1 g

if ;Z=0mod2.
Thus for the codes we get

and the right-hand side is—1/¢ in the limit asi — oo, which
exactly is the Tsfasman—&tlu—Zink bound.

In the following, we want to determine the dual codes of the
codesC;,i > 3. From [6, Proposition 11.2.10], we know that
Ci+ is again an algebraic geometric codle(D, H®) with

H® = p&) _ gt 4 (1) (2)
wheren; is a Weil differential of; /F . such that
vp(i) =—1 and 7, (1)=1 forall P<D® (3)

(n:, is the local component of; at the placeP).
In order to determine the codéx- we therefore have to find
a Weil differential of #; with the property (3) and to determine
its divisor. Since the divisor of such a differential depends on
the different of F; /Fy, we first compute the different.
Proposition 3.3: For n > 2 we have

|(n—3)/2] n—2j—3

Z Z q’MQ(;L)rl

j=1 1=0

Diff (£ /F1)= (¢ = 1)(¢ +2) (

n—3 n—2
+ Z ¢E™ + Z qu§:}>> .
i=0 i=0
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Proof: For n > 2 we have for the different (see [6,

Corollary 111.4.11])
Diff (F,,/Fy) =Diff (F,/F—1)
+cong, /g, _, (Diff (F—1/F1)).

By [2], all places of F,,_; appearing in the different of
F,_; over Fy are totally ramified inF},, andDiff (F»/Fy) =

(¢ — 1)(g+2)P2 and forn > 3
Diff (£ /Fr1) = (g — 1)(q¢ +2)

L(n—3)/2]
S ML+ E™ P .
j=1

The proposition now follows by induction. O
Next we determine the principal divisar; )™ of z; in F,.

Lemma 3.4:Forn > 3 we have
[(n—3)/2] [(n—=2)/2] ‘
(371)(") =Q, + Dgn) + Z qn—Q—QZMQ(Z)_l
=0 =1

+ qn—QE(n) _ qn—lpcgg)

Proof: By Lemma 2.1 and Definition 2.2 we obviously

get

(21)® = Q2+ E®) —qPY)
and
(20)® = Qs+ D + ¢B® — *PY.

Observing that forn > 4 andn = 0 mod 2 we have
the assertion follows immediately by Cﬁ(p(3)77,E(3) + sPS))L = Cﬁ(D(3)7pE(3) + apcgg))
O

(n) _ on)
_[]n—l - S((n—4)/2)+1’
induction. )
Lemma 3.5:Let z := z{ — z;. Then forn > 2
L(n—3)/2]

) (9™ =D+ S DM
=1
L(n—2)/2] ‘ -
+ Z qn_QZ_QMQH—l
=1
+ qn—QE(n) _ qn-l—lpcgg)
i) (d2)™ = (g—1)(g+2)

[(n—3)/2] n—25-3 n—3 ‘
X X A+ d Y
=0

J=1 =0
n—2 ]
+ <(q -D(g+2)) ¢ - 2q"_1> P,
i=0

Proof:

i) is an immediate consequence of Lemma 3.4.
i) For the differentiald> we have

dz = d(x({z —x1) = —dry

and therefore for its divisor itF},, (dz)™ = (dz)™.
By [6, Remark 1V.3.7.(c)]

(dz)™ = —2(2)") + Diff (F,, /F})

and we obtain the assertion from Proposition 3.3

Obviously z~tdz is a Weil differential of F,, /F 42 with
property (3), and hence we get with (2) and Lemma 3.5 the
following result for the dual codes of the cod€s, i > 3:

Theorem 3.6:For i > 3 we have

Co(DD, GO = ¢ (DD, HD)
with

L 0 W
HO = Z NjM2j+1+PE(Z)+UPc§<z>)_ Z D} =6 M; 2y

i=1 i=1

where
if ¢ =0 mod2
if ¢ =1 mod?2.

. . I‘_3
pi=q ¥t —qg—2—p; for 1<j< V2 J

Remark 3.7:1t is well known that the dual code of a
Hermitian codeC, again is a Hermitian code, namely, for
0 < s < ¢®+¢%>—q—2one has (see [6, Proposition VI1.4.2])
C(D®, sPO)t = Co(DP), 0 PY)

with o =¢*+¢> —g—2—s.

