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Chapter 0

Background Material

This chapter is a brief summary of some of the concepts from point set topology and geometry of
curves and surfaces that are, to a certain degree, assumed knowledge in the course.

0.1 Point Set Topology

The idea of point set topology has its origins in the analysis of limits of real numbers, and
especially continuity of functions. See [29] for a general introduction to topological spaces and
– among them – metric spaces, which will be of most interest to us in the following chapters.
The basic object is an open set. In R, an open set is defined to be any union of open intervals
(including the empty set). In Rn with its standard Euclidean distance function d(x,y) = |x− y|,
open intervals are replaced by open balls: Bε(x0) := {x ∈Rn | |x−x0|< ε}, is the open Euclidean
ball of radius ε centered at x0.
Recall that a set U ⊂R is called open if, for any element x0 ∈U , there exists some number ε > 0
such that the open interval Bε(x0) is also contained in U . Notice that, with this definition, an
arbitrary union of open sets is obviously open. However an arbitrary intersection might not be:
the single point set {0} is a countably infinite intersection, ∩∞

n=1(−1/n,1/n), of open intervals,
but it is not itself open.

Definition 0.1 A topological space is a set X together with a collection T of subsets of X ,

called open sets, such that

1. The empty set Ø and X itself are both elements of T .

2. Any union of elements of T is also an element of T .

3. The intersection of any finite subcollection of T is also in T .

The collection T is called a topology on X .
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Basic examples are:

1. The standard topology on R or Rn, defined with the ε-neighbourhood notion above.

2. The trivial topology on any set X , given by T = {X ,Ø}.

3. Or the other extreme, the discrete topology, where T consists of all subsets of X .

0.1.1 Basis for a topology

In general, it might be difficult to describe explicitly all elements of a topology. Instead, one talks
about a basis for T , that is, some sub-collection that generates T by taking arbitrary unions and
finite intersections.

Definition 0.2 A basis for a topology on a set X is a collection B of subsets of X such that

1. For each x ∈ X there is at least one set B ∈ B such that x ∈ B.

2. For any pair of sets B1, B2 in B , if x ∈ B1∩B2 then there exists a third basis element B3 such
that x ∈ B3 ⊂ B1∩B2.

The toplogy T generated by a basis B is defined as follows: a set U belongs to T if, for each element
x ∈U , there exists a basis element B ∈ B such that x ∈ B⊂U .

EXERCISE 0.3

Find a basis for the standard topology on R.

EXERCISE 0.4

Check that the “topology generated by a basis B” is, in fact, a topology.

EXERCISE 0.5

Let B be a basis for a topology T on X . Show that T is the collection of all unions of elements of B .

0.1.2 Second Countability

In manifold theory, the proof of some useful tools requires a certain degree of “finiteness” in
the topology, namely the second countability assumption. Recall that a set X is countable if its
elements can be enumerated, x1,x2, . . . , or, more precisely, there is a bijection between X and the
natural numbers N := {1,2,3, . . .}.
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Definition 0.6 A topological space X is said to be second countable if there exists a countable

basis for its topology.

EXERCISE 0.7

Show that R, with the standard topology, is second countable.

EXERCISE 0.8

Show that R, with the discrete topology is not second countable.

Any subset A of a topological space X can always be given the induced topology, or subspace
topology defined by declaring a set V ⊂ A to be open if V =U∩A, where U is some open subset of
X . In symbols: TA := {U ∩A |U ∈ TX}. The subset A with this topology is called a (topological)
subspace of X .

EXERCISE 0.9

Prove that any subspace of a second countable topological space is also second countable.

0.1.3 Hausdorff topological spaces

One other reasonable condition on a topological space is the following:

Definition 0.10 A topological space X satisfies the Hausdorff condition if for any two distinct

points x and y in X there exist disjoint open sets U and V in X such that x ∈U and y ∈V .

This property is already immediately satisfied by the standard topology in Rn and by the metric
ball topology in any metric space. Since we will eventually model Riemannian manifolds via
chart domains in Rn, the Hausdorff condition on the manifold topology is but a natural condition
to impose.

EXERCISE 0.11

Prove that the standard topology in Rn satisfies the Hausdorff condition.

The Hausdorff condition does not follow from second countability:
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EXERCISE 0.12

Construct a set with a topology that is second countable but not Hausdorff. Hint: You may want to
consider something like this set: X = R∪{∗}, where ∗ is an element not in R. And then declare a set
U open if and only if U ∩R is open and, moreover, if ∗ ∈U , then (U ∩R)∪{0} is a neighbourhood
of 0 (i.e. an open set containing 0) in R.

0.1.4 Continuity

Recall that a function f : R→ R is defined to be continuous at a point x if, for any sequence
xn converging to x, the sequence f (xn) converges to f (x). For a general topological space, the
definition is given in terms of open sets:

Definition 0.13 A map f : X → Y between topological spaces is said to be continuous if for

any open subset V of Y , the pre-image f−1(V ) is an open subset of X .

Even for metric spaces like R, this definition is often much easier to work with: consider the
simple proof of the following fact:

Lemma 0.14 If g : Y → Z and f : X → Y are both continuous maps, then the composition

g◦ f : X → Z is also continuous.

Proof. Let V ⊂ Z be open. Then g−1(V ) is open by continuity of g, and hence f−1(g−1(V )),
which is the same as (g◦ f )−1(V ), is open in X.

EXERCISE 0.15

Using Definition 0.13, prove that the map f : R→R given by f (x) = 2x is continuous. (Hint: one
way to start is to observe that if V ⊂R is an open set then V can be written as a union ∪α(aα,bα) of
open intervals.)

0.2 Metric spaces

Some spaces admit a distance function:

Definition 0.16 Let X denote a non-empty set and suppose that the map d : X×X 7→R+∪{0}
satisfies the following conditions:
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1. for all x and y in X , d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y.

2. d(x,y) = d(y,x) for all x and y in X .

3. d(x,z) ≤ d(x,y)+ d(y,z) for all x, y, and z in X .

Then (X ,d) is called a metric space with distance function d.

EXERCISE 0.17

Show that the following functions on R2×R2 are distance functions on R2, where we use coordinates
x = (x1,x2) and y = (y1,y2) for points x and y:

1. d1(x,y) = |x1− y1|+ |x2− y2|

2. d2(x,y) =
√
(x1− y1)2 +(x2− y2)2

3. d3(x,y) = max{|x1− y1| , |x2− y2|} .

A metric space becomes a topological space via the following definition of open sets.

Definition 0.18 Let (X ,d) be a metric space and U ⊆ X . We define U to be open in X if for

every x ∈U there exists εx > 0 so that the distance ball Bεx(x) is contained in U . Here, the distance
ball of radius r > 0 centered at p ∈ X is defined by the distance function as follows:

Br(p) = {x ∈ X |d(x, p) < r}. (0.1)

The distance balls Br(p) in (X ,d) are thence themselves open.

EXERCISE 0.19

Show that the distance balls of (X ,d) constitute a basis for the topology defined by the open sets in
definition 0.18.

0.3 Curves in Euclidean spaces of 2, 3, and n dimensions

We will use the curvature of surfaces in 3-space to develop an intuition for curvature in more
general geometries. In turn, the curvature of surfaces can be defined and visualized using the
notion of curvature of plane curves.
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Definition 0.20 A parameterized curve in Rn is a differentiable map γ : I → Rn, from an

interval I ⊂R, such that γ′(t) 6= 0 for all t ∈ I.

Note: Unless otherwise stated, the term differentiable will always mean differentiable infinitely
many times. One can take the interval I to be either open or closed, as needed. If closed, then the
derivatives are defined on the interior and should be continuously extendable to the end points.

Figure 1: Left: two plane curves with the same curvature at the point (0,0). Right: a curve in R3.

Definition 0.21 Given a parameterized curve γ : I1 → Rn, where I1 is an open interval, a

change of coordinates is a differentiable map: φ : I1→ I2 to another interval I2 ⊂R, such that

1. φ is bijective (i.e. injective and surjective),

2. φ′(t) 6= 0 for all t ∈ I1 (equivalently: φ−1 is also differentiable).

The map γ̃ : I2→Rn given by
γ̃(w) = γ(φ−1(w)),

is called a re-parameterization of γ with coordinate w.

Example 0.22

The plane curve γ : (0,2π)→R2 given by γ(t) = 3(cos(t), sin(t)) can be reparameterized as:

γ̃(s) = 3(cos(s/3), sin(s/3)), s ∈ (0,6π).

Here the coordinate change is φ : (0,2π)→ (0,6π) given by

φ(t) = 3t,
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with inverse φ−1(s) = s/3. Let’s check that φ satisfies conditions 1 and 2 of Definition 0.21:

1. φ : (0,2π)→ (0,6π) is surjective, since every element s ∈ (0,6π) can be written s = 3t where
t ∈ (0,2π), and φ is injective because whenever φ(t1) = φ(t2) we have t1 = t2.

2. We have φ′(t) = 3 and this is non-zero for all t. (Equivalently, the formula for the inverse,
φ−1(s) = s/3 is differentiable).

Notice that the re-parameterized curve γ̃ in the example above has the property that the norm of

the vector γ̃′(s) = (cos(s/3), sin(s/3)) is one: ||γ̃′(s)||=
√

cos2(s/3)+ sin2(s/3) = 1.

Definition 0.23 Given a parameterized curve γ : I→Rn, the tangent vector field to γ is the

map γ′ : I→Rn, given by γ′(t) = d
dt γ(t). The speed is the map: ||γ′|| : I→R given at each t by the

norm of γ′(t). The length of the curve is the integral of the speed over the whole interval:

L =
∫

I
||γ′(t)||dt.

Note that the speed of a curve depends on the parameterization. For example, for the curve in
Example 0.22, we have

||γ′(t)||= ||3(−sin(t), cos(t))||= 3,

but
||γ̃′(s)||= ||(−sin(s/3), cos(s/3))||= 1,

The length however does not depend on the parameterization: for example with the curve above:∫
I
||γ′(t)||dt =

∫ 2π

0
3dt = 6π,

and ∫
I2

||γ′(s)||ds =
∫ 6π

0
1ds = 6π

A parameterization γ(s) of a curve that has constant unit speed: ||γ′(s)||= 1 is called an arc-length
(or unit speed) parameterization. The reason for the name “arc-length” is that, in that case:

s1− s0 =
∫ s1

s0

ds =
∫ s1

s0

||γ′(s)||ds,

is the length of the curve between s0 and s1. So lengths on the interval I are the same as
corresponding arc-lengths on the curve.
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EXERCISE 0.24

Prove that any regular curve γ : [a,b]→Rn can be reparameterized by arc-length. (Hint: Set φ(t) =∫ t
a ||γ′(u)||du).

Quantities like the speed that change if we reparameterize a curve are not considered geometric.
This is because the parameter t is merely a way to reference the points on the curve in space.
But the points in space are the real geometric objects. We are therefore interested in geometric
quantities like the length L that do not change under reparameterization.
Another important geometric quantity of a plane curve is the curvature function κ(t) which
measures by how much the curve deviates from being a straight line at the point γ(t).

Definition 0.25 Let γ : I → R2 be a plane curve, parameterized by arc-length, i.e., with

||γ′(s)||= 1 for all s ∈ I. The curvature function κ : I→ [0,∞) is given by:

κ(s) = ||γ′′(s)||.

For a curve γ(t) that is not necessarily parameterized by arc-length we can compute the curvature
function by the formula:

κ(t) =
|det(γ′(t),γ′′(t)|
||γ′(t)||3

.

Differentiating ||γ′(s)||2 = γ′(s) · γ′(s) = 1, we have:

0 = γ
′′(s) · γ′(s)+ γ

′(s) · γ′′(s) = 2γ
′′(s) · γ′(s),

so the vector γ′′(s) is orthogonal to the tangent vector γ′(s) at each point. At points where
κ(s) 6= 0 we define the unit normal n to the curve by:

n(s) =
γ′′(s)
κ(s)

.

Note that the unit tangent t(s) = γ′(s) and unit normal n(s) = γ′′(s)/κ(s) are well defined up to
a change of sign. This is because there are two choices of arc-length parameterization, depending
on which direction you run along the curve. Such a choice is called an orientation for the curve.

EXERCISE 0.26

Compute the curvature function κ for each of the following curves:

1. γ1(t) = R(cos(t), sin(t)) where R is a positive constant,

2. γ2(t) = (t, t2), t ∈R,

3. γ3(t) = (t, t3), t ∈R.
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0.4 The Frenet-Serret data for curves in R3

The local shape of a space curve is encoded into the following theorem/definition which – among
other things – extends the previous notion of curvature to curves in one higher dimension. One
of the purposes of these notes is to extend the relations below even further, namely to curves in
non-Euclidean manifolds. This is the topic of Chapter 5.

Theorem 0.27 A regular space curve p(t) with p′(t) 6= 0 for all t has curvature κ(t), torsion

τ(t) and an associated orthonormal basis (the so-called Frenet-Serret vectors) at each point p(t) defined
and found via the following expressions, where we have used the notation v(t) = ‖p′(t)‖> 0:

κ(t) =
‖p′(t)× p′′(t)‖

v3(t)

τ(t) =
(p′(t)× p′′(t)) · p′′′(t)
‖p′(t)× p′′(t)‖2 when κ(t) > 0

(0.2)

e(t) =
p′(t)
v(t)

g(t) =
p′(t)× p′′(t)
‖p′(t)× p′′(t)‖

when κ(t) > 0

f (t) = g(t)× e(t) when κ(t) > 0 .

(0.3)

In these expressions, e(t) is the unit tangent vector to the curve, f (t) is that particular unit normal
vector to the curve which points in the curvature direction, i.e. it corresponds to n(t) for the planar
curves. The third unit vector f (t) is called the bi-normal vector – it is orthogonal to the so-called
osculating plane for the curve, which spanned by e(t) and f (t).

Theorem 0.28 The Frenet-Serret vector functions satisfy the following ODE system:

e′(t) = v(t)κ(t) f (t)

f ′(t) = −v(t)κ(t)e(t)+ v(t)τ(t)g(t)

g′(t) = − v(t)τ(t) f (t) .

(0.4)

The ODE system (5.27) gives rise to a natural inverse problem: How to reconstruct the curve (or
at least just e(t) from which an isometric version of the curve then follows by integration) from
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knowledge about v(t), κ(t), and τ(t). This is solved by the fundamental theorem for space curves
– see the discussion and proof in [5]:

Theorem 0.29 Every regular curve in three-dimensional space, with non-zero curvature, has

its shape completely determined by its curvature and torsion

0.5 Surfaces and their geometry

A surface in 3-space R3 is usually described either implicitly as the zero set of some real-valued
function g, that is S = {(x,y,z) | g(x,y,z) = 0}, or explicitly as a parameterized surface with two
parameters: S = { f (u,v) | (u,v) ∈U}, where f is a map from U →R3, and U is an open subset
of R2. For example, we can represent the unit sphere S2 either as the set

{x2 + y2 + z2−1 = 0},

or we can get most of the sphere as the image of the map f : (0,2π)× (−π/2,π/2)→R3 given
by

f (u,v) = (cosucosv, sinucosv, sinv).

EXERCISE 0.30

Use a computer to plot the parameterization f (u,v) of the sphere S2 given above. Find the subset of
(0,2π)× (−π/2,π/2) needed to plot just the upper hemisphere, that is {(x,y,z) ∈ S | z > 0}.

0.5.1 The tangent space to a surface

The coordinate tangent vectors for a parameterized surface f (u,v) are given by fu := ∂ f
∂u and

fv := ∂ f
∂v . The condition that f is a valid parameterized surface (that is regular) is that fu and fv are

linearly independent vectors at each point (u,v) in the domain. This is equivalent to the statement
that the cross product fu× fv is non-zero. In this case, the vector subspace of R3 spanned by fu
and fv is called the tangent space to S at (u,v).
If the cross product is zero at some point, it might just mean that your parameterization is no good
at that point - there may be another parameterization of the same image set which is regular.

EXERCISE 0.31

Show that the map f : (−1,1)× (−1,1)→R3, given by

f (u,v) = (u3,v,0),
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Figure 2: Left: the image of f (u,v) = (u3,v,0). Right: the image of f (u,v) = (u2,u3,v).

is not a regular parameterized surface (Figure 2, left). Write down an alternative map g : (−1,1)×
(−1,1)→R3 that has exactly the same image set in R3 and is regular.

Depending on the purpose, we often allow our parameterized surfaces to have self-intersections
in the large but the regularity condition guarantees that if you restrict to a very small set in the
uv-plane, then the image of this set will be a smooth surface with no self-intersections.

EXERCISE 0.32

Calculate the tangent vectors for the above parameterized sphere, and the cross-product fu× fv.

EXERCISE 0.33

At which points on the sphere are our parameters invalid?

EXERCISE 0.34

Show analytically that g : (−1,1)× (−1,1)→R3 given by

g(u,v) = (u2,u3,v)

(see Figure 2) is not a regular parameterized surface along the line {u = 0}. Is there a regular surface
with the same image as g?

EXERCISE 0.35

Plot the image set of the function h : [−1,1]× [−1,1]→R3, given by the formula h(u,v) = (u,v2,uv3).
For which points in [−1,1]× [−1,1] is this a regular parameterized surface? (Show this using using
the formula). Does this fit with the image you plotted? (Note: we allow a parameterized surface to
intersect itself).
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EXERCISE 0.36

Using the set [0,2π]×R as your parameter domain, give a parameterization of the infinite cylinder
S = {(x,y,z) ∈R3 | x2 + y2 = 4}. Plot this on an appropriate subdomain.

0.5.2 Surfaces of revolution:

A curve in the xy-plane is given by a function γ : (a,b)→R3, from an open interval (a,b) ⊂R,
of the form γ(u) = (α(u),β(u),0), with the condition that γ′(u) 6= 0. The surface of revolution
obtained by revolving this curve around the x-axis is parameterized as

f (u,v) = (α(u),β(u)cos(v),β(u) sin(v)),

where (u,v) ∈ (a,b)× [0,2π]. (The round cylinder of Exercise 0.36 is an example of revolving
the line (2,0,u), a curve in the xz-plane, about the z-axis.)

EXERCISE 0.37

Find a parameterization for the catenoid obtained by revolving the catenary y = cosh(x) about the
x-axis. Plot this on an appropriate domain.

0.5.3 The unit normal

The cross-product of any two vectors is orthogonal to both of them. Therefore, if f is a regular
surface, the vector fu× fv is orthogonal to the tangent plane of the surface. The unit normal is the
unit length vector in this direction N = fu× fv

|| fu× fv|| .

EXERCISE 0.38

Find the unit normal as a function of u and v for the parameterized sphere of Exercise 0.30. Is the unit
normal pointing out of the sphere or into the center of the sphere?

EXERCISE 0.39

Find the unit normal to the cylinder of Exercise 0.36 at the points (2,0,0) and (0,2,0). Find the unit
normal to the surface g of Exercise 0.34, as a function of u and v.
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0.5.4 The first and second fundamental forms

Recall that lengths of vectors and angles between them are computed using the dot product:

||T ||=
√

T ·T , T ·U = cos(θ) · ||T || · ||U ||.

It is the dot product that allows us to measure things in Rn. In integral calculus the above formulas
are used to compute lengths of curves, areas of surfaces, and volumes of regions.

In order to measure things on a surface, we only need to know the value of the dot product restricted
to the tangent space. This restriction is called the first fundamental form. For a parameterized
surface, the tangent space is spanned by fu and fv, and so if we know the coefficients

E = fu · fu, F = fu · fv, G = fv · fv,

we know the dot product of any tangent vectors. For an arbitrary pair of tangent vectors, T and
U , written as linear combinations of fu and fv, that is: T = a fu + b fv and U = c fu + d fv, the dot
product is calculated by the matrix multiplication:

[a b] ·
[

E F
F G

]
·
[

c
d

]
= [a b] ·FI ·

[
c
d

]
,

and FI is the matrix of the first fundamental form matrix with respect to the given parameterization.
Notions such as lengths, areas and angles on the surface are all defined in terms of the first
fundamental form, and so the coefficients E, F and G come up in the formulae for these. Note
that E, F and G will change if we change the parameterization of the surface.

To see how the surface is actually sitting inside R3, we use the second fundamental form, which
is also a map which takes a pair of tangent vectors T = a fu + b fv and U = c fu + d fv and gives a
number

[a b] ·
[

L M
M N

]
·
[

c
d

]
= [a b] ·FII ·

[
c
d

]
,

where FII denotes the second fundamental form matrix with respect to the given parametrization,
i.e. if N is the unit normal, then

L = fuu ·N , M = fuv ·N , N = fvv ·N .

Since these coefficients take second derivatives of f and dot them with the normal, the second
fundamental form FII gives information about how the surface is bending away (in the direction
of N ) from the tangent plane; so, for example, if the surface is a plane then FII is the zero matrix.
If a plane is bent into the shape of a cylinder, then FII for the bent surface is not the zero matrix.

Another way to describe the geometric meaning of the second fundamental for is to observe that,
differentiating N · fu = 0 with respect to u we have: Nu · fu +N · fuu = 0, so fuu ·N = −Nu · fu
and so on, to get:

L = −Nu · fu, M = −Nu · fv = −Nv · fu, N = −Nv · fv,
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so FII is simply how the unit normal vector field along the surface is varying in space, since it
contains all the information about the derivatives of N .

0.5.5 The principal curvatures and directions:

If T = a · fu + b · fv is a unit vector in the tangent space, i.e. [a b] ·FI · [a b]∗ = 1, then

[a b] ·FII · [a b]∗ (0.5)

is a number which tells you how fast a curve in the surface which is tangent to T bends away
from the surface. In other words, how curved the surface is in that direction. In general, (except at
special points, called umbilics), there are two special directions in the surface where this bending
is a maximum and a minimum respectively, at the point in question. These are called the principal
directions. A curve in the surface which is always tangent to a principal direction is called a
principal curve, or line of curvature.
These principal directions are the eigenvectors of the Weingarten matrix,

W = F −1
I ·FII .

The eigenvalues are always real. At non-umbilic points, these eigenvalues are distinct, and are
called the principal curvatures, which we denote by κ1 and κ2. To see why we have to use
the eigenvectors of W , not those of FII , note that, if T is a unit length eigenvector of W , with
W · [a b]∗ = κ · [a b]∗, then

[a b] ·FII · [a b]∗ = [a b] ·FI

(
F −1

I ·FII · [a b]∗
)
= [a b] ·FI · (κ · [a b]∗) = κ,

so (comparing with equation (0.5)) the eigenvalue κ says how fast a curve in the direction of T
bends away from the surface.

EXERCISE 0.40

The sphere, of Exercise 0.30 is a totally umbilic surface, that is, all points are umbilics, meaning
that all directions at all points are principal directions. Show this by calculating the eigenvalues and
eigenvectors of the Weingarten matrix.

EXERCISE 0.41

Calculate the principal directions and the principal curvatures for the cylinder (Exercise 0.36). Plot
the cylinder again, this time displaying two principal curves through some particular point.
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EXERCISE 0.42

Find the principal curvatures for the Catenoid (Exercise 0.37). What is special about the relationship
between the two principal curvatures?

EXERCISE 0.43

Find the principal directions for the Catenoid, and plot some of the principal curves.

0.5.6 The Gauss and mean curvature:

The Gauss curvature of a surface is the product of the principal curvatures: K = κ1κ2. The most
important thing about the Gauss curvature is its sign: if K > 0 at a point then both principal curves
through that point are curving the same way, either into the direction of the normal, or away from
the normal direction. If K < 0 then the two principal curves are bending in opposite directions. A
special case is K = 0: if a surface has K = 0 everywhere, then it is called flat because it has the
special property that it can be obtained from a "flat piece of paper" by bending, but not stretching.
You can imagine this, because if K = 0 then one of the principal curvatures is zero, so in one
direction the surface is not bending. This means you don’t have to "stretch" the surface to bend it
back to a flat piece of paper.
Note: Even if the eigenvalues of W are not distinct (at umbilics) we still define the Gauss
curvature to be their product. For example, if there is one eigenvalue, κ1 = 3, with multiplicity 2,
then the Gauss curvature is 3×3 = 9.

EXERCISE 0.44

Find the Gauss curvature for the sphere, the plane [u,v,0], the cylinder and the catenoid.

EXERCISE 0.45

Plot the catenoid, colored by Gauss curvature. What is happening to the surface as u grows large?

The mean curvature is the average of the eigenvalues of the Weingarten matrix (even if they are
not distinct), H = 1

2(κ1 +κ2). In contrast to the Gauss curvature, the sign of the mean curvature
means nothing geometrically, because if you choose your unit normal to point in the opposite
direction (for example by interchanging the parameters u and v), the mean curvature changes
sign. (The Gauss curvature, on the other hand, does not depend on the choice of the unit normal
direction).
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EXERCISE 0.46

Calculate the mean curvature for the sphere, the cylinder, the plane and the catenoid.

EXERCISE 0.47

Calculate the Gauss and mean curvature for the surface g of Exercise 0.34. What happens to the mean
curvature as u approaches 0?

0.6 Submanifolds of Euclidean space

0.6.1 Parameterized submanifolds

Recall that a map f : Rm⊃U→Rn is called regular if its derivative d f (p) : Rm→Rn is regular at
every point p ∈U . In matrix form, the derivative is just the Jacobian matrix J f (p) = [∂ f i/∂x j]|p,
and an m×n matrix A is regular if it has the highest possible rank: Rank(A) = min(m,n).

Parameterized submanifolds of arbitrary dimension are defined in the same way as regular curves
in Rn:

Definition 0.48 Let n≥ m≥ 0 be integers. An m-dimensional parameterized submanifold of

Rn is given by an open subset U ⊂Rm together with a regular smooth map f : U →Rn.

Note: we could add the condition that the map f be injective - however this is not very important
for the moment.
The difference (n−m) is called the codimension of the submanifold. We have already seen 1-
dimensional examples (regular curves in Rn) and also 2-dimensional parameterized submanifolds
of R3.

EXERCISE 0.49

For each of f and h, check whether it defines a parameterized submanifold, and give the dimension
and codimension.

f : R3→R4, f (x,y,z) =


x+ y
x− y
x+ z
x− z


∗

, h : R2 \{(0,0)}→R4 h(u,v) =


u

u2 + cos(v)
v2

uv


∗

.

For a parameterized submanifold f : U →Rn, we can define the tangent space at a point p ∈U ,
exactly as we did for parameterized surfaces: the fact that f is regular means that the columns:

fui :=
∂ f
∂ui

, i = 1, . . .m,
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of the Jacobian matrix, are all linearly independent. Therefore they define at each point p an m-
dimensional vector subspace of Rn, the tangent space at p, denoted TpU := Span{ fu1|p, . . . , fum|p}.
The first fundamental form (or the induced metric) can be defined exactly as for surfaces, namely
it is the inner product on TpU obtained simply by restricting the dot product of Rn:

〈X ,Y 〉 := X ·Y

where X ,Y ∈ TpM ⊂Rn. The matrix of the first fundamental form (the metric matrix) is computed
in the same way as for surfaces:

Gi j = 〈 fui , fu j〉= fui · fu j .

As with surfaces the first fundamental form allows us to define lengths of curves and volumes
of regions on a parameterized submanifold. As for curvature, this is a little more complicated to
define if the codimension n−m is greater than 1. We will, however, define curvature in a different
way later.

0.6.2 General submanifolds of Euclidean space

In general, a submanifold of Euclidean space is a set that looks like a parameterized submanifold
around every point. A classic example is the sphere defined by the position vectors x of unit
length in Rn: Sm := {x ∈Rm+1 | x ·x = 1}. There is an open subset V of Sm around every point
such that V is a parameterized submanifold of dimension m: for instance, the upper hemisphere,
Sm
+ = {x∈ Sm | xn+1 > 0} can be parameterized as f : U→Rm+1, where U = {u∈Rm | ||u||< 1}

and
f (u) = (u1,u2, . . . ,um,

√
1−u2

1−·· ·−u2
m ).

Similarly, for any x ∈ Sm, there is always a hemisphere, Sm
j,± = {x ∈ Sm | ± x j > 0} where an

analogous parameterization can be used. It is necessary that parameterizations are compatible in
the sense that there is a differentiable map from one to the other, and this will be discussed later.

We can give a precise definition of a submanifold of Euclidean space as follows (see [27] Chapter
2). First we extend the notion of differentiability to a set that is not necessarily open. Recall that a
map from an open subset of Rk to Rl is called smooth if derivatives of all orders exist. An open
set U is an open neighbourhood of x if x ∈U .

Definition 0.50 f : Rk ⊃ X → Y ⊂ Rl is smooth if for every x ∈ X we can find an open

neighbourhood U ⊂ Rk of x, and a smooth map F : U → Rl such the restriction of F to U ∩X
coincides with f .

A map f : X →Y is called a diffeomorphism if it is 1) a bijection, 2) smooth and 3) f−1 is smooth.
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Definition 0.51 A subset M ⊂Rn is called an m-dimensional submanifold of Rn if for every

point x ∈M there is an open neighbourhood V ⊂Rn of x such that M∩V is diffeomorphic to an open
subset of U ⊂Rm.

In particular, a submanifold cannot have any self-intersections.

A diffeomorphism φ : M∩V →U is called a coordinate chart and its inverse ψ = φ−1 : U →
M∩V ⊂Rn is called a local parameterization.

EXERCISE 0.52

Show carefully that the unit sphere Sm satisfies Definition 0.51.

0.6.3 Vector fields and covariant derivatives

Definition 0.53 If M ⊂ Rn is a submanifold, a map f : M→ Rk is called smooth if there

exists an open set U ⊂Rn containing M, and a smooth map F : U →Rn that agrees with f on U ∩M.

One can show ([27] Corollary 2.1.11) that, equivalently, f is smooth if and only if f ◦ψ : U →Rk

is smooth for any local parameterization ψ : U →M.
An important type of smooth map in differential geometry is one that takes values in the tangent
space to a submanifold, namely a vector field.

Definition 0.54 Let M be an m-dimensional submanifolds of Rn.

1. A (smooth) vector field is a smooth map X : M→Rn such that X(p) ∈ TpM for every p ∈M.

2. Let I ⊂R be an interval. If γ : I→M is a smooth curve in M, a vector field along γ is a smooth
map V : I→Rn such that V (t) ∈ Tγ(t)M for all t ∈ I.

Suppose that V : I→Rn is a vector field along γ. Its derivative V ′(t) can be decomposed:

V ′(t) = ∇∂tV (t)+∇
⊥
∂tV (t),

where ∇∂tV , is the orthogonal projection onto the tangent space of M. The projection

D
dt

V := ∇∂tV = ΠV ′′(t),
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(where Π denotes projection on the tangent space), is called the covariant derivative of V along γ,
and it describes how V is varying along the curve with respect to the geometry of the submanifold.

EXERCISE 0.55

Let M = S2 ⊂R3, and consider the curve γ : (0,2π)→M given by:

γ(t) = (cos(t), sin(t),0).

Show that: V (t) = (−sin(t), cos(t),0) and W (t) = (−sin(t), cos(t), cos(t)) are both vector fields
along γ, and find the covariant derivative along γ for each.

