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Fast Decoding of Codes from Algebraic 
Plane Curves 

J. Justesen, K. J. Larsen, H. Elbr$nd Jensen, and T. Hdholdt 

Abstract-Improvement to an earlier decoding algorithm for 
codes from algebraic geometry is presented. For codes from an 
arbitrary regular plane curve we correct up to d*/2 - m2/8 + 
m /4 - 9/8 errors, where d* is the designed distance of the code 
and m is the degree of the curve. The complexity of finding the 
error locator is O(n7/3), where n is the length of the code. For 
codes from Hermitian curves the complexity of finding the error 
values, given the error locator, is 0( n’), and the same complex- 
ity can be obtained in the general case if we only correct 
d”f2 - m2/2 errors. 

Index Terms-Decoding, algebraic geometry codes. 

I. INTRODUCTION 

I N [ 11, we presented an algorithm for the decoding of codes 
constructed from a nonsingular plane algebraic curve. This 

algorithm has complexity 0( n3),’ where n is the length of the 
code, and corrects d*/2 - m2/4 errors, where d* is the de- 
signed distance of the code, and m is the degree of the curve 
involved in the construction. 

In [2], this algorithm was treated in the proper algebraic 
geometry setting by A. N. Skorobogatov and S. G. VladuI, 
so they could decode codes from arbitrary algebraic curves, 
i.e., geometric Goppa codes, and in some cases more errors 
were corrected. 

Based on their results, and some deep algebraic geometry, 
R. Pellikaan [3] proved the existence of a polynomial time 
algorithm, which corrects (d” - 1)/2 errors for codes from 
maximal curves and recently S. G. Vladut [4] extended this 
result to any geometric Goppa code. 

In this paper, we return to the codes treated in [l], and 
improve on the algorithm in several ways. For codes from an 
arbitrary regular plane curve we correct d*/2 - m2/8 + 
m /4 - 9/8 errors. We use a modified version of an algo- 
rithm by Sakata [5] to find the error locator in time O(mt2), 
where m is the degree of the curve, and t is the number of 
errors. For good codes one has m - fi and t 5 n - 
q A, so the complexity is 0( n713), when we consider good 
codes over increasing fieldsizes. 

The error values are then found by a method, which for 
codes from Hermitian curves has complexity O(m2q2), 
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which under the same assumptions as above is 0( n2). We 
also show how to find the error values with the same com- 
plexity in the general case, if we only correct d*/2 - m2/2 
errors. 

The paper is organized as follows. Section II reviews the 
code construction and the overall idea in the decoding method. 
Section III treats the error locator polynomials and in section 
IV we present the modified version of Sakata’s algorithm, 
which we use to determine the error locator. Section V 
presents the method for determining the error values, both in 
the general case and in the case of Hermitian curve. Finally, 
section VI contains the conclusion and a discussion. 

II. THE CODES AND THEIR DECODING 

We shall in this section give the construction of the codes 
and the main ideas of their decoding. Let F4 be a finite field 
with q elements, and let C(x, r) be a polynomial from 
$1~ ~1. 

The set of points (x, r) where x and y are in the 
algebraic closure F of F, for which C(x, u) = 0 is called 
an afine curve. The points on the curve with both coordi- 
nates in Fq are the rational points. The curve is regular if 
the projective closure is regular, in particular this implies that 
C( x, y), is absolutely irreducible. If the curve is regular and 
C( x, y) has degree m, then the genus g of the curve is 
given by g = (m - l)( m - 2)/2. 

In order to describe the code construction and the decoding 
we need a total ordering of the pairs of natural numbers. We 
choose the so-called graduated total degree ordering <T 
where (0,O) <r (1,0) <r (0, 1) <r (2,O) * * * . Now let 
C( x, r) = 0 be the equation of a regular curve of degree m 
and let P,, P2;*., P, be the rational points of the curve. 

n-l 
Let j be a natural number m - 2 5 j I 

i I 
- and let 

m 
Po(X, Y>, (01(x, Y),“‘, (ps(x, y) denote the monomials 
xayb, where (a, b) I, (0, j) ordered by <r . The code 
C*(j) is then given by its parity check matrix g 

~PO(Pl) -** PORJ 1 

It now follows from [l] that the dimension of C*(j) is 
n - (mj - g + 1) and that 

dmin r_ d” = mj - 2g + 2. 

The number d” is the designed distance of the code. 

0018.9448/92$03.00 0 1992 IEEE 
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Example 1: Let F4 = GF ( r2), so q = r2 and let 

c(x, y) = x + x’ - yr+‘. 

