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Abstract. How can we use the well-established Public Awareness of
some phenomenon X, i.e. PA(X), to Raise the Public Awareness of
the Mathematics of – or within – this X, i.e. RPAM(X)? There are se-
veral examples illustrating particular assets for mathematics in this way
within such phenomena X. Here we will discuss only one phenomenon,
which, however, contains a particularly dramatic momentum for arou-
sing awareness among all of us, namely X = wildfires. The mathematics
of this and of similar phenomena range – among several other topics –
from elementary K–12 studies of ellipses to deep research questions in
Finsler geometry. Moreover, in this context RPAM(X) may even save
lives!
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What is Public Awareness?

Public awareness in the large (or in the small) is usually (but not always!)
concerned with and centered around concrete phenomena which for a variety
of reasons attract the attention of many people (or just a few) for a shorter or
a longer period of time – mostly shorter. This is definitely not a definition: it
is only a rough attempt to apply the two descriptors concrete and time limited
to what might be called public awareness. What we might call mathematics,
on the other hand, is mostly abstract and mostly timeless. This apparent
dichotomy is, however, just apparent. In fact there is ample room for mergers,
as witnessed by the following quotations:

In the teaching of mathematics, and when explaining the
essence of mathematics to the public, it is important to
get the abstract structures in mathematics linked to con-
crete manifestations of mathematical relations in the outside
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world. Maybe the impression can then be avoided that ab-
straction in mathematics is falsely identified with pure ma-
thematics, and concretization in mathematics just as falsely
with applied mathematics. Vagn Lundsgaard Hansen [1]

I find it difficult to convince students – who are often at-
tracted into mathematics for the same abstract beauty that
brought me here – of the value of the messy, concrete, and
specific point of view of possibility and example. In my opi-
nion, more mathematicians stifle for lack of breadth than
are mortally stabbed by the opposing sword of rigor. Karen
Uhlenbeck [2]

Fig. 1 Forest firefighting

Guided by the spirit of these parallel quotations we will thence concen-
trate and focus upon only one single very specific, very concrete, and very
messy example from real life, a phenomenon which, nevertheless, is known to
have moved everybody into alert mode since – and probably even long before
– the Mesolithic era (see Fig. 1).

The Phenomenon of Wildfires

A wildfire, also known as a forest fire, vegetation fire, grass
fire, brush fire, or bush fire (in Australia), is an uncontrolled
fire often occurring in wild land areas, but which can also
consume houses or agricultural resources. Common causes
include lightning, human carelessness and arson. One main
component of Carboniferous north hemisphere coal is char-
coal left over by forest fires. The earliest known evidence of
a wildfire dates back to Late Devonian period (about 365
million years ago). [3]
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Wildfires are frequent and extremely threatening phenomena that we must
try to understand from first principles. How do we most effectively prevent
them from happening? How do they evolve once they have started, how do
we most effectively escape from them, or conversely – the firefighters’ quest
– how do we most effectively fight them?

A working knowledge of the effects of wind and other weather
elements on fire behaviour, supported by accurate fire intel-
ligence, is vital for good suppression planning. Without good
fire behaviour information firefighters are unable to:

• determine the number of firefighters and level of equip-
ment necessary;

• identify the location of suitable areas for backburning;
and

• ensure that the general public is informed about the
precise fire situation. [4]

The existence of a well-informed public as well as professional up-to-date
awareness of the general behaviour of wildfires is a necessary prerequisite for
tackling these tasks.

Mathematical Horizons

Clearly we have PA(X) en masse for this wildfire X. How do we then gener-
ate momentum into RPAM(X), which is our main concern here?

How do we engage the public, how do we engage students, teachers, and
researchers through K–12, high school, and university, to look for, to appre-
ciate, and to apply known mathematics and search for new mathematics and
thereby contribute to the solution of such tasks?