The following properties of the covariant derivative follow from the properties of ordinary
differentiation in Rn:

Proposition 0.56 If γ : I → M ⊂ Rn is a regular curve, and V : I → Rn and W : I → Rn

vector fields along γ. Let C∞(I) denote the space of smooth functions f : I→R. Then the covariant
derivative satisfies:

• Linearity in V :
D
dt
(aV + bW ) = a

D
dt

V + b
D
dt

W , a,b ∈R,

• Leibniz rule:
D
dt

f (t)V (t) = f ′(t)V (t)+
D
dt

V (t), f ∈C∞(I),

• Compatible with the first fundamental form:

D
dt
〈V ,W 〉= 〈D

dt
V ,W 〉+ 〈V ,

D
dt

W 〉,

• Symmetric (or torsion free): If γ : I× J → M is a smooth map, let D
dt denote the covariant

derivative along the curve t 7→ γ(t,s) keeping s fixed, etc. Then

D
dt

∂

∂s
γ(s, t)− D

dt
∂

∂t
γ(s, t) = 0.

EXERCISE 0.57

Prove Proposition 0.56.

0.6.4 The Levi-Civita connection for submanifolds of Rn

The covariant derivative is the natural derivative of a vector field Y along a curve γ(t). At each
point of the curve it gives you the (tangential) rate of change of the vector field in the tangent
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direction γ′(t) of the curve. We can generalize this by replacing γ′(t) with an arbitrary vector field
X on M, and ask for, at each point in M the tangential rate of change of Y in the direction of X :

∇XY .

The definition is the analogue of how we defined the covariant derivative along a curve, that is, we
compute the directional derivative in Rn and then project to the tangent space. For any functions
X ,Y : M→Rn, write:

∇XY := (∇Y ) ·X = (∇XY1, . . . ,∇XYn) (0.6)

i.e. we take the directional derivative of each component of Y in the direction of X . The Levi-Civita
connection of M is the orthogonal projection of this to the tangent space:

∇XY = Π∇XY .

Proposition 0.58 The Levi-Civita connection ∇ on a submanifold M has the following

properties:

1. Tensorial in the first argument:

∇ f X+gY Z = f ∇X Z + g∇Y Z, for all f ,g ∈ C ∞(M).

2. Linear in the second argument:

∇X (aY + bZ) = a∇XY + b∇X Z, for all a,b ∈R.

3. Leibniz rule:
∇X ( fY ) = (X( f ))Y + f ∇XY , f ∈ C ∞(M).

4. Metric compatible:

X〈Y ,Z〉= 〈∇XY ,Z〉+ 〈Y ,∇X Z〉, for all vector fields X ,Y ,Z, on M.

5. Torsion free or symmetric: if f : U →M ⊂Rn is a local parameterization, let ∂i := fui denote
the coordinate tangent vector fields. Then:

∇∂i∂ j−∇∂ j ∂i = 0.

To prove the above proposition, observe that the directional derivative in Rn given by (0.6) has
these properties, and orthogonal projection to the tangent space of M preserves these equations.
For property 4 note, for instance, that if X , Y and Z are tangent to M then: 〈∇XY ,Z〉= 〈∇XY ,Z〉.



Chapter 1

Introduction

In this chapter we first give a short survey of notation and some fundamental concepts and results,
that we will use throughout these notes. The survey is mainly presented by simple examples
which already in this chapter lead to the introduction of metric tensor fields for local Riemannian
manifolds, i.e. the objects, that will play the key rôle throughout these notes.

A key motivation for this introduction is found in the fact that a great many – very
different – research works and disciplines study naturally appearing fields of ellipses
(or ellipsoids) in the plane and in space, respectively, see for example the figures 1.1,
1.2, and 1.3 below. In cartography, for example, they appear as the so-called Tissot
indicatrices, see Wiki: Tissot.
In this chapter we will see – in a first glimpse – how such ellipse (ellipsoidal) fields give
rise to metric tensor fields, and vice versa: A choice of metric tensor field in the plane
gives us directly a field of ellipses in the plane, and a choice of metric tensor field in
3D space gives us a unique field of ellipsoids in space. We will refer to these geometric
ellipse- (ellipsoidal-) fields as the indicatrix set or fingerprint of their corresponding
metric tensor fields.
The main purpose of these notes is to show how the notion of curvature can be well-
defined from any given ellipsoidal field (in terms of its metric tensor field), and to
eventually be able to understand the meaning of curvature via its influence on the shortest
pathways through the ellipsoidal field.

1.1 Open sets

We begin by re-considering open sets U2 in (R2, ·), where the dot is used to make clear, that
initially we apply the usual dot-product in R2 and thence the usual Euclidean distance betweeen
points p and q in R2: If p has coordinates p = (p1, p2) and q = (q1,q2) then

dE(p,q) =
√
(q1− p1)2 +(q2− p2)2 . (1.1)

https://en.wikipedia.org/wiki/Tissot%27s_indicatrix
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Figure 1.1: Left: Ellipses (in fact circles in this case) – the so-called Tissot indicatrices – from the
Mercator projection of the globe. Right: Indicatrices from the metric of color space, see [10].

Note that for example (p2)2 is read out as follows: ["p two squared"]. At first sight it
may seem clumsy to use upper indices for the coordinates in this way, but it will become
efficient later when we introduce and apply Einstein’s summation convention for tensor
calculus and tensor analysis.

EXERCISE 1.1

Remember or look up in Chapter 0 what an open set in (R2, ·) is. I.e. how is an open set defined in
(R2, ·)?

EXERCISE 1.2

Let U2
i , i = 1,2,3,4, denote the following subsets of R2 and find out (with an argument) which ones

of these sets are open sets in (R2, ·):

U2
1 = {(x1,x2) ∈R2 | (x1)2 +(x2)2 < 7 }

U2
2 = {(x1,x2) ∈R2 | (x1)2 +(x2)2 ≤ 1 }

U2
3 = R2−{(x1,x2) ∈R2 | x2 = 0 , x1 ≤ 0 }

U2
4 = {(x1,x2) ∈R2 | x2 > 0 , (x1)2 +(x2)2 ≤ 7 } .

(1.2)

EXERCISE 1.3

What is the corresponding definition of an open set Un in (Rn, ·)?



1.2. COORDINATE EXPRESSIONS OF MAPS RN 7→RN 29

Figure 1.2: NMRI (Nuclear Magnetic Resonance Image) of a Corpus Callosum, see [13].

1.2 Coordinate expressions of maps Rn 7→Rn

Usually we will denote the coordinates in Rn by (x1, · · · ,xn), and if we need another copy of Rn

we can then denote the coordinates there by (y1, · · · ,yn). This makes it possible to consider maps
φ from an open subset Un in one copy of Rn (with coordinates (x1, · · · ,xn)) onto its image φ(Un)
in the other copy of Rn with coordinates (y1, · · · ,yn). Correspondingly we denote such mappings
as follows:

φ : U 7−→ φ(U)

φ(x1, · · · ,xn) = (φ1(x1, · · · ,xn), · · ·φn(x1, · · · ,xn)) = (y1, · · · ,yn) ,
(1.3)

where φ j(x1, · · · ,xn) denotes the j’th coordinate y j of the image point φ(x1, · · · ,xn).

Example 1.4

Let U denote all of R2 (which is itself an open set) and consider the map: φ : R2 7−→R2 defined by:

φ(x1,x2) = (y1,y2) = (A · [x1 x2]∗)∗ , (1.4)

where ∗ denotes transposition and where A is a regular 2×2-matrix with elements ai j, so that we can
write:

φ(x1,x2) = (y1,y2) = (a11 · x1 + a12 · x2 , a21 · x1 + a22 · x2) . (1.5)

Such a map will be called a regular affine map. The image of R2 by the map φ is R2. The map is a
bijection of R2 onto R2.
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Figure 1.3: A canonical ellipse for short time ignition of wildfires, and a simulation of the spread
of large wildfire frontals, obtained by ’integrating’ the short time indicatrices, see [20].

EXERCISE 1.5

Why is the map φ a bijection?

In particular, the map φ has a well-defined inverse φ−1 – with the property: If φ(x1,x2) = (y1,y2) then
(x1,x2) = φ−1(y1,y2) and vice versa: If φ−1(y1,y2) = (x1,x2) then (y1,y2) = φ(x1,x2).
The expression for the inverse map is in this example:

φ
−1(y1,y2) = (x1,x2) = (A−1 · [y1 y2]∗)∗ , (1.6)

where A−1 denotes the inverse of the regular matrix A.
The map φ is smooth – all partial derivatives of φ(x1,x2) with respect to x1 and x2 exist – in particular,
the Jacobian matrix Jφ is well-defined and is, when evaluated at (x1,x2):

Jφ(x1,x2) = A , for all (x1,x2) . (1.7)

The inverse map φ−1 is also smooth – all partial derivatives of φ−1(y1,y2) with respect to y1 and y2 exist
– in particular, the Jacobian matrix Jφ−1 is again well-defined and is, when evaluated at (y1,y2):

Jφ−1(y1,y2) = A−1 , for all (y1,y2) . (1.8)

We note, that the two Jacobian matrices are constants, they are regular, and one is the inverse of the
other.

A more complicated (and more interesting and relevant) example is the following, which, however,
should also be well-known:
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Example 1.6

Let U denote the set U2
3 from exercise 1.2, i.e. R2 except the non-positive part of the x1-axis:

U = U2
3 = R2−{(x1,x2) ∈R2 | x2 = 0 , x1 ≤ 0 } , (1.9)

and consider the map: φ : U 7−→ φ(U) defined by:

φ(x1,x2) = (y1,y2) =

(√
(x1)2 +(x2)2 , arg(x1 + i · x2)

)
, (1.10)

where arg(z)∈ ]−π, π[ denotes the argument (in that interval) of the complex number z. Correspondingly,√
(x1)2 +(x2)2 is just the modulus of the complex number x1+ i ·x2. In other word, the map φ produces

the polar coordinates of the point (x1,x2). We will therefore refer to this map as the polar map. When
arg(x1 + i · x2)) = arccos

(
x1/
√
(x1)2 +(x2)2

)
, (which is not always the case, see exercise 1.7), we

can rewrite the expression for φ as follows:

φ(x1,x2) = (y1,y2)

= (φ1(x1,x2) , φ
2(x1,x2))

=

(√
(x1)2 +(x2)2 , arccos

(
x1√

(x1)2 +(x2)2

))
,

(1.11)

EXERCISE 1.7

For which points (x1,x2) in U is it true that arg(x1 + i · x2) = arccos
(

x1/
√
(x1)2 +(x2)2

)
?

The image φ(U) is the following subset of R2 (with the coordinates (y1,y2)):

φ(U) = V = {(y1,y2) ∈R2 | −π < y2 < π , y1 > 0} . (1.12)

EXERCISE 1.8

Show that φ(U) = V is an open set in R2.

Claim: The polar map φ is a bijection of U onto V .

EXERCISE 1.9

Prove that claim.

In particular, the polar map φ has a well-defined inverse map φ−1 : V 7→U, i.e. the inverse polar map.
The coordinate expression for the inverse polar map is:

φ
−1(y1,y2) = (x1,x2)

= ((φ−1)1(y1,y2) , (φ−1)2(y1,y2))

= (y1 · cos(y2) , y1 · sin(y2)) .

(1.13)
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Note that in this example φ−1 has a much simpler expression than φ.

Both the maps φ and φ−1 are smooth in their respective domains U and V . In particular, they have
well-defined Jacobian matrices. If we use the expression for φ in (1.11) we get:

Jφ(x1, x2) =

[
∂φ1(x1,x2)

∂x1
∂φ1(x1,x2)

∂x2

∂φ2(x1,x2)
∂x1

∂φ2(x1,x2)
∂x2

]
=

 x1√
(x1)2+(x2)2

x2√
(x1)2+(x2)2

−x2

(x1)2+(x2)2
x1

(x1)2+(x2)2

 , (1.14)

and similarly for the inverse map:

Jφ−1(y1, y2) =

 ∂(φ−1)1(y1,y2)
∂y1

∂(φ−1)1(y1,y2)
∂y2

∂(φ−1)2(y1,y2)
∂y1

∂(φ−1)2(y1,y2)
∂y2

=

[
cos(y2) −y1 · sin(y2)

sin(y2) y1 · cos(y2)

]
. (1.15)

According to the chain rule, see proposition 1.11 and exercise 1.12 below, the two Jacobian matrices Jφ

and Jφ−1 are the inverses of each other. In order to verify this in the present concrete example we need to
apply the φ-correspondence between the two systems of coordinates, so that the matrices, that we want
to compare, are expressed in the same coordinates. Specifically we have:

J−1
φ

(x1, x2) =

 x1√
(x1)2+(x2)2

x2√
(x1)2+(x2)2

−x2

(x1)2+(x2)2
x1

(x1)2+(x2)2

−1

=

 x1√
(x1)2+(x2)2

−x2

x2√
(x1)2+(x2)2

x1


(1.16)

In order to verify, that J−1
φ

= Jφ−1 we insert (x1, x2) = φ−1(y1,y2) = (y1 · cos(y2),y1 · sin(y2) in the
above expression for J−1

φ
(x1, x2) and get

J−1
φ

(y1 · cos(y2),y1 · sin(y2)) =

[
cos(y2) −y1 · sin(y2)

sin(y2) y1 · cos(y2)

]

= Jφ−1(y1, y2) ,

(1.17)

which shows indeed that J−1
φ

(φ−1(y1, y2)) = Jφ−1(y1, y2) and, equivalently, Jφ−1(φ(x1,x2)) =

J−1
φ

(x1, x2).

Similarly, but redundantly, we could have substituted

(y1, y2) = φ(x1,x2) =

(√
(x1)2 +(x2)2 , arccos

(
x1√

(x1)2 +(x2)2

))
(1.18)
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into the expression for J−1
φ−1(y1, y2) and get:

J−1
φ−1(y1, y2) =

[
cos(y2) −y1 · sin(y2)

−sin(y2) y1 · cos(y2)

]−1

=

[
cos(y2) sin(y2)
−sin(y2)

y1
cos(y2)

y1

]

=

 x1√
(x1)2+(x2)2

x2√
(x1)2+(x2)2

−x2

(x1)2+(x2)2
x1

(x1)2+(x2)2


= Jφ(x1, x2) ,

(1.19)

which shows that J−1
φ−1(φ(x1, x2)) = Jφ(x1, x2) or, equivalently, Jφ(φ−1(y1,y2) = J−1

φ−1(y1, y2).

1.3 Diffeomorphisms

The polar map and the regular affine maps are examples of diffeomorphisms:

Definition 1.10 A map φ from an open subset Un in (Rn, ·) onto its image φ(Un) in Rn is

called a diffeomorphism if it is a smooth bijection of Un onto an open subset V n of (Rn, ·) with a
smooth inverse map φ−1 : V n 7−→Un.

Note that if φ is a diffeomorphism, then φ−1 is also a diffeomorphism.

For a general smooth map φ : U 7−→ φ(V ) – as considered in (1.3) – the Jacobian matrix is:

Jφ(x1, · · · ,xn) =


∂φ1(x1,··· ,xn)

∂x1 · ∂φ1(x1,··· ,xn)
∂xn

· · ·
∂φn(x1,··· ,xn)

∂x1 · ∂φn(x1,··· ,xn)
∂xn

 (1.20)

The following general result, exemplified in the examples above, is a consequence of the chain rule.
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Proposition 1.11 Let φ be a diffeomorphism from an open set Un of Rn into Rn. Then the

Jacobian matrix Jφ evaluated at (x1, · · · ,xn) is regular and it is the inverse of the Jacobian matrix of
φ−1 evaluated at (y1, · · · ,yn) = φ(x1, · · · ,xn):

Jφ(x1, · · · ,xn) = J−1
φ−1(y1, · · · ,yn) = J−1

φ−1(φ(x1, · · · ,xn)) . (1.21)

EXERCISE 1.12

Remember, look up, or find out what the chain rule for sequences of mappings between copies of Rn

is all about – and prove proposition 1.11. Hint: Use φ−1(φ(x1, · · · , xn)) = (x1, · · · , xn).

EXERCISE 1.13

Let φ denote the map from R2 to R2 given by the expression:

φ(x1, x2) = (y1, y2) = (ex1
+ x2, x1) . (1.22)

Show that φ is a diffeomorphism and find the Jacobian matrices Jφ(x1, x2) and Jφ−1(y1, y2). Show that
these Jacobian matrices are the inverses of each other.

EXERCISE 1.14

Let φ denote the map from R2 to R2 given by the expression:

φ(x1, x2) = (y1, y2) = (ex1
+ x2, x1 + ex1

) . (1.23)

Show that φ is a diffeomorphism and find the Jacobian matrices Jφ(x1,x2) and Jφ−1(y1,y2). Show that
these Jacobian matrices are the inverses of each other.

EXERCISE 1.15

Let φ denote the map from R3 to R3 given by the expression:

φ(x1, x2, x3) = (y1, y2, y3) = (x2, x3, x1 + x2 + x3) . (1.24)

Show that φ is a diffeomorphism and find the Jacobian matrices Jφ(x1, x2, x3) and Jφ−1(y1, y2, y3).
Show that these Jacobian matrices are the inverses of each other.
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EXERCISE 1.16

Let φ denote the map from R2 into R2 given by:

φ(x1, x2) = (y1, y2) = (x1 + x2 , (x1)2 +(x2)2 + 2 · x1 · x2) . (1.25)

1. Show that φ is NOT a diffeomorphism of R2 onto its image in R2.

2. Show that φ is NOT a diffeomorphism of any open subset U ⊂R2 onto its image φ(U).

3. Find a function f (x1,x2) and an open subset U ⊆R2 so that the following modified map IS a
diffeomorphism of U onto the image ψ(U):

ψ(x1, x2) = f (x1,x2) ·φ(x1,x2) , (x1,x2) ∈U . (1.26)

Construct an explicit expression for the inverse ψ−1(y1,y2) and verify, that the corresponding
Jacobian matrices for ψ and ψ−1 are also inverses of each other.

1.4 Parametrized surfaces in 3D space

In previous courses we have met an abundance of parametrized surfaces in 3D space. They are
typically expressed by a smooth regular map r from a parameter domain U2 into R3 (see also
Chapter 0):

S : r(x1,x2) = ( f (x1, x2), g(x1, x2), h(x1, x2)) , (x1, x2) ∈U , (1.27)

where f , g, and h are given smooth functions of two variables, see the example below.

The space R3 is used to coordinatize the points in Euclidean 3D space via a usual choice
of a Cartesian coordinate system {O,x,y,z}, where O is the choice of origin of the
coordinate system in space, and x, y, z mark the positive oriented choice of pairwise
orthogonal coordinate axes.

We will pay special attention to the parameter domain U of a given parametrization of a given
surface (or a given part of a surface). But, if φ is a diffeomorphism, φ : U 7−→ V , then we may
as well use V as the parameter domain of the same (part of the) surface: To be specific, let
φ(x1,x2) = (y1,y2) as before. Then the following map ρ from V into Euclidean 3D space covers
precisely the same surface S as does the vector function r:

ρ(y1,y2) = r(φ−1(y1,y2)), (y1, y2) ∈ V . (1.28)

For both ρ and r we have the corresponding well-known (from calculus) Jacobian matrices
Jr(x1,x2) and Jρ(y1,y2)

Jr(x1,x2) =

[(
∂r
∂x1

)∗ (
∂r
∂x2

)∗]
=

 f ′x1 f ′x2

g′x1 g′x2

h′x1 h′x2

 . (1.29)
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Jρ(y1,y2) =

[(
∂ρ

∂y1

)∗ (
∂ρ

∂y2

)∗]
. (1.30)

They are not to be confused with our previous Jacobian matrices of the diffeomorphisms φ and
φ−1 between the coordinate domains U and V . In the present case (of parametrized surfaces) the
coordinate domains are 2-dimensional, so Jr(x1,x2) and Jρ(y1,y2) are (3×2)-matrices whereas
Jφ(x1,x2) and Jφ−1(y1,y2) are (2×2)-matrices. However, the Jacobians are, of course, related;
from the chain rule we get:

Jρ(y1,y2) = Jr(φ
−1(y1,y2)) · Jφ−1(y1,y2) (1.31)

and similarly directly:
Jr(x1,x2) = Jρ(φ(x1,x2)) · Jφ(x1,x2) . (1.32)

It follows naturally, that the map ρ is regular if and only if r is regular – see exercise 1.18 below.

Example 1.17

A (slit) paraboloid of revolution P is parametrized as follows via the domain U = U2
3 , i.e R2 minus the

non-positive part of the x1-axis: r : U 7−→R3 given by the following expression:

r(x1,x2) = (x1, x2, (x1)2 +(x2)2) , (x1,x2) ∈U . (1.33)

Now let φ : U 7−→ V = φ(U) denote the diffeomorphism that we analyzed in example 1.6, i.e.:

φ(x1,x2) = (y1,y2) =

(√
(x1)2 +(x2)2 , arg(x1 + i · x2)

)
. (1.34)

Then the combined map r(φ−1) : V 7−→U 7−→R3 with the concrete expression

ρ(y1,y2) = r(φ−1(y1,y2)) = (y1 · cos(y2), y1 · sin(y2), (y1)2) , (y1,y2) ∈ V = φ(U) . (1.35)

is another regular parametrization of the very same (slit) paraboloid of revolution, see figure 1.4.

EXERCISE 1.18

How can we be sure, that the parametrizations in (1.33) and (1.35) are indeed regular? Express the
regularity-condition in terms of the Jacobian matrix Jr for the vector function r.

1.5 Curves in U, in V , and on a surface

We consider a regular parametrized smooth curve γ in U2 ⊆R2 with a given expression

γ(t) = (γ1(t), γ
2(t)) , t ∈ I , (1.36)
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Figure 1.4: Portions of the same (slit) paraboloid of revolution parametrized in the two different
ways defined in example 1.17. The left hand display is constructed from a slit rectangle as r(Ω),
where Ω = U∩ (]−1,1[×]−1,1[) ⊂U, whereas the right hand display is constructed from a
non-slit open rectangle in mV as ρ(Λ), where Λ = V ∩ (]0,1[×]−π,π[)⊂ V . Note that the red
curve on the surface, which projects to the non-positive part of the x-axis, x≤ 0, is not part of the
surface.

where I denotes a specific t-interval, e.g. I = [0,T ] or I = [a,b], depending on the context.
Remember, that the curve γ is a regular curve if γ ′(t) 6= 0 for all t ∈ I. The image of the curve
γ by a diffeomorphism φ from U onto V = φ(U) is then a regular curve η in V . We have the
following expression for η in terms of the parameter t:

η(t) = φ(γ(t)) =
(
φ

1(γ1(t), γ
2(t)), φ

2(γ1(t), γ
2(t))

)
, t ∈ I . (1.37)

EXERCISE 1.19

How can we be sure, that η = φ(γ) is a regular curve?

Both of the two curves γ and η are mapped onto the same curve on the surface S in (1.27) by r
and by ρ = r(φ−1), respectively, i.e. r(γ) = r(φ−1(η)) = ρ(η).

Example 1.20

In continuation of example 1.17 we now consider a very simple specific curve γ in U and lift it (map it)
to the slit paraboloid via r, see figure 1.5.

γ(t) = (cos(t), sin(t)) , t ∈ [−π/2, π/2] . (1.38)

Then
η(t) = (1, t) , t ∈ [−π/2, π/2] , (1.39)
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and the ensuing curve on the surface P is parametrized as follows:

r(γ(t)) = r(φ−1(η(t))ρ(η(t)) = (cos(t), sin(t),1) , t ∈ [−π/2, π/2] . (1.40)

Although we are considering one and the same curve on the surface, their representations γ and η in
their respective parameter domains U and V are quite different, see also figure 1.6.

Figure 1.5: The two different parametrizations of the slit paraboloid – now with the (blue) curve
r(γ), which, by construction, is the same curve as r(φ−1(η)) = ρ(η), see example 1.20.

1.6 Length of curves

We are now ready to study the length of regular curves on a regular parametrized surface S – from
the viewpoint of the two different φ-related parameter domains U and V for the surface.

Let γ denote a smooth, regular, t ∈ [a,b]-parametrized curve in U with η = φ(γ) in V . The image
of γ on the regular surface S is then obtained via the regular surface map r, so that the length of
the curve on the surface is given by the usual formula for lengths of curves in Euclidean 3D space:

LE(r(γ)) =
∫ b

a
‖ d

dt
r(γ(t))‖E dt , (1.41)

where ‖X‖E denotes the Euclidean length of the vector X in (R3, ·) with the usual dot-product.
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Figure 1.6: The two curves γ and η (in blue) in their respective parameter domains U and V
indicated – see definitions in example 1.20. Also shown are two other curves (in green). Those
green curves also have the same common image curve (not shown in figure 1.5) on P .

For this we then calculate – using again the chain rule – and spelling everything out in detail:

d
dt

r(γ(t)) =
d
dt
(r(γ1(t),γ2(t)))

= (γ1) ′(t) · ∂r
∂x1 +(γ2) ′(t) · ∂r

∂x2

=

(
Jr(γ(t)) ·

[
(γ1) ′(t)
(γ2) ′(t)

])∗
= (Jr(γ(t)) · (γ ′(t))∗)

∗

= γ
′(t) · J∗r (γ(t)) .

(1.42)

At this point we observe the (re-)appearance of the two tangent vectors to (coordinate curves of)
the parametrized surface: ∂r

∂x1 and ∂r
∂x2 . When the parametrization is regular these two vectors span

the tangent plane of the surface at the point r(x1,x2) – they constitute a basis of the vector space
of all tangent vectors to the surface at the point.
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Suppose we introduce the two standard basis vectors e1 and e2 in R2 γ ′ has the following
coordinates with respect to that basis:

γ
′(t) = (γ1) ′(t) · e1 +(γ2) ′(t) · e2 =

(
(γ1) ′(t) , (γ2) ′(t)

)
{e1 , e2}

, (1.43)

Then the equation (1.42) (in its second line) simply says that the coordinates of γ ′(t)
with respect to the basis {e1 , e2} are exactly the same as the coordinates of d

dt r(γ(t))
with respect to the tangent plane basis { ∂r

∂x1 , ∂r
∂x2} for the surface at the point r(γ(t)).

We get then:

‖ d
dt

r(γ(t))‖2
E =

(
d
dt

r(γ(t))
)
·
(

d
dt

r(γ(t))
)

= γ
′(t) · J∗r (γ(t)) · (γ ′(t) · J∗r (γ(t)))

∗

= γ
′(t) · (J∗r (γ(t)) · Jr(γ(t))) · (γ ′(t))

∗

= γ
′(t) ·

[
∂r
∂x1 · ∂r

∂x1
∂r
∂x1 · ∂r

∂x2
∂r
∂x2 · ∂r

∂x1
∂r
∂x2 · ∂r

∂x2

]
· (γ ′(t))∗

= γ
′(t) ·GU(x1,x2) · (γ ′(t))∗ .

(1.44)

Definition 1.21 The matrix appearing in this expression is what we will call the metric matrix

function on U – in this case stemming from the surface S parametrized over U. We will denote it GU ,
and when evaluated at a point (x1,x2) in U we write GU(x1,x2):

GU(x1,x2) =

[
∂r
∂x1 · ∂r

∂x1
∂r
∂x1 · ∂r

∂x2
∂r
∂x2 · ∂r

∂x1
∂r
∂x2 · ∂r

∂x2

]
= J∗r (x

1,x2) · Jr(x1,x2) . (1.45)

Our paraboloid example will show an explicit expression for the metric matrix function GU at
(x1,x2) for this case:

Example 1.22

For the (slit) paraboloid P , parametrized over U, we have used the following parametrization:

r(x1,x2) = (x1, x2, (x1)2 +(x2)2) , (1.46)

so that

GU(x1, x2) =

[
4(x1)2 + 1 4x1 · x2

4x1 · x2 4(x2)2 + 1

]
. (1.47)

EXERCISE 1.23

Verify the expression for GU(x1, x2) in (1.47).
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In general, the length formula (1.41) – via (1.44) then reads in short form:

LE(r(γ)) =
∫ b

a

√
γ ′(t) ·GU(γ(t)) · (γ ′(t))∗ dt . (1.48)

EXERCISE 1.24

Show that the metric matrix GU in (1.47) is not just symmetric but also positive definite.

Suppose that GU(x1, x2) is given. What is then GV (y1, y2) when φ(U) = V , where φ is a
diffeomorphism? The chain rule gives the answer:

GV (y1,y2) =

 ∂r(φ−1)
∂y1 · ∂r(φ−1)

∂y1
∂r(φ−1)

∂y1 · ∂r(φ−1)
∂y2

∂r(φ−1)
∂y2 · ∂r(φ−1)

∂y1
∂r(φ−1)

∂y2 · ∂r(φ−1)
∂y2


= J∗

φ−1(y1,y2) ·GU(x1, x2) · Jφ−1(y1,y2)

= J∗
φ−1(y1,y2) ·GU(φ−1(y1,y2)) · Jφ−1(y1,y2) .

(1.49)

In short we may – and will – write this relation as:

GV = J∗
φ−1 ·GU(φ−1) · Jφ−1 . (1.50)

EXERCISE 1.25

Verify the equations (1.49) – either in general, or just in the case of the slit paraboloid studied in the
previous examples – over the open sets U and V – above.

Having shown (1.49) we also have the dual relation:

GU(x1,x2) = J∗φ(x
1,x2) ·GV (φ(x1,x2)) · Jφ(x1,x2) . (1.51)

In short we may – and will – also write this as:

GU = J∗φ ·GV (φ) · Jφ . (1.52)

EXERCISE 1.26

Verify the equations (1.51) – either in general, directly from (1.49) (using proposition 1.11, or just in
the case of the paraboloid studied in the previous examples.
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Example 1.27

For the (slit) paraboloid P parametrized over V by

ρ(y1,y2) = (y1 · cos(y2) , y1 · sin(y2)) (1.53)

we get:

GV (y1, y2) =

[
4(y1)2 + 1 0

0 (y1)2

]
. (1.54)

EXERCISE 1.28

Verify this expression for GV (y1, y2).

In the general setting, the V -expression for the length of ρ(η) = r(φ−1(η)) is the following,
which then, of course, must be the same as the length of r(γ) since they are the same curve on the
surface in question:

LE(ρ(η)) = LE(r(φ−1(η))) =
∫ b

a

√
η ′(t) ·GV (η(t)) · (η ′(t))∗ dt . (1.55)

EXERCISE 1.29

Find the length of the blue curves in figure 1.5 by direct calculation of both LE(r(γ)) and
LE(r(φ−1(η))) from the respective formulas (1.48) and (1.55) – using r, γ, η, φ−1, GU , and GV
as presented in the previous examples and exercises concerning the slit paraboloid P .

EXERCISE 1.30

Show that the blue curve in figure 1.5 is not the shortest curve between its endpoints. Hint: You
may want to use a circle, a parabola, or a broken straight line to connect the two endpoints in the
U-representation (or in the V representation) of the blue curve and then calculate the competing
lengths via one of the formulas (1.48) or (1.55).

Observe, that the relations (1.50) and (1.52) do not refer to the actual surface – except via the
construction of GU in equation (1.51). In other words, given GU and the diffeomorphism φ, we
can find the matrix GV directly from this formula without knowing more about the surface than
what is encoded into GU .

Correspondingly there should be a more direct way to prove the relation (1.52) just from the key
property that GV and GU must give the same length of φ-related curves γ and η:
We let η(t) = φ(γ(t)) as above. Then

η
′(t) =

(
Jφ(γ(t)) · (γ ′(t))

∗)∗
= γ

′(t) · J∗φ(γ(t)) . (1.56)
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The similarity between equation (1.56) and equation (1.42) is, of course, no coincidence.
Think about it!

EXERCISE 1.31

Prove 1.56. Hint: The chain rule.