This is the affine version of the Hermitian curve as consid- 
ered by H. Stichtenoth in [6]. It is regular, has degree 
m = r + 1 and therefore genus g = r(r - 1)/2. It is well 
known that the affine curve has n = r3 = q fi rational 
points. The construction therefore gives a code over GF( r2) 
with parameters n = r3, k = r3 - j(r + 1) + r(r - 1)/2 
- 1, d 2 (r + 1)j - r(r - 1) + 2 for any j, where r - 1 

r3 
SjS - 

i I r+l ’ 
In the decoding situation we receive a word r which is the 

sum of a codeword c and an error vector e. We calculate 
the syndrome s = grT. If we number the coordinates of the 
syndrome vector, like we numbered the rows of _W, and the 
errors occurred in the points with the coordinates (xi, yi) 
ifzl, I& {1,2;**, n}, with values e,, it follows from (2.1) 
that 

S,, = C e,xfy/. 
id 

(2 4 

The decoding problem then is from the syndromes Sab, 
a + b I j to determine the error positions (xi, yi) i E I, and 
the corresponding error values e,. 

The idea is now to treat the two parts of the decoding 
problem separately, that is, first to determine the error 
positions and then to determine the error values. The deter- 
mination of the error positions is based on the observation 
that if a polynomial 

0(x, Y) = c U,,X[YkY 
I+ksh 

has the error positions among its zeros, then 

= & eixfY/ ,+I$, ClkxfYik < 
= 0. (24 

This holds for all (a, b) if we use (2.2) as the definition of 
s ab’ 

In particular we have from (2.3) 

‘%I ‘10 ’ * ’ sOh 

s 10 s,, *a* s,, uo43 

s 01 s,, *** so,,, “to = 0, !:I (2 4 
s’ 

‘Oh 
Oh’ s,,, *’ * so,+,, 

where h’ = j - h. 
The decoding method of [l] now consists of the following 

steps. 

1) Find a minimal degree solution u to (2.4) such that 
u(x, y) does not have C(x, y) as a factor. 

2) Find among the points P,, . * *, P,, those Pi, 
P;,“‘, Pi, which are zeros of a( x, y). 

3) Insert the coordinates of Pi,. * *, P;, into (2.2) and 
solve for ei’s. 

Theorem 4 of [l] tells us that this procedure corrects t 
errors provided there exists a number h such that 

t+lsmh-g+lsd*-g-t, 

where 

m-2shsj-m+2. 

Both Step 1) and Step 2) involve the solution of systems of 
linear equations, so the proposed algorithm has complexity 
O(n3). 

The improvements come from using Sakata’s algorithm in 
Step l), which is described in Sections III and IV, and using 
a new method to find the error values, which is described in 
Section V. Moreover, it turns out that this condition is too 
restrictive, so we are actually able to correct d*/2 - m2/8 
+ m/4 - 918 errors. 

In the following we suppose that the equation of the curve 
contains the term ym, which can always be obtained by a 
suitable’ choice of coordinates when m < q. The case m 1 q 
are not interesting for regular curves, and is not considered 
in this paper. Moreover, to avoid treating special cases we 
suppose that the points P,, P2, * * * , P, all have both coordi- 
nates nonzero. 

III. ERROR LOCATOR POLYNOMIALS 

For the error positions (xi, yi), i E I, and the error values 
ei, the syndromes of the code are 

S,, = C e,x,“y”, 
id 

(3.1) 

where a + b I j. Moreover, we shall refer to S,, defined 
by (3.1) as a syndrome for any a, b < q - 1, and distin- 
guish between known and unknown syndromes. Section V 
gives a method for calculating the unknown syndromes from 
the known syndromes and the error locator. 

Let us consider the set 5! of polynomials 

u(x, Y) = c u,,x’yk, I,k 
which define a linear recursion among the syndromes, that is, 

z u,kSa+l,b+k = ’ (3 4 

for all a, b where the indexes are calculated modulo q - 1. 
If (3.2) is satisfied, we get by inserting (3.1) 

z ulk z eiX?‘yib+k 

= G I XyYbei Fk u[kXfYik = 0, for all a, b. 

Let e; = e, XI, k ulk xfy,!, then we obtain 

C e;x;ylF = 0, for all a, b. 
id 

This means that e;, i E Z is an error pattern for which all 
syndromes are zero and, therefore, e; = 0. Since we may 



JUSTESEN et al.: FAST DECODING OF CODES FROM ALGEBRAIC PLANE CURVES 113 

assume that e, # 0, we get 

c qkXfy,+ = 0, 
1.k 

(3.3) 

so a(x, y) has the error points as zeros. 
On the other hand, if (3.3) holds, then it follows from 

(2.3) that (3.2) is satisfied, so that elements of 9 are exactly 
those polynomials that have the t error points as zeros. We 
also note that Y is independent of the error values. 

