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SUMMARY

A system of differential equations that describe the growth of a forest fire front in time for variable fuel,
weather and topographical conditions is derived. The system is first order, non-linear and contains
parameters that can be obtained from forestry data. A finite difference solution is presented, together with its
inherent problems and their solution. Results are presented for a variety of situations that include variable
fuel, wind and fire breaks. It is found that the equations and their solution efficiently produce simulations for
complex problems.

INTRODUCTION

Millions of dollars each year are lost to forest fires in timber, communities and wildlife. Accurate
prediction of forest fire behaviour is a valuable tool for the forest fire controiler. A general model
that can simulate forest fires would enable the prediction of the course of a fire in progress, so
enabling more informed decisions concerning extinguishing strategies and evacuation of commu-
nities. It would also be useful in making predictions for a particular region for a variety of
scenarios so that plans could be made ahead of time. The intuition of the forester is a valuable
tool in fire fighting; this is gained in part from observing many actual fires. This process could be
accelerated by using a fire simulator that used an accurate model. A contribution to the
development of a computationally tractable general model of forest fire behaviour is the purpose
of this paper.

Empirical data allow fairly accurate prediction of fire behaviour under constant conditions;
however, the more probable situation involving such things as wind and fuel variations is a far
more complex problem. Few workers have attacked this problem; the only computer simulations
to date have been by Kourtz and co-workers,*’? Green® and Richards,* all based on cellular
automata theory.’ The properties of these techniques are not fully understood and in the author’s
opinion are not, as yet, developed to a stage of being a significant fire fighting tool. A great deal of
interesting research remains to be done in this area.

The rate of spread and shape of a forest fire front is affected by a number of factors. The most
important of these are:®

(i) fuel type and moisture content;
(i) wind velocity and variability;
(ili) forest topography relative to the fire; fires spread faster up hill and cannot traverse natural
barriers;
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(iv) fuel continuity, ie. is the fuel sparse or can it be considered to be homogeneous, also
whether the fuel is of constant or variable type;
(v) the amount of spotting, i.e. burning material spread by the wind.

Extensive data have been collected from both natural and controlled fires with continuous
uniform fuels involving constant wind velocity, moisture content and slope. The data indicate
that under these conditions a fire ignited at a point reaches a quasi-steady state and progresses as
a cigar shape that is biased toward the downwind direction and expands at a constant rate. The
analytical approximation of the fire front most often used is that of an ellipse.””8 Other
approximations that have been used include teardrops,? ovoids® and double ellipses.!® Variations
from elliptical behaviour are attributed to sparse fuels, spotting or variations from constant
conditions. Recorded data has been curve fitted and incorporated into tables, slide-rules and
other more complex prediction devices.!! The curve fitted data cannot give predictions under
variable conditions but are used extensively in the field as an aid to the intuition of the fire
controller.

Anderson et al.'? developed a graphical fire prediction method, based on Huygens’ principle
which assumes each point on the fire front at time ¢ is the ignition point for a small fire that in
a finite time interval dt burns out an elliptical region. Each ellipse is defined by the conditions at
its generating point and dt, and the perimeter of the new fire front is defined by the envelope of all
the ellipses. By successively drawing the ellipses and tracing out the new fire front the course of
the fire can be plotted. Their results compared favourably with actual fires and the method is
probably to date the most accurate predictor of fires under variable conditions.

In this work a system of differential equations is derived using the ideas of Anderson et al. but
using infinitesimally small ellipses; their finite difference solution and its accompanying problems
are also described. The equations can deal with variable weather and fuel conditions under the
assumption that the eccentricity of the ellipses for a given fuel type is dependent on wind speed
only. The performance of the model under a variety of complex conditions is illustrated.

THEORY

Under constant conditions for homogencous, non-spotting fuels it is generally accepted that a fire
ignited at a point will expand, at a constant rate, as an ellipse of the form?*?2

x(s, t) = atcos s
) (1)
y(s, t) = btsins
where t is the time, the origin being the point of ignition and the y axis being the wind direction,
Figure 1. The forward rate v, lateral rate u and the back rate w are defined as b + c,aand b — ¢
respectively. The Canadian Forest Fire Behaviour Prediction System (CFFBPS)!? assumes
elliptical growth and has documented values of u, v and w for a very large set of constant
parameters affecting a fire. It has also been observed that, within certain limits, the ratio a/b is
a function of wind speed only;'? this is also an assumption of the CFFBPS.