From the same-length-observation we have that the length integrands must be identical, otherwise
the lengths themselves, the integrals, cannot in general be the same:

γ
′(t) ·GU · (γ ′(t))

∗
= η

′(t) ·GV (φ) · (η ′(t))∗ . (1.57)

We insert η ′(t) from (1.56) on the right hand side of the above equation and get:

γ
′(t) ·GU · (γ ′(t))

∗
=
(
Jφ(γ(t)) · (γ ′(t))

∗)∗ ·GV (φ) ·
((

Jφ(γ(t)) · (γ ′(t))
∗)∗)∗

=
(
Jφ(γ(t)) · (γ ′(t))

∗)∗ ·GV (φ) · Jφ(γ(t)) · (γ ′(t))
∗

= γ
′(t) ·

(
J∗φ ·GV (φ) · Jφ

)
· (γ ′(t))∗ ,

(1.58)

and, since this holds independent of the choice of curve γ, i.e. independent of the tangent vector
γ ′(t), we get again:

GU = J∗φ ·GV (φ) · Jφ . (1.59)

EXERCISE 1.32

We used the following claim: Two symmetric positive definite n×n matrices A and B are identical if
they satisfy

V ·A ·V ∗ = V ·B ·V ∗ for all vectors V = (v1, · · · , vn) . (1.60)

Give an argument for this claim. Is symmetry of A and B an important assumption for this claim to be
true? Is positive definiteness of A and B an important assumption for the claim to be true?

1.7 Tangents to smooth curves in U
We are now ready to formalize the findings and notations from the above sections.

In general we will forget about the surfaces and their parametrizations r and only work in the
parameter domains Un and with given positive definite symmetric matrix functions GU on Un.

Some of the matrix functions that we will consider are naturally inherited from surfaces
– as illustrated above with the slit paraboloid case – but not all. In this way we get the
freedom to study many more and higher dimensional geometries than just the ones that
come from surfaces in 3D space.
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We first formalize precisely the tangent space of Un at a point p ∈U in the following way:

Definition 1.33 Since Un is a subset of Rn, the tangents of smooth curves in U through a

given point p form a vector space of the same dimension n. The canonical basis vectors of TpU are
denoted by e1(p), · · · , en(p). The tangent vector ei(p) is the tangent vector at p of the coordinate curve
(p1, p2, · · · , pi−1, pi + t, pi+1, · · · , pn) at p. Every tangent vector V ∈ TpU has unique coordinates
(v1, · · · ,vn), so that

V = v1 · e1(p)+ · · ·+ vn · en(p) . (1.61)

It is of importance to note, that each point in U in this way has its own tangent space and that any
given tangent vector is associated to precisely one of the tangent spaces – see figure 1.7.

EXERCISE 1.34

Let V = (3,2) in the tangent space TpR2 where p = (1,1). Construct an infinite family of different
parametrized smooth curves γi, i = 1, · · · ,∞ in R2, so that all the curves go through the point p and all
the curves have the same tangent vector V = (3,2) at p.

Figure 1.7: Left: One tangent plane TpU2 with canonical basis vectors e1 and e2 and a tangent
vector V = v1 · e1 + v2 · e2. Right: Tangent planes at various points in U.

1.8 The metric tensor g from the matrix function GU

Let GU be a positive definite symmetric n×n-matrix function on an open subset Un of Rn. In
each tangent space TpU we define the metric tensor gp as follows:
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Definition 1.35 Let V and W denote arbitrary two vectors in TpU. Then the metric tensor gp

at p associated with the matrix function GU at p is the following real valued function of the pair V and
W :

gp(V ,W ) = V ·GU(p) ·W ∗ . (1.62)

The defining property of a tensor is multilinearity:

EXERCISE 1.36

Show that the function gp is linear in each of the two ’entries’: For example, when W is kept fixed we
have

gp(V + k ·X ,W ) = gp(V ,W )+ k ·gp(X ,W ) . (1.63)

Notation 1.37 In the following we will often also use the following notation:

〈V ,W 〉p = gp(V ,W ) for all V and W in TpU. (1.64)

Definition 1.38 Since the matrix function GU(p) = GU(x1, · · · , xn) is assumed to depend

smoothly on the variables xi in U, the metric tensor g(x1,··· ,xn) is also smooth. The metric tensor
considered as a function of position is written as g or gU and is called the metric tensor field on Un

associated with the matrix function GU .

At this point we can now have a second view towards the general notion of indicatrices, which
was already illustrated and mentioned in figure 1.1, but now for any given metric tensor field gU
with its associated metric matrix function GU on Un. They will help us to understand intuitively
how the metric changes from point to point and eventually to understand some features of specific
vector fields in Un equipped with the metric gU . The formal definition of an indicatrix will
be considered in definition 1.49 below. For now, the indicatrix of gU at a given point p is the
ellipse (or, in higher dimension, the ellipsoid) in the tangent space TpU which is traced out by the
gmU -unit vectors, i.e. every position vector V in TpU to a point on the indicatrix has gU-length
gU(V ,V ) = 1, see figure 1.8. We will see briefly in section 1.12 below that if you know the
indicatrix at p, then you also know the metric matrix function value GU and thence the metric gU
at p.
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Figure 1.8: Left: One tangent plane with one indicatrix ellipse – the two green vectors have
g-length 1 in the tangent plane – see definition 1.49. The position vectors to the ellipse all have
g-length 1. Right: An indication of the full indicatrix field for the metric gU in U – stemming from
the slit paraboloid surface example P with its parametrization r(x1,x2) = (x1, x2, (x1)2 +(x2)2),
see example 1.22.

The usual Euclidean dot product in Rn will now be denoted by gE . For any two vectors
V and U at p ∈Rn, i.e. V and U in TpRn, with coordinates vi and u j with respect to the
standard basis {e1, · · · , en}, we have:

V =
i=n

∑
i=1

vi · ei , U =
j=n

∑
j=1

ui · e j

gE(V ,U) = V ·U =
k=n

∑
k=1

vk ·uk = [v1 v2 · · · vn] ·E ·


u1

·
·
·

un


(1.65)

In other words, the constant metric matrix function GE corresponding to gE is the (n×n)-
identity matrix E. The indicatrix at a given point p is the unit sphere Sn−1

1 with radius 1
centered at p – or, more precisely, centered at the origin of the tangent space TpRn at p.
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Figure 1.9: A first glimpse of a problem that we surely need to solve – and will solve in Chapter
3: Although the green vectors seem to be parallel transported versions of each other, they cannot
be parallel because they clearly have different lengths with respect to the underlying metric that is
represented by the respective ellipse indicatrices – and we want parallel transport of vectors to be
length preserving.

1.9 Isometries and Local Riemannian Manifolds

Suppose now that we have two pairs (Un,gU) and (V n,gV ) and a diffeomorphism φ such that
the two matrix functions GU and GV associated with gU and gV are φ-related as in equations
(1.50) and (1.52):

GV = J∗
φ−1 ·GU(φ−1) · Jφ−1 ,

and
GU = J∗φ ·GV (φ) · Jφ .

Then they both produce the same right hand side of the length integrals in equations (1.41) and
(1.48):

LgU (γ) =
∫ b

a

√
gU (γ ′(t),γ ′(t)) dt

=
∫ b

a

√
gV (η ′(t),η ′(t)) dt

= LgV (η) .

(1.66)

This common value we will from now on call the g-length of γ, or more precisely, the gU-length
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of γ. If we work in V we call it the gV -length of η.

Definition 1.39 Since the diffeomorphism φ in this way preserves g-lengths of curves if gU

and gV are φ-related via (1.50) and (1.52), we will say that φ is an isometry between (Un,gU) and
(V n,gV ), in short: If such a diffeomorphism exists, then (Un,gU) and (V n,gV ) are isometric.

To be isometric is an equivalence relation, and we can therefore define

Definition 1.40 A Local Riemannian Manifold, LRMn, of dimension n is an equivalence

class of isometric open subsets in Rn with metric tensors, (U,gU).

EXERCISE 1.41

Look up, or find out, what equivalence relations and equivalence classes are all about, and show that
the above LRM’s are well-defined in this way.

The main point of this abstraction is the following: If we want to calculate lengths of
curves, areas or volumes of domains, and, as we shall see later, the curvatures of an LRM,
then we can just do the calculations in any one of its representatives (U,gU) using the
corresponding particular metric tensor field.

Note that every Local Riemannian Manifold can be represented by just one pair (Un,gU).
Any other (isometric) representation of the same LRM is obtained as (V ,gV ), where
φ is a diffeomorphism from the open set U onto V , and where gV is the metric tensor
on V associated with the smooth metric matrix function GV on V constructed via
the equation (1.50) from the metric matrix function GU associated with the given
metric tensor gU . In other words, every choice of an open set U in Rn and a smooth
symmetric positive definite matrix function GU on U defines a unique Local Riemannian
Manifold of dimension n which is represented by (U,gU). And there are as many
(isometric) representatives of the same LRM as there are diffeomorphisms on U. The
set of diffeomorphisms on an open set is huge – it is infinite dimensional, see Wiki:
Diffeomorphism. If we are just given two matrix functions GU(x1, x2) and GV (y1,y2) it
is usually difficult to decide if they are isometric via some diffeomorphism φ.

Throughout these notes we will use the monographs [4] by M. P. do Carmo, [18] by J.
Lee, and [27] by Robbin and Salamon, respectively, as our main references. They are
crisp and modern introductions to Riemannian geometry and they cover a great many
geometric concepts, insights, and results that are beyond the scope of these notes.

https://en.wikipedia.org/wiki/Diffeomorphism
https://en.wikipedia.org/wiki/Diffeomorphism
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1.10 Arc length (re-)parametrization

In this section we show in some detail how regular parametrized curves in a given Local Rieman-
nian Manifold (U,g) can be re-parametrized so that they become arc-length parametrized.

We let γ(t), t ∈ I, denote a given t-parametrized curve in U, where I is an open connected interval
in R. We assume, that γ(t) is a regular parametrization, so that ‖γ ′(t)‖g > 0 for all t ∈ I. Now
choose a point γ(t0) on the curve γ and let S(t) denote the signed arc length of that segment of γ

which is in between the two points γ(t0) and γ(t) on γ:

S(t) =
∫ t

t0
‖γ ′(u)‖g du for all t ∈ I . (1.67)

Note that S(t) is positive for t > t0 and negative for t < t0. The function is obviously increasing
on the interval I, so there exists an inverse function T (s) so that T (s(t)) = t and S(T (s)) = s.
The function T (s) is also increasing on the corresponding S-interval, S(I).
We now define the curve η as follows:

η(s) = γ(T (s)) for all s ∈ S(I) . (1.68)

Obviously, the curve η then traces out the same path, the same curve, as γ and it is arc length
parametrized, because of the following observations:

Since T (s) and S(t) are each others’ inverse,

d
dt

T (S(t)) = 1

S′(t) ·T ′(s) = 1 ,
(1.69)

we get

‖η ′(s)‖g = ‖
d
ds

η(s)‖g

= ‖ d
ds

γ(T (s))‖g

= |T ′(s)| · ‖ d
dt

γ(t)|t=T (s)
‖g

= |T ′(s)| · ‖γ ′(t)|t=T (s)
‖g

= |T ′(s) ·S′(t)|
= 1 ,

(1.70)

and therefore:
Lg(η([0,s])) =

∫ s

0
‖η ′(u)‖g du = s . (1.71)

To illustrate what is at stake we consider the following simplest possible curve and the steps that
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will reparametrize it to arc-length parametrization:

Example 1.42

A straight line in the Euclidean plane (R2,gE) is analyzed:

γ(t) = (3t−1, 3t−2, 0) , t ∈]−1,1[

γ
′(t) = (3,3,0)

‖γ ′(t)‖gE = 3
√

2

S(t) =
∫ t

t0=0
3
√

2 du , from choosing t0 = 0

S(t) = 3
√

2 t

T (s) =
s

3
√

2
, the inverse .

(1.72)

Insert T (s) for t in γ(t). Then we get for all s ∈ ]S(−1),S(1)[ = ]−3
√

2 , 3
√

2 [:

η(s) = γ(T (s)) = (3T (s)−1, 3T (s)−2, 0)

η(s) =
(

s√
2
−1,

s√
2
−2, 0

)
.

(1.73)

It is typically impossible to find one or both of the functions S(t) and the inverse T (s)
expressed by known functions. Both functions can, however, be approximated to any
desired precision e.g. by spline functions.

EXERCISE 1.43

Let γ(t) denote the following curve in (R2,gE).

γ(t) = (t3,0,0) , t ∈R . (1.74)

Show that this curve is not regularly parametrized by t. Show that it can, nevertheless, be
reparametrized to become an arc length parametrized curve η(s).

1.11 Angles, areas, and g-orthonormal bases

A metric tensor field g = gU gives us much more than just lengths of vectors in tangent spaces
TpU (and thence of curves in U), for example:

Definition 1.44 Let V and W be two vectors in the same tangent space TpU. The unique

g-angle ]g(V ,W ) ∈ [0,π] between the two vectors is then given by the relation:

cos (]g(V ,W )) =
g(V ,W )

‖V‖g · ‖W‖g
, (1.75)
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Figure 1.10: A planar curve in the Euclidean plane (R2,gE) is shown with at t-parametrization
indicated to the left – with constant time difference between the marked points. The corresponding
arc length parametrization for the same curve is indicated to the right – with constant arc length
difference between the marked points. In the middle: The two functions S(t) and T (s) for s and t
running through their respective intervals – both on the horizontal ′x′-axis.

where ‖V‖g denotes
√

g(V ,V ) .

Definition 1.45 Let V and W be two vectors in the same tangent space TpU. The g-area

Ag(V ,W ) of the parallellogram spanned by the two vectors in TpU is:

Ag(V ,W ) =
√
‖V‖2

g · ‖W‖2
g−g(V ,W )2 . (1.76)

On the other hand, this powerful generality comes with a price. By now it should be clear, that we
cannot directly compare vectors with each other unless they belong to the same tangent space.

Example 1.46

Consider, the metric induced from the paraboloid in example 1.22:

GU(x1, x2) =

[
4(x1)2 + 1 4x1 · x2

4x1 · x2 4(x2)2 + 1

]
. (1.77)

Then we have for lengths of the basis vectors e1(x1, x2) and e2(x1, x2) in the tangent space T(x1,x2)U at
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the point (x1,x2):

‖e1(x1, x2)‖g =
√

4(x1)2 + 1

‖e2(x1, x2)‖g =
√

4(x2)2 + 1 ,
(1.78)

so they are clearly not (in general) g-unit vectors.

EXERCISE 1.47

Find in this example the g-angle between e1 and e2 and the g-area of the parallellogram spanned by
the two vectors. Express the angle and the area as functions of (x1, x2).

Of course there exist infinitely many pairs of vectors in each tangent space that are g-orthonormal
and they are obviously quite useful for many purposes.

EXERCISE 1.48

Following the example 1.46: Construct for every point (x1, x2) in U two g-orthonormal vectors
E1(x1, x2) and E2(x1, x2) in the tangent space T(x1,x2)U, meaning that (with g = gU):

‖E1(x1, x2)‖g = ‖E2(x1, x2)‖g = 1 , and

g(E1(x1, x2) , E2(x1, x2)) = 0 .

(1.79)

Express E1(x1, x2) and E2(x1, x2) as a linear combinations of e1 and e2,so that e.g.:

E1(x1,x2) = k1(x1, x2) · e1 + k2(x1, x2) · e2 . (1.80)

There are many solutions to this problem. Solve it so that the coefficient functions are smooth functions
of (x1, x2).

1.12 From metric to indicatrix – and back

In an open set U2 in R2 we consider a given metric tensor gp at the point p = (x1, x2) ∈U. The
corresponding ellipse, ellipsoid, or indicatrix, in the tangent space TpU is then defined as follows:

Definition 1.49 Let gp denote the metric tensor corresponding to GU(p). Then the indicatrix

of g at p is:
I (p) = {V ∈ TpU |gp(V ,V ) = V ·GU ·V ∗ = 1} . (1.81)
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Since GU(p) is positive definite, i.e. gp(V ,V ) > 0 for all non-zero V in TpU, the indicatrix I (p)
is an ellipse.

EXERCISE 1.50

Prove that claim. Hint:

gp(V ,V ) = V ·GU(p) ·V ∗ = [v1 v2] ·
[

g11 g12

g21 g22

]
·
[

v1

v2

]

= g11 · (v1)2 + 2g12 · v1 · v2 + g22 · (v2)2 ,

(1.82)

so that gp(V ,V ) = 1 is a second order polynomial equation in the variables v1 and v2. Since GU is
positive definite, the solutions V = v1 · e1 + v2 · e2 form an ellipse in the tangent space spanned by e1

and e2. More hints: See Math 1: eNote 22: Quadratic equations.

Figure 1.11: A comparison of the metric matrix fingerprints from P in U and V , respectively. In
both cases the green curve is clearly longer than the blue curve. The two green curves have the
same length and the two blue curves have the same length. (U,gU) and (V ,gV ) are isometric
and represent the same Local 2-dimensional Riemannian Manifold.

https://01006.compute.dtu.dk/enotes/22_-_Quadratic_Euations_in_Two_and_Three_Variables
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EXERCISE 1.51

Let GU denote the following metric matrix (at some given point p):

GU =

[
6 2
2 1

]
. (1.83)

Find an equation for the corresponding indicatrix I (p) (using tangent space variables v1 and v2). Find
a parametrization of the indicatrix ellipse (using t as parameter) in the form V (t) = f (t) ·e1 +h(t) ·e2,
where e1 and e2 are the canonical tangent space basis vectors at p and f and h are suitable functions
of t.

EXERCISE 1.52

In a tangent space TpU2 with canonical basis vectors e1 and e2 a parametrized indicatrix is given as
follows:

V (t) = 3 · cos(t) · e1 + 7 · sin(t) · e2 , t ∈ [0,2π] . (1.84)

Find the corresponding metric matrix GU at p.

EXERCISE 1.53

In a tangent space TpU2 with canonical basis vectors e1 and e2 a parametrized indicatrix is given as
follows:

V (t) =
(

3 · cos(t)−7 ·
√

3 · sin(t)
)
·e1+

(
3 ·
√

3 · cos(t)+ 7 · sin(t)
)
·e2 , t ∈ [0,2π] . (1.85)

Find the corresponding metric matrix GU at p.

EXERCISE 1.54

In a tangent space TpU2 with canonical basis vectors e1 and e2, and corresponding vector coordinates
v1 and v2, an indicatrix is given by the following equation:

7 · (v1)2 + 6 · v1 · v2 +(v2)2 . (1.86)

Find the corresponding metric matrix GU at p.

1.13 The Poincaré disk and half-plane

We consider two important geometric models, the Poincaré disk- and half plane models:
The disk model is (U,gU), where:

U = {(x1, x2) ∈R2 | ((x1)2 +(x2)2 < 1 }

GU(x1, x2) =
4

(1− (x1)2− (x2)2)2 ·
[

1 0
0 1

]
.

(1.87)
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The half plane model is (V ,gV ), where:

V = {(y1, y2) ∈R2 | y2 > 0 }

GV (y1, y2) =
1

(y2)2 ·
[

1 0
0 1

]
.

(1.88)

The corresponding fingerprints, the respective indicatrix fields, are shown in figure 1.12.

EXERCISE 1.55

Let γ1 and γ2 denote the following two curves in the disk model:

γ1(t) = (0, 2 · t) , t ∈ [−1/4, 1/4]

γ2(t) =
(

1
2

, 2 · t
)

, t ∈ [−1/4, 1/4] .
(1.89)

Find the gU length of these two curves. Construct another curve that connects the two endpoints of γ2

but is shorter than γ2.

Figure 1.12: The unique (scaled) fingerprint indicatrix fields for the Poincaré metric in a disk and
in a half plane, respectively. In these displays the two sets of unit fingerprints have been scaled
down by factors of 4 and 7, repectively.

The two models are isometric, i.e. they are representatives for the same Local Riemannian
Manifold (in fact it is a Global Riemannian manifold, because, as we shall see later, these models
are complete – they cannot be extended). The actual isometry φ from the half plane model to the
disk model is known as the Cayley transformation, see Wiki: Cayley Transform. It was shown

https://en.wikipedia.org/wiki/Cayley_transform#Conformal_map
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Figure 1.13: An indication of the Cayley transform φ−1 from the Poincaré half plane to the
Poincaré disk. The Cayley map is an isometry between the two models, see exercise 1.56.

by David Hilbert, that the Poincaré metrics cannot be realized from any surface in 3D, see Wiki:
Hilbert’s Theorem.
The Cayley mapping is most elegantly expressed in terms of complex variables: Suppose z =
y1 + i · y2, then the image by the Cayley map of z and thence of (y1,y2) in the halfplane model is
(x1,x2) in the disk model, which is likewise represented by the complex number w = x1 + i · x2

defined as follows:
w = Cay(z) =

z− i
z+ i

. (1.90)

The inverse mapping is then as simple:

z = Cay−1(w) = i · 1+w
1−w

. (1.91)

In the real coordinates (y1,y2) and (x1,x2) the expressions for Cay and Cay−1 are thence the
following:

Cay(y1,y2) =

(
1

(y1)2 +(1+ y2)2

)
·
(
(y1)2 +(y2)2−1, −2(y1)

)
Cay−1(x1,x2) =

(
1

1+(x1− x2)2

)
·
(
−2(x2) , 1− (x1)2− (x2)2) .

(1.92)

In either case it is a fairly simple matter to show that Cay is indeed an isometry via the appropriate
Jacobian:

GV (y1,y2) = J∗Cay(y
1,y2) ·GU(Cay(y1,y2)) · JCay(y1,y2) . (1.93)

https://en.wikipedia.org/wiki/Hilbert%27s_theorem_(differential_geometry)
https://en.wikipedia.org/wiki/Hilbert%27s_theorem_(differential_geometry)
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EXERCISE 1.56

Use one of the expressions above for the Cayley transfom to reconstruct the figure 1.13 – using your
favorite graphics tool.

In the next example we show, that the so-called pseudosphere surface is isometric to subsets of
the Poincaré models:

Example 1.57

The pseudosphere is the surface in 3D space obtained by revolving the following generator curve around
the z-axis:

η(t) = (h(t) , 0 , f (t)) t ≥ 0 , (1.94)

where
h(t) =

1
cosh(t)

f (t) = t− tanh(t) .
(1.95)

The simplest parametrization of the pseudosphere is then

r(t,v) = (h(t) · cos(v) , h(t) · sin(v) , f (t)) , t ∈ ]0,∞[ , v ∈ [−π,π] . (1.96)

Note that
‖η′(t)‖= tanh(t) , (1.97)

so that the above parametrization of η is not regular at t = 0. Correspondingly, the pseudosphere cannot
be extended regularly to include negative values of the parameter t.

En passant we also note, that metric matrix function induced by the parametrization (1.96) is found to
be:

Gr(t,v) =
[

tanh2(t) 0
0 1/cosh2(t)

]
. (1.98)

A more interesting – and a bit more complicated – parametrization of the same surface is the following:

ρ(y1,y2) =
(
h(arcosh(y2)) · cos(x1) , h(arcosh(y2)) · sin(y1) , f (arcosh(y2))

)
, (1.99)

where now y2 ∈ ]1,∞[ and y1 ∈ [−π,π]. Note that this parametrization clearly covers the pseudosphere
bijectively; here we have arcosh(1) = 0, so y2 is necessarily constrained to ]1,∞[. With this parametriza-
tion ρ of the pseudosphere we obtain the following familiar metric matrix for the pseudosphere:

Gρ(y1,y2) =

[
1/(y2)2 0

0 1/(y2)2

]
. (1.100)

Therefore the pseudosphere is isometric to the following (lifted) half strip in the Poincaré half plane:

VP = {(y1,y2) ∈ V = R×R+ |y2 > 1} , (1.101)

and thence it is isometric to the ’wedge’ UP = φ−1(VP) in the Poincaré disk, where φ−1 denotes the
isometric Cayley transform from V onto U, see figure 1.14.

https://en.wikipedia.org/wiki/Pseudosphere
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z 

y 

Figure 1.14: Left: The first of the two considered parametrizations of the pseudosphere – truncated
from above at z= 3. Middle to right: The pseudosphere is isometrically represented in the Poincaré
halfplane and in the Poincaré disk, respectively.

1.14 Isometric surfaces in 3D space

We have seen – at length – above in the main example 1.6 concerning the slit Paraboloid how a
surface in 3D in a natural way gives rise to a Local Riemannian Manifold of dimension 2. And
also indicated (via Hilbert’s theorem) that not every 2-dimensional Local Riemannian Manifold
can be so obtained from a surface in 3D space.

To complete the picture we now illustrate by example, how different surfaces in 3D can give rise
to the same Local Riemannian Manifold – so that these surfaces in this precise sense are locally
isometric surfaces.

Example 1.58

We let W denote the following open set in R2

W = {
(
x1, x2) ∈R2 | −π < x2 < π} , (1.102)

and consider the following family of surfaces H t parametrized by (x1,x2) ∈W and t ∈ ]− π, π[ as
follows:

H t : rt(x1,x2) = (xt(x1, x2), yt(x1, x2), z t(x1, x2)) , (1.103)

where the 3 coordinate functions for the vector function rt are respectively:

xt(x1, x2) = cos(t) · sinh(x1) · sin(x2)+ sin(t) · cosh(x1) · cos(x2) ,

yt(x1, x2) = −cos(t) · sinh(x1) · cos(x2)+ sin(t) · cosh(x1) · sin(x2) ,

z t(x1, x2) = x2 · cos(t)+ x1 · sin(t) .

(1.104)
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Two of the surfaces, H0 (the helicoid), Hπ/2 (the catenoid) and the intermediate surface Hπ/4 are
displayed in figure 1.15. The boundaries that are not part of the surfaces are indicated in red –
corresponding to the two boundary components x2 = ±π in the parameter domain W . An animation
of the family can be found in Wiki: Catenoid. All members of the family are examples of so-called
minimal surfaces, see Wiki: Minimal Surfaces.

As already alluded to, all the surfaces Ht are pairwise locally isometric – they are surface representations
of one and the same Local Riemannian Manifold (W ,gW ) with the following metric matrix function
for all t ∈]−π, π[:

GW (x1,x2) = cosh2(x1) ·
[

1 0
0 1

]
. (1.105)

EXERCISE 1.59

Show that the metric matrix function for all members of the surface family in example 1.58 is
independent of t and is given by (1.105).

Figure 1.15: Three members of the family of pairwise isometric minimal surfaces H t , t ∈ ]−π, π[.

EXERCISE 1.60

We consider again the same parameter domain as in example 1.58:

W = {
(
x1, x2) ∈R2 | −π < x2 < π} , (1.106)

and consider the following simple family of (ribbon) surfaces Q t parametrized by (x1,x2) ∈W and

https://en.wikipedia.org/wiki/Catenoid
https://en.wikipedia.org/wiki/Minimal_surface
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t ∈ ]1,∞[ as follows:

Q t : rt(x1,x2) =
(
t · cos(x2/t)− t , t · sin(x2/t) , x1) . (1.107)

Show that all the surfaces in the family Q t are isometric to each other and give a geometric description
of the family.

Further experiments and results concerning ribbon surfaces are reported in [3] and [26].

1.15 Outlook: Statistics on a Riemannian manifold

Suppose a number of points are given on the paraboloid P as illustrated in figure 1.16. The
points are clearly distributed and elongated in the vertical direction along a meridian curve on the
paraboloid. This curve obviously carries great significance for the statistical analysis of the point
distribution.

Figure 1.16: Point set distribution on P .

The elongated shape of the point set on P is, however, not immediate from its representations
neither in U nor in V , see figure 1.17. I.e. the usual Euclidean linear regression of the images in
the parameter domains does not work well. We need to take the respective metrics gU and gV
into account in order to set up a proper notion of "linear" regression in the parameter domains.

If we include the indicatrix field fingerprints of the metrics gU and gV in U and V we get a first
visual indication of the elongation of the point set in the correct directions, see figure 1.18.

The ellipse indicatrices close to the point set are themselves elongated in the direction where the
Euclidean length is longer than the g-length of the vectors in the corresponding tangent spaces. In
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Figure 1.17: The U- and V -representations of the point set from figure 1.16.

the g-orthogonal direction (which in this particular setting corresponds to the Euclidean orthogonal
direction) the Euclidean length of tangent vectors are shorter than the g-length of the vectors.

If the point set is more or less circular distributed (in the Euclidean sense) – as is the case in both
U and V – it means, that the point set is actually elongated (in the g sense) in the direction which
is g-orthogonal to the direction of elongation of the g-indicatrices. This observation is then in
perfect accordance with the visual inspection of the point set on the paraboloid.

In the following chapters we will eventually be able to perform a correct "linear" regression on a
data set in a Local Riemannian Manifold. For example, the notion of center of mass of the set will
be generalized to the so-called Grove-Karcher mean or Frechet mean of the set, and, moreover,
the well-known Euclidean notion of Principal Component Analysis is generalized to Principal
Geodesic Analysisin Riemannian manifolds.

One seminal example from real life showing the application of invariant analysis on
Riemannian manifolds for statistical purposes is in the paper by T. Fletcher et al.: [7].
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Figure 1.18: The respective indicatrix fields show clearly in both coordinate domains U and V ,
that the displayed point sets are metrically elongated in the radial direction.



Chapter 2

Vector fields and the Lie derivative

2.1 Vector fields and their coordinate representations

We consider a Local Riemannian Manifold (Un,g) represented by an open set Un in Rn and a
given metric tensor field g = gU on Un. Let V (p) denote a vector in the tangent space TpU at
p ∈U. Then V (p) is a linear combination of the canonical vectors e1(p), · · · , en(p) that span
TpU, and the coefficients are called vi(p):

V (p) =
i=n

∑
i=1

vi(p) · ei(p) = (v1(p), · · · , vn(p))|{e1,··· ,en}
. (2.1)

Suppose that we choose a vector V (x1, · · · , xn) in each tangent space T(x1,··· ,xn)U for every point
(x1, · · · , xn) ∈U. Then

V (x1, · · · , xn) =
i=n

∑
i=1

vi(x1, · · · , xn) · ei(x1, · · · , xn) . (2.2)

Definition 2.1 We will say that V is a smooth vector field in U if the coordinate functions

vk(x1, · · · , xn) are smooth functions of (x1, · · · , xn) for every k = 1, · · · , n.

Notation 2.2 The set of smooth vector fields on (U,g) is from now on denoted by X(U), and

the set of smooth functions on (U,g) is denoted by F(U).
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Proposition 2.3 Let φ denote an isometry between two representations (U,gU) and (V ,gV )

of the same LRM. If V ∈ X(U) then (Jφ ·V ∗)∗ ∈ X(V ). And vice versa, if W ∈ X(V ) then (Jφ−1 ·
W ∗)∗ ∈ X(U). In other words, the smoothness property of a vector field is an isometry invariant
property (in fact a diffeomorphism invariant property).

Proof. Since φ and φ−1 are diffeomorphisms, the Jacobian matrices Jφ and Jφ−1 are smooth
matrix functions on U and V respectively. Therefore the product matrix functions (Jφ ·V ∗)∗ and
(Jφ−1 ·W ∗)∗ are also smooth.

Notation 2.4 Note that the ∗ notation for transposition of vector coordinates into a column

(respectively a row) matrix is in fact obsolete in the sense that when we calculate e.g. the vector
(Jφ ·V ∗)∗, then it is clear that the matrix multiplication has to be done in precisely this way in order to
have the types of the matrices agree. Therefore, from now on we will in general – and without lack of
concensus – drop the explicit use of transpositions in the notation of such evaluations. For example,
in the case just considered we will write shorthand Jφ ·V and even (when no confusion is immediate)
Jφ(V ) (for (Jφ ·V ∗)∗. To avoid the mentioned confusion, note that Jφ(V ) is then the image of V by
the Jacobian map between tangent spaces, whereas the notation Jφ(p) is the Jacobian evaluated at the
point p.