The following is but a brief account of the paper [5, pp. 50–61], which
aims to show by example that this can be done. This example has recently ap-
peared in a selection of similar examples in a book that is freely distributed
on the web; it has also been distributed as an ordinary hardback book to
the schools in Denmark, see Fig. 2 and [5]. In the book you can find ex-
citing mathematical unfoldings (with exercises) of similar phenomena under
headlines such as: “Mathematics through the millennia”; “Mathematics and
evolution”; “Fire!”; “How a vending machine actually works”; “Wavelets”;
“Secret codes made public”; “Math in medicine”; “Tour de France mathe-
matics”; “Women and mathematics”; “Error correcting codes”; “Beer and
flat screens”; “Mathematics in the computer and vice versa”; “The science of
the better”; “Artificial intelligence”; “Mathematical modeling of climate and
energy”; “The Mars mission”; “The mathematics of shape.”
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Fig. 2 Mathematical Horizons, 2009. Freely available via [5]

Some Details from the Wildfire Case

The simplest possible two-dimensional model of a fire front propagating in
a perfectly homogeneous domain and in a wind that is directed along the
y-axis is usually modeled as a parametrized time foliation through ellipses:

x(t, φ) = at cos(φ)

y(t, φ) = bt sin(φ) + ct ,
(1)

where a, b ≥ a, and c ≤ b are constants depending on the fuel material and
the speed of the wind. When b = a and c = 0 this model gives elementary
circular propagation with constant radial speed a from the initial center point.

In the general case of elliptic propagation we may define three values
for the fire-front propagation speed, see Figs. 3 and 4:

v = b+ c (Downwind front speed)

u = a (Flank front speed)

w = b− c (Upwind front speed) .

(2)

Note that the fire will also propagate upwind when b− c > 0.

This elliptic model is in actual use in Canada:

The Canadian Forest Fire Behaviour Prediction System (CFF-
BPS) assumes elliptical growth and has documented values
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Fig. 3 Elliptic fire zone

Fig. 4 Elliptic foliation of a homogeneous fire zone with a constant wind
from the south-west

of u, v, and w for a very large set of constant parameters af-
fecting a fire. It has also been observed that, within certain
limits, the ratio a/b is a function of wind speed only; this is
also an assumption of the CFFBPS. [6]

There are so-called pocket cards for firefighters, which recommend that
the fire front should be attacked on the flanks. However, when the fuel density
is not homogeneous, or when the topography is not perfectly flat, or when
the basic model cannot be assumed elliptic but is some other oval-shaped
generator as in Figs. 6 or 7, then the flank attack strategy may not be opti-
mal.
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The more advanced mathematics needed to see and understand this is
concerned with geodesic sprays in Riemannian geometries (and Finslerian
geometries when the wind is blowing). This will be discussed and exemplified
in some detail in the next section.

In Fig. 5 we indicate how a fire front (without wind) may attack the fuel
domain – and also the firefighters – from more than one side when propagat-
ing – like a pincer movement. This occurs precisely when the geodesic spray
from the initial point of ignition creates so-called cut points in the domain.
The set of these points are indicated by yellow dots in Fig. 5. The blue color
in Fig. 5 indicates the moorish area through which the fire does not burn
easily and where it therefore progresses only slowly.

The Cramer’s Creek accident is but one such dramatic case featuring
the formation of dangerous cut points. In [7] it is described in detail how fire
unexpectedly approached from both sides of a ridge between two valleys and
eventually killed two firefighters who were trapped by such a pincer move-
ment.

Fig. 5 A fire front developing pincer movements without wind but with
varying fuel density
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Finsler Geometric Analysis and Modeling

In this and the following sections we discuss some of the tools and concepts
from Finsler geometry, which have only been alluded to above.

The possibilities of studying and applying asymmetric length functionals
had been suggested by Riemann in his famous and foundational Probevor-
lesung in 1854 [8], but they were first developed in detail by Finsler in his
Inauguraldissertation in 1918 [9]. Within the last 10 years the methods and
results of global Finsler geometric analysis have experienced a renaissance –
not least inspired by the seminal works of e.g. Chern and his collaborators
and students. See for example the survey paper by Chern [10] and the works
[11, 12, 13].

Like every Tour de France racing cyclist we all know that it is much
harder to cycle uphill or against the wind than it is to freewheel downhill or
with the wind pushing comfortably on your back – although the (classical
Euclidean) length of the road of course is the same, whether we measure it
in one direction or the other.

In a similar way (but note the important up-down reversal) a fire front
will move much faster uphill(!) or with the wind than it moves downhill or
against the wind.