The fire front at time ¢ is represented parametrically in Cartesian co-ordinates by the closed
curve (x(s, t), y(s, t)) where 0 < s < 2z It is assumed that each point on the fire front is an ignition
point for a small fire that expands, igniting in time dt a small elliptical region around it. Taking
6 to be the clockwise angle to the y axis defining the wind direction then the ellipse generated by
a point (x(s, t), y(s, t)) is of the form, using local co-ordinates centred at (x(s, t), y(s, t)) and
orientated at an angle 0 to the original (x, y) axes, of equations (1) with ¢ = dt, the parameters a,
b and ¢ being defined by the fuel, wind and topographical conditions at that point. dt is taken to
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Figure 1. Fire front at time ¢ for constant wind direction in the y direction

(a(s,t + dt), y(s,t + d))
\

fire front at time ¢ + dt

(z(s,t), y(s.t))

”~

fire front at time ¢

Figure 2. The envelope of ellipses forming the fire front at time ¢ + dt

be sufficiently small for a, b, ¢ and 8 to be assumed constant over that time period. The new fire
front at time ¢ + dt is now defined by the outer envelope of the ellipses generated at each point on
the curve at time ¢. The tangential point of contact of the ellipse generated at (x(s, £), y(s, £)) with
the envelope is defined as the point (x(s, t + dt), y(s, t + dt)), Figure 2.

The parameters a, b and c are taken to be functions of space and time, wind velocity is taken as
a function of time only and the ratio a/b is taken to be a function of wind speed only. Since wind
speed is a function of time only then so is a/b.

In the following analysis, given the curve (x(s,t), y(s,t)), 0<s<2m the curve
(x(s, t + dt), y(s, t + dt)), 0 < 5 < 27, is derived for finite dt. By limiting in dt the time derivatives
x,(s, ty and y,(s, f) can be calculated. To calculate (x(s, t + dt), y(s, ¢t + dt)) alinear transformation
is applied that transforms the ellipses into circles. The equations of the envelope of circles can
easily be calculated by a limiting process in ds; (x(s, t + dt), y(s, t + dt)) is now obtained by
applying the inverse of the linear transformation.
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The axes are rotated so that the y direction is that of the wind; the x co-ordinate is then scaled
by b(s, t)/a(s, t), i.e. the following transformation is applied:
X = [b(s, t)/afs, t}](xcos 8 — ysin §) @
Y = xsin@ + ycosf

This transforms each of the ellipses to circles of radius dtb(s, t) with centres a distance dtc(s, t)
above the point generating them. The envelope of ellipses is now an envelope of circles.
Figure 3 shows two such circles at time ¢ at points s and s + ds on the transformed curve. The
circle at (s + ds, t) has radius dtb(s + ds, £) and its centre is a distance dtc(s + ds, ¢} above the
generating point; these values are shown as truncated Taylor series. The higher terms in ds are
inferred and are eliminated in the preceding analysis when ds tends to zero.
The X co-ordinate of D is given by

X(s,t) + EF = X(s,t) + dtb(s, t)cos (¢ + ¢ — ¢)
= X(s, t) + dth(s, )(cos(¢ + @)cos @ + sin(¢ + @)sing)  (3)

The Y co-ordinate of D is given by
Y(s,t) + DE + FG = Y(s, t) + dth(s, t)sin (¢ + ¢ — @) + dtc(s, 1)
= Y(s, t) + dth(s, t)(sin (¢ + @)cos ¢ — sinpcos(¢P + @)) + dtc(s,t) (4)
Taking the cosines and sines from Figure 3 then
cos(¢ + ¢) = AB/AF
sin(¢ + @) = (AF? — AB*)"/2/AF
cos ¢ = FI/AF
sin ¢ = (AF? — FI2)}/2/AF

where
AB = dtdsb,(s, t)

AF = (AI2 + FI2)Y2 = ds((dec,(s, ) + Y,(s, ) + X 2(s, )2
FI = — dsX,(s, 1) (5)

Since CD is tangential to both circles as ds tends to zero then C tends to D, CD tends to the
tangent of the envelope and the co-ordinates of D tend to (X (s, ¢t + dt), Y(s, t + dt)). Substituting
equations (5) into (3) and (4) and letting ds tend to zero then

dtb(— X,dth, + (dtc, + Y,)((dtc, + Y,)* + X2 — di?b)!?)
((dte, + Y)* + X7)

= X(s,t) + P(s, ¢, dp) 6)

dib( — (@i, + Y,)* + X2 — de*b2)' X, — (dre, + Y)*dth)
(dtc, + Y7 + X2) ¢

= Y(s,8) + Q(s, t, dt) (7

where all functions on the RHS are evaluated at (s, t). These are the equations of the envelope of
circles formed in finite time dt.