Let us for f E GF(q)‘, f = (fi), i E 1, consider the array 
Tf, where 

T,fb = c fix;y; 
ieZ 

and let Y be the set of all these arrays. 
Y is obviously a linear code, actually it is a two-dimen- 

sional cyclic code, and its dimension is t. It is obvious that 
the dimension cannot exceed t, and on the other hand no 
combination of error values can give an array of all zeros. By 
carrying out the same calculations that lead from (3.2) to 
(3.3) and from (3.3) to (3.2) it can easily be seen that 9 is 
the dual code of Y , so in particular the dimension of 9, as 
a vector space over GF(q), is (q - 1)2 - t. We will now 
study Y a little closer. Clearly C( x, y) and all multiples of 
this polynomial are in 9’. The error locator should therefore 
be found among the other codewords of 9. We recall from 
[8] and [lo] the properties of a minimal basis for 9. 

A polynomial f(x, y) = Ii, jfijxiyj has leading term 
xayb if fab # 0 and 

0 123 4 5 6 s-1 

Fig. 1. Leading terms of polynomials in the minimal basis, t = 16, pi is 
the leading term of uci), e.g., p3 = (3,2). 

Tf, where f = (eixFyb) i E I. To see that they are linearly 
independent, suppose 

c XabTca”) = 0. 
(a,bW 

This means that for all (I, k) we have 

f(x, Y> = c fijX’Yj. c ‘ab’%+l,b+k = ’ 
(i,j)+(a,b) (a,bkA 

A minimal basis for 9 is a set F of polynomials from Y 

F = {@, 43,. , . , ,(n) 

with leading terms x’~)y’~), such that 

s(,‘) > si2) > * * * > ~(1’) = 0 and 

0 = #’ < 43 < . . . < # (3 4 

and, if we define 

and, therefore, that the polynomial 

a(x, y) = c &jXaYb 
(a,bkA 

is in Y, so by (3.5) we conclude that X,, = 0. In particular, 
we get that ( A ) I t. We will next prove that ) A ] 1 t and 
therefore we get ( A ( = t and then the t arrays T’“, b), 
(a, b) E A, form a basis for Y. Therefore, a polynomial 
a’( x, y) belongs to 9, if and only if (3.6) is satisfied. To 
prove that ] A I 1 t, we will prove the following lemma. 

A = {(k r)(h < sii’ and r < SF+‘), for some i, 

where 1 5 i 5 1- l}, 

no proper polynomial in 

then 

9 has leading 

term with exponent in A. (3.5) 

Fig. 1 illustrates the concepts.In order to make the paper 
selfcontained we will prove the following theorem. 

Theorem I: Let F = {a(‘), * * *, u(‘)} be a minimal basis 
for 9 and let A be the set defined above. Then 1 A 1 = t 
and a polynomial a’( x, y) belongs to Y , if and only if 

g $ kSa+l, b+k = ‘7 for (a, b) EA. (3.6) 

ProoR We will first prove that the 1 A 1 arrays Teas b), 
(a, b) E A, where TI, k (a’b) = s,,, bfk, are linearly indepen- 
dent elements of Y. They are elements of Y since Teas b, = 

q-1 L : : : c l 
. . . . . . . . . . . 

. . . . . . . . . . . 
. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

Lemma I: For each (a, /3) # A, there exists a polynomial 
P”, O( x, y), whose leading term has exponent in A, such 
that xayp + P”lp( x, y) is in Y and has leading term 
x*y@. 

Before proving this, we note that it then follows that these 
(q - 1)2 - 1 A \ polynomials are linearly independent and 
therefore (q - 1)2 - I A ( 5 dimension of Y= (q - 1)2 - 
t, so t 5 ) A ) . The lemma is now proved by induction. So 
let ( CQ, PO) be the smallest pair not in A, with respect to the 
total ordering <T . Then x”O ypo is the leading term of the 
uci) whose leading term has the smallest exponent, so uci) - 
x”oypO has all exponents in A, which proves the claim in this 
case. 

Let (IX, 6) # A and suppose the claim is true for all smaller 
exponents. In particular, it is true for either ((Y - 1, 0) or 
(CX, fi - l), since (CY, /3) # (0,O). Suppose that it is true for 
(cu - 1, p). Then f(x, y) = x”l-‘yp - Po1-13p(x, y)~p 
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and PC”- ‘, p)( x, y) has leading term with exponents in A. 
Therefore, xf(x, y) E 2 and xf(x, y) = x”yp + x * 
Pay-‘pp( x, y). Here, either x * PWy-l,p( x, y) has leading 
term with exponent in A, or the leading term has an exponent 
<T (a, p). In the latter case, we subtract from xf(x, y), 
for all terms with exponents not in A, the polynomials of the 
form ~~1 ypl + P”l* pl( x, y), which exist by the induction 
hypothesis, and this gives us the desired result. We empha- 
size that it follows from the theorem, that if we want to 
determine if a polynomial u’ belongs to 2 then it suffices to 
check the t conditions corresponding to (3.6). 