Fig. 6 Two indicatrices consisting of (the endpoints of) F -unit vectors.
Every vector from the origin to the oval is in each case of F -length 1

A Finsler geometric model of a forest fire has this asymmetry built
directly into the so-called indicatrix field Iq of unit vectors at each point q.
Two such possible indicatrices are shown in Fig. 6, and indeed the oval shown
in Fig. 7 is yet another possible indicatrix. Note thatin Fig. 7 the origin is
very close to the indicatrix at the left. This indicates that in this model the
upwind speed of the fire front is very small. See also [3] and Figs. 6 and 8.
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In all cases the value of the Finsler length Fq is defined to be 1 for all
the vectors connecting the origin to the points on the indicatrix oval:

Iq = {u |Fq(u) = 1} . (3)

Fig. 7 An alternative oval propagation generator (indicatrix) model, see [3]

Note that in some directions the Fq-unit length is much larger (by ordi-
nary Euclidean standards) than in the opposite direction. So if we measure
the cost of transport – or the cost of propagation – by Fq-standards it may
be much cheaper to go a long (Euclidean) distance in one direction than the
same (Euclidean distance) in the opposite direction.

As illustrated in Figs. 6, 7, and 8 the origin (of the local vectors) need
not be at the center of the respective indicatrix ovals (in fact the ovals need
not even have well-defined centers). The shape and size of each oval as well as
the position of the center inside it can be chosen to depend on the wind, on
the topographical slope, and on the quality of the fuel at the point in question.

The Finsler Length Functional

Euclidean geometry is obtained in the special case where all indicatrices are
identical circles with their centers at the origin. Riemannian geometry is
obtained when all indicatrices are circles of possibly varying sizes but again
with their centers at the origin. Riemannian geometry thus corresponds to the
no-wind and no-slope situations because the winds and topographical slopes
essentially shift the positions of the indicatrix centers and break the otherwise
centered elliptic symmetry of the indicatrices. The possibility of varying the
radii of the circles, however, corresponds to varying fuel conditions in the
area.

In Fig. 8 small circles model the wet moorland shown in blue and the
larger circles model the more homogeneous forest-like area, shown in green.
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To the left in Fig. 8: The field is Riemannian in the sense that all indicatrices
are circles. Note, however, that the circles are smaller in the blue area, so
that it takes effort (long time for the fire) to go straight through the moor-
land. To the right in Fig. 8 is shown a genuine Finslerian field of indicatrices,
which consists of wind-shifted ellipses. Note that the shifted ellipses are again
smaller in the blue moorland area.

Fig. 8 Two simple fields of indicatrices, one without and one with wind

In general, when we choose an indicatrix Iq of Fq-unit vectors at every
point q, then the Fq-length of any other vector at q is simply defined by
homogeneous scaling:

Definition 1. Suppose we know the Fq-unit vectors at every point q, i.e. we
assume that we have chosen the indicatrix field Iq already – as exemplified
in Fig. 8. Then, since every (other) vector y is a factor λ times some unit
vector u, y = λ · u, we simply define the Fq-length of y to be that factor:

Fq(y) = Fq(λ · u) = λ · Fq(u) = λ , u ∈ Iq . (4)

The F -length of a curve is then (as usual) the integral of the F -length
of its tangent vectors:

Definition 2. Suppose c(t) = (c1(t), c2(t)), t ∈ [0, T ], denotes a regular
smooth curve in the plane. Then the F -length of c is given by:

L(c) =

∫ T

0

Fc(t)(ċ(t)) dt , (5)

where ċ(t) denotes the tangent vector of the curve c at the point c(t).

Note that the length of c(t), t ∈ [0, T ], is not necessarily the same as
the length of the reversed curve ĉ(t) = c(T − t), t ∈ [0, T ]. This is because
Fc(t)(ċ(t)) is not necessarily the same as Fc(t)(−ċ(t)). And this is exactly



10 Steen Markvorsen

what we want! The length functional L measures and takes into account that
it is easy to go one way along the curve (L(c) is small) but possibly difficult
to go the other way (L(ĉ) is large).