From Theorem 3.6 we get a similar result for the cofgs
that is

withp=¢>-2—rando=¢*+¢ —qg—-2—-s.
Fori > 4 it is not completely true that the dual codes are of
the same type as the cod@s since the divisorg () prescribe
in addition some zeros for the functions.
IV. THE CODES RELATED TO F3/F p

Our next aim is to describe the codes corresponding to
F3/F . explicitely which means that we want to determine
a basis for a spac&(G®)) and a generator matrix fof’.
Since we are only dealing with the codes related’ipwe set

Py:=P® E:=E® Dy:=D{ D:=D®
G(r,s) :=G®
where
0<r<¢—2 0<s<q'+¢—q-2
and

2¢° — 49 < (¢-1)r+s<qg* =" +q.
Then by Definition 3.2
C(r,s) = Ce(D, G(r,3))
is an [n, k, d] code with

n=q¢"—¢+q k=@@-Ur+s—¢"+2

and
d>¢* - +q—(¢q—1r-s. (4)
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We want to construct a basis of(G(r,s)) where all Definition 4.4: For [ € Z we define
elements are of the form , . ) )
) (D) :=#{E)N0<4,0< < g1,
T S
zitwfzg With ¢,40,5 € Z. g+ g+ <)
With Lemma 2.1 we get for the principal divisors ef, x2, _
and z3 in F; 0, l if <0
(21) = Q3+ Do + ¢E — ¢*Poc i) 1) = { +1J +1, if0<i<q’-1
(z2) = Q3 +qDo — qF — ¢Pus (5) 7, if 1> q2—1.

(z3) =qg+1)Q3— (¢ + DE - (g +1)Pss

> ¢%>—g—1 we have (see [6, p. 212
and from the valuations ofy, x>, and 23 at the different =1 1 ( [6. p )

places we get the conditions on the eXp(?ne'rﬂt_ng,j such hl)y=1+1- %q(q -1) (6)
thatz' ¥ 2, € L(G(r, s)). The difficult part is to find enough o
linearly independent elements of that form. and it is easy to check that fdr> 0

Definition 4.1: We define the following sets:
Li(r,s) :=={(i1,42,J)|0 < 41,0 < i, j < g — 1,
ioq +j(g+1) < s —ird’,

h(l) 4 1l +q) = h(l + q)- (7

Now we set (forr and s as usual)

ioq + jlqg+1) <r+ivq} a:= {%J d:= {EJ and c:= {ﬁJ
Io(r,5) i={(ir, —iz, |1 < iz < g1 > i2q,0 < j < g — 1, 2 1 -

Jg+1) < s+isg =g, !Semm? t‘r’c} <o L

. e p )c—1<dsc Te<gorr .

ila+1) s rtiza i, i) d=q—21if c=qandr = 1.

(i1 — 1, —ia +q,j) € Li(r,s)} i) If d = 0 then

I3(r, s) :={(—i1,42, |1 <41, 1 < iy < g—1,
toq > 11,0 <7< g—1,
isq+j(g+1) < s+ind’,
i2¢+J(q+1) <r—iiq}

a=q—1 and r>¢*—q—3, or
a=q—2 and r=¢*—-2, or
c=¢q=2 and a=7r=1.

I(r,s) :=11(r, s) U Io(r, s) U Is(r, 5) Proof: We write s = cq(¢*>—1)+8 with 0 < < ¢ —q.
Recall that
Lemma 4.2:Foriy,l; € Z and0 < i2,0ls, 7,k < ¢g—1 we
have 2¢° —4g<(g—Dr+s<q¢' = +q
i1¢° +iaq+ g+ 1) =La® + g+ k(g+1) From this follows thatl < ¢ < ¢, and if c = ¢q thenr = 0
& (iy,i2,5) = (I, 12, k). andg<g,orr=1andg = 0. If c<gq, then
Proof: Trivial. O ((a-1)/gec—1/q<a/qg< ((¢—1)/q)(c+1)

Theorem 4.3:The set thusc— 1 < d < ¢. i) and ii) now follow immediately.

B(r,s) == {aia% 23| (i1, 12, §) € I(r,5)} Supposed = 0. i) and ii) yield eitherc = 2 = ¢ and

. . r=1=aorc=1 Forc=1we have
is a basis ofL(G(r,s)) overF .

Proof: Using (5) and Definition 4.1 one can easily verify a=q—-1+|(B-7)/qlg+1)]

that
and
(0 2220) > —G(r,s) for (i1,io,7) € I(r,s)

which means thaB(r,s) C L(G(r, s)).
Let u = z'a¥ 2} € B(r,s). Then that implies

—vp, (u) =i1¢* +i2qg+ j(g+1) a>q—2+(*=3-7)/(q+1) = 2¢—3—(r+2)/(q+1) > q—2

and from Lemma 4.2 we obtain that all elementsB(r,s) and sinced = 0 alsoa < g— 1. If a = ¢ — 1, then
have different orders af’,,, which implies that they are
linearly independent. (Observe that {ox, iz, j) € I>(r, s) we FHq>p-r>¢ -3q—qr
have(i; — 1,42+ q,7) ¢ I (r,s) andiiq? +iag+ j(g+1) =
(i1 = 1)¢* + (d2 + 9)¢* + j(g + 1).)