In the following, we will by an error locator polynomial 
mean a polynomial from Y that do not have C( X, y) as a 
factor. The polynomial u/(x, y) has leading term with expo- 
nent (0, s$“) and here s$” < m If s(‘) = m we will use as - . 2 
u’(x, y) the polynomial C(x, y), since we have assumed 
that C( x, y) contains the term y m. The other polynomials in 
the minimal basis can therefore not have C(x, y) as a factor. 

As mentioned before, we distinguish between known and 
unknown syndromes. By the degree of a syndrome S,, k, we 
mean the number I + k. If we take a certain polynomial a(‘) 
from the minimal basis, only syndromes up to degree j, are 
involved in (3.6), where 

j, = my {deg u(~‘} - 1 + deg a(‘). (3.7) 

We say that a(‘) can be determined from the known syn- 
dromes if j 2 j,. 

In the following, we shall discuss two problems. 

1) Up to which degree shall the syndromes be known in 
order that all error locator polynomials can be deter- 
mined from the known syndromes? 

2) Up to which degree shall the syndromes be known in 
order that the error locator polynomials of smallest 
degree can be determined from the known syndromes? 

To carry out this discussion we shall first establish some 
bounds on the degrees of the error locator polynomials. It 
follows from the theorem of Bezout that 

deg u”) 2 t/m. (3 4 
Let D(k) denote the number of polynomials from Y of 
degree less than or equal to k, which are linearly indepen- 
dent modulo C( x, y), that is linearly independent when 
considered as vectors in F,[ x, y]/ C( x, y) over F,. Now a 
special case of the Riemann-Roth theorem [7] gives the 
following theorem. 

Theorem 2: 

D(k) 2 mk - g + 1 - t, (3 4 

and (3.9) holds with equality provided 

mk - t > 2(g - 1). (3.10) 

We define the numbers a(k), k 2 1, as 

a(k) = D(k) - D(k - 1). (3.11) 

We always have D(k) I D( k - 1) + m, since the number 
of polynomials linearly independent modulo C(x, y), with 

no further restrictions, has this property [l, Theorem 11. 
Therefore, 

a(k) 5 m. (3.12) 

We can now prove Lemma 2. 
Lemma 2: If a(k) = m, then a(f) = m for I I k. 

Proof: Since the polynomials are reduced modulo 
C( x, y), which contains the term y m, the m polynomials 
of degree k have leading terms among xk, xk- ’ y, 
. . . ,X k+l-mym-l. From these we get by multiplication 
with x, m polynomials of degree k + 1 and these are also 
linearly independent modulo C( x, y). So a(k + 1) = m and 
by repeating the argument the lemma follows. 0 

From Lemma 2 we get the following. 
Lemma 3: If a(k) = m, then 

max { deg a(‘)} 5 k. 
s 

(3.13) 

Proof: It follows from (3.12) and Lemma 2 that D( k 
+ I) = D(k) + lm, and from the proof of Lemma 2 follows 
then that there exists an ideal basis for Y consisting of 
polynomials of degrees less than or equal to k. From this a 
minimal basis can be obtained [8], in which all polynomials 
have degrees less than or equal to k. 0 

Now let k, be the smallest number, such that (3.10) is 
satisfied, that is the smallest number such that k, > t/m + 
m - 3. It follows from Theorem 1 that a( k, + 1) = m, and 
therefore from Lemma 3, we get 

max {deg a@‘)} I t/m + m - 1. (3.14) 
s 

We can now answer the first question as follows. 

Theorem 3: All error locators can be determined from the 
known syndromes if 

j 12(t/m + m - 1) - 1, 

or, equivalently, 

t I d*/2 - m2/2. 

Proof: From (3.14) and (3.7), we have j, 5 2(t/m + 
m - 1) - 1 for each s and hence, the theorem. 0 

In order to answer Question 2 we have to use more 
algebraic geometry. The main idea in the following argument 
is implicit in the proof of Theorem 8 in [2]. So let us 
consider the projective plane over GF (q) and let C’ be the 
projective closure of C. Let H be the intersection divisor of 
the curve C’, with the line with equation z = 0 with respect 
to the homogenous coordinates ( x : y : z). With the usual 
notation in algebraic geometry we then have I( kH - CP,) 
= D(k), where D(k) is the dimension introduced earlier, 
and P,;.., Pt are the error points. Suppose now that 
D(p - 1) = 0 and D(p) > 0, and that a(p + s) < m. 
Then the divisor ( p + s)H - CP, is special and hence 
equivalent to K - J, where K is a canonical divisor, and J 
is effective. We have 

degJ= -(p+s)m+t+2g-2. (3.15) 
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From the equivalence, it follows that (p - l)H - CP, is 
equivalent to K - J - (s + l)H. Since I(( p - 1)Ii - 
CP,l = 0, we, therefore, have 

I(K - (s + l)H) I deg J. (3.16) 

From the Riemann-Roth Theorem, we have 

I(K - (s+ l)H) = l((s+ l)H) - (s+ 1)m +g - 1, 

and combining this with (3.15) and (3.16) we get 

Z((s + l)H) + (p - 1)m + 1 I t + g. (3.17) 

Now let s, be the smallest number such that (3.17) is not 
satisfied. Then a(p + s) = m and it follows from Lemma 3 
that max. (degree u(j)) 5 p + s o. An upper bound on the 
minimal js from (3.7) can, therefore, be found as the maxi- 
mal value of 2p + s, where p and s are connected by the 
equation I((s + l)H) + (p - 1)m + 1 = t + g. 