The Geodesic Paradigm for the Fire Front Propagation

One key ingredient in the forest-fire model presented here is that the fire front
is formed by the union of all F -shortest curves – of the same F -length – issu-
ing from a given ignition point. Such F -shortest curves are called F -geodesics.
Due to the asymmetric measure of the F -length they extend further in the
direction of the far ends of the local indicatrices than in the opposite direc-
tions. Therefore the endpoints of these geodesics (the geodesic “circle,” the
fire front) initially (for small radii) look like the indicatrix at the ignition
point, but as the geodesic circles and fire front extend to further radii they
may take on very different shapes as illustrated by the simple examples in
Figs. 9 and 10. In both figures the fire front will progress through and around
the symmetric blue moorland area and create pincer cut points along a curve
east of the moorland. When the wind is blowing from the south then the
pincer curve is clearly shifted towards the north of the moorland.

Fig. 9 Without any wind the fire front will penetrate through and around
the symmetric blue moorish area
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Fig. 10 With a wind from the south (shown by the arrows) the fire front
will be elliptical and the first part of the cut locus will be shifted

The F -geodesics satisfy a system of nonlinear ordinary differential equa-
tions:

Proposition 3. A given curve c(t) = (c1(t), c2(t)) is an F -geodesic, i.e. a
locally F -shortest curve between any pair of its points, if it satisfies the
differential equations:

c̈ i(t) + γijk(c(t), ċ(t)) · ċj(t) · ċk(t) = 0 , i = 1, 2 , (6)

where the so-called connection (or Christoffel) functions γijk(c(t), ċ(t)) are

given by a (somewhat complicated) mixture of suitable derivatives of the
Finsler function F at the point c(t), see e.g. [14].

Constant Indicatrix Fields

In particular, if F has a constant indicatrix field, i.e. if the background fuel
and topography is completely homogeneous, then the Christoffel functions
all vanish, and the differential equations for the geodesics reduce to

c̈ i(t) = 0 , i = 1, 2 , (7)
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Fig. 11 Three geodesics of the same F -length without wind and with wind
(shown by the arrows), respectively

so that every geodesic issuing from the ignition point p = c(0) is a straight
line; the solutions are linear functions in t:

c1(t) = α1t+ β1

c2(t) = α2t+ β2 .
(8)

This is in precise accordance with the model equation (1) if we let

α1 = a cos(φ)

α2 = b sin(φ) + c

β1 = 0

β2 = 0 .

(9)

This linearity of geodesics is displayed in Figs. 11, 12, and 13. Initially
the geodesics, the fire particle tracks, from the point p of ignition are directed
straight away from p because the region in front of the “moor” is essentially
homogeneous and flat. Note (in Fig. 11) that when you approach the moor-
land area you get further to the right side of the moor when you go around
it. When the wind is blowing it clearly also matters which way you choose to
go around it!

In Figs. 12 and 13 we show all the geodesics issuing from a common
ignition point and up to a common propagated F -length. The different cases
with or without wind are also indicated. The ensuing endpoints of the ge-
odesic fire tracks (which together form the geodesic “circle” fire front) are
marked together with the burnt-out area in the accompanying Figs. 9 and
10.
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Fig. 12 The individual geodesics issuing from the ignition point bend
around the moorland to form the fire front movement in Fig. 9

Bear Hugs

A fire front initially forms an oval, which is very similar to the Fp indicatrix
Ip at the ignition point, but as it develops further away from the point of
ignition the front will bend around lakes or any other moorish domains that
cannot be easily penetrated by the fire, and the front may thus create self-
intersections, pincer movements (also known as “bear hugs”) behind these
obstacles – as already mentioned and observed in Fig. 5. As before we mark
such “pincer points” by yellow (warning) dots on the figures. They are the
positions where firefighters may be in danger of attack from multiple (at least
two) sides by the fire front. Technically these points of self-intersection form
a continuous set of points Cut(p), which is called the cut locus of p.

Conclusion

Cut loci are of current research interest for several other reasons and for many
other applications than the particular one addressed here, but in the present
setting, where we have been concerned with understanding wildfires, they are
obviously of particular direct impact and importance. With a suitable geo-
metric analysis and an aroused and raised public awareness, i.e. RPAM(X)
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Fig. 13 The individual fire particles that create the fire front movement in
Fig. 10. The influence of the wind is evident

to hand, their formation may even be predicted – and catastrophes thus pre-
vented.
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