X(s,t +dty = X(s,8) +

Y(s,t +dt)= Y(s, 1) + dt
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The square root terms in equation (6) can become complex. When this happens radii of the
circles on the curve are increasing so rapidly that the circle at (s, t) is completely surrounded by an
adjacent one; hence an envelope is not formed. This problem can be avoided by making dt
sufficiently small.

Transforming equations (6) and (7) back to (x, y) co-ordinates using the inverse of equations (2),
ie.

x = [afs, £)/b(s, )] X cos 8 + Ysin 8 ®
y = — [a(s, t)/b(s, t)] X'sin@ + Ycos O
gives
x(s, t + dt) — x(s, t) = [a(s, t)/b(s, t)] P{s, t, dt)cos 0 + Q(s, t, dt)sin 0
y(s, t + dt) — y(s, ) = — [a(s, 1)/b(s, )] P(s, t, dt) sin O + Q(s, t, dr)cos

By dividing both sides of equations (9) and (10) by dt, substituting for X and Y into P and Q using
equations (2) and letting dt tend to zero, then the time derivatives x,(s, t) and y,(s, t) are obtained,
i.e. after rearranging

©®

.= a*cos 0(x,sin 0 + y,cos 0) — b*sin O(x,cos § — y,sin 6)
* (b%(x,c08 0 — ysinB)? + a?(x,sin O + y,cos 0)?)V/?

+ csinf (10)

— a’sin O(x,sin 0 + y,cos 0) — b>cos O(x,cos § — y,sin 0)
- s s : ; 9 11
W (bz(stOS 0 — yssin 0)2 + az(sziIlg + ysCOSB)Z)l/Z + ccos ( )

These are the equations of fire front growth based on growth by envelopes of infinitesimally
small ellipses, subject to the initial conditions

x(s, 0) = x0(s)
¥(5,0) = yo(5)

If a, b, ¢ and 0 are constant, then for a fire ignited at a point source, the equations, to be
consistent with the model, should predict a constantly expanding ellipse of the form of equa-
tions (1). Setting 6 to zero and approximating a point ignition source as a small ellipse of the form

(12)

Xo(s) = adtcos s 13
Yols) = bdtsins + cdt

then it is found that the ellipse

x(s, ) = a(t + dt)coss
(14)
y(s,t) = b(t + dt)sins + c(t + di)
satisfies equations (11) and (12), i.e. the equations are consistent with the model, regardless of how
small dt is. This is also the case for any angle 6.

It is possible for the curve to cross over itself; this may occur at concave points and when two
separate regions of the curve meet. Around a sufficiently concave region of the curve, the regions
either side continuously burn in front of it so that it does not contribute to the front at a later
time. This causes an internal loop to form that grows into the interior of the curve. When two
separate regions of the curve meet an internal unburnt area is formed that eventhally burns itself
out. Figure 4 shows these two effects schematically at time ¢, before cross-over, and time ¢ + dt,
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before cross-over after cross-over

Figure 4. The formation of internal loops by a concave point and by two separate regions crossing

after cross-over, as the solid and dashed line. Since the main interest is the outer fire front, at time
t + dt the fire front is taken to be the outer portion of the curve, i.e. the solid curve.

The important features of these equations are: firstly they are a system of first order differential
equations which, although intractable analytically, are easily solved numerically; secondly the
parameters a, b and c for a fire can be obtained from the CFFBPS, and thirdly they can model
fires involving variable fuel and wind.

NUMERICAL ANALYSIS AND RESULTS

Method of solution
The curve (x(s, £), y(s, ) is discretized into n + 1 points (x;, ;, y;, ;) such that
(i, > i, ;) = (x(ids, jdr), y(ids, jdr)) (15)

where ds = 2n/n, ds and dt are the parameter and time step sizes and (X, j, Yo, ;) = (Xn, j» Vn, j)-