Now Z((s + 1)W) = (s + 1)m - g + 1 if s + 1 1 m 
and I((s + l)H) = i(s + 2)(s + 3) if s + 1 5 m - 1. 
Carrying out the calculations it turns out that the maximal 
value is obtained in the second case and more precisely for 
s = m /2 - 5/2. The maximal value of 2 p + s is therefore 
2t/m + 5m/4 + 1/4m - 7/2. We formulate the result in 
the next theorem. 

Theorem 4: The error locator of lowest degree can be 
determined from the known syndromes if 

j > 2t/m + 5m/4 + 1/4m - 712, (3.18) 

or, equivalently, 

t < d*/2 - m2/8 + m/4 - l/8. (3.19) 

At this point we will explain the consequences of Theorem 4. 
In the decoding situation the only thing that we know are 

the syndromes Sab, Q  + b I j, but we do not know the set 
A. So we consider all equations of the form 

z u;,ksa+,, b+k = O, (3.20) 

which only involve the known syndromes. 
Let 6(x, y) be the solution to (3.20)) which has leading 

term with smallest exponent, and does not have C( x, y) as a 
factor. Furthermore, let u@)(x, y) # C(x, y) be a polyno- 
mial with lowest degree in the minimal basis for Y. In 
particular a(‘)( x, y) satisfy (3.20) so the degree of 2(x, y) 
is smaller than or equal to the degree of u@)(x, y). If the 
condition (3.18) is satisfied then Theorem 4 tells us that the 
equations for u@)(x, y) involved in (3.6) are a subset of 
the equations involved in (3.10). Consequently, this is also 
true for the polynomial G( x, y) and therefore 6(x, y) is an 
error locator. We remark that the procedure previously de- 
scribed is basically the same as the modified algorithm of [2]. 
In the next section we discuss how to find I?( x, y). 

In Sakata’s algorithm the set F is updated by a set of 
polynomials G  = {g(l), g”), * * * ) that have failed at earlier 
points in the algorithm. The polynomials in G  satisfies a 
condition like (3.4) and the set is updated during the algo- 
rithm. For details of the algorithm the reader is referred 
to [5]. 

In our situation we are not interested in polynomials which 
have C(x, y) as a factor, and, therefore, we reduce the 
polynomials in F modulo C( x, y), so that the reduced 
polynomial has y degree less than m, when this is possible. 
Since C( x, y) contains the term y m, this reduction has the 
following consequences. 

1) 

2) 

IV. CALCULATION OF ERRORLOCATORS 

There are at most m polynomials in the sets F and G, 
since a condition like (3.4) is satisfied. 
When the input is S,, it follows from [5, Section 51 
that no polynomial in F (and hence, in G) have leading 
terms greater than (a, b) in the total ordering, so at this 
step the polynomials in F and G  have at most mj 
terms. 

The error locator polynomials defined in Section III may To get the complexity of the algorithm we count the 
be obtained as solutions to the system of linear equations number of GF (4) multiplications and additions. After each 
(3.20). However, the complexity of this approach is high and new input element we have to 1) check whether the polyno- 

the algorithm is not practical for some of the most interesting 
geometric codes (e.g., Hermitian codes with large q and 
moderate rate). 

We shall assume that the reader is familiar with the 
algorithms for correcting errors in BCH codes, as the present 
decoding problem may be interpreted as a generalization 
to two dimensions of the decoding of BCH codes. In 
one dimension the Berlekamp-Massey algorithm [9] and 
many later improvements allow decoding of t errors with 
complexity O(t2) or less. Sakata [5] has generalized the 
Berlekamp-Massey algorithm to two dimensions, and we 
shall present a modified version of this algorithm, which 
computes the error locators using at most (6 + 
A)m2j3 GF (q) additions and multiplications, where A is 
the number of terms in C( x, y). 

Sakata’s algorithm was developed for calculating the recur- 
sions consistent with a given two dimensional array. The 
input in our situation is the array of syndromes S,, a + b 5 
j, b < 2m. A step in the algorithm consists of reading the 
next element, with respect to the total ordering <T , and 
then finding a minimal set of recursions for the array of 
elements read so far. A minimal set is expressed as a set of 
polynomials F = { f (‘), f (2), * * *, f(j)} for which the leading 
terms satisfy (3.4), and a condition like (3.5) holds when Y 
is substituted by the set of valid recursions for the array at 
this step. At each step the current set of F polynomials are 
tested on the new array, and if some of the f (j)‘s are not 
consistent, they are updated. 