Since the dimension af(r, s) isk = (g—1)r+s—¢>+2¢ 0>8—r>q° —3¢q—qr
(see (4)) it remains to prove thgtl(r,s) = k. In order to
count the elements df(r, s) we need some preparations.  hencer = ¢* — 2. O

s=q" —q+P>2¢ —4q—(q—1)r

hencer > ¢*> — ¢ —3, and ifa = ¢ — 2, then
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Definition 4.6: We define the set
J(Tv 3) = {(ilv _L27J)|1 S i2 S (Lil Z iQ(LO S J S q— 17
Jlg+1) < s+ixq—ird’,
Jlg+ 1) <r+4id2q+i1q}.

The following remark is easy to check.
Remark 4.7:

) Iao(rs) = J(r,s)\J(r — ¢* = q,5)
i) r+ig<s—ig?<ei<a

i) h(r = q) = h<7’ ) EJ q)

lr/a]-1
+ Z p(r —iq) for r > 2q.
=1
With Remark 4.7 ii) and Definition 4.4 i) we obtain

a

#L(r,5) = > (h(r+ig) = h(r = * + iq))
_LS/q °]
+ Z (s —iq®) = h(s — (i + 1)¢*))
i=a+1
=h(s—(a+1)q —I—Z (r +1q)

— h(r — ¢* +1iq)). (8)

(Observe that in the definition df (r, s) we havei, < g—1.)
By Remark 4.7 i), ii) and Definition 4.4 ii) follows

d a
#la(r,s) = Z ( Z p(r + i2q +i1q)
iz:l i1=i2(1
a+1
= > w(r—(¢* + @) +i2q+irg)
t1=t2q
d L(s+i2q)/4*]
+ Z Z p(s +i2q —i14°)
iz:l i1=a+1
L(s+i20) /4]
- Z u(s +izq —i1g%) | 4 €(a)
11 =a+2
where
(s = (d+Dg(¢* = 1)) = p(r + d(¢* + ),
e(a) = if d < canda = —1 mod ¢
0, else
Thus by (7)
#Iy(r,s) =h(s +dg — (a+1)¢%) — h(s — (a + 1)¢%)

+e(a) = h(r - qud(q2 +q))

hir —q +Z

—hir—gq +aq+Lq)). 9)

(r+aq+1q)

Finally, from Remark 4.7 iii) we get
lr/al

Zh7—Lq

Lemma 4.8:For d > 1 we have

#13(r, s) (20)

s+dg—(a+1)@F > —q-1
and
r—qg+qg+ag+dg>¢ —q-1
Proof: We write agains = cq(q?> — 1) + 8 with 0 <
B<qg®—q. Asd>1and(qg—1)r+ s>2¢> — 4qg we have
(q+1)(2¢ —q-1)
:2q3+q2—2q—1<q7‘+s+d(q2+q)+q—1
=(g+1)s+d(q*+q) — qlcq(q® — 1)
+3-7r)+q-1

Therefore,
g-r
2q2—q—1§s+dq—q2<cq—1 +
( )q(q+1)
<s+dq—aq’
and hence
s+dq—(a+1)q22q2—q—1.

Moreover,

(g+1)(2¢° —2¢ - 1)

=2¢° -3¢—-1<qgr+s+(d-1(F+¢+q-1

thus
2% —2q—1<r+oglg—1)+ =" +(d—1)
q q > q\q 7+ 1 q
<r+4+ag+dg
which implies
r—q¢+q+aqg+dg>q® —q—1. O

The next proposition finishes the proof of Theorem 4.3.
Proposition 4.9:

#I(Tv 3) =

Proof: First we consider the case> 1. Using (8)—(10)
we find

(q—1)7‘+3—q3+2q.