Given (x;, j, y;, ;) then (x; j+1, yi, j+1) is approximated using the modified Euler’s method with
one correcting iteration. Since a, b and ¢ are functions of s and t the RHS of equations (10) and
(11) can be written in the form

x, = F(s,t,x,,y,)
t 3 ( 1 6)
¥ = Gls, ¢, X5 ¥s)
Using central difference approximations for the derivatives x, and y,, the numerical method
becomes
Predictor

dxi,j = dtF(ids, jde, (xiyq,; — xi—l,j)/zds, Dis1,i— yi—l,j)/z ds) 17

X je1 =X+ dx ;

with similar expressions for dy; ; and 7; j+;.
Corrector

dx; j = dtF(ids,(j + 1)dt, Fisy jo1 — Fim1,j+1)/24d8 Fran,ja1 = Fio1,5+1)/2d5)  (18)
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and similarly for @i, ;- Then

X j+1 =X ; + 05(dx; ; + d—x,-, n)
it1 J J - J (19)
Vi, je1 = Yi,;+ 05(dy; ; + dy; ;)

For fires ignited at a point source the initial curve is taken to be a very small ellipse. The initial
conditions for point source ignition are, where a, b and ¢ are evaluated at the ignition point,

x; o = dtacosids
20)
Vi, 0 = dtbsinids + dtc

Although more sophisticated numerical methods that allow larger time steps could have been
used it was found that this method was adequate, as small time steps were required to avoid
jumping over fire breaks and the formation of excessively large loops at concave regions.

For the simulations in this paper the point source ignition was given by equations (19) using
200 points on the curve; dt was 50 s. Reductions of dt or increasing the number of points on the
curve produced little or no change in the results. The C.P.U. times for the simulations on
a VAX 8700 are given to the nearest second.

Wind changes over uniform fuel

If a, b and c are time dependent only and the initial curve is convex then the curve remains
convex and hence does not cross over itself. If this is the case then the solution of the problem is
a straightforward application of equations (17) and (18). An important, commonly occurring
example of such fires occurs when all the factors affecting a fire are constant apart from the wind
velocity.

Figure S illustrates the effects of three successive wind changes on a forest fire. The contours are
the points on the curve joined by straight lines, the cross is the ignition point. The fronts are
shown at 1500 s and intervals of 1000 s thereafter; dt was 50s. Wind speed is increased by
increasing a, b and ¢ and wind direction is changed by changing 6. 6 was initially zero and
changed to — n/4, 0 and 7/8 at 2500, 3500 and 5500 s respectively. a, b and ¢ were initially 0-02,
0-04 and 0-03 ms~! respectively and then changed to 0-02, 0-06 and 0-05ms™~! at 3500 s; these
values are equivalent to wind speeds of 25 and 30 km/h over red and white pine of medium
moisture content. Increasing wind speed increases the rate of spread and changing wind direction
changes the fastest burning portions of the curve to those with outward normals closest to the
wind direction. Changing wind direction also destroys the symmetry of the curve. The time for the
simulation was 3 s, suggesting that this type of problem could easily be transferred to a micro
computer.

Wind direction is rarely exactly unidirectional; a distribution about a mean is more likely.
A question that has not yet been fully answered is the effect of such wind variations. Figure 6
illustrates the fire fronts for constant wind speed but with random variations of 6. At each time
step a random number generator was used to choose § between — n/4 and n/4. After a sufficient
number of iterations the fronts settle down to oval-like shapes, symmetric in both axes of length
to breadth ratio 1-8:1. If the wind direction were constant the length to breadth ratio would be
3:1. The values of g, b and ¢ are equivalent to a 30 km/h wind over mature jack pine of medium
moisture content. The fronts are shown at 500 s and at intervals of 1000 s thereafter. The distance
from the ignition point to the tip of the final contour was 500 m. The time for the simulation was
8s. The time for this simulation was longer then the previous one as a regriding process that
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Figure 5. The effect of wind velocity changes over uniform fuel

added more points to the curve was used; this process is described in the following section. The
final curve contained 250 points. This model enables tables of fire fronts for different wind velocity
distributions to be made for particular fuels.

Regriding

Regriding (i.e. rediscretization of the curve) is required when the density of points on a part of
the curve becomes sparse. If the number of points remains constant as the curve grows then
distances between points increase, especially in fast moving regions. Large distances between
points introduce errors into the approximations of x, and y,, and hence into the whole simulation.