In the one-dimensional Berlekamp-Massey algorithm, the 
recursion f(z) is updated by means of a polynomial g(z) 
that has failed at an earlier point. When for some input f(z) 
is not satisfied, a multiple of g(z) is added. 

gb>+fb) 
f(z) -"f(z) + 44 
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mials in F still are valid, 2) update F and G  and 3) reduce 
the elements in the new F modulo C( x, y). 

Since the polynomials in F have at most mj terms the cost 
of checking one polynomial in a point is at most mj multi- 
plications and additions. Since there are at most m polyno- 
mials in F and at most 2 mj elements in the input array the 
total 
cost of 1) is at most m * 2mj - mj = 2m3j2 additions and 
multiplications. 

It follows directly from [5, Section 51, that the updating of 
the sets F and G  costs at most 4m3j2 additions and multipli- 
cations, and that a new F element has the form 

f’(x, y) = cYxilyjlf(X, y) + pxizyjzg(x, y), (4.1) 
where j, <m and j, < m, CY, @EGF(q) and f(x, y) is 
from the old F and g(x, y) is from the old G. The degree 
of f’(x, y) is at most 2m - 1 in the variable y and the total 
degree is at most j. 

The reduction of f’(x, y) modulo C(x, y) proceeds 
through decreasing powers of y. First the terms y2m-’ * xi 
are eliminated by addition of a suitable multiple of C( x, y), 
then the terms y2m-2 * xi, etc. Each term requires A addi- 
tions and multiplications, where A is the number of terms in 
C( x, y), and since there are at most mj terms, the total 
number of operations is at most A * mj. The reduction of at 
most m polynomials at most mj times therefore costs at 
most Am3j2 operations. 

The total cost of using the modified version of Sakata’s 
algorithm is therefore bounded by (6 + A)m3j2 additions 
and multiplications in GF (q). If the number t of errors 
satisfies the condition from Theorem 3, that is t 5 d*/2 - 
m2/2, then the set of syndromes Sob, a + b I j, b < 2m is 
so large that the polynomials in F all satisfies (3.6) and 
hence, it follows from Theorem 3 that the set F is a minimal 
basis for Y , that is they are error locators. If the number t 
of errors satisfy the condition from Theorem 4, that is, 
t 5 de/2 - m2/8, then the set of input syndromes is so 
large that a polynomial in F 1 C(x, y) with the lowest 
degree satisfy (3.6) and, therefore, by Theorem 4, these 
polynomials are error locators. 

We note that Sakata [lo] has generalized his algorithm to 
higher dimensions. In principle this algorithm could be ap- 
plied to a wider class of codes. 

Substitution of S,, = Cs= ieixfy” into (5.1) gives 

q-1 s 

i,(C) = C C ejXS( Yiac)b 
b=l i=l 

So we have 

$Jc) = - c  eixF. (5 4 
those i’s where yi= ame 

If we now define for a fixed d, where 0 < d I q - 1, 

q-1 
E c,d = agl 3&)(ad)ay (5.3) 

we have 

q-l q-l 

E c,d = 5, bFI Sab(ac)b(ad)u = eiy 

where 

(Xi, yi) = (a-d, a-c). (5 4 

Now the error values can be determined directly from 
(5.4). The calculation of EC, d costs at most q2 additions and 
multiplications using a procedure like Horners method, so the 
cost of finding the error values using (5.4) is at most sq2. 
Alternatively, we calculate the S,( c)‘s using (5.1). This 
calculation needs only to be done when (Y-’ is the second 
coordinate of an error point, but there may be q - 1 of 
those. However, if we use (5.2) to find the error values, we 
use at most m values of a, so using a fast transform on 
(5. l), the calculation of the S,( c)‘s costs at most C, * 
mq log q operations. To find the error values from (5.2), we 
can either use Forney’s algorithm or a simple matrix inver- 
sion. This can be done at a cost of C, m2q operations, so the 
cost of finding the error values using (5.1) and (5.2) is 
bounded by (C, * mq log q + C, m2q) operations. 

We will now turn our attention to the determination of the 
syndromes S,, , a zz q - 1, b I q - 1, from the known 
syndromes S,, , a + b I j. The basic observation is (again) 
that since from (2.2) we have 

V. DETERMINATION OF THE ERROR VALUES S,, = C eixyyF, 

The fast determination of the error values presupposes 
knowledge of all syndromes S,, b a 5 q - 1, b I q - 1. 
We will first show how the error values are found from these 
(this is an extension of the familiar transformation method) 
and then describe the method to obtain the unknown syn- 
dromes from the curve, the locator polynomial and the 
known syndromes. 