#1(r,s) = h(s+dg—(a+1)¢*)+e(a) = h(r—g+d(¢* +q))
d+a Lr/al
—i—Z r+ig)—h(r—q*+iq))+ Z h(r—iq)
=1
=h(s+dq—(a+1) ?)+e(a)=h(r—¢*+d(q*+q))
q
—i—Z h(r—q*+dg+aq+iq) (11)
=1
Forc¢>d anda = —1 mod ¢ it is easy to verify by (7) that

h(s4dg—(a+1)¢%) + ¢(a)

=hs+q+dg—(a+1)¢*) —q



134

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997

The assertion fo] > 1 is now an immediate consequence oénd define form = i;¢* + i2q + j(q+ 1) with iy,45,j € Z

(11), (6), and Lemma 4.8. Let now = 0. Using (8)—(10),
Lemma 4.5 iii), and (6) we obtain

#I1(r,s) =h(s — (a+1)¢? +Zh7—‘qu
=0
q lr/q)
- Z h{r —iq) +Zh7—Lq
i=q—a 1=
¢ q—1
h(s—q?’—l—q)—i-Zh(r—i-iq)
=1
ifa=q¢-1
q—2
= h(s—q3+q2)+2h(7’+iq)
=0
fa=¢g—2andc=1
h(4)+ 1+ h(1)+ h(3)
\ lfCIqI2

=(g=Dr+s—¢*+2q¢ O

Corollary 4.10: The pole numbes of,, in I3 are of the

form
U I(0, s).

s>0

iq* +i2q+ (g +1) with (ig,4,5) €

the vector
Um = (ua,ﬁ"/)(a,,@,w)el\l
where
a2 glad i o £ 0
Uagy = 0, if &« =0and(4; #0 oriy #0)
7, if « =0andi; =i, =0.

Corollary 4.12: Let
{mdley = {id® +i2g + j(g + D\ (i, iz, 5) € I(r, )}

with m; <myyy for 1 <1< k—1. Thenthek x (¢* — > +¢)
matrix whose rows are,,,, , - - -, 4, IS a generator matrix of
C(r, s).

Proof: This is an immediate consequence of Theorem
4.3 and the fact, that fon = z'zi?2] € B(r,s) we have
U'(Poz,ﬁ'y) = UaBy-

The codes fromF; considered here are better than BCH

codes, and are comparable with the codes coming from the
function field studied by Petersen and Sgrensen in [5]. These

codes overF . haven = ¢* and
k+d>q' =53¢ +39+1

where the codes we consider have= ¢* — ¢ + ¢ and

Example 4.11:1It is well known that the pole numbers ofk + d > ¢* — ¢® — ¢* + 3q.

P, in the Hermitian function field are generateddgndq+1,
which implies that the set generated &y and¢(q + 1) is a

Finally, we give an example showing that one cannot find
analogous bases for the spacé6G(") with i > 4. By

subset of the pole numbers &%, in F3. One would perhaps an analogous basis we mean a set of linearly independent
guess that there is just one other generator needed to getfthetions of the form
whole set, but that is not true as the following examples show.

For ¢ = 2 the generators aret, 6,9, 11.
For ¢ = 3 the generators are, 12, 22, 28, 32, 35.
For ¢ = 4 the generators arés, 20, 37, 58,65, 70,75, 79.

Our next aim is to specify a generator matrix for the codes
s). First we introduce some new notations. We define f

C(r,
a € Fpe\{0} the set

Mo = {(B,7) € (F*|p" + p = ot

andy? +v = (a7t p)? ).
Fora € F2\{0} and(3,v) € M, let P,3, € P(I}) be the
common zero ofy —a, 2o —

of the function fieldsf, and I3 over -2 follows obviously
that such places exist and that ferc F\{0}

> P,

(B,v)EMa

Coan/Fl (Pa) =

We define moreove, := {¢ € Fpele? + ¢ = 0} and
Pyo. € P(L5) the common zero ofcy, x5, and zs — ¢ for
e € My. Now we can rewrite the divisoD as

D= Z Pooe + Z Z Pugy.

<€ My acF 2\(0} (B7)EMa

Next we fix some ordering on the set

M = {(avﬁv 7)|Pa,ﬁ"/ S D}

f= Ip:feﬁa@) (12)

Example 4.13:We consider the function field’,/F4. Its

enus isg,; = 13 and the pole numbers of the functions
/:(24P§o)) that are of the form (12) are

0,8,12, 16, 18, 20, 22, 23, 24.

From the Weierstrass Gap Theorem (see [6, Theorem 1.6.7])
we see that three pole numbers are missing.
Remark 4.14:Already in this simple example we see, that

(3, andz3 —~. From the equations the functions of the type (12) only generate a subspace of

L(G) for 4 > 4. An idea could be to consider sequences
of subcodes of the codes; in Definition 3.2 replacing the
spaceL(G™) by the largest subspaces generated by functions
as in (12). However, after computing many examples of such
subcodes ity and I, to us such an attempt appears not very
promising, since we got the impression that those subcodes
are asymptotically bad.
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