Another, and dramatic, example of large distances forming between points occurs when a fire
spreads around a fire break, Figure 7. The fronts are shown at 1500 s and intervals of 1000 s
thereafter; this is the case for all the following figures as well. The values of a, b and ¢ are
equivalent to a 30 km/h wind over mature jack pine of medium moisture content. The break is an
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Figure 6. The effect of random wind directions between - 7/4 and n/4 over uniform fuel;a = 002 ms™, b = 004 ms™*
c=003ms ', dt=50s,t=5m

L]

area 80 m long where a, b and c are set to zero. As points enter the break they remain there, the
oscillatory line at the base of the break being caused by such points. Eventually at either end of
the break there are two consecutive points such that one is inside the break, and one outside that
does not enter the break. The point outside continually moves downwind, the other remains
stationary. The inadequacy of the simulation is obvious.

When distributing points around the curve the highest density of points should be in areas of
high curvature. There are many ways of doing this; the following technique was found to be
a balance between effectiveness and efficiency. Figure 8 shows the line segment joining points at
i = kand k — 1 of length I, with the two adjoining segments before and after regriding. 8, is the
acute angle between line segments at k. The following test is applied to each pair of points on the
curve in order. If

max (cos (6,/2), cos (6x-1/2)) > (T/L,)? eay)

where T is a specified threshold, then an extra point is added at the midpoint of the line segment.
This process is now repeated recursively to both halves of the segment until the condition is
satisfied by all new points between k and k — 1. All points after k — 1 are now assigned new values
of i. The closer 8, and 6, _, are to = (i.e. the closer the line segments are to being collinear) then the
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Figure 7. Fire fronts around a fire break without regriding; 4 = 002ms~ !, b =006 ms™*, c =005ms™~*, dt = 50

larger the allowable value of /,. This ensures a high density of points in areas of high curvature
without placing unnecessary points in areas of low curvature. Raising the power of 7/, biases the
regriding even more to the areas of high curvature; taking the square was found to be effective.

Figure 9 shows the effectiveness of regriding applied to the previous fire break problem, with
T = 1m. Although regriding was applied at each time step it did not add any new points until the
3rd shown contour, i.. till areas of high curvature were formed when the fire began to curl around
the break. The final front had 330 points and the total time for the simulation was 6 s.

Clipping

As mentioned before, around concave regions the curve can cross over itself, forming a loop
that spreads into the interior of the curve. We are interested in the external curve only. If the loop
is not removed regriding will add a large number of redundant points, as in its initial stages its
curvature is very high. Also, as will be discussed later, in areas where the derivatives of a, b and
cin s are high, the number of points contained in such loops can grow exponentially, so rendering
the simulation useless. The removal of such loops is called loop clipping.
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before regriding

after regriding

k+2

Figure 8. The introduction, by regriding, of new points on the line joining points at k and k — 1 and the renumbering of
subsequent points

Cross-over can occur when two entirely separate parts of the curve intersect, forming a possibly
very large, internal loop that crosses over itself at least once. An example can be seen in the
previous fire break problem where the two arms on either side of the break will eventually meet.
The removal of such loops is called cross-over clipping.

Figure 10 shows, schematically, a portion of the curve at time t around a concave point at i = k,
the formation of a loop at ¢ + dt and the loop clipped. The loop clipping process at t + dt
involves identifying the point of intersection of the loop with the external curve, the addition of
a new discretizing point at the intersection and finally reassigning new values of i to the points on
the clipped curve. The concave point k at time ¢ will always be part of the loop at ¢ + dt if one is
formed.

At each time step the curve is searched for concave points. If any loops are formed at the next
time step it is known that their intersection with the external curve must be either side of points
that were concave at the previous time step. By testing for the intersection of line segments either
side of such points k, the point of intersection with the external curve can be found. If a loop
crosses over itself, the required point of intersection is that between intersecting line segments
furthest apart on the curve. The search process need only be performed a small distance either
side of k to ensure identification of the intersection point. The required distance either side of k is
dependent on the dt (the larger dz the larger the loop), and the density of the points on the curve
(which is dependent on the regriding threshold T'). For the values of dt and T used here, searching
15 points either side of concave points removed all internal loops.

For cross-over clipping the process is the same except that the identification of the intersection
of the internal loop with the external curve is not easy, as there is no simple way of predicting
when and where it will occur. The point of intersection can be identified interactively or by
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Figure 9. Fire fronts around a fire break with regriding; a = 0-02 ms™ !, b=006ms™ !, c=005ms™ !, dt =505,
T=1m

periodically testing for the intersection of every line segment with every other line segment. If
segments are found to have intersected then an internal loop has been formed, with its intersec-
tion with the external curve being the intersection of line segments furthest apart on the curve.