Example 2.5

We use the Local Riemannian Manifold induced by the paraboloid P in 3D space R3 – and represented
by (U2,gU) – in the main example 1.6 from chapter 1, and consider the following vector field in U
given by its coordinate functions with respect to the canonical basis at each point:

V =
(
v1(x1, x2), v2(x1, x2)

)
=

(√
(x1)2 +(x2)2 , x2 · sin(x1− x2)

)
|{e1,e2}

. (2.3)

EXERCISE 2.6

Show that this vector field V is smooth in the open subset U. Hint: Note that U does not contain
(0,0).

The corresponding vector field W in V is determined via φ by

W (y1,y2) = (Jφ(φ
−1(y1,y2)) ·V ∗(φ−1(y1,y2)))∗ . (2.4)

Note that we need to apply φ−1 in order to express the coordinate functions of W in (y1,y2)-coordinates.
The two vector fields are displayed in figure 2.1.
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Both of the vector fields V in U and W in V are representatives of one and the same vector field V̂ on
the paraboloid P , as illustrated in figure 2.2 and obtained via the P -defining vector function r in the
usual way:

V̂ (x1,x2) = v1(x1,x2) ·
(

∂r
∂x1

)
+ v2(x1,x2) ·

(
∂r
∂x2

)

= Ŵ (y1,y2)

= w1(y1,y2) ·
(

∂r(φ−1)

∂y1

)
+w2(y1,y2) ·

(
∂r(φ−1)

∂y2

)
.

(2.5)

Figure 2.1: The vector fields V (left) and W (right) from example 2.5 by (2.3) and (2.4) represented
in U and in V .

Although the two vector fields V and W are φ-related they look very different from the
Euclidean viewpoint. For example, it is evident, that the usual Euclidean divergence of
the two vector fields are quite different from each other. In order to define a consistent
divergence of vector fields on (Local) Riemannian Manifolds we therefore need to come
up with a definition that is coordinate invariant in the sense that it will give the same
result in every isometric representation of the LRM. This will be done – using the
invariant metric tensor g – in a later chapter.
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Figure 2.2: The lift to the paraboloid of the vector fields displayed in figure 2.1 from example 2.5.

2.2 Vector fields as derivations of functions

The directional derivative X( f ) of a smooth function f in the direction of a vector X at a point
p ∈U is well known:

Definition 2.7 Let X = ∑
i=n
i=1 vi ·ei be a vector field in X(U). Then the X-directional derivative

of f at each point p is:

Xp( f ) =
i=n

∑
i=1

vi(p) · ∂ f
∂xi |p

. (2.6)

In particular we have for each of the canonical basis vectors ei at each point:

ei( f ) =
∂ f
∂xi . (2.7)

In this sense, every vector is associated with a derivation of smooth functions at each point, where
the notion of derivation is defined as follows:

Definition 2.8 A derivation w at a point p is by definition a linear map w : F(U) 7−→ R

which satisfies the product-differentiation-rule:

w( f ·h)|p = f (p) ·w(h)|p + h(p) ·w(g)|p (2.8)
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EXERCISE 2.9

Show that the directional derivative defined by a vector X as in (2.6) is a derivation in the sense of
definition 2.8.

There are no more derivations than there are vectors and vice versa:

Proposition 2.10 Every derivation at p is a directional derivative by a unique vector at p

and vise versa, to every vector at p corresponds precisely one unique derivation.

Proof. We refer to [17, p. 53] for a fairly straightforward proof of this fact. The proof applies a
version of Taylor’s theorem which may be of independent interest.

Whenever convenient we will therefore write and use vectors as derivations in this sense – this is
a strong alternative to the more geometric conceptualization of a vector as a velocity vector (with
length and direction) for a motion along a time-parametrized curve through the point in question.
In short we write correspondingly:

Notation 2.11 Let X = ∑i vi · ei ∈ TpU. Then we write – see (2.6) and (2.7):

Xp =
i=n

∑
i=1

vi(p) · ∂

∂xi |p
. (2.9)

The following observation is immediate:

Proposition 2.12 Suppose that X ∈ X(U) and f ∈ F(U). Then X( f ) is itself a smooth

function on U, i.e. X( f ) ∈ F(U).

EXERCISE 2.13

Let U2 = R2 and let X ∈ X(U2) and Y ∈ X(U2) denote the following two vector fields in terms of
the canonical basis vectors ei, i = 1,2, in each tangent space T(x1,x2) of U2:

X(x1, x2) = ex2 · e1 +(x1)3 · e2 =
(

ex2
, (x1)3

)
Y (x1, x2) = −x2 · e1 + x1 · e2 =

(
−x2 , x1) .

(2.10)
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Let f ∈ F(U) denote the following smooth function on R2:

f (x1, x2) = x1 · x2 . (2.11)

Calculate the following six functions on R2 expressed in terms of the coordinates x1 and x2:
X( f ), Y ( f ), X(X( f )), X(Y ( f )), Y (X( f )), and Y (Y ( f )).

2.3 Flows that preserve indicatrices

Some vector fields are constructed in such a way that – or have the property that – they ’respect’
the metric tensor field g of the LRM in the sense that if we push the g-indicatrix fingerprint in the
direction of the vector field and with the speed determined everywhere by the vector field, then
the indicatrix field, the full fingerprint field, is mapped onto itself. One of the purposes of the
present chapter is to make this special type of relation between the metric tensor and the vector
field precise. When such a relation holds we will naturally say that the vector field generates a
local isometry of (U,g) into itself – see section 2.7 below. Such a vector field is called a Killing
vector field after Wilhelm Killing.

Example 2.14

A first – and simple – example of a (to be shown below in exercise 2.39) Killing vector field on the
representations (U,gU) and (V ,gV ) for the paraboloid example in chapter 1 is displayed in figure 2.3.
The vector fields are induced from the rotation of the paraboloid around its axis as illustrated in figure
2.5. The representation of the vector field is given in U as follows (using the canonical basis in all
tangent spaces TpU):

V (x1, x2) =
(
−x2, x1) , (2.12)

so that the corresponding expression in V is (using the notational convention of deleting transpositions
and using the canonical basis in all tangent spaces TqV ):

W (y1, y2) = Jφ(φ
−1(y1, y2)) ·V (φ−1(y1, y2)) = (0,1) . (2.13)

EXERCISE 2.15

Show that the V -corresponding vector field W in V is indeed given by the simple expression in
(2.13).

In order to make precise how a given vector field actually moves the points around in U we need
to study its integral curves and its corresponding flow map.

https://en.wikipedia.org/wiki/Wilhelm_Killing
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Figure 2.3: The vector fields in U and V generated by a rotation of the paraboloid P around its
axis of symmetry, see figure 2.5.

2.4 Integral curves and flow maps

Definition 2.16 Let V ∈ X(U). A t-parametrized curve γ, t ∈ I, in U, is called an integral

curve of V if
γ
′(t) = V (γ(t)) for all t ∈ I . (2.14)

In 2D and in U-coordinates it means explicitly that the coordinate functions of γ(t) = (γ1(t), γ2(t))
satisfy the first order ordinary differential equation system determined by the vector field V (x1, x2) =

(v1(x1, x2), v2(x1, x2)): (
γ

1)′ (t) = v1(γ1(t),γ2(t)) and(
γ

2)′ (t) = v2(γ1(t),γ2(t)) for all t ∈ I .
(2.15)

Proposition 2.17 As usual we let φ denote a diffeomorphism. If γ is an integral curve of V in

U, then φ(γ) is an integral curve of the corresponding vector field W = Jφ ·V in φ(U) = V – and vice
versa.
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Figure 2.4: The rotational vector field on P has these representations in U and in V . They are
studied in example 2.14 – here they are displayed together with the fingerprint indicatrix fields of
the metric tensors gU (left) and gV (right), respectively.

EXERCISE 2.18

For all positive values of k we let γk(t) = (k · cos(t), k · sin(t), t ∈ ]−π, π[, k ∈ R+. Show that all the
curves γk, k > 0, are integral curves of the vector field V = (−x2, x1) in example 2.14 and that they all
satisfy that γk(0) has zero second coordinate. Show that there are no other curves that are integral
curves η(t) of V and whose second coordinate function η2(t) is zero for t = 0. Why are we assuming
that k > 0? Could we have considered k < 0?

Definition 2.19 The local flow map θt generated by a smooth vector field X ∈ X(U) on U is

the mapping determined locally by the integral curves α(t, p) of X , i.e. the integral curves defined by
α(0, p) = p for each p. The time domains of the integral curves are thus always assumed to contain
t = 0.

θt(p) = α(t, p) for all p ∈U and for all −ε < t < ε , (2.16)

where ε is a sufficiently small value.

The mapping defined in definition 2.19 is the one that will be used to push open domains forward
along the vector field in U. If p is held constant, then the mapping t 7−→ θt(p) is just the integral
curve α(t, p). On the other hand, if t is held constant then the mapping q 7−→ θt(q) defines a
map which lets every point q of any given open subset of U flow for exactly time t, if only t is
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Figure 2.5: The rotational vector field on P whose representations in U and in V are studied in
example 2.14

sufficiently small in absolute value. If this latter condition is not satisfied we may not be able to
flow the subset within U for all the time t.

The most fundamental observations about local flows θt , that are generated by smooth vector
fields in this way, are contained in the following proposition. We refer to [17, pp. 212–214] where
the proof is developed in all necessary details.

Proposition 2.20

1. θ0 does not move anything – it is the identity map on U.

2. θs(θt) = θt(θs) = θs+t whenever s, t, and s+ t are sufficiently small in absolute values. In other
words, you can flow for time s+ t by first flowing for time t and then afterwards for time s.

3. At each point p ∈ U, for sufficiently small t, the map θt is a local diffeomorphism on a
sufficiently small open set Ω containing p with inverse map θ

−1
t = θ−t on θt(Ω). This is the

most important property. It is based on the fact that integral curves never intersect each other
(why is that?). And it means in particular, that the flow map θt for every allowed t-value has
well-defined Jacobians Jθt and J−1

θt
= Jθ−t , respectively.
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EXERCISE 2.21

Suppose V is the vector field in U = R2 \{(x1,x2) ∈R2 | x2 = 0, x1 ≤ 0} from example 2.14:

V (x1, x2) =
(
−x2, x1) . (2.17)

Find the expression of the integral curve α(t, (x1, x2)) of V through the point (x1,x2) ∈U. Show that
Property 3 of Proposition 2.20 is satisfied.

EXERCISE 2.22

Let V be the following vector field in R2:

V (x1, x2) =
(
a · x1 + b · x2, c · x1 + d · x2) , (2.18)

where

A =

[
a b
c d

]
is a constant regular matrix . (2.19)

Find the expression of the integral curve α(t, (x1, x2)) of V through the point (x1,x2) ∈R2 – either in
general for any choice of regular coefficient matrix A, or just for some example.

Figure 2.6: A blob (open set) is floating along the integral curves of a vector field. At each
instance of time t the image of the blob is diffeomorphic to the original blob at time t = 0. The
diffeomorphism is obtained directly by the flow map θt which is generated by the vector field, see
definition 2.19.
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2.5 Pulling back vectors along integral curves

We will use the flow map θt for a vector field X ∈ X(U) to move – and then compare – vectors
along integral curves for X .

We consider one integral curve θt(p), t ∈ I, and use the Jacobian Jθ−t of the inverse flow map
diffeomorphism θ−t at the point q = θt(p) to give us a vector Jθ−t (Yq) in TpU for every Yq ∈ TqU.
Observe that we are using short hand notation Jθ−t (Yq) for the image of the vector Yq by the
Jacobian Jθ−t at q – as forewarned in the notation-box 2.4 above.

Definition 2.23 The vector Ŷt = Jθ−t (Yq) ∈ TpU is called the pull back (at p) of the vector

Yq ∈ TqU (at q). So the vector Yq is pulled back from q to p by the backwards flow map θ−t associated
with the forward flow map θt for the vector field X .

The pulled-back vector Ŷt can now (and only now) be compared with the value Yp of the
vector field Y at p. This motivates V. I. Arnol’d’s metaphorical name, the fisherman’s
derivative, see [1], for the following derivative, which is actually named after Sophus
Lie:

Definition 2.24 We let θt denote the local flow map around p∈U for a vector field X ∈X(U)

and let Y ∈ X(U) denote another smooth vector field on U. Then we define the Lie derivative of Y
along X at p as follows:

LXY|p = lim
t 7→0

(
Ŷt −Yp

t

)
= lim

t 7→0

(
Jθ−t (Yq) −Yp

t

)
. (2.20)

The Lie derivative can be interpreted as a vector field, i.e. as a derivation on functions, namely as
follows (this identification is expressed explicitly in proposition 2.28 below):

Definition 2.25 The Lie bracket of two vector fields X and Y in X(U) at p is denoted [X , Y ]|p
and defined as follows:

[X , Y ] ( f ) = X(Y ( f ))−Y (X( f )) for all functions f ∈ F(U) (2.21)

The Lie bracket is itself a derivation, i.e. a vector field, so that [X , Y ] ∈ X(U) whenever X and Y
are in X(U):

https://en.wikipedia.org/wiki/Vladimir_Arnold
https://en.wikipedia.org/wiki/Sophus_Lie
https://en.wikipedia.org/wiki/Sophus_Lie
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EXERCISE 2.26

Prove this claim, i.e. show – or give examples which illustrate – that whenever X and Y are two vector
fields in X(U) then there exists a vector field V ∈ X(U) such that

[X , Y ] ( f ) = V ( f ) for all f ∈ F(U). (2.22)

Hint: See equation (2.27) or exercise 2.29 below.

The result of this exercise 2.26 is a bit surprising, because we should expect second
derivatives of f to appear on the right hand side X(Y ( f ))−Y (X( f )). But they cancel
each other – because with our general smoothness assumptions on f we have f ′′xi x j = f ′′x j xi

for all i and j – and we are left with first order derivatives of f and thence a derivation.

The Lie bracket satisfies the so-called Jacobi identity that we shall need later:

[X , [Y , Z]]+ [Y , [Z, X ]]+ [Z, [X , Y ]] = 0 . (2.23)

EXERCISE 2.27

Show the Jacobi identity (2.23). Hint: Substitute the definition of the bracket and see that the resulting
12 terms cancel in pairs!

The Lie bracket is identical to the Lie derivative – you may want to look up the proof of this fact
in [17, p. 229]; it is not difficult:

Proposition 2.28
LXY = [X , Y ] . (2.24)

In other words, LXY is itself a vector field in X(U), and

LXY = [X , Y ] = − [Y , X ] = −LY X . (2.25)

In coordinates we therefore obtain the following expression for LXY . We let X and Y denote the
two vector fields in X(U) with coordinate functions vi, i = 1, · · · , n, and w j, j = 1, · · · , n:

X =
i=n

∑
i=1

vi · ∂

∂xi =
i=n

∑
i=1

vi · ei

Y =
i=n

∑
i=1

wi · ∂

∂xi =
i=n

∑
i=1

wi · ei ,

(2.26)
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LXY = [X , Y ]

=
i=n

∑
i=1

(
X(wi)−Y (vi)

)
· ∂

∂xi

=
i=n

∑
i=1

j=n

∑
j=1

(
v j · ∂wi

∂x j −w j · ∂vi

∂x j

)
· ∂

∂xi ,

(2.27)

so that the Lie bracket is indeed a (vector field) derivation with vector coordinates given by the
parenthesis above.

EXERCISE 2.29

Returning to exercise 2.13: Find the vector-coordinates for the derivation [X ,Y ] determined by the
two vector fields given in that exercise:

X(x1, x2) = ex2 · e1 +(x1)3 · e2 =
(

ex2
, (x1)3

)
Y (x1, x2) = −x2 · e1 + x1 · e2 =

(
−x2 , x1) .

(2.28)

Show by direct calculation that [X ,Y ]( f ) = X(Y ( f ))−Y (X( f )) for the function f given in that
exercise.

EXERCISE 2.30

Let X and Y be two canonical vector fields in U: X = e1 and Y = e2. Show that [X ,Y ] = 0.

EXERCISE 2.31

Let X and Y be the following vector fields in U = R2−{(0,0)} in terms of the canonical basis fields
e1 and e2:

X(x1, x2) =
(
x1,x2)

Y (x1, x2) =
(
−x2,x1) .

(2.29)

Show that [X ,Y ] = 0.

EXERCISE 2.32

We consider a diffeomorphism ψ of an open subset Ω of R2 onto ψ(Ω)⊂R2 with a given expression
ψ(x1, x2) and inverse map ψ−1(y1, y2) . Let V and W denote the vector fields in ψ(Ω):

V (y1,y2) =
∂ψ

∂x1 (ψ
−1(y1,y2))

W (y1,y2) =
∂ψ

∂x2 (ψ
−1(y1,y2)) .

(2.30)
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Show that [V , W ] = 0. Hint: Try out the claim for the well known diffeomorphism from Chapter 1:

φ(x1,x2) = (
√
(x1)2 +(x2)2 , arg(x1 + i · x2)) , (2.31)

where (x1,x2) ∈Ω consisting of all points in R2 except the non-positive part of the x1-axis.

EXERCISE 2.33

Let X and Y be the following unit vector fields in Euclidean R2−{(0,0)}:

X(x1, x2) =

(
x1√

(x1)2 +(x2)2
,

x2√
(x1)2 +(x2)2

)

Y (x1, x2) =

(
−x2√

(x1)2 +(x1)2
,

x1√
(x1)2 +(x2)2

)
.

(2.32)

Show that in this case the Lie bracket is the following non-vanishing vector field:

[X ,Y ] =
(

x2

(x1)2 +(x1)2 ,
−x1

(x1)2 +(x2)2

)
. (2.33)

2.6 Pulling back the metric tensor along integral curves

In the same way as above we can use the Jacobian of the flow map to define what we will call
the pull back tensor of the metric tensor. Again we ’pull back’ the metric tensor from the point
q = θt(p) to the point p. But note, that we now do it by pushing forward given vectors Vp and
Wp from the tangent space at p to the tangent space at q via the forward flow θt and evaluate the
metric gq on the two (pushed-forward-) vectors at q. This evaluation gives a non-negative real
number, of course, which can then be compared with the evaluation of gp on Vp and Wp. Formally,
it is all contained in the definition:

Definition 2.34 Again we let θt denote the local flow map around p ∈U for a vector field

X ∈ X(U) which maps p to q, and let g denote the given metric tensor field on U. The (pulled-back-)
metric tensor ĝt at p is defined by its values on vectors Vp and Wp in the tangent space TpU at p as
follows:

ĝt(Vp,Wp) = gq(Jθt (Vp),Jθt (Wp)) for all Vp and Wp in TpU . (2.34)

Note, that we use again shorthand notation Jθt (Vp) for the vector obtained by using the Jacobian map
Jθt at p on the vector Vp at p, cf. the notation box 2.4.

The real values of ĝt(Vp,Wp) can freely be compared with the values g(Vp,Wp), and the following
limit is well defined and a clear measure of the change of the metric tensor field (and thence of
the indicatrix field) during the flow along the vector field X :
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Definition 2.35 We define the Lie derivative of g along X at p in much the same way as we

defined LXY in definition 2.24:

LX (g)|p = lim
t 7→0

(
ĝt −gp

t

)
=

d
dt

ĝt . (2.35)

In coordinates we get the following expression for the Lie derivative of the metric tensor, see
again [17]:

Proposition 2.36 Let (U,g) be a Local Riemannian Manifold and let gi j(x1, · · · , xn) denote

the components of the metric matrix function GU , i.e. gi j = g(ei,e j) with respect to the canonical
basis vectors ei, i = 1, · · · ,n, in each tangent space TpU. Let V ∈ X(U) be a vector field in U with
coordinates vk(x1, · · · , xn), k = 1, · · · ,n. Then the Lie derivative of g has the following coordinate
expression for each choice of i and j:

LV (g)(ei,e j) =
k=n

∑
k=1

(
vk ·

∂gi j

∂xk + g j k ·
∂vk

∂xi + gi k ·
∂vk

∂x j

)
. (2.36)

2.7 Local isometries: Killing vector fields

We are now ready to define the notion of a Killing vector field as already alluded to in section 2.3:

Definition 2.37 Let (U,g) denote an LRM and let V ∈ X(U) denote a vector field on U.

Then V is called a Killing vector field on (U,g) if

LV (g)|p = 0 for all p ∈U . (2.37)

From the construction above it now makes perfect sense to say that the flow map of a Killing vector
field is an infinitesimal isometry, because we get directly from equation (2.35) that d

dt ĝt = 0 at all
points p ∈U.
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Since the flow map θt of a Killing vector field preserves the metric g in the sense of
equation (2.37), it’s Jacobian also preserves the indicatrix field of g in U, i.e. the indica-
trix at p is mapped onto the indicatrix at q = θt(p) by Jθt . Moreover, since the Jacobian
is just the linearized version of the flow map itself, it means that if we consider a small
blob Ωp ⊂U, i.e. a small open subset of U around p which resembles/approximates
the indicatrix of g at p, then the images θt(Ωp) of the blob by the flow map will corre-
spondingly approximate the indicatrices of g along the flow path θt(p) – see the figures
2.7 and 2.10 below.

In coordinates we have, in consequence of the expression for the Lie derivative of the metric in
proposition 2.36:

Proposition 2.38 Let (U,g) be a Local Riemannian Manifold and let gi j(x1, · · · , xn) denote

the components of the metric matrix function GU . Let V ∈ (U) be a vector field in U with coordinates
vk(x1, · · · , xn), k = 1, · · · ,n. Then V is a Killing vector field if and only if its component functions vk

satisfy the following equation for all i = 1, · · · ,n and j = 1, · · · ,n:

k=n

∑
k=1

(
vk ·

∂gi j

∂xk + g j k ·
∂vk

∂xi + gi k ·
∂vk

∂x j

)
= 0 . (2.38)

Below we will apply these equations to check if a given vector field is Killing or not in a given
Local Riemannian Manifold.

EXERCISE 2.39

Show that the vector field in example 2.14 is indeed a Killing field on the paraboloid U with the metric
tensor gU determined by the usual metric matrix function:

GU(x1, x2) =

[
4(x1)2 + 1 4x1 · x2

4x1 · x2 4(x2)2 + 1

]
. (2.39)

Hint: Use that gi j is precisely the (i, j)’th element in the metric matrix function and then apply (2.38).

EXERCISE 2.40

If you add two Killing vector fields, do you then get a Killing vector field? If your answer is [yes],
then prove it; if your answer is [no], then give a counterexample.
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EXERCISE 2.41

If you multiply a Killing vector field by a constant real factor do you then get a Killing vector field? If
your answer is [yes], then prove it; if your answer is [no], then give a counterexample.

EXERCISE 2.42

Prove that the space of Killing vector fields on a given LRM is a real vector space.

A coordinate invariant version of the property of being Killing is also supplied by [22, p. 251]:

Proposition 2.43 A vector field X ∈ X(U) on (U,g) is Killing if and only if

X(〈Y , Z〉) = 〈[X , Y ] , Z〉+ 〈Y , [X , Z] 〉 for all Y , and Z in X(U) , (2.40)

where we have used the notation 〈Y , Z〉 for g(Y ,Z) etc.

Figure 2.7: Two Killing vector fields in a Local Riemannian Manifold (U,g), where U is the
open first quadrant of R2, and the metric tensor is represented by its indicatrix field fingerprint,
see example 2.44.

Killing vector fields obviously play a key role for the analysis of isometries of Rieman-
nian manifolds, but they are also important in General Relativity, e.g. for the proper
definition of static spacetimes, see e.g. [22] and [12].
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We consider further examples of Killing vector fields in the following example/exercise – see
figure 2.7.

EXERCISE 2.44

We let U denote the open first quadrant of R2 and let gU be the metric tensor on U with the following
metric matrix function – see figure 2.7

GU =
(
(x1)2 +(x2)2) ·[ 1 0

0 1

]
, x1 > 0 , x2 > 0 . (2.41)

The two vector fields X and Y on display in 2.7 are given by their coordinate functions as follows:

X =

(
x1

(x1)2 +(x2)2 ,
−x2

(x1)2 +(x2)2

)
Y =

(
x1−2x2

(x1)2 +(x2)2 ,
−2x1− x2

(x1)2 +(x2)2

)
.

(2.42)

Show that X and Y are Killing vector fields on (U,gU).

In general, let α, β, and k denote any set of three real constants. Show that all of the following vector
fields are Killing vector fields in (U,gU):

Xα,β =

(
α · x1 +β · x2

(x1)2 +(x2)2 ,
β · x1−α · x2

(x1)2 +(x2)2

)

Zk = (−k · x2 , k · x1) .

(2.43)

2.8 All Killing vector fields in the Euclidean plane

We want to find all the Killing fields in the Euclidean plane (R2,gE), where gE of course denotes
the Euclidean metric tensor which is the one associated with the simplest of all metric matrix
functions:

GU =

[
1 0
0 1

]
. (2.44)

Suppose that we consider an unknown vector field

V (x1, x2) = ( f (x1,x2) , h(x1, x2) , (2.45)

where f and h are two unknown functions of the two variables x1 and x2. We then insert the
vector field V = ( f ,h) into the Killing equation (2.38) and get three coupled partial differential
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equations for f and h:

0 =
∂ f
∂x1

0 =
∂ f
∂x2 +

∂h
∂x1

0 =
∂h
∂x2 .

(2.46)

EXERCISE 2.45

Show that we get these three equations by inserting V into the Killing equation. Why are there only
three equations?

We conclude from the first and the third equation in (2.46) that f does not depend on x1, i.e. f
only depends on x2, and that h does not depend on x2, i.e. h only depends on x1. The second
equation in (2.46) then shows that both of the derivatives ∂ f

∂x2 and ∂h
∂x1 are constant and that the

sum of these constants is 0.

EXERCISE 2.46

Why are these derivatives ∂ f
∂x2 and ∂h

∂x1 necessarily constants as claimed in the above reasoning?

From this we then have:
∂ f
∂x2 =C

∂h
∂x1 = −C .

(2.47)

We treat the situation in two cases:

Case 1: If C = 0 we get the vector solutions

V = V (x1, x2) = ( f ,h) = (α,β) , where α and β are constants. (2.48)

In short, any constant vector V is a Killing vector field in the Euclidean plane. This is no surprise,
since pure translations in the Euclidean plane are well-known isometries. The integral curves are
parallel straight lines that are parametrized so that they all have the same tangent vector (α,β).

Case 2: If C 6= 0 we get the solutions

V = V (x1, x2) = (C · (x2−b) , −C · (x1−a)) , where a and b are constants. (2.49)

These vector fields generate rotations around the fixed point (a,b) – the integral curve through
p = (x1

0, x2
0) is the following, where t ∈ I = [−π,π[:

α(t, p) = (a, b)+ (x1
0−a , x2

0−b) · cos(C · t)− (b− x2
0 , x1

0−a) · sin(C · t)) . (2.50)
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In short, all Killing vector fields in the Euclidean plane stem from either parallel translations or
rotations around a fixed point.

EXERCISE 2.47

Verify that equation (2.50) gives the correct expression for all the integral curves of the Killing field V
in equation (2.49).

2.9 Killing vector fields on the 2-sphere in 3D space

As for the Euclidean plane we can also find all the Killing fields on the sphere (of, say, radius 1)
in (R3,gE) (where now gE denotes the Euclidean metric tensor in 3D space).

The unit sphere S has the following parametrization:

S : r(x1, x2) =
(
sin(x1) · cos(x2), sin(x1) · sin(x2), cos(x1)

)
, (2.51)

where (x1, x2) is restricted to the following open set in R2:

U = {(x1, x2) ∈R2 | 0 < x1 < π and −π < x2 < π } (2.52)

The metric tensor induced in U from the unit sphere parametrization is then given by the following
metric matrix function:

GU(x1,x2) =

[
1 0
0 sin2(x1)

]
. (2.53)

EXERCISE 2.48

Show that the metric matrix function for the unit sphere has the expression given in equation (2.53).
Check that it is positive definite for all (x1, x2) in U.

Every Killing vector field V on the sphere in 3D is induced by a rotation of the sphere around an
axis through its center. If the axis has direction vector r(x1

0, x2
0) then the corresponding Killing

vector field is simply

V (x1, x2) = r(x1
0, x2

0)× r(x1, x2) , (x1,x2) ∈U , (2.54)

where × denotes the usual cross product in R3. See examples in figure 2.8.

EXERCISE 2.49

Show that a rotation (with angular velocity 1) in 3D space around the axis through (0,0,0) defined by
the direction r(x1

0, x2
0) gives rise to the velocity vector field V (x1, x2) in equation (2.54) at the points

r(x1, x2) on the unit sphere S .
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Figure 2.8: Killing vector fields on the sphere with various choices of (red) axes. The first three
from the left are generated by rotations around the x-axis, the y-axis, and the z-axis, respectively.
The rightmost field is generated by a rotation around the axis with direction vector (

√
2 ,0,
√

2 )/2.

We now construct the corresponding Killing vector fields in U (for the first three leftmost vector
fields in figure 2.8 corresponding to the axis rotations in 3D around the x-axis, the y-axis, and the
z-axis, respectively – when the sphere is parametrized by the standard parametrization r(x1, x2)
as in (2.51).

The axis rotation Killing fields have the following representations in U with respect to the
canonical basis at each tangent plane in U:

Vx(x1, x2) = (−sin(x2),−cos(x2) · cot(x1))

Vy(x1, x2) = (cos(x2) , −sin(x2) · cot(x1))

Vz(x1, x2) = (0,1) .

(2.55)

EXERCISE 2.50

Show that Vx, Vy, and Vz are the representations in U of the following three axis rotation Killing fields

V1(x1, x2) = (1,0,0)× r(x1, x2)

V2(x1, x2) = (0,1,0)× r(x1, x2)

V3(x1, x2) = (0,0,1)× r(x1, x2) .

(2.56)

Hint: Use the x1- and x2-derivatives of the vector function r(x1, x2) to construct the vector fields on
the sphere in 3D – in the same way as in example 2.5.

The three vector fields Vx, Vy, and Vz are displayed in figure 2.9.
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Figure 2.9: Representations in U of axis-Killing vector fields (plus a few of their integral curves)
from the corresponding rotations of the unit sphere as displayed in figure 2.8.

EXERCISE 2.51

Verify that the three vector fields in equation (2.55) all satisfy the Killing equations in (2.38).

The axis rotation vector fields for the sphere considered above in their U representations are fairly
simple examples of Killing vector fields stemming from the corresponding isometric rotations of
the sphere. The rotation about a non-coordinate-axis line through the center of the sphere is shown
in the rightmost display of figure 2.8 and gives rise to a somewhat more complicated Killing field
in U – it is actually already on display in figure 2.6 above, where we show a blob following the
flowlines of the Killing vector field. The flow map is an isometry, so the blob has constant area
for all times along the flow.
Here in figure 2.12 we then insert the (finger print) indicatrix field obtained from the unit sphere
into figure 2.6 and observe, that the vector field flow map indeed does deform the blob in
accordance with the deformation of the indicatrices, so that the blob in particular is inspected to
keep its area invariant during the flow.
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Figure 2.10: The metric tensor fingerprint from the sphere in U together with the axis rotations
Killing fields in figure 2.9. The fingerprint is clearly mapped into itself when the individual
indicatrices are deformed along the flow maps of the vector fields. I.e. the flow maps are local (in
fact in this case global) isometries.

Figure 2.11: The rotation of a blob around a skew axis, i.e. not a coordinate axis.
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Figure 2.12: The representation (in (U,gU)) of the fixed blob on a rotating unit sphere.