Let us suppose we have Sabr a I q - 1, b I q - 1, and 
the possible error points (xi, yi), i = 1,2, * * . , s, where 
szt.Forafixedc,whereO<c~q-l,wedefine 

ieZ 

any polynomial f (x, y), which have the points (xi, yi) i E Z 
among its zeros, gives a recursion among the syndromes. In 
particular, the polynomials C(x, y) and u(x, y) give such 
recursions, as well as do all polynomials in the ideal in 
F[x, y] generated by these two. 

The idea is now to use these two recursions to generate the 
remaining syndromes from the given ones. To this end, let 

c(x, y) = c C ,kX’Yk 
I+kcm 

q-1 

‘a@> = bzl Sob(ac)b, (5.1) and 

where c~ is a primitive element of the field GF (q). 
+h Y) = c Qp'Yk. 

I-tksh 
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We then have the following recursions: 

c ClkSa+I, bfk = ‘3 
I+ksm 

c , a,ks,+, b+k = ‘2 
I+ksh 

the two polynomials 

qx, y) = c,,xm + C,-I,lXm-*y + *** +c,,ym 

and 

which we write as ;(x, y) = u,,xh‘+ u,_,,,xh-‘y + “* +uo,yh 

c,,s,+,,b + Cm-l,lSa+m-l,b+l + *I* +ComSa,b+m do not have a common nonconstant factor. 

=- c ClkSa+t, b+k (5.5) 
This is in particular the case when a”(~, y) = ajlOxh, 

Iiksm-I 
a,, # 0, and c,, # 0, and then the solution of (5.7) is eas- 
ily obtained. From the rows of the lower part of the matrix, 

and we calculate Sj+ol,O, Sj+ol-l,l,***, s~,~.+~-~ and then, 

@hho%+h,b + ah-l,lsa+h-l,b+l + ‘*’ +%h%,b+h 
from rows of the upper part of the matrix, we get S, _ r, 
j+or-h-1,” ‘9 So,j+h* 

=- 
c , c,kSa+l b+k’ (5 4 We formulate the above result as follows. 

I+ksh- 1 

Now, suppose we know Sabr a + b I j + (Y - 1, where 
a!~1,thenbyputtingb=0,1;~~,j+a-m,anda=j 
+ CI - b - m in (5.5) and (5.6) we get the following system 
of linear equations 

Theorem 5: Suppose 

c(x, Y) = c C/kX’yk, 
I+ksm 

j+ol+l-m 
rows 

C m-11 *** C om 

C . . . C  mo om 

j+a+l-h 
rows 

C mo 
ah-11 ‘*- uoh 

a,, *-* uoh 9 

uho uoh 

0 = 

C om 1 
1 

sj+a 0 

sj+a- 11 

'o.i+ol !=v3 (5 4 

where v only depends on S,, br where a + b I j + (Y - 1 
and the coefficients elk with I + k I m - 1 and ulk with 
Z+ksh-1. 

To ensure that the system (5.7) has at most one solution a 
sufficient condition is that the rank of the coefficient matrix is 
j + u + 1, and a necessary condition for this is that 2( j + CY 
+ 1) - (m + h) 1 j + CY + 1, that is, j + (Y + 11 m + 
h,soifweleto= lwemusthave jzm+h-2. 

The condition j L m + h - 2 is always satisfied. In the 
case corresponding to Theorem 3, we have j L 2( t / m + m 
- 1) - 1 and (3.14) gives an upper bound on h. In the case 
corresponding to Theorem 4, we have t I mj/2 - 5m* /8 
+ 3m /2 and, since h is upper bounded by the p appearing 
in the proof of the theorem, h I j/2 - m/4 + 2. Hence, 
m + h - 2 5 j/2 + 3m/4, so if j 1 3m/2 we have j I 
m + h - 2. If j < 3m/2, we have t I 1/8m2 + 3m/2, 
and therefore, there are error locators of degree less than m. 
The degree h is then upper bounded by the smallest number 
such that (h + 2)(h + 1)/2 r mj/2 - 5m2/8 + 3m/2. By 
putting j = (1 + x)m, 0 I x < l/2 and carrying out the 
calculation, it follows that also in this case we have j 1 m + 
h - 2. 

When j 2 m + h - 2, then it is well known, [7, p. 291, 
that the coefficient matrix has rank j + Q! + 1, if and only if 

where 

c,, # 0 and u(x,y) = c h 
u,,X’Yk + ohox , 

I+ksh-1 

where a,, # 0, both gives recursions among the Sab’s. Then 
all Sob’s can be determined from Sob, a + b 5 j, by the 
method just described. 

The cost of finding the S,b ‘s of a given degree is at most 
hm multiplications and additions for at most (j + Q! - h) of 
these, and for the remaining ones it is at most m2. The total 
cost is therefore bounded by m2q2. If we combine this with 
the remarks following (5.2), we have the following theorem. 