The complete algorithm

Given the points (x;, j, y; ;) on the curve the full algorithm becomes

1. Identify concave points.

2. Approximate curve at next time step.

3. Perform loop clipping around previously concave points.

4. Perform cross-over clipping if cross-over has been identified.

5. Perform regriding so as to finally obtain the points (X; j+1, i, j+1)-

The algorithm, although fairly technical, can be written in about 300—400 lines in a high level
language.



\ ’
/
\\ / k+3 k-3
k+3 k-3
k k
before loop formed loop formed
\ s
N /
k+1 k—3

k—1

loop clipped

Figure 10. The formation of loop at a concave point, its removal, the insertion of a new discretizing point and the
renumbering of subsequent points

Figure 11. Two separate regions of a fire front either side of a fire break crossing over forming an internal loop that is
clipped, forming a concave point; a=002ms L, b=004ms™ ', c=003ms™}, dt = 505, T=08m
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The fire break problem of Figure 11 shows all aspects of the algorithm in operation. Regriding
was applied at each time step. The break is 90 m long and the values of a, b and c are equivalent to
25 km/h wind over mature jack pine of medium moisture content. As the curve curls around the
break the number of points increases steadily owing to regriding. Cross-over was identified,
interactively, a little before 6500 s, at which point the internal loop was clipped. In performing
cross-over clipping a concave point is formed; loop clipping is performed at every time step
thereafter. A loop was identified at every time step; however, if the simulation is allowed to
continue the concave point becomes less severe and loops occur less frequently. If the loop is not
removed it will spread back towards the fire break, creating a large number of redundant extra
points.

After cross-over clipping the number of points drops from 370 to 209 as the large number of
points at the fire break are removed. The final front has 214 points. Technically there is an
internal unburnt area that eventually burns itself out; however, the main interest is the outer fire
front not the internal one (unless you are in the middle of it !). The total time for simulation was
11s.

a = 0.03ms™!

BN

a = 0.0lms!

b = 0.02ms™!

q ¢ = 0.01ms™!}

/ a=b=c=00ms!

Figure 12, Fire fronts over 4 different fuel types with a wind direction change; dt = 50s, T=1m
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Variable wind and fuel

Figure 12, the final example, shows the performance of the simulation in dealing with four
different fuel types and a wind change, the fire break being 30 m wide. The values of a, b and ¢ for
the left, central and top right regions are equivalent to spruce lichen woodland of medium, high
and very high moisture content respectively, with a wind speed of 25 km/h. The fire expands
elliptically from the point of ignition in the central region until it reaches the faster burning left
hand region. The rate of spread up the left hand side of the fuel interface tends to the forward rate
of the left hand region. As the fire spreads up the left hand side of the interface it ignites the right
hand side which then burns into the central region.

On the other side of the fuel bed the fire meets the fire break and burns along its edges, the
change in wind direction closer to that of the edges of the break increasing the rate of spread
along the break. The rates on both sides tend to the same constant rate. In meeting the slow
burning top right region the fire slows down. The wind direction was changed to n/4 at 5500 s, i.e.
just after the second but last shown contour. The time for the simulation was 37 s and the final
front had 320 points.

In crossing a fuel interface concave points are formed which then form loops. If a loop is not
clipped it will grow and cross the interface and, in general, form two concave points that will form
loops that will in turn cross the interface, each forming two more concave points, etc. The
regriding process will add points to these loops and the number of points increases so rapidly that
without loop clipping the simulation grinds to a halt.

CONCLUSIONS

A system of differential equations based on eiliptical fire growth has been derived for a forest fire
front represented as a closed curve. The equations are a relatively simple first order non-linear
system with parameters directly available from forestry data. The equations allow for time-
dependent wind velocity and spatially variable fuel type.

In solving the system a simple predictor/corrector method was found to be effective although
rediscretization of the curve was required to ensure a sufficient density of points in all regions of
the curve. For problems where the curve does not cross over itself, such as the important uniform
fuel, variable wind velocity problem, solutions were obtained in a matter of seconds, suggesting
that the model could be transferred to a micro computer for use in the field. For problems where
the curve crosses over itself a clipping procedure was introduced; this increased the time of the
simulation, though problems involving variable fuel types and wind velocity changes were still
solved very quickly. Although based on known results concerning forest fire behaviour, the
accuracy of the model can be verified only by comparison with actual fires and polling fire
fighters as to whether the accuracy is sufficiently good to be of use to them.

In conclusion, this technique is based on principles already in use by fire fighters and can
efficiently solve hitherto unsolved problems. The model is not entirely general but hopefully is
a significant contribution to such a theory.
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