Chapter 3

The Levi-Civita connection

3.1 The acceleration problem

We consider a regular smooth curve γ in the Euclidean plane (U = R2,gE) with its Euclidean
metric tensor gE . Suppose γ is unit speed, i.e. it is parametrized by arc length s measured with
sign from the point γ(0) = p = (p1, p2). Then we have:

γ(s) = (γ1(s) , γ
2(s)) , s ∈R ,

γ
′(s) =

(
(γ1)′(s) , (γ2)′(s)

)
,

‖γ ′(s)‖gE = 1 , so that s is indeed the signed arc length from p:

s =
∫ s

0
‖γ ′(t)‖gE dt .

(3.1)

EXERCISE 3.1

A parametrized circle with center (0,0) and radius R in (R2,gE) is given as follows:

γ(s) = (R · cos(s/R) , R · sin(s/R)) , s ∈ ]−R ·π,R ·π[ . (3.2)

Show that the expression in equation (3.2) gives a unit speed parametrization of the circle.

In the Euclidean space (Rn,gE) we can – and very often do – compare two vectors in different
tangent spaces via the usual Euclidean parallel transport. For example, we can – in that particular
representation of the Local Riemannian Manifold – compare the tangent vector γ ′(s0 + t) in the
tangent space Tγ(s0+t) with γ ′(s0) in the tangent space Tγ(s0). In fact, we can directly consider the
difference between the two vectors γ ′(s0 + t) and γ ′(s0), divide that difference by t and let t go to
0. Then we get the well known Euclidean acceleration of the parametrized curve γ at γ(s0), and
from this construction it is natural to name the result of this operation by γ ′′(s0). In the given
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Euclidean setting we have:

accγ(s0) = lim
t 7→0

(
γ ′(s0 + t) − γ ′(s0)

t

)

= γ
′′(s0) =

(
(γ1)′′(s0) , (γ2)′′(s0)

)
.

(3.3)

EXERCISE 3.2

Let γ be any regular arclength parametrized curve in (R2,gE). Show that accγ(s0) is always orthogonal
to the tangent (velocity) vector γ ′(s0) for all s0 in the parameter interval I for γ:

gE (accγ(s) , γ
′(s)) = 0 , for all s ∈ I. (3.4)

Hint: Note that gE (V , W ) = V ·W is just the usual dot-product in (R2,gE) and consider the s-
derivative of both sides of the equation ‖γ ′(s)‖gE = 1.

The acceleration problem is now the following: From chapters 1 and 2 it is evident, that we
cannot just subtract (the coordinates of) two vectors in different tangent spaces and hope to get
an isometry invariant and well defined acceleration from the second derivative of the coordinate
functions of the curve as done in equation (3.3). In other words, we need to define the important
notion of acceleration in a more refined way than equation (3.3), so that it becomes well defined
in every representation (U,gU ) for any given Local Riemannian Manifold.

The notion of acceleration of a motion along a given curve is of paramount importance
for an abundance of applications – just think of Newton’s second law. So we need to
solve the ’acceleration problem’, so that the calculation of that important entity can be
done consistently in any representation of a given Local Riemannian Manifold.

As a dramatic illustration of this ’acceleration problem’ we consider again the polar map φ which
was introduced in the previous chapters:

Example 3.3

We consider the Euclidean plane and represent that LRM in two different – but isometric ways – (U,gU)

and (V ,gV ), respectively, corresponding to using ordinary Cartesian coordinates in the plane and
ordinary polar coordinates in the plane.

So, we let φ denote the polar map defined on the open set U = (R2 minus the non-positive x-axis),
which produces polar coordinates (y1,y2) as follows:

φ(x1, x2) =

(√
(x1)2 +(x2)2 , arg(x1 + i · x2)

)
= (y1,y2) . (3.5)

To repeat: In U we consider the Euclidean metric gE so that (U,gE) is then surely a direct representative
of the LRM, the Euclidean plane, that we are considering. (Note that this LRM is quite different from
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the one constructed from the paraboloid P (with inherited metric from the ambient Euclidean 3D
space) in chapter 1. The present (U,gE) is in the similar sense constructed from the Euclidean plane
r(x1, x2) = (x1, x2,0) in 3D.)

The metric matrix function in U is then simply:

GE(x1, x2) =

[
1 0
0 1

]
. (3.6)

Now let V = φ(U), the open half strip in R2 considered before:

V = {(y1, y2) | y1 > 0 and −π < y2 < π } . (3.7)

Then, in order for (V ,gV ) to become a representative for the same LRM as (U,gE) we must define gV
so that its corresponding metric matrix function is the following – see equation (1.41) in chapter 1:

GV (y1, y2) = J∗
φ−1 ·GE(φ

−1) · Jφ−1

= J∗
φ−1 · Jφ−1

=

[
cos(y2) −y1 · sin(y2))

sin(y2)) y1 · cos(y2))

]∗
·
[

cos(y2) −y1 · sin(y2))

sin(y2)) y1 · cos(y2))

]

=

[
1 0
0
(
y1
)2

]
.

(3.8)

The circle in exercise 3.1 is mapped by φ into a curve η with the φ-induced parametrization:

η(s) = φ(γ(s)) = φ (R · cos (s/R) , R · sin (s/R))

= (R , s/R) , s ∈ ]−R ·π , R ·π[ ,

(3.9)

so that the tangent (velocity) vector along η is:

η
′(s) = (0, 1/R) . (3.10)

Note that by construction via φ – which is an isometry – the curve η is automatically parametrized by
arc length.

EXERCISE 3.4

Check that
‖η ′(s)‖gV = 1 for all s ∈ ]−R ·π , R ·π[ . (3.11)

Observe, that if we now just blindly calculate the second derivatives of the coordinate functions of the
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parametrization η(s) in V we get
η
′′(s) = (0, 0) . (3.12)

whereas, if we calculate the (correct) acceleration of γ in U we get

γ
′′(s) =

(
−cos (s/R)

R
,
−sin (s/R)

R

)
. (3.13)

In other words, the two calculations are not in any way compatible – and we know the reason: The brute
force derivation of η′(s) resulting in η′′(s) presumes the (forbidden) subtraction of tangent vectors from
different tangent spaces.

At this point you may think, that in the previous chapter we actually did compare vectors
in different tangent spaces, namely via the (Jacobian of the) flow map defined by a vector
field in U. However, in the present situation we only have one curve with its tangent
vectors. It is not obvious how to extend these vectors to a vector field around the curve in
a consistent way, so that the corresponding flow map can be used for a proper definition
of the acceleration of the motion along the curve – in a way similar to the construction
of the Lie derivative.

The solution to the acceleration problem – which will eventually give the same acceleration
vector in every representation of a given LRM – is obtained via a clever modification of the
(forbidden, coordinate dependent) brute force differentiation of the coordinate functions of the
tangent vectors η ′ along the curves η in question. The needed modification involves derivatives of
the metric matrix function. The key concept to be established for this to work is called covariant
differentiation of γ ′ along γ:

3.2 Covariant differentiation of vector fields along curves

The tangent vectors γ ′(t), t ∈ I, to a given curve γ – not necessarily arc length parametrized – is
but one example of a smooth vector field along a curve.

Notation 3.5 Let γ denote a regular smooth curve in Un. At each point γ(t), t ∈ I, we let V (t)

denote a vector in the tangent space Tγ(t)U and denote its coordinates with respect to the canonical
basis in Tγ(t)(U) by vi(t), i = 1, · · · ,n, so that

V (t) =
i=n

∑
i=1

vi(t) · ei , t ∈ I . (3.14)

If all the coordinate functions vi(t) are smooth functions of t in the interval I, then we will say that V
is a smooth vector field along γ. The set of smooth vector fields along γ are denoted by X(γ).
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The tangent vectors γ ′ along a smooth regular curve γ clearly form a smooth vector field along γ,
so that γ ′ ∈ X(γ).

Note that if X is a vector field in U, i.e. X ∈ X(U), then the restriction Xγ of X to the smooth
regular curve γ is a vector field along γ, so that Xγ ∈ X(γ). Conversely, if V ∈ X(γ), then there
are several ways to extend the vector field along γ to a vector field X ∈ X(U).

EXERCISE 3.6

Let γ denote a simple closed curve in U = R2. Simple means: without self-intersections. How would
you construct a smooth extension of a given V ∈ X(γ) along γ to a vector field X ∈ X(U) in all of U?

As motivated above we want to define a vector derivative (with respect to t) of any smooth vector
field V along γ(t), t ∈ I, so that the vector derivative is itself a smooth vector field along γ and so
that the derivative gives the same result (modulo the isometry-diffeomorphisms) in any isometric
representation of the LRM, that we are considering. When we have done that, we have also solved
the ’acceleration problem’ alluded to above.

Definition 3.7 Let (U,g) represent a Local Riemannian Manifold. A covariant derivative of

a vector field V along a given curve γ in (U,g) parametrized by t ∈ I is a mapping:

D
dt

: X(γ) 7−→ X(γ) (3.15)

which satisfies the following natural derivation-conditions for all V , W in X(γ) and for all smooth
functions f on I:

D
dt
(V (t)+W (t)) =

D
dt

V (t)+
D
dt

W (t)

D
dt
( f (t) ·V (t)) = f ′(t) ·V (t)+ f (t) · D

dt
V (t) .

(3.16)

Moreover – and this is the key condition that we have been looking for – the covariant derivative must
be compatible with the metric in the following sense:

d
dt

g(V (t), W (t)) = g
(

D
dt

V (t) , W (t)
)
+ g
(

V (t) ,
D
dt

W (t)
)

(3.17)

EXERCISE 3.8

Show by example that the usual time-derivative d
dt does not satisfy the three conditions in equations

(3.16) and (3.17) . Hint: You may want to use ingredients from example 3.3.
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EXERCISE 3.9

Show that if we consider the rare case that the metric tensor is Euclidean, i.e. g = gE , then the usual
time derivative does satisfy the three conditions in equations (3.16) and (3.17).

Therefore, in consequence of exercise 3.9, if we can show that covariant derivatives exist and are
unique – we shall introduce one more condition below so that this indeed will be the case – then it
must reduce to the usual time derivative when the metric in the LRM representation (U,g) is the
Euclidean g = gE .

3.3 Defining properties of the Levi-Civita connection

In order to nail down a unique covariant derivative (of vector fields along curves) we first define
a much more powerful and useful operator, the Levi-Civita connnection. It is the single most
important object in these notes and from here onwards we will refer to it again and again.

The Levi-Civita connection is a derivation of vector fields along vector fields. It satisfies conditions
which are similar to the requirements for covariant derivatives of vector fields along curves.

Definition 3.10 Let again (U,g) represent a Local Riemannian Manifold. The Levi-Civita

connection ∇ on (U,g) is the following mapping:

∇ : X(U)×X(U) 7−→ X(U)

(X , Y ) 7−→ ∇XY ,
(3.18)

which satisfies the following conditions for all vector fields X , Y , and Z in X(U) and for all smooth
functions f and h in F(U):

∇( f ·X+h·Y )Z = f ·∇X Z + h ·∇Y Z (3.19)

∇X (Y +Z) = ∇X (Y )+∇X (Z) (3.20)

∇X ( f ·Y ) = f ·∇X (Y )+X( f ) ·Y (3.21)

X(g(Y ,Z)) = g (∇X (Y ) , Z)+ g (Y , ∇X Z) (3.22)

∇X (Y )−∇Y (X)− [X , Y ] = 0 . (3.23)
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Although this seems to be quite a massive set of non-transparent properties to meet, there are
several miraculous payoffs: As already alluded to in the formulation of the definition above, the
Levi-Civita connection mapping ∇ always exists and it is unique! See the proof below. Moreover,
it will give us a direct solution to the acceleration problem mentioned above. In the same vein it
will give us a well defined notion of parallel transport, of geodesics, and of curvature tensors. But
first, the most important theorem about the Levi-Civita connection:

Theorem 3.11 Given a Local Riemannian Manifold represented by (U,g). Then there exists

a unique mapping ∇ which satisfies all the conditions in definition (3.10).

Proof. A slick and very nice coordinate-free version of the proof is given in [4, p. 55]. It is highly
appropriate to repeat it here – and we do that almost verbatim:

We assume initially, that such a connection ∇ exists. We must then show that it is unique. From
the assumption on metric compatibility expressed in equation (3.22) we have:

X(g(Y ,Z)) = g (∇X (Y ) , Z)+ g (Y , ∇X Z) (3.24)

Y (g(Z,X)) = g (∇Y (Z) , X)+ g (Z , ∇Y X) (3.25)

Z(g(X ,Y )) = g (∇Z(X) , Y )+ g (X , ∇ZY ) . (3.26)

Now add the two first equations (3.24) and (3.25) together and subtract the third equation (3.26).
Then use the symmetry expressed in equation (3.23) and obtain:

X(g(Y ,Z))+Y (g(Z,X))−Z(g(X ,Y ))

= g ([X , Z] , Y )+ g ([Y , Z] , X)+ g ([X , Y ] , Z)+ 2 ·g (Z , ∇Y X) .
(3.27)

In consequence we therefore have:

g (Z , ∇Y X) =
1
2
· (X(g(Y ,Z))+Y (g(Z,X))−Z(g(X ,Y )))

−1
2
· (g ([X , Z] , Y )+ g ([Y , Z] , X)+ g ([X , Y ] , Z)) .

(3.28)

The expression in equation (3.28) shows that the connection ∇ is uniquely determined by the
metric g. Hence, if it exists, then it is also unique. The existence follows from the same equation
(3.28) because we can use it as a definition of ∇Y X and then show, that this specific definition
actually gives rise to a connection, which satisfies all the conditions in definition 3.10.
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EXERCISE 3.12

Think about the last lines in the proof above: Why does (3.28) show that the connection ∇ is uniquely
determined by the metric g? What about the Lie brackets appearing in the expression?

EXERCISE 3.13

Show that (3.28) actually can be used to construct a candidate for a connection, which satisfies all the
conditions in definition 3.10.

Notation 3.14 Although somewhat redundant (because ∇ follows from g), we will from now

on write the representatives for a Local Riemannian Manifold as follows: (U,g,∇) – in particular
when we make explicit use of the associated Levi-Civita connection ∇.

Equation (3.28) is obviously of instrumental importance for establishing the Levi-Civita connec-
tion. But it also gives us directly the coordinates of the connection map. We first define these
coordinates as follows:

Definition 3.15 We have at each point p in U:

(∇eie j)p =
k=n

∑
k=1

Γk
i j(p) · ek . (3.29)

The coordinate functions Γk
i j(p) appearing in this linear combination of the basis vectors at p are called

the Christoffel symbols for ∇ on (U,g,∇).

Then, by insertion of X = ei, Y = e j and Z = e` into (3.28) and observing that all the Lie brackets
[ei , e j] vanish (according to exercise 2.30 in chapter 2) we get, on the left hand side of equation
(3.28):

g (Z , ∇Y X) = g
(
e` , ∇e jei

)

= g

(
e` ,

k=n

∑
k=1

Γk
j i · ek

)

=
k=n

∑
k=1

Γk
j i ·g(e` , ek) for all indices i, j, and ` .

(3.30)

Equating this with the right hand side of equation 3.28 we have:

k=n

∑
k=1

Γk
j i ·g(e`,ek) =

1
2
· (ei(g(e j,e`))+ e j(g(e`,ei))− e`(g(ei,e j))) . (3.31)
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Using shorthand index notation for the elements gi j in the metric matrix function G associated
with g in (U,g,∇) we obtain:

k=n

∑
k=1

Γk
j i ·g`k =

1
2
· (ei(g j `)+ e j(g` i)− e`(gi j)) , (3.32)

and finally, using the derivation interpretation of ei =
∂

∂xi we have equivalently:

k=n

∑
k=1

Γk
j i ·g`k =

1
2
·
(

∂

∂xi g j `+
∂

∂x j g` i−
∂

∂x`
gi j

)
, (3.33)

In order to extract a pure formula (in terms of g and the derivatives of g) for the Christoffel
symbols we introduce the following

Notation 3.16 Since the metric matrix function G is positive definite it has an inverse G−1

whose elements we call gi j, so that

k=n

∑
k=1

gi k ·gk j = δ
j
i =

{
1 for i = j

0 for i 6= j
(3.34)

We can then multiply both sides of the equation (3.33) by G−1 which amounts to the following:

`=n

∑
`=1

(
g`m ·

k=n

∑
k=1

Γk
j i ·g`k

)
= Γm

j i

=
1
2
·
`=n

∑
`=1

(
∂

∂xi g j `+
∂

∂x j g` i−
∂

∂x`
gi j

)
·g`m .

(3.35)

In this way we have now isolated the calculation of the Christoffel symbols. One observation
from equation (3.35) is that since G and G−1 are symmetric matrices, the Christoffel symbols are
also symmetric in the lower indices:

Proposition 3.17

Γm
i j = Γm

j i =
1
2
·
`=n

∑
`=1

(
∂

∂xi g j `+
∂

∂x j g` i−
∂

∂x`
gi j

)
·g`m . (3.36)

Note that in any Euclidean Local Riemannian Manifold (U,gE ,∇) all the Christoffel
symbols vanish because all the entries of the metric matrix function are (the simplest
possible) constants!
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Before showing that the Levi-Civita connection produces a unique covariant differentiation along
curves we first note the following:

Proposition 3.18 Let V and W be two vector fields in (U,g,∇). Then, in order to calculate

the vector ∇VW at some given point p in U, we do not need to know all the values of V – only the
value of V at p. This follows readily from the expression below, where we use:

V =
i=n

∑
i=1

vi · ei

W =
i=n

∑
i=1

wi · ei .

(3.37)

With these V and W we get:

(∇V (W ))p =
k=n

∑
k=1

(
∑
i j

vi(p) ·w j(p) ·Γk
i j(p)+Vp(wk)

)
· ek (3.38)

Note that this equation shows that (∇VW )p only depends on the value of V ∈ TpU at the point p.
In other words, we do not need a full vector field V ∈ X(U) in order to evaluate the ∇-derivative
of the vector field W with respect to V at p.

Proof.

∇VW = ∑
i

vi ·∇ei

(
∑

j
w j · e j

)
= ∑

i j
vi ·w j ·∇eie j +∑

i j
vi · ei(w j) · e j

= ∑
i j

k=n

∑
k=1

(
vi ·w j ·Γk

i j +V (wk)
)
· ek ,

(3.39)

which shows that (∇VW )p depends on vi(p), wk(p), and the derivatives Vp(wk) of the coordinate
functions wk by V at p.

In passing we note that Killing vector fields are characterized by the following property, which is
expressed in terms of the Levi-Civita connection:

Proposition 3.19 A vector field X ∈ X(U) is Killing if and only if

g(∇V X , W )+ g(∇W X , V ) = 0 for all vector fields V and W in X(U) . (3.40)
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Proof. This follows from the previous characterization of Killing vector fields in chapter 2:

X(g (V , W )) = g ([X , V ] , W )+ g (V , [X , W ] ) , (3.41)

because this equation is equivalent to both of the following equations (using equation (3.23)):

0 = g (∇XV , W )−g ([X , V ] , W )+ g (∇XW , V )−g ([X , W ] , V )

0 = g (∇V X , W )+ g (∇W X , V ) .

(3.42)

3.4 Back to the covariant differentiation

The following result now shows that the Levi-Civita connection ∇ determines a unique covariant
differentiation of vector fields along curves. This is not surprising in view of the massive
derivation-type conditions satisfied already by the connection ∇:

Proposition 3.20 Let ∇ denote the Levi-Civita connection map of an LRM represented by

(U,g,∇). Let γ denote a regular smooth curve in U parametrized by t ∈ I, and let V ∈ X(γ). Suppose
that V is the restriction of a vector field W ∈ X(U) to the curve γ so that V (t) =W (γ(t)). Then there
is a unique covariant derivative D

dt along γ satisfying Definition 3.7, and it has the property:

D
dt

V (t) = ∇γ ′W along γ , (3.43)

where the left hand side makes sense at each point along γ in view of proposition 3.18. In standard
coordinates in U with the induced standard basis fields {e1, · · · ,en} we get, for any vector field
V ∈ X(γ) with V (t) = ∑

i=n
i=1 vi(t) · ei along γ:

D
dt

V (t) = ∑
k

(
dvk

dt
+∑

i j
v j(t) · (γ i) ′(t) ·Γk

i j(γ(t))

)
· ek . (3.44)

Proof. Suppose first that we have found a covariant derivative D
dt that satisfies the conditions in

definition 3.7. Then we must show that it is unique. With V (t) = ∑
i=n
i=1 vi(t) · ei we get from

equations (3.16):
D
dt

V (t) =
j=n

∑
j=1

dv j

dt
· e j +

j=n

∑
j=1

v j(t) · D
dt

e j , (3.45)
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where – via equations (3.17) and (3.19) – for all index values j:

D
dt

e j = ∇γ ′e j = ∇
∑i(γ i) ′·ei

e j

= ∑
i
(γ i) ′ ·∇eie j

= ∑
i
(γ i) ′ ·∑

k
Γk

i j · ek .

(3.46)

Inserting this into equation (3.45) we get:

D
dt

V (t) = ∑
k

(
dvk

dt
+∑

i j
v j(t) · (γ i) ′(t) ·Γk

i j(γ(t))

)
· ek (3.47)

This relation shows the uniqueness of the covariant derivative – stemming from the wanted
properties and from the existence and uniqueness of the connection ∇ and its Christoffel symbols.
The existence is also guaranteed by the equation (3.47). In fact, we can again just define a
covariant derivative by this equation and then check that it satisfies the needed conditions.

EXERCISE 3.21

Show that if we define a candidate for a covariant derivative by equation (3.47), then it satisfies all the
conditions of definition 3.7.

In other words, the uniqueness and existence of the Levi-Civita connection induces the unique
existence of a covariant derivative along any smooth curve.

3.5 The solution to the acceleration problem

At this point we have no other choice but to define the notion of acceleration of a motion along a
parametrized curve as follows:

Definition 3.22 Let (U,g,∇) represent a given LRM, and let γ be a t-parametrized curve in

U, t ∈ I. Then the acceleration vector for the corresponding motion along γ is simply:

accγ(t) =
D
dt

γ
′(t) for all t ∈ I (3.48)

In terms of coordinates this definition is then equivalent to the following, using equation (3.47) with
vk(t) = (γk)′(t):

accγ(t) =
D
dt

γ
′(t) = ∑

k

(
d2

dt2 γ
k(t)+∑

i j
(γ i) ′(t) · (γ j) ′(t) ·Γk

i j(γ(t))

)
· ek . (3.49)
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And it works! Let us have a look again at example 3.3:

Example 3.23

The Christoffel symbols of the Levi-Civita connection of (V ,gV ,∇) are the following 8 functions on V
– calculated via the formula in proposition 3.17:

Γ1
11(y

1,y2) = 0

Γ2
11(y

1,y2) = 0

Γ1
12(y

1,y2) = Γ1
21(y

1,y2) = 0

Γ2
12(y

1,y2) = Γ2
21(y

1,y2) =
1
y1

Γ1
22(y

1,y2) = −y1

Γ2
22(y

1,y2) = 0 .

(3.50)

EXERCISE 3.24

Check these identities for the respective Christoffel symbol functions.

We insert the Christoffel symbols into equation (3.49) and obtain the acceleration vector for the curve η

in V – using, of course, that only two of the Christoffel symbols are non-zero:

accη(s) =
(
−y1

R2

)
· e1 =

(
−η1(s)

R2

)
· e1 = −

(
1
R

)
· e1 =

(
− 1

R
, 0
)

. (3.51)

Using the metric gV we see, that the acceleration vector has the correct length 1/R and, moreover, it is
isometrically φ-related to the corresponding acceleration vector in (U,gU) that we previously calculated
in example 3.3:

Jφ−1(accη(s)) =
[

cos(s) −R · sin(s)
sin(s) R · cos(s))

]
·
[
−1/R

0

]

=

(
−cos(s/R)

R
,
−sin(s/R)

R

)

= accγ(s) , s ∈]−R ·π , R ·π[

(3.52)

– precisly as expected and as needed: The acceleration vector field along a parametrized curve is invariant
under isometric diffeomorphisms – we get the same acceleration in every representation of any given
Local Riemannian Manifold.

In prolongation of exercise 3.2 we now have in all generality, that if a curve is parametrized by
constant speed, then the acceleration vector is orthogonal to the curve:



100 CHAPTER 3. THE LEVI-CIVITA CONNECTION

EXERCISE 3.25

Let γ be any regular arclength parametrized curve in any representation of a given LRM, (U,gU).
Show that accγ(s) is always orthogonal to the tangent (velocity) vector γ ′(s) for all s in the parameter
interval I for γ:

gU (accγ(s) , γ
′(s)) = gU

(
D
dt

γ
′(s) , γ

′(s)
)
= 0 , for all s ∈ I. (3.53)

Hint: Note that
d
ds

gU (γ ′(s) , γ
′(s)) = 0 . (3.54)

3.6 Gravity-induced accelerated motion on the paraboloid

The notion of acceleration plays a well-known and instrumental rôle in the study of analytical
mechanics and dynamical systems. We briefly illustrate the relevance of the covariant derivative
in this setting via a couple of examples:

Example 3.26

Suppose we consider again the paraboloid introduced in chapter 1:

P : r(x1, x2) = (x1, x2, (x1)2 +(x2)2) . (3.55)

The tangent plane in R3 to P at the point r(x1 , x2) is spanned by the two tangent vectors:

∂

∂x1 r(x1, x2) =
(
1,0,2 · x1)

∂

∂x2 r(x1, x2) =
(
0,1,2 · x2) .

(3.56)

A particle of mass 1 moving on the surface of P under the sole influence of gravity G = (0,0,−1) then
solves Newton’s second law: The acceleration of the particle on P is equal to the projection of G into
the surface (tangent plane) at each point along its track. This latter projection is obtained in as follows:
First we find the unit normal vector N to the surface at each point r(x1,x2):

N(x1,x2) =
r′x1× r′x2

‖r′x1× r′x2‖E
, (3.57)

where ‖∗‖E denotes the usual Euclidean norm in R3. The result is

N(x1,x2) = (−2 · x1 , −2 · x2,1)/
√

1+ 4(x1)2 + 4(x2)2 . (3.58)

The projection of G into the tangent plane of the surface at r(x1,x2) is then (using fat · for the usual
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dot-product in Euclidean R3):

proj(G) = G− (G·N) ·N

=
1

1+ 4 · (x1)2 + 4 · (x2)2 ·
(
−2 · x1 , −2 · x2 , −4 · (x1)2−4 · (x2)2) .

(3.59)

The projection proj(G) is then a linear combination of r′x1 and r′x2 :

proj(G) = α · r′x1 +β · r′x2 . (3.60)

Solving this equation for α and β gives the coordinates of the projection with respect to the induced
basis vectors in the tangent plane:

proj(G) = (α,β){ ∂r
∂x1 , ∂r

∂x2 }

=
1

1+ 4 · (x1)2 + 4 · (x2)2 ·
(
−2 · x1 , −2 · x2)

{ ∂r
∂x1 , ∂r

∂x2 }
.

(3.61)

These coordinate functions can also be found (in a much simpler and more direct way via
the metric) as the coordinates of the negative g-gradient of the potential (height) function
z(x1,x2) = (x1)2 + (x2)2 on the surface determined by the gravity vector (0,0,−1). The
g-gradient will be introduced below in section 3.10.1 – see exercise 3.57.

These coordinates are thence also the coordinates of the representation of the force vector in the standard
basis {e1,e2} of the Local Riemannian Manifold model (U,g,∇) of the paraboloid – this identity
between coordinates of tangent vectors in TpU and tangent vectors to the surface at r(p) was discussed
in section 1.4 in chapter 1.

The motion, the parametrized curve γ(t) = (γ1(t) , γ2(t)) must therefore satisfy:

accγ(t) =
(

−2 · x1

1+ 4 · (x1)2 + 4 · (x2)2 ,
−2 · x2

1+ 4 · (x1)2 + 4 · (x2)2

)
|x1=γ1(t),x2=γ2(t)

. (3.62)

The equations of motion to be solved are then contained in the following second order ordinary differen-
tial equation system:

D
dt

γ
′(t) =

(
−2 · x1

1+ 4 · (x1)2 + 4 · (x2)2 ,
−2 · x2

1+ 4 · (x1)2 + 4 · (x2)2

)
|x1=γ1(t),x2=γ2(t)

(3.63)

with suitable initial conditions – to be chosen: γ(0) = p and γ ′(0) = V0.

These equations are a bit complicated – not least because the left hand side also contains the Christoffel
symbols when we write out the covariant derivative of γ ′ along γ.

We display the non-zero Christoffel symbol functions here – they are also useful for exercise 3.71 below.
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Only four of the Christoffel symbols do not vanish, and they appear in pairs as follows:

Γ1
11(x

1,x2) = Γ1
22(x

1,x2) =
4 · x1

1+ 4 · (x1)2 + 4 · (x2)2

Γ2
11(x

1,x2) = Γ2
22(x

1,x2) =
4 · x2

1+ 4 · (x1)2 + 4 · (x2)2 .

(3.64)

The solution curve (γ1(t),γ2(t)) with initial conditions γ(0) = (1,0) and γ ′(0) = (1,1) can be obtained
by numerical solution and is displayed in the parameter domain in figure 3.1. The solution is then lifted
into the paraboloid (for various choices of duration of time) in figure 3.2. The boundedness of the
solution curve is a natural consequence of the preservation of total mechanical energy, i.e. potential plus
kinetic energy. This is but one example of the intimate relationship between differential geometry and
the theory of dynamical systems. A much simpler example is given in exercise 3.27.

Figure 3.1: See example 3.26. Gravity induces acceleration and makes the particle move around
the center point, which corresponds to the bottom point of the paraboloid – se figure 3.2.

EXERCISE 3.27

Repeat the steps in the above example 3.26, but now for an inclined plane instead of the paraboloid –
with the same gravity G = (0,0,−1) in the ambient 3D space. I.e.:

P : r(x1, x2) =
(
x1, x2, α · x1) (3.65)

for some α. This situation is considerably simpler than the setting in the paraboloid example above
because all the Christoffel symbols vanish! Find the exact solution to the motion problem with
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Figure 3.2: The solution curve from figure 3.1 is – for various durations of time – lifted into the
paraboloid considered in example 3.26.

given/chosen initial conditions for the case of any inclined plane, corresponding to any fixed value of
α. What happens if α = 0? Find the exact solution to the motion problem with given/chosen initial
conditions for the case of a vertical plane (which needs a slight modification of the expression for its
parametrization).

3.7 Parallel transport of vectors along curves

The most general g-compatible notion of parallel transport of a vector V from a tangent space
TpU at p to a vector in another tangent space TqU at q is defined by:

Definition 3.28 Let (U,g,∇) denote a Local Riemannian Manifold. Let γ denote a regular

smooth curve in U from a point p to a point q, parametrized by t ∈ I = [a,b], so that γ(a) = p and
γ(b) = q. Let V (t) denote a vector field along γ, V ∈ X(γ). Then V is called a parallel vector field
along the curve γ if and only if

D
dt

V (t) = 0 for all t ∈ I = [a,b] . (3.66)

In coordinates this is equivalent to the following condition via equation (3.47), where we use V (t) =
∑k vk(t) · ek and γ(t) = (γ1(t) , · · · , γn(t)):

0 = ∑
k

(
dvk

dt
+∑

i j
v j(t) · (γ i) ′ ·Γk

i j(γ(t))

)
· ek for all t ∈ I = [a,b]. (3.67)
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Moreover, we naturally say that the vector V (a) ∈ TpU has been parallel transported to the vector
V (b) ∈ TqU along γ.