Theorem 6: If the curve has an equation of the form 

c(x, Y) = c C,kX’Yk, 
I+kcm 

where c,, f’ 0, and we have an error locator of the form 

U(XYY> = c 
h 

u,,x’yk + u,,,x , a,,, f: 0, 
I+ksh-l 

then the error values of the code C*(j) can be found using at 
most Am2q2 additions and multiplications in GF (q), where 
A is a constant (independent of C( x, y), j and q). 
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We will now treat the codes from Hermitian curves. It 
turns out, that due to the special equation, it is possible to 
determine the remaining syndromes from the given ones, 
without any conditions on the error locator polynomials. We 
will prove the following theorem. 

Theorem 7: Let u(x, y) be an error locator of degree h 
for a code C*(j) from the Hermitian curve 

+ c u/kSa+,,b+r+;-h+s+k = ‘. 
I+ksh-1 

From this we determine 

x +x’- y’+l = 0, q= r2. 

The syndromes Sob, whereOsa<q- l,Orb<q- 1 
can be determined from Sab, where a + b 5 j, using at 
most Aq3 additions and multiplications in GF (q), where A 
is a constant independent of q and j. 

Proof: We will describe a method that also proves the 
theorem. We first use the curve to obtain the following 
recursion: 

S a, b+r+l = S a+l,b + ‘a+r,b. (5 4 

So from Sob, wherea+bIj+a- l,wefind 

so,j+ay sl,j+u-l~"'~ 'j+a-(l+r),r+l 

by putting a=j+cr-h+l;**,j+a!-r-s and b 
=j+a-r-s-a. 

What remains is to calculate the number of GF (q) addi- 
tions and multiplications used in the method described above. 
Let o be fixed. The cost of finding the first j + Q! - (r + 1) 
+ 1 syndromes is 2( j + CY - r) additions. The cost of find- 
ing the remaining r + 1 syndromes is at most (r + l)[( r + 
l)h] additions and multiplications, but since we can suppose 
that h < 2 q, since we are only interested in GF (q) points, 
the total cost is upper bounded by B * q3, where B is a 
constant independent of q and j. 

by putting a = 0, l;**, j + CY - (1 + r), and b = j + cx 
- (r + 1) - a. To find more syndromes we use the polyno- 
mial u(x, y). 

Let 

We have seen that the number of GF (q) additions and 
multiplications needed to find the error locator is bounded by 
(6 + A)m3j2, where A is the number of terms in C( x, y). 
We have also seen that we need at most B * m2q2 additions 
and multiplications to find the error values. 

U(X> Y) = c u,,x’yk + ~Oxsy h-s 

I+ksh-1 

+ cYIXs-lyh-s+l + * * * +cY,yh, 

where oc, # 0. The corresponding recursion is 

c u,, k%+l, b+k + % ‘%+s, b+h-s 
I+ksh-1 

from which we determine 

+ *** +cYY,S,,b+h = 0, 

Since we are looking only at plane curves the number n of 
points is bounded by q2, so the only way to get longer codes 
is to increase the field size. Good codes are obtained when 
the curve has many rational points, that is, n - m2 &, 
which follows from the Weil bound. Moreover, since a curve 
of degree m has at most m q rational points, we see that 
good codes are obtained if m - fi and n - q fi. If we, 
therefore, consider a family of curves for increasing q, 
which satisfies the above conditions, and for which the 
number of terms do not depend on q, we see that the 
complexity of the decoding algorithm is O( n7i3), where 
II- 4 312 , m - q112, since mj 5 n. 

VI. CONCLUSION AND DISCUSSION 

byputtinga=j+a-r-s;**,j+a!--handb=j+ 
CY - h - a, so if s = h we have got all the syndromes, but if 
s < h we must do a little more. We can suppose that 
h - s < r + 1, since higher powers in y can be removed by 
using the equation of the curve. 

Let us next consider the polynomial 

u,(x, y) = -(yr+’ - xr - x)(cY,xs + *-* +asys) 

+Y r+l-h+su(X, y) 

= (x’+ x)((Y,xs + *** +cY,yq 

+Y r+l-h+s 
c 

I k 
u,,x Y * 

I+kch- 1 

We have used a modified version of Sakata’s generaliza- 
tion of the Berlekamp-Massey algorithm to find error locator 
polynomials for codes from regular plane curves. This is one 
with complexity 0( n713), and we correct d*/2 - m2/8 + 
m/4 - 918 errors. Moreover, we can find the error values 
with the same complexity in most cases. Examples show that 
it is not always possible to decode (d* - 1)/2 errors, but the 
examples seem to be rare and to have a common feature, so 
in most cases the algorithm does decode (d” - 1)/2 errors 
and the information in the examples where this is not the 
case, may be useful in an improvement of the algorithm. We 
feel confident that the algorithm can be generalized to higher 
dimensions, but we still lack good explicit constructions of 
curves in higher dimensional spaces. 
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