EXERCISE 3.29

Show that in a Euclidean Local Riemannian Manifold (U,gE ,∇) parallel transport of a vector consists
of the usual process of keeping the coordinate functions for the vector field constant – completely
independent of the curve along which the vector is transported. Hint: All the Christoffel symbols
vanish.

EXERCISE 3.30

Let (V ,gV ,∇) denote Poincaré’s half plane model that we encountered in chapter 1. I.e. we have
y2 > 0 and

GV (y1,y2) =
1

(y2)2

[
1 0
0 1

]
. (3.68)

Let η denote the horizontal straight line: η(t) = (t , 1) in V and let V0 ∈ Tγ(0)V denote the vector
V0 = (0, 1) in the tangent space at η(0) = (0,1). The vector V0 is parallel transported along η and
produces the vector V (t) at η(t) so that

D
dt

V (t) = 0 and V (0) = V0 = (0,1) . (3.69)

Find the coordinate functions vi(t), i = 1,2, for V (t) = v1(t) · e1+ v2(t) · e2.

In general, parallel transport depends on the curve along which we solve the transport problem:

Example 3.31

We let C denote a half-circle of radius R and center (0,0) in the half plane model (V ,gV ,∇) as
considered in the exercise 3.30 above. The transport curve is then:

C : γ(t) = (R · sin(t) , R · cos(t)) , t ∈ I =]−π/2, π/2[ , (3.70)

and if we write V (t) = (v1(t) v2(t)), then the first order differential equation system for V which
is equivalent to parallel transport of V0 = (a,b) along the half circle from point γ(0) = (0,R) is the
following:

0 =
d
dt

v1(t)− v2(t)+ tan(t) · v1(t)

0 =
d
dt

v2(t)+ v1(t)+ tan(t) · v2(t) .
(3.71)

with the said initial condition: V (0) = V0 = (a,b).
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EXERCISE 3.32

Show that (3.71) are the equations for parallel transport in this setting.

The solution is fairly simple:

v1(t) =
1
2
· (a+ a · cos(2t)+ b · sin(2t))

v2(t) =
1
2
· (b+ b · cos(2t)−a · sin(2t)) , t ∈ I =]−π/2, π/2[ .

(3.72)

EXERCISE 3.33

Verify, that the coordinate functions in (3.72) do solve the parallel transport problem under consid-
eration.

In figure 3.3 we display the parallel transport along a half circle for a specific choice of initial vector
V (0) = (a,b) so that the transport can be directly compared with another parallel transport along the
horizontal line between two given points on the half circle – as studied in exercise 3.30. It is apparent
from the figure, that parallel transport depend – in this case quite significantly – on the curve along
which it is constructed. The values of two vector fields are identical at the rightmost common endpoint
of the curves, but quite different at the leftmost common endpoint of the curves.

Proposition 3.34 Parallel transport preserves lengths of vectors and angles between vectors.

Precisely, we have the following: Let V ∈ X(γ) and W ∈ X(γ) be two parallel vector fields along γ

parametrized by t ∈ I = [a,b]. Then

g(V (t),W (t)) = g(V (a),W (a)) = g(V (b),W (b)) for all t ∈ I. (3.73)

Proof. This is one of the fine consequences of the metric compatibility of the connection ∇ and
thence of the covariant derivative. In fact, we can just calculate the relevant t-derivative from
property (3.17):

d
dt

g(V (t), W (t)) = g
(

D
dt

V (t) , W (t)
)
+ g
(

V (t) ,
D
dt

W (t)
)
= 0 , (3.74)

because D
dtV (t) = 0 and D

dtW (t) = 0, so that g(V (t), W (t)) is constant along γ.
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Figure 3.3: Two parallel vector fields along two curves in the Poincaré halfplane. The green
vector field is parallel along the horizontal straight line – see exercise 3.30. The blue vector
field is parallel along the half circle – see example 3.31. Note that the blue and the green vector
fields agree at the right hand intersection point between the two curves but not at the left hand
intersection point.

EXERCISE 3.35

Why does this proposition show, that lengths of vectors and angles between vectors are preserved
under parallel transport?

Each canonical basis vector field ek, k ∈ {1, · · · ,n}, is always a member of the set X(U). If we
restrict ek to a regular smooth curve γ parametrized by t ∈ I in U we obtain a vector field ek(t)
along γ, ie. an element in X(U). In general, none of these vector fields ek(t) is parallel along γ.
Moreover, as we have discussed at length, the vectors ek do not in general form a g-orthonormal
basis in any given tangent space of (U,g,∇).

Using parallel transport along γ we now construct a very useful replacement of – or alternative to –
the canonical basis along γ:

Definition 3.36 Let γ be a regular smooth curve in (U,g,∇) parametrized by t ∈ I = [a,b],

a < 0 < b. Let (Ei)γ(0), i = 1, · · · ,n, denote a g-orthonormal basis of the tangent space Tγ(0)U. Then
construct parallel transports Ei(t) of all the vectors (Ei)γ(0) along γ, i.e.

D
dt

Ei(t) = 0 for all t ∈ I, and Ei(0) = (Ei)γ(0) . (3.75)
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From proposition 3.34 we infer, that the vector fields Ei ∈ X(γ), i = 1, · · ·n, form a g-orthonormal
basis in each tangent space Tγ(t)U along γ, t ∈ I. This n-tuple of vector fields is called a parallel frame
along γ.

Note that each choice of a g-orthonormal basis in the tangent space of U at γ(0) gives
rise to a unique parallel frame along γ.

Proposition 3.37 Let V ∈ X(γ) and let Ei, i = 1, · · · ,n, denote a parallel frame along γ

parametrized by t ∈ I. Then for each t we obtain unique coordinate functions V i(t) for V with respect
to the frame Ei(t), i = 1, · · · ,n, along γ:

V (t) = ∑
i

V i(t) ·Ei(t) , t ∈ I . (3.76)

If V is itself parallel along γ, then every coordinate function V i(t) is constant.

Proof. The last claim follows directly from:

0 =
D
dt

V (t) =
D
dt

(
∑

i
V i(t) ·Ei(t)

)
= ∑

i
(V i) ′(t) ·Ei(t)+∑

i
V i(t) · D

dt
Ei(t)

= ∑
i
(V i) ′(t) ·Ei(t) ,

(3.77)

which implies that (V i) ′(t) = 0 for all t and all i – because the frame vectors Ei(t) are, in
particular, linearly independent. We conclude, that V i(t) is a constant for each i.

EXERCISE 3.38

Recall the construction of g-orthonormal bases from a previous exercise in chapter 1, or find out or
look up the procedure known as Gram-Schmidt orthonormalization.

Notation 3.39 Since parallel transport along curves in (U,g,∇) will play a significant and

instrumental rôle also in the following, we will introduce a special notation to keep track of the setting
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and what goes on. Suppose V (t) is obtained by parallel transport of V0 ∈ Tγ(t0)U along γ in U. Then
we may consider V (t) as the result of the parallel transport operation on V0 and write as follows:

Π t0 , t
γ V0 = V (t) for all t ∈ I. (3.78)

The mapping Π t0 , t
γ from Tγ(t0)U to Tγ(t)U preserves the g-lengths of vectors according

to proposition 3.34 – in other words, it is a tangent space isometry.

3.8 Pulling back vectors along curves via parallel transport

The covariant derivative D
dt and the Levi-Civita connection map ∇ are both ’contained’ so much in

the concept of parallel transport along curves, that they can be reconstructed from it:

Proposition 3.40 Let (U,g,∇) denote a Local Riemannian Manifold. Let X and Y be vector

fields in X(U) and let γ be a t-parametrized integral curve for X through p = γ(t0) in U, t ∈ I. Then

(∇XY )p = (∇γ ′Y )p

=

(
D
dt

Y (t)
)

t=t0

=

(
d
dt

Π t , t0
γ

(
Yγ(t)

))
t=t0

= lim
t 7−→t0

(
Π t , t0

γ

(
Yγ(t)

)
−Yp

t− t0

)
,

(3.79)

where Π t , t0
γ denotes parallel transport along γ from γ(t) to γ(t0) = p. In this sense, then, this particular

parallel transport pulls back the vectors from Tγ(t)U to TpU along γ.

Proof. We just have to observe that the limit gives the covariant derivative of Y at p. For this we
choose a parallel frame Ei along γ – any such frame will do, i.e. a parallel frame determined by
any choice of a g-orthonormal basis Ei(0) in Tγ(t0)U. Then

Y (t) = ∑
i

Y i(t) ·Ei(t) for all t ∈ I, (3.80)
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and thence (
D
dt

Y (t)
)

t=t0
= ∑

i

(
Y i) ′ (t0) ·Ei(t0) (3.81)

On the other hand we also have

Π t , t0
γ

(
Yγ(t)

)
= ∑

i
Y i(t) ·Ei(t0) , (3.82)

and
Yp = ∑

i
Y i(t0) ·Ei(t0) (3.83)

so that
Π t , t0

γ

(
Yγ(t)

)
−Yp = ∑

i

(
Y i(t)−Y i(t0)

)
·Ei(t0) (3.84)

and therefore

lim
t 7−→t0

Π t , t0
γ

(
Yγ(t)

)
−Yp

t− t0

= ∑
i

(
Y i) ′ (t0) ·Ei(t0) =

(
D
dt

Y (t)
)

t=t0
, (3.85)

which is what we wanted to show.

3.9 A first defining glimpse of geodesics

Geodesics are very important curves that will be discussed further in the next chapter. They are
special so-called autoparallel curves.

Definition 3.41 A given regular smooth curve γ in (U,g,∇) parametrized by t ∈ I is called an

autoparallel curve if its tangent vector field is parallel along the curve - in other words if its acceleration
vector field is 0:

accγ(t) =
D
dt

γ
′(t) = 0 for all t ∈ I . (3.86)

Proposition 3.42 If a curve is autoparallel, then it has constant speed.

Proof. Again, the metric compatibility of covariant differentiation gives:

d
dt

g (γ ′(t) , γ
′(t)) = 2 ·g

(
D
dt

γ
′(t) , γ

′(t)
)
= 0 . (3.87)
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Definition 3.43 A geodesic in (U,g,∇) is an autoparallel curve whose constant speed is 1.

Note: it is common in the literature to define a geodesic to simply be any autoparallel curve.

Definition 3.44 The geodesic curvature of a unit speed curve γ in (U,g,∇) is then simply the

g-length of the corresponding acceleration vector, i.e. of the covariant derivative of the unit tangent
vector field along γ. We call it κ

g
γ :

κ
g
γ (s) = ‖accγ(s)‖g = ‖

D
dt

γ
′(s)‖g . (3.88)

The following observation is immediate:

Proposition 3.45 Every geodesic has zero geodesic curvature.

Definition 3.46 A pre-geodesic is a regular smooth curve γ in (U,g,∇) that satisfies the

following condition:
D
dt

γ
′(t) = ρ(t) · γ ′(t) for all t ∈ I, (3.89)

where ρ is a smooth function of t.

Proposition 3.47 A regular smooth curve γ in (U,g,∇) is a pre-geodesic if and only if it

can be reparameterized to a geodesic curve.

Proof. Suppose first that γ is a pre-geodesic. Set:

s(t) =
∫ t

t0
||γ′(u)||g du.

Then, s′(t)> 0, so s is an increasing function and s : I→ J is a diffeomorphsim onto some interval
J, and we can consider the reparameterization α : J→U, α(s) := γ(t(s)), or we may write:

γ(t) = α(s(t)),
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so
γ
′(t) = α

′(s)
ds
dt

= α
′(s(t))||γ′(t)||g.

Since γ is a pre-geodesic, we have:

ρ(t)γ′(t) =
D
dt

γ
′(t)

= ∇γ′(t)γ
′(t)

= ||γ(t)||s∇α′(s(t))(α
′(s(t))||γ′(t)||g)

= ||γ(t)||s
((

d
ds
||γ′(t)||g

)
α
′(s)+ ||γ′(t)||∇α′(s)α

′(s)
)

The last expression on the right hand side above is a decomposition into components that are
respectively proportional to γ′(t), and orthogonal to γ′(t), since α′(s(t)) is proportional, and
∇α′(s)α

′(s) is orthogonal to γ′(t). Comparing this with the left hand side, namely ρ(t)γ′(t), it
follows that:

∇α′(s)α
′(s) = 0,

in other words α(s) is autoparallel. Since we have already parameterized it by arc-length, α is a
geodesic.
Conversely, suppose a regular curve η can be reparameterized as a geodesic. Then we have a
geodesic α with arc length parameter s ∈ J, and a smooth increasing function h of u with h(u) = s,
such that η(u) = α(h(u)). Then, since D

dsα ′(s) = 0, and ‖α ′(s)‖g = 1 for all s, we get:

D
du

η
′(u) = h′′(u) ·α ′(h(u))

=

(
h′′(u)
‖η ′(u)‖

)
·η ′(u)) for all u ∈ J.

In other words, η is a pre-geodesic, with ρ(u) = h′′(u)/||η′′(u)||.

EXERCISE 3.48

Explain why ∇α′(s)α
′(s) is orthogonal to γ′(t) in the first half of the proof of Proposition 3.47.

EXERCISE 3.49

Why does ψ(s) = η(s/c) give speed 1 if the speed of η(u) is c?

In figure 3.4 we illustrate that every circle in the Poincaré halfplane which interects the y1-axis
orthogonally is a pregeodesic: Tangent vectors are mapped into tangent vectors by parallel
transport. In other words, such half circles can be reparametrized so that they become (arclength
parametrized) geodesics.
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Figure 3.4: Parallel transport of a vector along the special half circle considered also in example
3.31. The vector field is everywhere tangent to the circle, so the circle can be reparametrized to
become autoparallel and hence geodesic.

3.10 Useful operators on Local Riemannian Manifolds

Before finishing this chapter on the – somewhat abstract – definition of the Levi-Civita connection,
we will consider some very useful operators on functions and vector fields, that are more or less
direct spin-offs from this connection. They are of instrumental importance for studying heat
kernels, spectral geometry, and a number of deep theorems in global geometric analysis.

3.10.1 The Gradient

We let (U,g,∇) denote a Local Riemannian Manifold. Then we define:

Definition 3.50 Let f ∈ F(U). Then the gradient vector field of f is defined as the unique

vector field grad( f ) ∈ X(U) which satisfies

g (grad( f ) , X) = X( f ) for all X ∈ X(U). (3.90)

Recall that X( f ) = (d/dt) f (η(t))|t=0 for any curve η(t), t ∈ ]− ε,ε[, with η ′(0) = X .
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EXERCISE 3.51

Show that in any Euclidean setting (U,gE ,∇) the above definition gives the usual Euclidean coordi-
nates for the gradient of a given function f on U.

EXERCISE 3.52

Show that in the general setting of an LRM (U,g,∇) we have the following coordinate expression of
the gradient of a function f ∈ F(U) at the point p = (x1, · · · ,xn):

grad( f )(p) =
n

∑
k=1

n

∑
`=1

gk ` · ∂ f
∂x`
· ek . (3.91)

Definition 3.53 We consider a function f ∈ F(U). A point p ∈U is a stationary point for f

in (U,g,∇) if grad( f )(p) = 0.

EXERCISE 3.54

We consider a 2-dimensional LRM, (R2,g,∇) with metric g whose metric matrix function is

GU(x1,x2) =

[
1 1
1 2+(x1)2

]
. (3.92)

Let f ∈ F(U) be defined by
f (x1,x2) = (x1)2 +(x2)2 . (3.93)

Find all the stationary points for f in (U,g,∇).

EXERCISE 3.55

Consider (U,g,∇) and f ∈ F(U). Show that p is a stationary point for f if and only if

∂ f
∂xi = 0 for all i = 1, · · · ,n . (3.94)

Note that exercise 3.55 literally says that the notion of stationary point is completely
independent of the metric!



114 CHAPTER 3. THE LEVI-CIVITA CONNECTION

EXERCISE 3.56

Consider (U,g,∇) and f ∈U. Let Kc( f ) denote the following level set in U:

Kc( f ) = {q ∈U | f (q) = c} . (3.95)

Let V ∈ TpU denote a tangent vector to Kc( f ) at some point p (assuming that a tangent vector exists).
Show that

g(V ,grad( f )(p)) = 0 . (3.96)

Hint: The function f is constant along Kc( f ) so V ( f ) = 0.

EXERCISE 3.57

Suppose f ∈ F(U) is the potential function for some (conservative) force vector field F ∈X(U), then
by definition (of what it means to be a potential function):

F = −grad( f ) . (3.97)

In example 3.26 the force vector field for the motion on the paraboloid is therefore −grad(h)(x1,x2),
where h(x1,x2) = (x1)2 +(x2)2 is the height function potential restricted to the surface, i.e. it is the
third (z-)coordinate of the vector function that parametrizes the surface. Show that this claim is true,
i.e. show the second equation of the following line concerning example 3.26

F = −grad(h)(x1,x2) =

(
−2 · x1

1+ 4 · (x1)2 + 4 · (x2)2 ,
−2 · x2

1+ 4 · (x1)2 + 4 · (x2)2

)
. (3.98)

Below in subsection 3.11.1 we shall use this much simpler method to construct the induced force field
(from the ambient gravitational field) on a torus and solve the acceleration problem on that surface.

3.10.2 The Hessian

Definition 3.58 Let f ∈ F(U). Then the Hessian of f is defined as the following operator on

two vector fields X and Y in X(U):

Hess( f )(X ,Y ) = X(Y ( f ))− (∇XY )( f ) for all X and Y in X(U) (3.99)
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EXERCISE 3.59

Show that
Hess( f )(X ,Y ) = g (∇X grad( f ) , Y ) . (3.100)

Hint: Use the metric compatibility of ∇ for this:

X (g (grad( f ) , Y )) = g (∇X grad( f ) , Y )+ g (grad( f ) , ∇XY ) , (3.101)

and then use the definition of grad( f ).

EXERCISE 3.60

Show that if two vector fields V and W in X(U) are expressed as follows in terms of the basis vector
fields {e1, · · · ,en},

V = ∑
i

vi · ei

W = ∑
j

w j · e j ,
(3.102)

then we get:
Hess( f )(V ,W ) = ∑

i
∑

j
vi ·w j ·Hess( f )(ei,e j) . (3.103)

EXERCISE 3.61

Show that Hess( f )(X ,Y ) = Hess( f )(Y ,X). Thus Hess( f ) is a symmetric quadratic form (like the
metric g). Show by example, however, that Hess( f ) is not necessarily positive definit.

EXERCISE 3.62

Show that the coordinate expression for Hess( f )(V ,W ) in (U,g,∇) is the following, where we use
again V = ∑i vi · ei, W = ∑ j w j · e j, and p = (x1, · · · ,xn):

Hess( f )(V ,W )(p) = ∑
i

∑
j

vi ·w j ·
(

∂2 f
∂xi∂x j −Γk

i j ·
∂ f
∂xk

)
. (3.104)

EXERCISE 3.63

Suppose that p ∈U is a stationary point for f ∈ F(U). Show that then we have:

Hess( f )(X ,Y )(p) = X(Y ( f ))(p) . (3.105)
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Definition 3.64 A point p ∈U is called a strict local minimum point for f ∈ F(U) if p is a

stationary point for f and Hess( f )(X ,Y )(p) is positive definite, meaning that Hess( f )(X ,X)(p)> 0
for all non-zero X ∈ TpU. Similarly, p is a strict local maximum point for f if p is a stationary point
for f and Hess( f )(X ,Y )(p) is negative definite.

EXERCISE 3.65

Show that in any Euclidean setting (U,gE ,∇) the definition of Hess( f )(X ,Y )(p) gives the usual
Euclidean matrix function for the Hessian of a given function f on U.

3.10.3 The Divergence

It follows from the definition 3.10 of the Levi-Civita connection ∇ that for any given fixed vector
field V ∈ X(U) the mapping

∇·V : X 7−→ ∇XV (3.106)

maps X ∈ TpU to ∇XV ∈ TpU at p ∈U linearly.

Remember, that equation 3.38 shows that ∇XV only depends on the value of X at the
point p, i.e. we do not need a full vector field X in order to evaluate the ∇-derivative of
the vector field V with respect to X at p.

Note that the Hessian of a function f is clearly related to this mapping. Indeed, if we
choose V = grad f we get

∇· grad( f ) : X 7−→ ∇X grad( f ) . (3.107)

If we denote this particular linear map by H( f ) = ∇· grad( f ) we get:

Hess( f )(X ,Y ) = g (H( f )(X) , Y ) (3.108)

and thus via equation (3.100) in exercise 3.59:

Hess( f )(ei,e j) = g (H( f )(ei) , e j) . (3.109)

In general, whenever we are given a vector field V ∈ X(U) the linear map (of the vector space
TpU into itself):

∇·V : TpU 7−→ TpU (3.110)
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has a matrix representation with respect to the basis {e1, · · · , en}, i.e. there exists a unique matrix
A with elements a j

i such that
∇eiV = ∑

j
a j

i · e j . (3.111)

From this we get:

g(∇eiV ,ek) = g

(
∑

j
a j

i · e j,ek

)
= ∑

j
a j

i ·g j k (3.112)

∑
k

g(∇eiV ,ek) ·gk ` = ∑
j k

a j
i ·g j k ·gk ` = ∑

`

a`i , (3.113)

and thence
∑
k

∑
`

g(∇e`V ,ek) ·gk ` = ∑
`

a``

= trace(A)

= trace(∇·V ) .

(3.114)

EXERCISE 3.66

As indicated by the last equality in equation (3.114), the trace of the linear mapping ∇·V is independent
of the chosen basis {e1, · · · , en} in TpU. Let {b1, · · · ,bn} denote another basis in TpU, i.e. there is a
regular matrix D with elements d j

i so that

ei = d j
i ·b j . (3.115)

Suppose that B is the matrix of ∇·Y with respect to the basis {b1, · · · ,bn}. Show that trace(B) =
trace(A), so that, indeed, trace(∇·V ) is independent of chosen basis. Hint: Remember, look up, find
out, or prove that the matrices A and D−1 ·A ·D have the same trace.

Definition 3.67 The divergence div(V ) of a vector field V ∈ X(U) is the smooth function in

U defined by the invariant trace found above:

div(V ) = trace(∇·V )

= ∑
k

∑
`

g(∇e`V ,ek) ·gk ` (3.116)

Proposition 3.68 If we use a g-orthonormal basis {E1, · · · ,En} at each tangent space TpU,

so that gi j = δ
j
i , then the expression for div(V ) is naturally simplified as follows:

div(V ) = ∑
`

g(∇E`V ,E`) . (3.117)
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We are now ready to introduce the Christoffel symbols into the divergence formula and get two
explicit coordinate expressions for div(V ), one of which, however, does not contain the Christoffel
symbols directly:

Proposition 3.69 In the coordinate-generated basis {e1, · · · ,en} in U, suppose V ∈ X(U)

has coordinate functions vi, i = 1, · · · ,n, i.e. V = ∑i vi · ei. Then

div(V ) = ∑
i

∂

∂xi vi +∑
i

∑
j

Γi
i j · v j . (3.118)

In terms of the (determinant of) the metric matrix function G for g we also have the following short
expression for the divergence:

div(V ) =
1√

Det(G)
·∑

i

∂

∂xi

(
vi ·
√

Det(G)

)
. (3.119)

Proof. We apply the definition 3.67 and equation (3.38):

∇e`V = ∑
i

∑
j
∑
m

(
δ

i
` · v

j ·Γm
i j + e`(vm)

)
· em

= ∑
j
∑
m

(
v j ·Γm

` j + e`(vm)
)
· em .

(3.120)

We insert into (3.116) and get:

div(V ) = ∑
k

∑
`

g

(
∑

j
∑
m

(
v j ·Γm

` j + e`(vm)
)
· em , ek

)
·gk `

= ∑
k

∑
`

∑
j
∑
m

(
v j ·Γm

` j + e`(vm)
)
·gmk ·gk `

= ∑
`

∑
j
∑
m

(
v j ·Γm

` j + e`(vm)
)
·δ`m

= ∑
`

∑
j

(
v j ·Γ`

` j +
∂

∂x`
(v`)

)
= ∑

`

∂

∂x`
(v`)+∑

`
∑

j
v j ·Γ`

` j ,

(3.121)

which is equivalent to equation (3.118) – modulo a suitable renaming of the indices. When
performing the differentiations of

√
Det(G) that are needed for the expression (3.119), then the

Christoffel symbols will re-appear from there and show equivalence with (3.118).
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EXERCISE 3.70

We construct two isometric Riemannian manifolds (U2,g,∇g) and (V 2,h,∇h) in the following way:
Let G denote the following given metric matrix function for the metric g in U:

G(x1,x2) =

[
1 0
0 1+(x1)2

]
(3.122)

and let φ denote the very simple diffeomorphism from U to V :

φ(x1,x2) = (−x2,x1) (3.123)

with inverse diffeomorphism:
φ
−1(y1,y2) = (y2,−y1) . (3.124)

The corresponding Jacobians are then:

Jφ(x1,x2) =

[
0 −1
1 0

]
Jφ−1(y1,y2) =

[
0 1
−1 0

]
.

(3.125)

The metric h and its corresponding metric matrix function H(y1,y2) are now constructed so that φ

becomes an isometry:

H(y1,y2) = J∗
φ−1(y1,y2) ·G(φ−1(y1,y2) · Jφ−1(y1,y2) =

[
1+(y2)2 0

0 1

]
. (3.126)

We consider a vector field V ∈ X(U):

V (x1,x2) = (x1 , 3 · x2− x1) , (3.127)

which is then φ-related to the following vector field W ∈ X(V ):

W (y1,y2) = Jφ(φ
−1(y1,y2)) ·V (φ−1(y1,y2)) = (3 · y1 + y2 , y2) . (3.128)

In order to calculate and compare the g-divergence of V and the h-divergence of W we finally need the
Christoffel symbols for g and h, respectively.

Show that the non-zero Christoffel symbols for g are:

(Γg)
2
21 = (Γg)

2
12 =

x1

1+(x1)2 and (Γg)
1
22 = −x1 . (3.129)

Show that the non-zero Christoffel symbols for h are:

(Γh)
1
21 = (Γh)

1
12 =

y2

1+(y2)2 and (Γh)
2
11 = −y2 . (3.130)
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Use these ingredients to show that

divg(V )(x1,x2) =
5 · (x1)2 + 4

1+(x1)2 (3.131)

and

divh(W )(y1,y2) =
5 · (y2)2 + 4

1+(y2)2 , (3.132)

and finally, that the two divergences therefore agree at corresponding points:

divg(V )(x1,x2) = divh(W )(φ(x1,x2)) . (3.133)

A computationally more complicated exercise relates to a previous wish (from chapter 2) along
the same lines:

EXERCISE 3.71

In chapter 2, example 2.5, figure 2.1, and figure 2.2 we considered two φ-related vector fields V (x1, x2)

and W (y1,y2) in their respective φ-isometric representations of the Local Riemannian Manifold defined
by the standard paraboloid of revolution. Show that the divergences of the two vector fields agree at
corresponding φ-related points. Hint: You can use the Christoffel symbol functions in (U,gU ,∇) that
are on display in equation (3.64). The other useful set of non-zero Christoffel symbol functions, i.e.
the ones in (V ,gV ,∇), are the following:

Γ1
11(y

1,y2) =
4 · y1

1+ 4 · (y1)2

Γ2
12(y

1,y2) = Γ2
21(y

1,y2) =
1
y1

Γ1
22(y

1,y2) =
−y1

1+ 4 · (y1)2 .

(3.134)
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EXERCISE 3.72

Let f ∈ FU) and V ∈ X(U). Show that

div( f ·V ) = f ·div(V )+ g(grad( f ),V ) = f ·div(V )+V ( f ) . (3.135)

3.10.4 The Laplacian

Definition 3.73 The Laplacian ∆( f ) ∈ F(U) of a function f ∈ F(U) is defined by

∆( f ) = div(grad( f )) . (3.136)

Using standard coordinates in (U,g,∇) with metric matrix function G, this definition is equivalent to
the following expressions (via Proposition 3.69 and exercise 3.74 below):

∆( f ) = ∑
i

∑
j

gi j ·

(
∂2 f

∂xi ∂x j −∑
k

Γk
i j ·

∂ f
∂xk

)

=
1√

Det(G)
·∑

i

∂

∂xi

(
∑

j
gi j ·

√
Det(G) · ∂ f

∂x j

)
.

(3.137)

EXERCISE 3.74

Show that in coordinates in U we have the following expressions for the Laplacian:

∆( f ) = trace (∇· grad( f ))

= ∑
i

∑
j

g (∇ei grad( f ) , e j) ·gi j

= ∑
i

∑
j

g (H( f )(ei) , e j) ·gi j

= ∑
i

∑
j

Hess( f )(ei,e j) ·gi j

= ∑
i

∑
j

gi j ·

(
∂2 f

∂xi ∂x j −∑
k

Γk
i j ·

∂ f
∂xk

)
.

(3.138)
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EXERCISE 3.75

Show the following general identities for any functions h and f in F(U) and for any vector field X in
X(U):

grad( f ·h) = f ·grad(h)+ h ·grad( f )

div( f ·X) = X( f )+ f ·div(X)

div(h ·grad( f )) = h ·∆( f )+ g(grad( f ) , grad(h))

∆( f ·h) = h ·∆( f )+ f ·∆(h)+ 2 ·g(grad( f ) , grad(h)) .

(3.139)

3.11 Example: The standard torus in 3D

A torus T in 3D Euclidean space can be parametrized as follows:

T : r(x1,x2) =
(
(2+ cos(x1) · cos(x2) , (2+ cos(x1) · sin(x2) , sin(x1)

)
, (3.140)

where (x1,x2) ∈U =]−π,π[ × ]−π,π[. The induced metric matrix function is then:

GU =

[
1 0
0 (2+ cos(x1))2

]
. (3.141)

Figure 3.5: The torus T defined in equation (3.140).

The non-zero Christoffel symbol functions corresponding to the above choice of parametrization
of the torus are: {

Γ2
12(x

1,x2) = Γ2
21(x

1,x2) = − sin(x1)
2+cos(x1)

Γ1
22(x

1,x2) = sin(x1) · (2+ cos(x1))
(3.142)
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3.11.1 Gravity induced motion on the torus

The induced height function potential on the torus is

h(x1,x2) = sin(x1) . (3.143)

The gradient of the potential function is then

grad( f )(x1,x2) =
(
cos(x1) , 0)

)
. (3.144)

We apply the general observation from exercise 3.57, that the induced gravitational force in the
surface is

F(x1,x2) = −grad( f )(x1,x2) . (3.145)

Newton’s second law then gives the differential equations for the motion on the torus:

accγ(t) =
D
dt

γ
′(t) = ∇γ ′(t)γ

′(t) = −grad( f )(γ(t)) , t ∈R , (3.146)

that is – according to equation (3.49):

∇γ ′(t)γ
′(t) =

(
−cos(γ1(t)) , 0)

)
, (3.147)

so that the two coordinate equations to be solved are{
(γ1)′′(t)+∑i j(γ

i)′(t) · (γ j)′(t) ·Γ1
i j(γ(t)) = −cos(γ1(t))

(γ2)′′(t)+∑i j(γ
i)′(t) · (γ j)′(t) ·Γ2

i j(γ(t)) = 0 ,
(3.148)

which reduces to the following, when we apply the non-zero Christoffel symbols:{
(γ1)′′(t)+ (γ2)′(t) · (γ2)′(t) ·Γ1

22(γ(t)) = −cos(γ1(t))

(γ2)′′(t)+ 2 · (γ1)′(t) · (γ2)′(t) ·Γ2
12(γ(t)) = 0 ,

(3.149)

so finally we get:{
(γ1)′′(t)+ (γ2)′(t) · (γ2)′(t) · (2+ cos(γ1(t))) · sin(γ1(t)) = −cos(γ1(t))

(γ2)′′(t)−2 · (γ1)′(t) · (γ2)′(t) · sin(γ1(t))
2+cos(γ1(t)) = 0 .

(3.150)

Two solution curves (with two different initial conditions) are presented in figure 3.6. It is
a remarkable fact, that the solution curves to such geometric Newtonian systems can also be
obtained as geodesics of a suitable metric on the configuration space (the torus in the present
example) – see [24].
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z 

X 

Figure 3.6: The torus T and two tracks of a particle moving (for the same duration of time) on
the torus under the influence of gravity – with two different initial conditions given by the yellow
initial velocity vectors at (1,0,0).

3.12 Example: Laplace’s equation on surfaces of revolution

We consider a general surface of revolution in 3D Euclidean space with smooth and regular
generator curve

γ(s) = ( f (s),0,h(s)) , s ∈R , (3.151)

and assume without lack of generality that ( f ′(s))2 + (h′(s))2 = 1, so that γ is arc length
parametrized by s.

The corresponding surface of revolution is then itself parametrized as follows:

r(x1,x2) =
(

f (x1) · cos(x2) , f (x1) · sin(x2) , h(x1)
)

, (3.152)

where (x1,x2) ∈U = R× ]−π,π[.

With this parametrization the surface has the following metric matrix function in U:

g =

[
1 0
0 h(x1)2

]
, (3.153)

and therefore the following non-zero Christoffel symbol functions – compare with the previous
examples above concerning the torus and the paraboloid:

Γ2
12(x

1,x2) = Γ2
21(x

1,x2) =
h′(x1)

h(x1)

Γ1
22(x

1,x2) = −h(x1) ·h′(x1) .
(3.154)
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The Laplacian of a function f ∈U is then the following:

∆( f )(x1,x2) =
∂2 f

∂(x1)2 +
1

h2(x1)
· ∂2 f

∂(x2)2 +
1

h(x1)
· ∂h

∂x1 ·
∂ f
∂x1 . (3.155)

EXERCISE 3.76

Show the expression for the Laplacian of f presented in equation (3.155).

We now consider but one application of this specific expression for the Laplacian on general 2D
manifolds with a metric as given in equation (3.153).

3.12.1 Capacity and effective resistance

Laplace’s equation ∆( f ) = 0 plays a fundamental role in an abundance of contexts – in appli-
cations and in mathematics. One such context is that of electric potential theory on surfaces
and more generally on Local Riemannian manifolds (U,g,∇) equipped with (or made of) a
homogeneous conducting material. For example, for the surface of revolution considered above
we let Ω denote the (annulus) domain given by

Ω(R) = {(x1,x2) |ρ≤ x1 ≤ R} . (3.156)

Then Ω = Ω(R) has two (circular) boundary components ∂Ωρ and ∂ΩR corresponding to x1 = ρ

and x1 = R, respectively.

Suppose now that we engage an electric potential of value 0 on all of ∂Ωρ and of value 1 on all of
∂ΩR. This will then generate a potential function u in all of Ω ⊂U and a corresponding current
vector field grad(u) with zero divergence, i.e.

div(grad(u)) = ∆(u) = 0 . (3.157)

Obviously, we would then like to find a potential function u(x1,x2) so that:
∆(u)(x1,x2) = 0 for (x1,x2) ∈Ω
u(x1,x2) = 0 at the boundary ∂Ωρ

u(x1,x2) = 1 at the boundary ∂ΩR .

(3.158)

For surfaces of revolution there is a nice (and unique) solution u to this boundary value problem,
that only depends on x1, namely the following, where h is the function that defines the metric g in
equation (3.153):

u(x1,x2) =

∫ x1

ρ
1

h(w) dw∫ R
ρ

1
h(w) dw

. (3.159)
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EXERCISE 3.77

Show that the function in (3.159) in fact does solve the PDE boundary value problem in (3.158).

EXERCISE 3.78

Show the claim above stating that the function u defined in equation (3.159) is the only solution to the
boundary value problem in (3.158). Hint: Assume that v is another solution different from u. Then
u− v is zero on both boundary components ∂Ωρ and ∂ΩR and ∆(u− v) = 0. Moreover, u− v must
have a maximum point (not necessarily a strict maximum point) or a minimum point (not necessarily
a strict minimum point) in the interior of Ω. This contradicts the famous maximum principle (for
regular elliptic operators), see e.g. [14, 9], so v cannot be a solution different from u.

The current I entering into Ω through the boundary component ∂Ωρ is then the length, 2π ·h(ρ),
of that boundary times the constant component of the gradient of u in the direction of the inwards
pointing unit normal e1 = (1,0) to the boundary, i.e.

I = 2π ·h(ρ) ·g(grad(u),e1)|x1=ρ

= 2π ·h(ρ) · e1(u)|x1=ρ

= 2π ·h(ρ) · ∂

∂x1 u(x1,x2)|x1=ρ

= 2π ·h(ρ) · d
dx1

∫ x1

ρ
1

h(w) dw∫ R
ρ

1
h(w) dw


|x1=ρ

=
2π∫ R

ρ
1

h(w) dw
.

(3.160)

Since this current is obtained by a potential difference of 1 between the boundaries, the value of I
is called the capacity Cap(Ω) of Ω, and Reff(Ω) = 1/I is called the effective resistance of the
domain Ω:

Cap(Ω(R)) =
2π∫ R

ρ
1

h(w) dw

Reff(Ω(R)) =
1

2π
·
∫ R

ρ

1
h(w)

dw

(3.161)

EXERCISE 3.79

Show that for any surface of revolution in 3D we have for any fixed value of the in-radius ρ:
Cap(Ω(R = ∞)) = 0, i.e. the effective resistance of the portion Ω(R) of a surface of revolution
goes to infinity when R goes to infinity. Hint: Show first that h(x1) ≤ h(ρ)+ x1.
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Definition 3.80 Suppose we allow any positive function h in the fundamental metric matrix

(3.153) (so that the metric does not necessarily stem from a surface of revolution in 3D Euclidean
space). Such a manifold is called a warped product manifold of dimension 2 with warping function h.

EXERCISE 3.81

Find examples of functions h so that the corresponding capacity values Cap(Ω(∞)) are positive for
any fixed value of the in-radius ρ, i.e. so that the effective resistance to infinity is finite for such annuli
in warped product 2-manifolds.

EXERCISE 3.82

Show that the Poincaré disk – and thence also the Poincaré half plane – is isometric to the 2D warped
product which has warping function h(x1) = sinh(x1), x1 ≥ 0. Note that there is a slight problem with
this setting at x1 = 0 since there, at this pole point, the warped product metric degenerates. We can
so far neglect this, because here we are only interested in annuli with in-radii ρ > 0: Show that the
annulus Ω = Ωρ,R has Cap(Ω(R = ∞))> 0 for every positive value of the in-radius ρ.
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Chapter 4

The Exponential map

Geodesic curves are of instrumental importance for the local and global geometric analysis of
Riemannian manifolds and of what goes on inside them. We first repeat the definition of a
geodesic:

4.1 Recap on geodesics

Definition 4.1 Let (Un,g,∇) denote (an isometric representation of) a Local Riemannian

Manifold. Let p be a point in U and V0 a g-unit vector in TpU. The geodesic γV0 of length b issuing
from p in the direction V0 is the unique arc-length (unit speed) parametrized curve which solves the
initial value problem:

D
ds

γ
′
V0
(s) = 0 , γV0(0) = p , γ

′
V0
(0) = V0 , s ∈ I = [0,b] . (4.1)

The key object in this definition is clearly the set of n coupled differential equations, which says
that γ = γV0 is autoparallel – cf. chapter 3 – i.e. for all k = 1, · · · ,n:

0 =
D
ds

γ
′(s) = ∑

k

(
d2

ds2 γ
k(s)+∑

i j
(γ i) ′(s) · (γ j) ′(s) ·Γk

i j(γ(s))

)
· ek . (4.2)

This equation is a second order ordinary – typically nonlinear – differential equation system.
We infer from the theory of such systems that there exists a unique solution to the initial value
problem (4.1) for sufficiently small values of b. We refer to [18] and [4] for thorough discussions
and proofs of these results.



130 CHAPTER 4. THE EXPONENTIAL MAP

Before going into some concrete examples it is important to note that geodesics are pre-
served by isometries: If γ is a geodesic in the Local Riemannian Manifold (U,gU ,∇U)
then φ(γ) is also a geodesic in any other isometric representation (V ,gV ,∇V ) where
φ(U) = V , and where gV is obtained via φ from gU as in equation (1.41) in chapter 1,
and where ∇V is defined uniquely from gV as in chapter 3.

The first example/exercise is trivial:

EXERCISE 4.2

Let (U = R2,gE ,∇) denote the standard Euclidean plane. All Christoffel symbols vanish, so the
geodesic equations are very simple. Find all geodesics γ through the point p = (1,0) = γ(0). I.e. for
every θ ∈]−π,π[ find the geodesic γθ through this point which has initial direction vector of gE-unit
speed:

γ
′
θ(0) = (cos(θ) , sin(θ)) . (4.3)

Make sure that the geodesics are parametrized by signed arc length s from p = γθ(0) = (1,0).

The next example/exercise appears to be non-trivial, but it is not:

EXERCISE 4.3

We let (U,g,∇) denote the Local Riemannian Manifold defined by U = {(x1, x2) ∈ R2 | x1 > 0}
with metric tensor g determined by the metric matrix function:

G(x1, x2) =

[
1 0
0 (x1)2

]
. (4.4)

Find all geodesics γ through the point p = (1,0) = γ(0). I.e. for every θ ∈]−π,π[ find the geodesic
γθ through this point and with initial direction vector of g-unit speed:

γ
′
θ(0) =

1
‖(cos(θ) , sin(θ))‖g

· (cos(θ) , sin(θ)) . (4.5)

Make sure that the geodesics are parametrized by signed arc length s from p = γθ(0). A number of
solution geodesics – for various choices of initial directions – are shown in figure 4.1. Hint: You may
want to apply the diffeomorphism ψ on U defined by

ψ(x1, x2) = (x1 · cos(x2) , x1 · sin(x2)) , (x1,x2) ∈U , (4.6)

use coordinates (y1 , y2) ∈ V = ψ(U) and the following metric matrix function in V , which makes
ψ an isometry:

GV = J∗
ψ−1 ·G(ψ−1) · Jψ−1 . (4.7)
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Figure 4.1: Geodesics through p = (1,0) in the Local Riemannian Manifold that is studied in
exercise 4.3. All the geodesics – except one – are stopped at the blue curve so as to give them the
same g-length. The single one alluded to is stopped already at (0,0). Why?

Example 4.4

We consider again the paraboloid of revolution represented by (U,g,∇) – as in the previous chapters –
with coordinates x1 and x2, i.e. the paraboloid is parametrized by r(x1, x2) = (x1 , x2 , (x1)2 +(x2)2).
In figure 4.2 we choose a point p = (1,1) ∈U and two g-unit vectors V0 and W0 in the tangent space
TpU. The two corresponding initial value problems (4.1) are solved numerically and displayed to the
left in figure 4.2. The corresponding lifted geodesic curves on the paraboloid itself are indicated to the
right in the figure.

4.2 The defining diffeomorphism

From the op. cit. references, [18], and [4], we can – and do without going into the details of proof
– extract much more useful information about the solutions to the initial value problem (4.1):

Theorem 4.5 Let (U,g,∇) denote a Local Riemannian Manifold and let p ∈U. Then there

exists an open set E0(p) containing the origin (zero vector) in the tangent space TpU, so that the
following map is a diffeomorphism of E0(p) onto an open subset Q p ⊂U containing p:

Expp(0) = p and Expp(v) = γV0(v)(‖v‖g) for all non-zero v ∈ E0 ⊂ TpU , (4.8)
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Figure 4.2: Left: Two unit speed geodesics from point p ∈U for the paraboloid of revolution.
Right: The two geodesics are lifted into the paraboloid. The two initial vectors have the same
g-length. The two geodesic curves on the paraboloid also have the same curve length – they have
been constructed over the same s-interval I = [0,b].

where the curve γ denotes the unique geodesic starting at p with initial g-unit direction vector V0(v) =
v/‖v‖g and with total length b = ‖v‖g.

Definition 4.6 The (local) diffeomorphism Expp is called the Exponential map of (U,g,∇)

from E0 in the tangent space TpU at p into Qp in U.

The (local) inverse diffeomorphism Exp−1
p = Logp is called the Logarithmic map of (U,g,∇) from U

into the tangent space TpU at p.

Note that the Exponential map Expp is usually not a diffeomorphism on all of TpU. See
figure 4.5. Correspondingly, Logp is usually not defined on all of U.
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Definition 4.7 A metric ball Bρ(p) of radius ρ in a given tangent space TpU is defined as

follows:
Bρ(p) = {v ∈ TpU | ‖v‖g ≤ ρ} . (4.9)

The corresponding metric sphere of radius ρ in TpU is then correspondingly denoted as follows:

∂Bρ(p) = {v ∈ TpU | ‖v‖g = ρ} . (4.10)

A geodesic ball Dρ(p) of radius ρ in U is defined as follows under the assumption that Bρ(p) is
contained in a domain E0 of the Exponential map diffeomorphism Expp:

Dρ(p) = Expp(Bρ(p)) . (4.11)

The corresponding geodesic sphere of radius ρ in U is:

∂Dρ(p) = Expp(∂Bρ(p)) . (4.12)

In dimension 2 we permit ourselves to use the more natural words ’disk’ and ’circle’
instead of ’ball’ and ’sphere’ wherever relevant.

Example 4.8

In continuation of example 4.4 we consider a ball Bb(p) in TpU which consists of the vectors v that
have g-length less than or equal to b. The value of b is assumed to be sufficiently small, so that Bb(p) is
contained in the open set E guaranteed by theorem 4.5. Then we can display the image of Bb(p) by the
exponential map Exp – both in U and in this case also lifted into the paraboloid, see figure 4.3. All the
shown geodesics have the same constant length b – which is only visually evident form the lifted image
on the paraboloid. However, this same-length property can be also displayed and indicated in U if we
superimpose the fingerprint of the metric tensor into the parameter domain as in figure 4.4.

4.3 Normal coordinates and polar coordinates

The local diffeomorphism Expp induces a lot of local coordinate systems in (U,g,∇) in the
vicinity of any given point p, i.e. in the image Up = Expp (E0(p)) ∈U. Indeed, suppose that
{z1,z2, · · · ,zn} is any given standard coordinate system in the vector space TpU with origin at the
zero vector, then the corresponding coordinates of a point q ∈Up are zi(Logp(q)), i = 1, · · · ,n,
and zi(Logp(p)) = 0 for all i.
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Figure 4.3: Leftmost: The exponential map (plus a few of the defining geodesics) of a metric ball
Bb(p) from the tangent space TpU at p = (1,0) into the corresponding geodesic disk Db(p) in
U. Middle and rightmost: The image of the exponential map of Db(0) lifted from U into the
paraboloid – seen from ’front’ and ’back’, respectively. Note that every geodesic reaches the
geodesic circle orthogonally – see lemma 4.22.

Definition 4.9 Suppose that {E1,E2, · · · ,En} is a g-orthonormal basis of the tangent space

TpU at the point p ∈ U with corresponding rectilinear Cartesian coordinates {z1, · · · ,zn} in TpU.
Then zi(Logp(q)), i = 1, · · ·n, are called the normal coordinates of q with respect to the chosen g-
orthonormal basis. The corresponding coordinate induced normal basis vector fields in all of Up, i.e.
also away from p, are still denoted by {E1,E2, · · · ,En}.

Note that in general {E1,E2, · · · ,En} is not g-orthonormal away from p.

Normal coordinates have very nice and useful properties at the base point p:

Proposition 4.10 Let zi(Log(q)) denote normal coordinates at p. With respect to these

coordinates we get the following evaluations at p for all i, j, and k:

gi j(p) = g(Ei(p),E j(p)) = δi j

∇EiE j = 0 , i.e. Γk
i j(p) = 0

∂

∂zk gi j = Ek(gi j) = Ek(g(Ei,E j)) = 0 .

(4.13)
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Figure 4.4: The image of the exponential map considered also in figure 4.3 – now with superim-
posed indicatrix field for the corresponding metric tensor. The fact that the geodesics, which mold
the image geodesic disk, have the same length is intuitively plausible.

Although normal coordinates at a given base point p are in general not so easy to construct
– because you need first to construct the Exponential map diffeomorphism Expp – they
are (by their mere existence) tremendously useful. For example for establishing tensor
identities at any given point p, in particular when the identities involve the metric (and
its derivatives) and/or the covariant derivatives of vector fields and tensor fields. This
will be illustrated by a number of examples in Chapter 7. The point is, that once you
have established a tensor identity at p using normal coordinates, then that tensor identity
will be true at p when you express the identity in any other coordinate system.

Proof. The first equation in (4.13) is clear by construction of the basis vector frame at p.
The second follows from the fact that any geodesic γ issuing from p has the form γ(s) =Expp(s ·V )
for a g-unit vector V = γ ′(s) in TpU and thence in z-coordinates for each i = 1, · · · ,n:

zi(s) = zi(Logp(γ(s))) = zi(Logp(Expp(s ·V ))) = zi(s ·V ) = s · vi . (4.14)

In consequence, the geodesic equations in normal coordinates now reads for each k:

0 = (zk)′′(s)+∑
i

∑
j
(zi)′(s) · (z j)′(s) ·Γk

i j(γ(s)) = ∑
i

∑
j

vi · v j ·Γk
i j(γ(s)) . (4.15)

Since Γk
i j(γ(0)) is common for all directions V , we have for all k and for all initial vectors V :

0 = vi · v j ·Γk
i j(p) . (4.16)
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Figure 4.5: Left: An extended geodesic ’disk’ beyond the radius up to which the Exponential map
is a diffeomorphism in U for the paraboloid. The breaking of the diffeomorphism property is
clearly visible – also on the ’back’ side of the paraboloid itself which is shown in the rightmost
figure. In consequence, the inverse map, Logp, does not exist in the domain that is double covered
by the geodesics issuing from p.

The symmetric matrix Γk
i j(p) with indices i and j (and any fixed k) therefore has eigenvalues that

are all zero. Hence
Γk

i j(p) = 0 for all i, j, and k . (4.17)

The third equation follows then immediately from this vanishing of ∇EiE j at p and from the metric
compatibility of ∇:

Ek(g(Ei,E j)) = g (∇EkEi , E j)+ g (Ei , ∇EkE j) = 0 . (4.18)

Note that the radial coordinate ρ induced by the normal coordinates is determined by the radial
coordinate r in TpU as follows:

ρ(q) = r(Logp(q)) =
√

∑
i
(zi(Logp(q)))2 , (4.19)

which, of course, is nothing but the length of the geodesic from p to q in Up.

This radial coordinate may thus be completed to a system of polar, or spherical, coordinates
{ρ,θ1,θ2, · · · ,θn−1} in Up−{p} by choosing appropriate (angle-) coordinates {φ1, · · · ,φn−1} on
the metric ball B1(p) – and thence on every metric ball Bρ(p) – in TpU and by defining for each
i = 1, · · · ,n:

θ
i(q) = φ

i(Logp(q)) . (4.20)
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EXERCISE 4.11

We consider a smooth regular parametrized surface in 3D Euclidean space:

α(x1,x2) =
(
x1 , x2 , f (x1,x2)

)
, (4.21)

where f is a smooth function on U = R2. Find the induced metric matrix function on U. Under
which condition(s) on f are the properties in (4.13) satisfied by the coordinates {x1,x2} at p = (0,0).
Show, however, that {x1,x2} are in general not normal coordinates at p = (0,0) with respect to the
standard basis {e1, · · · ,en} at p? Hint: See equation (4.14).

Obviously, the coordinate curves for a given system of normal coordinates at a point p are
the images via Expp of the straight line rectilinear Cartesian coordinate curves in the tangent
space TpU. Specifically, if {E1,E2, · · · ,En} is a g-orthonormal basis of the tangent space TpU
at the point p ∈ U with corresponding rectilinear Cartesian coordinates {z1, · · · ,zn} in TpU.
Then the k’th Cartesian coordinate line in the tangent space through the point (z1

0, · · · ,zn
0) with

corresponding position vector
P0 = ∑

i
zi

0 ·Ei (4.22)

is parametrized by a vector function

Ck(t) = P0 + t ·Ek , t ∈R . (4.23)

The normal coordinate lines in U through the point Expp(P0) are therefore – for each k = 1, · · · ,n:

CU
k (t) = Expp(Ck(t)) = Expp(P0 + t ·Ek) , (4.24)

where t should necessarily be restricted by the condition that P0 + t ·Ek ∈ E0(p) where Expp is
guaranteed to be a diffeomorphism.

As indicated, the notion of polar coordinates are already defined above:

Definition 4.12 Let {E1,E2, · · · ,En} denote a g-orthonormal basis of the tangent space

TpU at the point p ∈ U with corresponding polar coordinates {ρ,θ1,θ2, · · · ,θn−1} in TpU. Then
r(q) = ρ(Logp(q)), and φi(q) = θi(Logp(q)), i = 1, · · ·n− 1, are called the polar coordinates of
q with respect to the chosen g-orthonormal basis and with respect to the choice of coordinates
{φ1, · · · ,φn−1} on the metric ball B1(p) in TpU. The corresponding coordinate induced polar basis
vector fields in Up, i.e. away from p, are typically denoted er,eφ1 , · · · ,eφn−1 .
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Note that in contrast to normal coordinates there is for polar coordinates a choice to be
made for the functions {φ1, · · · ,φn−1} on the metric ball B1(p) in TpU. In dimension
n = 2 this corresponds to a choice of parametrization of the unit circle; in dimension
n = 3 the parametrization of the unit 2D sphere can, as we have seen, be done in several
applications dependent ways – using geographic coordinates, Mercator coordinates,
stereographic coordinates, etc. Every choice must, however, be expressed in terms of the
g-orthonormal basis {E1,E2, · · · ,En}, so that the orientation of the metric ball B1(p) is
thereby properly ’anchored’ in TpU.

As we will see below, both coordinate systems, normal coordinates and polar coordinates, are –
each in their own way – very useful auxiliary tools for the local analysis of Riemannian manifolds.
Although natural coordinates are not so easy to construct, their mere existence gives rise to
considerable simplifications when establishing various tensor identities point wise. This hinges,
of course, mainly on the fact that all Christoffel symbols vanish at the base point of the normal
coordinates.

Example 4.13

Below in the sequence of figures 4.6-4.9 and (in the last section of this chapter) 4.16-4.19 we illustrate
systems of normal coordinates (and polar coordinates) on various surfaces in 3D and in the 2D Poincaré
models. In the case of surfaces we show the normal and polar coordinates both for the specific
choices of representations (U,g,∇) of the surfaces and on the surfaces themselves, respectively. The
surface representations are by so-called Monge patches (for the paraboloid and the saddle surface) and
by Mercator’s parametrization (for the sphere); the corresponding coordinates will be called Monge
coordinates and Mercator coordinates.

Paraboloid: µ(x1,x2) =
(
x1,x2, (x1)2 +(x2)2) for x1 ∈R and x2 ∈R

Saddle: µ(x1,x2) =
(
x1,x2, ((x1)2− (x2)2)/2

)
for x1 ∈R and x2 ∈R

Sphere: µ(x1,x2) =

(
cos(x2)

cosh(x1)
,

sin(x2)

cosh(x1)
, tanh(x1)

)
for x1 ∈R and x2 ∈ ]−π,π[ .

(4.25)

The figures 4.6-4.9 induce several observations concerning the properties of normal coordinates. Firstly,
the two coordinate curves (red and blue) through the (yellow) base point are g-orthogonal geodesics
(easily inspected in the Poincaré models, where we know them). And the normal coordinate curves do
closely resemble the ordinary Cartesian coordinate grid close to the base point – but in general with
possible increasing deviations away from the base, cf. proposition 4.10. Figure 4.6 also shows clearly
that normal coordinates break down (to the left of the left hand display) if we extend them beyond the
region E(p) around p where Exp is a diffeomorphism.
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EXERCISE 4.14

Show or disprove the conjecture: The Euclidean spaces, the spheres and the Poincaré models
have the special property that every coordinate curve for any normal coordinate system in these
Riemannian manifolds has constant geodesic curvature. Hint: Presumably difficult(?)

Figure 4.6: Normal coordinates on a paraboloid of revolution. Left: The coordinate curves are
shown on a background of Monge patch coordinates.

4.4 Locally shortest curves are geodesics

We now show that within the image Q p ⊂ U of the Exponential diffeomorphism Expp the
following important statement which shows that geodesics are indeed good candidates for being
shortest curves:

Theorem 4.15 Let (Un,g,∇) denote a Local Riemannian Manifold. Let η denote a regular

smooth curve from p to q in Qp. We assume that η is g-arc-length parametrized by s ∈ [0,L], so that
the length of the curve is L. If η is the shortest curve in Q p between p and q in the sense that all other
curves with the same two end points are at least as long, then η is a geodesic.

Note that this theorem does not tell us anything about the existence of shortest curves –
only that if there is one, then it must be a geodesic. The local existence is guaranteed by
the existence of geodesics (via theorem 4.5 and the Exponential map), as we shall see in
the next section.
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Figure 4.7: Normal coordinates on a saddle surface. Left: The coordinate curves are shown on a
background of Monge patch coordinates.

Before going into the proof of this result we need a means to control nearby curves with the same
endpoints as η.

Definition 4.16 In order to compare the lengths of neighboring curves to η and in order to

analyze what it means to be the shortest curve between two given points, we first define a one-parameter
family Hu(s) – parametrized by u ∈]− ε , ε[ – of nearby regular smooth curves that are organized as an
(u,s)-parametrized smooth surface in Q p so that:

H0(s) = η(s) for all s ∈ [0,L] , and Hu(0) = η(0) = p for all u ∈]− ε , ε[. (4.26)

The parametrized family of curves H is called a variation of the base curve η. If, moreover, we also
have

Hu(L) = η(L) = q for all u ∈]− ε , ε[, (4.27)

then H is called a proper variation of the base curve η.

The local linear transverse behaviour of the nearby curves is, for each s0, obtained by the tangent
vectors to the u-curves Hu(s0) at u = 0:

Definition 4.17 In the above setting, the vector field V ∈ X(γ) defined by

V (s) =
∂

∂u
Hu(s)|u=0 (4.28)
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Figure 4.8: Normal coordinates on the sphere. Left: The coordinate curves are shown on a
background of Mercator coordinates.

is called the variation vector field along γ induced by the variation H of γ.

Since Hu(0) = η(0) for all u we have V (0) = 0. If H is a proper variation we also have V (L) = 0.

Note that although all the curves Hu are parametrized by s, this parameter is not nec-
essarily an arc length parameter along the curve – unless, of course, u = 0. Thus the
curves H(u) do not necessarily have the same length L as γ. In fact, this is the main
point in the proof of theorem 4.15.

Theorem 4.15 will follow once we have established the following preliminary supporting theorem,
which itself is of independent interest. We simply consider the lengths L(u) of all the (competing)
curves Hu in the variation, and then find the derivative of the length function with respect to u
at u = 0. Then this derivative must be non-negative if the length of η – corresponding to u = 0
– is smaller or equal the length of all other curves between the same endpoints as is assumed in
theorem 4.15. I.e. L must have a stationary point at u = 0. From there it then follows that η

must have zero acceleration and thence zero geodesic curvature. We present the details of this
argument below. In section 4.8 we spell out in all details what is going on in the case of a concrete
horizontal straight line base curve η in the Poincaré half plane model.

Lemma 4.18 Let H denote a variation of η as above. Then the g-length of Hu is:

L(u) =
∫ L

0

√
g
(

∂

∂s
Hu(s) ,

∂

∂s
Hu(s)

)
ds , (4.29)
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Figure 4.9: Normal coordinates in the two Poincaré models. Left: Half plane model; Right: Disk
Model.

The derivative of L(u) with respect to u at u = 0 is:

∂

∂u |u=0

L(u) = g (V (L) , η
′(L))−

∫ L

0
g
(
V (s) , ∇η ′(s)η

′(s)
)

ds , (4.30)

where V is the variation vector field of H based on η, and where

∇η ′(s)η
′(s) =

D
ds

η
′(s) = accη(s) (4.31)

is the acceleration of η – with norm accη(s) = κ
g
η(s), the geodesic curvature of η.

Proof of lemma 4.18. Taking derivatives at u = 0 we have:

∂

∂u |u=0
L(u) =

∫ L

0

∂

∂u |u=0

(√
g
(

∂

∂s
Hu(s) ,

∂

∂s
Hu(s)

) )
ds

=
∫ L

0

1
‖η ′(s)‖g

·g
(

D
du

(
∂Hu(s)

∂s

)
,

∂Hu(s)
∂s

)
ds

=
∫ L

0
g
(

D
ds

(
∂Hu(s)

∂u

)
,

∂Hu(s)
∂s

)
ds ,

(4.32)
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so that

∂

∂u |u=0
L(u) =

∫ L

0
g
(

∇η ′(s)
∂Hu(s)

∂u
, η
′(s)
)

ds

=
∫ L

0

(
∂

∂s

(
g
(

∂Hu(s)
∂u

, η
′(s)
))
− ∂Hu(s)

∂u
, ∇η ′(s)η

′(s)
)

ds

= g
(

∂Hu(s)
∂u

, η
′(s)
)
|s=L

−
∫ L

0
g
(

∂Hu(s)
∂u

, ∇η ′(s)η
′(s)
)

ds

= g (V (L) , η
′(L))−

∫ L

0
g
(

V (s) , ∇η ′(s)η
′(s)
)

ds .

(4.33)

EXERCISE 4.19

In the proof above we used that

D
du

(
∂Hu(s)

∂s

)
=

D
ds

(
∂Hu(s)

∂u

)
. (4.34)

Why is this interchange of derivatives allowed? Hint: The relevant Lie bracket vanishes everywhere.
See also the explicit calculation of this identity in [4, p. 68].

We can now prove theorem 4.15:

Proof of theorem 4.15. Suppose η is shortest among all neighboring curves – in particular among
all the neighboring curves appearing in any given proper variation H of γ. Then we have from
equation (4.30):

0 =
∫ L

0
g
(

V (s) , ∇η ′(s)η
′(s)
)

ds (4.35)

for all variational vector fields V ∈ X(γ) with V (L) = 0. This implies that

∇η ′(s)η
′(s) = accη(s) = 0 and κ

g
η = 0 for all s ∈ [0,L] , (4.36)

because otherwise the integral in equation (4.35) could be made different from 0 by choos-
ing/constructing a variation vector field V in the direction of ∇η ′(s)η

′(s) where this latter field
is non-zero. Remember that the acceleration field is always g-orthogonal to the arc length
parametrized curve η. We conclude from equation (4.36) that η is indeed a geodesic curve from p
to q – as was to be proved.

4.5 Geodesics are locally shortest curves

The converse to theorem 4.15 is also true:
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Theorem 4.20 Let γ denote a geodesic from p to q in Qp and assume that q is a point on the

geodesic sphere ∂Dρ(p) centered at p and with radius ρ. Then γ is the shortest curve from p to q in Qp

in the following sense: If η is any piecewise differentiable curve joining p and q then

ρ = L(γ) ≤ L(η) . (4.37)

We take this opportunity to define the notion of distance between points that are sufficiently close.

Definition 4.21 In the setting of theorem 4.20 we define the distance between p and q to be

the length of the (shortest) geodesic between the points:

dist(p,q) = L(γ) = ρ . (4.38)

Again we need an observation – known as Gauss’ lemma – before we can prove theorem 4.20:

Lemma 4.22 Suppose that H is a (non-proper) variation of a geodesic γ as defined in the

previous section. If H is a variation through geodesics, so that Hu is an arc length parametrized
geodesic for every u ∈]− ε , ε[, then the variation vector field V is everywhere orthogonal to the base
curve:

g
(

∂

∂u
Hu(s)|u=0 , γ

′(s)
)
= g (V (s) , γ

′(s)) = 0 for all s ∈ [0,L]. (4.39)

Proof of lemma 4.22. This follows readily from the variation formula (4.30): Since all the curves
in the H-variation are geodesics, now even of the same length L, then we have:

0 =
∂

∂u |u=0
L(u)

= g (V (L) , γ
′(L))−

∫ L

0
g
(

V (s) , ∇γ ′(s)γ
′(s)
)

ds

= g (V (L) , γ
′(L)) ,

(4.40)

and the lemma follows, because in this argument L can be substituted by any smaller value than
the one first chosen. So equation (4.39) holds for all s ∈ [0,L].
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Corollary 4.23 It follows immediately from the Gauss’ lemma that every geodesic from a

point p intersects every geodesic sphere ∂Dρ(p) orthogonally.

Proof of theorem 4.20. We use the Exponential map to compare the given geodesic from p to
q in ∂Dρ(p) with η, i.e. we assume that q is an endpoint in the geodesic sphere of radius ρ

centered at p. The competing curve η can then be written as follows, where we use a choice of
parametrization of η so that η(0) = p and η(1) = q:

η(t) = Expp(r(t) · v(t)) = f (r(t), t) , t ∈ I = [0,1] , (4.41)

where v denotes a curve in TpU with ‖v(t)‖g = 1 for all t ∈ [0,1], and where r denotes the
geodesic distance of η(t) to p, i.e. it is a piecewise differentiable function of t so that r(t) ·v(t) =
Logp(η(t)), see the definition of the Log map in 4.6. Then we have, at points where η is
differentiable:

η
′(t) =

∂ f
∂r
· r ′(t)+ ∂ f

∂t
. (4.42)

But here we can now use that ‖∂ f
∂r ‖g = 1 and from equation (4.39) that g( ∂ f

∂r , ∂ f
∂t ) = 0, so that :

‖η′(t)‖2
g = (r ′(t))2 + ‖∂ f

∂t
‖2

g ≥ (r ′(t))2 . (4.43)

In consequence we have:

L(η) =
∫ 1

0
‖η′(t)‖g dt ≥

∫ 1

0
|r ′(t)|dt ≥

∫ 1

0
r ′(t)dt = r(1) = ρ = L(γ) . (4.44)

EXERCISE 4.24

Note that we have tacitly assumed in the above proof of theorem 4.20, that η is contained in Dρ(p).
What happens with the argument if this assumption is not satisfied? Is the conclusion still true?

EXERCISE 4.25

Show that if there is equality in equation 4.37, i.e. if L(γ) = L(η) – in that setting of theorem 4.20 –
then η can be reparametrized to become a geodesic curve, namely the same geodesic as γ.

4.6 The gradient of the distance function

Recall from definition 4.21 that the distance function ρ(x) = dist(p,x) from a fixed point p to
any point x ∈ Qp is the length of the unique geodesic γp,x which connects p to x. By now it
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should come as no surprise, that within Qp−{p} the gradient grad(ρ) of the distance function
at x is precisely the unit tangent vector γ ′p,x to the geodesic γp,x at x. Indeed, it is the direction in
which the distance to p increases the most and the speed with which it increases is the arc length
speed of 1 away from p. Here is a precise recap of the statement together with some immediate
consequences:

Proposition 4.26 With the notation above we have for all x ∈ Qp−{p}:

grad(ρ)|x = γ
′
p,x(ρ(x)) . (4.45)

In particular we therefore have

‖grad(ρ)|x‖= 1 for all x ∈ Qp−{p}. (4.46)

and, since the metric spheres ∂Dρ(p) by definition 4.7 are level surfaces for the distance function, we
get from exercise 3.56 that grad(ρ)|x and thence, of course, γ ′p,x(ρ(x)) is g-orthogonal to ∂Dρ(x)(p) at
the point x.

Proof. We prove equation (4.45) via the first variation formula (4.30) in lemma 4.18. We let V
denote any vector in TxU at x and only need to show that

V (ρ)|x = g(V ,γ ′p,x(ρ(x))) , (4.47)

because then, by definition 3.50 we get directly (4.45). So we let ξ(u), u ∈ ]− ε,ε[ denote any
curve in U with ξ(0) = x and ξ ′(0) = V . Then

V (ρ)|x =
d
du

ρ(ξ(u))|0 . (4.48)

For each u ∈ ]− ε,ε[ the distance ρ(ξ(u)) is realized as the length L(u) of the unique geodesic
from p to ξ(u). These geodesics form a variation (in the sense of definition 4.16) of the base
geodesic, which is γp,x, so equation (4.30) gives directly (since the base geodesic has acceleration
0):

V (ρ)|x =
d

du
ρ(ξ(u))|0 =

∂

∂u |u=0
L(u) = g

(
V , γ

′
p,x(ρ)

)
, (4.49)

which proves the proposition.

EXERCISE 4.27

Let (U = Rn,gE) denote the usual Euclidean n-dimensional space. Verify (by direct interpretation and
calculations) that the statements in proposition 4.26 hold true for that special manifold with Qp = Rn

for all p.
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4.7 Feynman’s example

This example is a Riemannian illustration of Snell’s refraction law. We let our Local Riemannian
Manifold be (U,g,∇) with U = R2 and g is given by its metric matrix function

G(x1, x2) = µ(x1) ·
[

1 0
0 1

]
, (4.50)

where µ is a step-like function of x1 with

µα,β(x
1) = 1+

α

2
· (1+ tanh(β · x1)) . (4.51)

The function is essentially stepping up from 1 (for very negative values of x1) to 1+α for very
positive values of x1, the step being located sharply at x1 = 0 for large values of β. See figure 4.10.
(Alternatively we could have used the error function erf instead of tanh to build such a function.)

Figure 4.10: The ’step function’ µ4,β(x1) for various values of β.

The metric tensor g gives rise to the following Christoffel symbol functions:

Γ1
11(x

1,x2) =
α ·β ·

(
tanh2(β · x1)−1

)
2α · tanh2(β · x1)+ 2α+ 4

Γ2
11(x

1,x2) = 0

Γ1
12(x

1,x2) = Γ1
21(x

1,x2) = 0

Γ2
12(x

1,x2) = Γ1
11(x

1,x2)

Γ1
22(x

1,x2) = 0

Γ2
22(x

1,x2) = −Γ1
11(x

1,x2) .

(4.52)

The corresponding geodesic equations have been solved numerically for α = 4 and β = 7, and



148 CHAPTER 4. THE EXPONENTIAL MAP

segments of the corresponding geodesics are on display in figure 4.11.

Figure 4.11: Feynman’s example. Left: Four geodesics of the same length issuing from p =
(−2,0) in different directions towards positive x1-values, where the indicatrices are significantly
smaller than in the gray area to the left of x1 = 0 due to the values of µ(x1). Right: All points on
the blue geodesic circle have constant geodesic distance from p.

We observe from the figure that the geodesics are almost straight lines on both sides of x1 = 0.
This is consistent with the fact that for large values of β the Christoffel symbols become small –
except at x1 = 0.

EXERCISE 4.28

Show that all the Christoffel symbols in (4.52) go to 0 for x1 6= 0 and β 7−→ ∞.

We also observe from the figure that the geodesics change direction when they hit (or get close to)
the line x1 = 0.

EXERCISE 4.29

Assume that µ is constant 1 to the left of the line x1 = 0 and that µ is constant 1+α to the right of
the line x1 = 0, so that the geodesics really are straight lines on both sides of x1 = 0 in the local
Riemannian manifold (µ,g,∇) above. What is then the relation between the incoming angle of the
geodesic (coming from x1 < 0) to the outgoing angle of the broken geodesic (going into x1 > 0) when
both angles are measured with respect to the horisontal normal to the line x1 = 0 at the break point?
Discuss what all this has to do with Snell’s law of refraction – see Snell’s law.

https://en.wikipedia.org/wiki/Snell%27s_law
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4.8 Shortest geodesic curves in the 2D Poincaré models

We are now able to return to the setting of exercise 1.52 in chapter 1, which read as follows:

Let γ2 denote the following curve in the disk model:

γ2(t) =
(

1
2

, 2 · t
)

, t ∈ [−1/4, 1/4] . (4.53)

The task was to find the gU length of the curve and to construct another curve that connects the
two endpoints of γ2 but is shorter than γ2.

In fact, we will solve this second part of that exercise in all details. Since we now have the tools
to find shortest curves in any local Riemannian manifold, we can find the absolute shortest curve
that connects the endpoints p = (1/2,−1/2) and q = (1/2,1/2) of the straight line γ2.

However, we will begin the construction of that shortest curve by finding all shortest curves, i.e.
all geodesics, in the Poincaré half plane model, see figure 4.12.

We recall the metric of the half plane model in terms of its metric matrix function on V :

V = {(y1, y2) ∈R2 | y2 > 0 }

GV (y1, y2) =
1

(y2)2 ·
[

1 0
0 1

]
.

(4.54)

The Christoffel symbols are the following:

Γ1
11(y

1,y2) = 0

Γ2
11(y

1,y2) =
1
y2

Γ1
12(y

1,y2) = Γ1
21(y

1,y2) = − 1
y2

Γ2
12(y

1,y2) = Γ2
21(y

1,y2) = 0

Γ1
22(y

1,y2) = 0

Γ2
22(y

1,y2) = − 1
y2 .

(4.55)
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Figure 4.12: Geodesics from p = (1,1) with the same length define a geodesic disk and the blue
geodesic circle. All geodesics intersect the geodesic circle orthogonally, both with respect to
the Euclidean metric and with respect to the g-metric tensor field of the Poincaré half plane! As
is also indicated, all the geodesics – if extended past the boundary of the blue geodesic circle –
intersect the boundary line y2 = 0 orthogonally. The Exponential map Expp from any point p in
the half plane model is a diffeomorphism from the corresponding tangent plane, TpV , and thence
the Logarithm map Logp is also a diffeomorphism from all of V onto TpV .

Therefore the geodesic equations are:

(γ1)′′(s) =
2 · (γ1) ′(s) · (γ2) ′(s)

γ2(s)

(γ2)′′(s) =
((γ2) ′(s))2− ((γ1) ′(s))2

γ2(s)

1 =
(γ1) ′(s))2 +(γ2) ′(s))2

(γ2(s))2 .

(4.56)

where the last equation is included to guarantee that the geodesics are unit speed pararametrized.

Note that the last unit-speed condition in (4.56) is automatically satisfied for all s if
the first two autoparallel conditions are satisfied for all s and the unit speed condition
is satisfied for just one value of s. This follows from a previous result saying that all
autoparallel curves have constant speed.
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EXERCISE 4.30

Show that the following curves are solutions to the geodesic equations (4.56) for every choice of
constants C, K, and B:

γC,K(s) = (C · tanh(s)+K , C/cosh(s)) , s ∈R

γB(s) = (B,es) , s ∈R .
(4.57)

EXERCISE 4.31

Show that every geodesic solution in equation (4.57) considered as a point-set curve in the Euclidean
plane (R2,gE) is either a (Euclidean) straight line gE -orthogonal to the half plane boundary y2 = 0 or
a (Euclidean) half circle with center (K,0) and radius C.

EXERCISE 4.32

Show that there are no other geodesics than the ones obtained in (4.57) and show that every pair of
geodesics has at most one point of intersection.

Since the disk model (U,gU ,∇) is isometric to the half plane model – via the Cayley transform
φ−1, which we will spell out below – we also know, that all the geodesics in the disk model are
obtained as images of the geodesics just found in the half plane model. And they have the same
property: every pair of geodesics has at most one point of intersection.

In the disk model we want to find the geodesic segment which connects the two points p and
q because that segment is the absolute shortest curve connecting the two points. But instead
of finding the length of that segment in the disk model we find the length of the corresponding
segment in the half plane model – the two lengths are identical by the isometry φ, the inverse of
the Cayley transform. For this we first need to find the image of p and q by φ.

The Cayley transform is defined as follow – using z = y1 + i · y2:

φ
−1(z) =

z− i
z+ i

, (4.58)

so that the inverse of the transform is – using w = x1 + i · x2:

φ(w) =
1+ i ·w
1−w

. (4.59)

Therefore p = (1/2,−1/2) = 1/2− i/2 and q = (1/2,1/2) = 1/2+ i/2 are mapped into p̃
and q̃, respectively, where

p̃ = φ(p) = 2+ i = (2,1)

q̃ = φ(q) = −2+ i = (−2,1) .
(4.60)
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By symmetry the geodesic half circle through these two points in the half plane model has center
at (0,0) and radius R =

√
5 . The particular geodesic segment connecting the two points can thus

be parametrized (by angle) as follows:

η(t) = (
√

5 · cos(t) ,
√

5 · sin(t)) , t ∈ [arccos(2/
√

5 ) , π− arccos(2/
√

5 )] . (4.61)

so that
η
′(t) = (−

√
5 · sin(t) ,

√
5 · cos(t)) , (4.62)

and
‖η ′(t)‖gV =

1
sin(t)

. (4.63)

EXERCISE 4.33

Show that the metric gives this simple expression for the length of the tangent vectors along the circle
in equation (4.61).

Finally we therefore have: The shortest curve between p̃ and q̃ in the half plane model – and
therefore the shortest curve between p and q in the disk model – has length:

L =
∫

π−arccos(2/
√

5 )

arccos(2/
√

5 )

1
sin(t)

dt = 2ln
(

2+
√

5
)
≈ 2.89 . (4.64)

In other words, we have shown that the distance between p̃ and q̃ is

dist( p̃ , q̃) = dist((−2,0) , (2,0)) = 2ln
(

2+
√

5
)

. (4.65)

It is obvious, that the horizontal straight line between p̃ and q̃ carries non-zero geodesic curvature
κ

g
γ – i.e. non-zero acceleration accγ. Let the straight line be denoted by

ξ(t) = (t,1) , t ∈ [−2, 2] . (4.66)

Then
accξ(t) =

D
dt

ξ
′(t) = (0,1) , t ∈ [−2, 2] . (4.67)

EXERCISE 4.34

Verify by calculations that equation (4.67) gives the acceleration of ξ along ξ .

Below we want to consider a proper variation H of the line segment in order to show that a specific
variation of the segment gives curves in the variation with shorter lengths than the length of the
line segment. To set up the variation in the way we have done it in general in section 4.5, we first
parametrize the line segment by arc length. This is easy, because it is in fact already arc length
parametrized:

‖ξ ′(t)‖g = 1 , (4.68)
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so we may, and do, replace the parameter t by s and refer to the line segment ξ as unit speed
parametrized. The total length of the line segment is then clearly

L =
∫ 2

−2
‖ξ ′(s)‖g ds = 4 . (4.69)

We know already from the analysis of the geodesic circle between the same endpoints that the
shortest curve (that circle) has length approximately 2.9. We also expect that if we vary the
straight line in the direction of that circle – while keeping the endpoints fixed – then we should get
length values of the curves in the variation that are significantly shorter than 4 – but not shorter, of
course. Such a proper variation of ξ is, for example, the one displayed in figure 4.14:

Hu(s) = ξ(s)+
(

0, u · cos
(

s · π
4

))
=
(

s , 1+ u · cos
(

s · π
4

))
, s ∈ [−2, 2] .

(4.70)

The variation vector field along ξ is then in the direction of the acceleration vector accξ(t) = (0,1),
and that is what it takes to decrease the length of the curve:

V (s) =
∂Hu(s)

du |u=0
=
(

0, cos
(

s · π
4

))
. (4.71)

According to equation (4.30) the curves Hu in the variation H satisfy:

∂

∂u |u=0
L(u) = −

∫ L

0
g
(

V (s) , ∇ξ ′(s)ξ
′(s)
)

ds

= −
∫ 2

−2
g
((

0, cos
(

s · π
4

))
, ∇ξ ′(s)ξ

′(s)
)

ds

= −
∫ 2

−2
g
((

0, cos
(

s · π
4

))
, (0, 1)

)
ds

= −
∫ 2

−2
cos
(

s · π
4

)
ds

= −8
π
≈−2.55 .

(4.72)

The derivative of the length functional L(u) is negative – as expected. The variation really does
give shorter curves.

We can verify the above derivative by direct estimation of the lengths L(u) in this concrete case.
First we calculate

∂

∂s
Hu(s) =

(
1, −u · π

4
· sin

(
s · π

4

))
, (4.73)
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so that

L(u) =
∫ 2

−2

√
g
(

∂

∂s
Hu(s) ,

∂

∂s
Hu(s)

)
ds

=
∫ 2

−2

√
g
((

1, −u · π
4
· sin

(
s · π

4

))
,
(

1, −u · π
4
· sin

(
s · π

4

)))
ds

=
∫ 2

−2

√
1+ u2 · (π

4 )
2 · sin2 (s · π

4

)
1+ u · cos

(
s · π

4

) ds .

(4.74)

The integrand in the last expression in equation (4.74) has the following u-derivative at u = 0:

∂

∂u |u=0


√

1+ u2 · (π

4 )
2 · sin2 (s · π

4

)
1+ u · cos

(
s · π

4

)
= −cos

(
s · π

4

)
, (4.75)

so that we do indeed recover the value obtained above from the general formula that we applied in
equation (4.72):

∂

∂u |u=0
L(u) = −

∫ 2

−2
cos
(

s · π
4

)
ds = −8

π
≈−2.55 (4.76)

A numerical evaluation of the expression for L(u) in equation (4.74) shows that the smallest
curve in the specific variation family H, that we have considered, is obtained for u≈ 1.31 and
that the length of the corresponding curve is L(1.31) ≈ 2.92, which is quite close to the optimal
value represented by the geodesic circle segment with the exact length 2 · ln(2+

√
5 )≈ 2.89, see

figure 4.14.

Figure 4.13: Values of curve lengths of Hu, u ∈ [0,1.5], in the variation H considered in (4.70).
The horizontal brown line indicates the optimal shortest curve length which is (only) almost
attained by the variation.
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Figure 4.14: Red: The shortest geodesic between the endpoints. Right: The variation cos-curves
applied for comparison with the shortest red curve. The green curve is the shortest among the
variation curves.

In prolongation of the concrete examples above we must mention the following general distance
formula:

Proposition 4.35 Let p = (p1, p2) and q = (q1,q2) denote two given points in the Poincaré

half plane model. Then the distance between the points is:

dist(p,q) = arcosh
(

1+
(q1− p1)2 +(q2− p2)2

2 · p2 ·q2

)
. (4.77)
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EXERCISE 4.36

Verify, that this equation gives the same result as we obtained above in the case of p̃ = (2,1) and
q̃ = (−2,1).

EXERCISE 4.37

Prove the general distance formula that is expressed in (4.81).

With the distance function and the explicit construction of all geodesics in hand we can express
any Exponential map diffeomorphism Expp and Logarithmic map diffeomorphism Logp in terms
of the canonical basis vectors e1 and e2 in TpV and in terms of the coordinates y1 and y2 in V ,
respectively.

EXERCISE 4.38

Given p and q in V . Find θ such that

Expp(dist(p,q) ·V0) = q , (4.78)

where V0 is the unit vector in the direction of (cos(θ), sin(θ) in TpV . (Note that then we have:
Logp(q) = dist(p,q) ·V0.) Hint: Trigonometry.

EXERCISE 4.39

Given p in V , d ∈R+, and a g-unit vector V0 in the direction of (cos(θ), sin(θ)) in TpV . Find the
coordinates of q in V so that

Logp(q) = d ·V0 . (4.79)

(Note that then we have: Expp(d ·V0) = q and dist(p,q) = d.)

4.9 The Exponential map in the 3D Poincaré half space

We consider the following 3-dimensional extension of the Poincaré half plane. Let (V 3,gV ,∇)
be defined as follows:

V = {(y1,y2,y3) ∈R3 | y3 > 0}

GV (y1,y2,y3) =

(
1
y3

)2

·

 1 0 0
0 1 0
0 0 1

 .
(4.80)

EXERCISE 4.40
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In 3 dimensions the number of Christoffel symbol functions Γk
i j is in general 18, when symmetry in

indices i and j are taken into account. Find the non-zero Christoffel symbol functions for the Poincaré
half space (V 3,gV ,∇) defined above.

EXERCISE 4.41

Show that every geodesic of (V 3,gV ,∇) is either a straight half line orthogonal to the plane y3 = 0 or
a half circle with center on that plane and itself contained in a plane parallel to the y3-axis. Use this
property to show that two different geodesics have at most one intersection point.

The Exponential map Expp of (V 3,gV ,∇), p ∈ V 3, is therefore – in consequence of exercise
4.41 – a diffeomorphism on all of Tpm3. The inverse, the Logarithm map Logp, is thence also a
diffeomorphism on all of V 3.

Figure 4.15: Geodesics (in red) from point p = (0,0,1) of constant length in the Poincaré half
space. The corresponding geodesic sphere is indicated.

Proposition 4.42 Let p = (p1, p2, p3) and q = (q1,q2,q3) denote two given points in the

Poincaré half space model. Then the distance between the points is:

dist(p,q) = arcosh
(

1+
(q1− p1)2 +(q2− p2)2 +(q3− p3)2

2 · p3 ·q3

)
. (4.81)

EXERCISE 4.43

Formulate the exercises 4.38 and 4.39 in the 3-dimensional setting of the Poincaré half space model –
and solve them.
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4.10 Polar coordinates revisited

In a polar coordinate system based at p in U, the first polar coordinate r(q) of a point q in Up is
just the length of the unique geodesic from p to q, i.e. the geodesic distance between p and q in
the manifold. Correspondingly, the first coordinate curves are the geodesics issuing from p. In the
figures below the g-angle between two consecutive geodesics is constant.

The relative spread of geodesics is encoded into the respective Jacobi fields (introduced later in
these notes) based on each geodesic. The difference in the present figures is the representation of
the second polar coordinate curves, i.e. of the metric geodesic circles with equal distance between
two consecutive circles. Obviously it is much easier to construct the polar coordinate curves than
it is to construct the normal coordinate curves based at a given point.

Figure 4.16: Polar coordinates on a paraboloid of revolution. Left: The coordinate curves are
shown on a background of Monge patch coordinates obtained as in the defining equation 4.25.
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Figure 4.17: Polar coordinates on a saddle surface. Left: The coordinate curves are shown on a
background of Monge patch coordinates, cf. equation 4.25.

Figure 4.18: Polar coordinates on the sphere. Left: The coordinate curves are shown on a
background of Mercator coordinates as in the defining equation 4.25
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Figure 4.19: Polar coordinates in the two Poincaré models. Left: Half plane model; Right: Disk
Model.

4.11 Outlook recap: Statistics on Riemannian manifolds

In chapter 1 we saw how a slightly upwards elongated distribution of points on the standard
paraboloid of revolution did not have good statistical representations in the parameter plane, at
least when we used (rectilinear or polar) Monge parameters for the representation of the surface.
The Log map polar or normal coordinates give much better representations in the tangent plane
of the surface at the base point for the Exponential map. There will always be discrepancies in
between internal distances when projecting a non-flat background into the plane.

We indicate how a Riemannian center of mass can be well defined for a distribution which is not
too ’wide’ in the sense that it is supported in a neighbourhood Ep of some point p so that the
exponential map is a diffeomorphism and so that we have access to normal coordinates (and polar
coordinates) in the neighborhood.

The idea is the following: Suppose the point set Ω is ’catched’ by the Log map Logp1
into a

tangent space Tp1U. Then calculate the center of mass C1 of the image Logp1
(Ω) – using the

standard Euclidean metric in Tp1U. We denote the corresponding position vector also by C1 and
next consider the normal coordinate system in U with the new base point p2 = Exp(C1); we
then find the Euclidean center of mass C2 of Logp2

(Ω) and continue the process. It is intuitively
reasonable to expect that this construction of points p1, · · · , pn,cdots converges to a point p∞

which then should be called the Riemannian center of mass. This expectation holds true and has
been proved and applied in e.g. [11], [15], [23].
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The center of mass is just the very first significant statistical information about a given
distribution. The classical principal component analysis also suggests the determination
of best fitting lines – which in the context of distributions on Riemannian manifolds
should be the best fitting geodesics, see e.g. [7]. One useful generalization of normal
coordinates in this respect is the concept of Fermi coordinates, see [19]. They are
also rectangular and have vanishing Christoffel symbols not just at a point but along a
geodesic – for example along the geodesic from the Riemannian center of mass which
best describes the elongation of Ω on the paraboloid considered here.

Example 4.44

In the figures below we illustrate the images Logp1
(Ω) and Logp2

(Ω) for the beginning of the
construction of the center of mass of a given point set on the paraboloid – with initial point
p1 = (0.65,0.65) (with respect to the Monge patch coordinates for the paraboloid).

Figure 4.20: A point distribution Ω on the paraboloid and two normal coordinate systems with
base points off the center of mass and at the center of mass, respectively. These two base points
are given by their Monge patch coordinates (0.65,0.65) and (1.3,1.3), respectively.
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Figure 4.21: The images Logp1
(Ω) and Logp2

(Ω) in their respective tangent spaces, based at the
points (0.65,0.65) and (1.3,1.3) corresponding to figure 4.20.

Figure 4.22: Metric fingerprints for the paraboloid in normal coordinates based at points (expressed
in Monge patch coordinates) (0,0), (0.65,0.65), and (1.3,1.3), respectively – the two last ones
is for direct comparison with figure 4.21 above. From the standard finger print indicatrix field
interpretation it is evident, that when all indicatrices are almost identical to the unit circle indicatrix
at the base point as in the rightmost figure, then this supports a better and faster determination of
the center of mass.



Chapter 5

Helices, circles, and the Frenet-Serret
apparatus

We have previously discussed various types of curves in Riemannian manifolds (U,g,∇) – such
as the time-parametrized tracks of Newtonian particles in a gravitational field and geodesics. And
we have discussed briefly the general notion of acceleration of a given time-parametrized curve in
the manifold. The key instrument for these concepts is the Levi-Civita connection ∇ and the cor-
responding covariant derivation together with the ensuing notion of parallel transport along curves.

In this chapter we will introduce a more involved and intricate application of parallel transport of
g-orthonormal frame fields {E1,E2,E3} in 3-dimensional Riemannian manifolds and generalize
what is known classically as the so-called Frenet-Serret apparatus for a given curve in Euclidean
3-space.

5.1 The classical helices in R3

Definition 5.1 The classical standard helix in standard position in ordinary Euclidean 3-space

(R3,gE) with the usual coordinates {x1,x2,x3} and the corresponding induced basis vector fields
{e1,e2,e3} is the following unit speed parametrized curve:

γ(s) =
(

a · cos
(

s√
a2 + b2

)
, a · sin

(
s√

a2 + b2

)
, b ·

(
s√

a2 + b2

))
, s ∈ I , (5.1)

where a > 0 and b are constants and I is any connected open interval in R.
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EXERCISE 5.2

Show that the standard helix γ in the above definition 5.1 is unit speed parametrized by s i.e.
‖γ ′(s)‖gE = 1 for all s ∈ I. Show that if I =]α,β[, with finite (possibly negative) values of α < β,
then the Euclidean length of the curve γ(I) is β−α.

Two examples of helices are displayed in figure 5.1. One (to the right in the figure) has b > 0,
it is a right handed helix, it has positive torsion and positive helicity. The other (to the left in
the figure) has b < 0, it is a left handed helix, it has negative torsion and negative chirality. The
torsion of the helix is defined via the exercises below:

EXERCISE 5.3

Show that γ has constant geodesic curvature:

κ = κ(s) = κγ(s) = ‖accγ(s)‖= ‖γ ′′(s)‖=
a

a2 + b2 , (5.2)

where we have applied the purely Euclidean identity ‖∇γ ′γ
′(s)‖= ‖γ ′′(s)‖.

Note explicitly, that here we may write d
ds instead of ∇γ ′ and D

ds – since they are all
identical operators in Euclidean space – all the Christoffel symbols vanish.

Figure 5.1: Helices; with positive torsion (right) and negative torsion (left).
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We now define three unit vector fields along the helix, T , N, and B in X(γ), as follows:

T (s) = γ
′(s)

N(s) =
(

1
κ

)
· γ ′′(s) =

(
1
κ

)
·T ′(s)

B(s) = T (s)×N(s) ,

(5.3)

where we have used the standard Euclidean cross-product, ×, in R3.

EXERCISE 5.4

Find the explicit expressions for T (s), N(s), and B(s) for the helix curve defined in equation (5.1),
and show that {T (s),N(s),B(s)} is a gE-orthonormal basis for Tγ(s)R

3 for all s.

The pairwise orthogonal unit vector fields {T (s),N(s),B(s)} along γ constructed in this way
is called the Frenet-Serret apparatus for the helix along γ in R3. We claim that the following
identities hold true for the helix:

T ′(s) = κ ·N(s)

N′(s) = −κ ·T (s)+ τ ·B(s)
B′(s) = − τ ·N(s) ,

(5.4)

where κ and τ are unique curvature constants for the helix with values:

τ =
b

a2 + b2

κ =
a

a2 + b2 .
(5.5)

EXERCISE 5.5

Show the identities in (5.4) using the expressions for τ and κ in (5.5) for the given helix curve in (5.1).

The constant τ appearing in (5.5) is the torsion of the helix. It appears in this way as the second
curvature constant for the curve.
We note the following obvious shorthand notation for the identities in equation (5.4): T ′(s)

N′(s)
B′(s)

=

 0 κ 0
−κ 0 τ

0 −τ 0

 ·
 T (s)

N(s)
B(s)

 . (5.6)

Each one of the equivalent equations (5.4) and (5.6) is a coupled first order differential equation
system which has unique solutions T (s), N(s), and B(s) whenever κ and τ are given constants
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and when initial conditions are specified for the three vector fields. But once the unit vec-
tor field T (s) is found as a vector function solution, then the unit speed curve γ(s) also follows
uniquely from an integration of T (s) if only one point on the curve, γ(s0), is also given in advance.

Any solution curve to (5.6) is called a helix with curvature κ and torsion τ. Although the (initial
standard positioned) helix curve γ in (5.1) is surely a solution to the differential equation system
(5.6), it is clearly not the only solution, since other initial conditions T (s0), N(s0), B(s0), γ(s0)
give different solutions with the same values of κ and τ that are positioned differently in 3-space.

EXERCISE 5.6

Show that every helix curve solution η to (5.6) with length L = β−α, curvature κ = a/
√

a2 + b2 and
torsion τ = b/

√
a2 + b2 is ambient isometric to the standard curve γ defined in (5.1) in the following

sense: There is an orientation preserving rotation R and a translation Λ in R3 so that η = R(γ)+Λ.

5.2 Riemannian helices and circles

Motivated by the classical helix constructions above we now define arc length parametrized
Riemannian helices as follows:

Definition 5.7 Let κ > 0 and τ denote two constants and let γ denote a smooth regular curve

parametrized by arc length. Then γ is called a Riemannian helix in (U3,g,∇) with curvature κ and
torsion τ if T = γ ′ is member of a positively oriented g-orthonormal frame field {T (s),N(s),B(s)}
that satisfies the following system of vector differential equations:

∇γ ′T (s) = κ ·N(s)

∇γ ′N(s) = −κ ·T (s)+ τ ·B(s)
∇γ ′B(s) = − τ ·N(s) ,

(5.7)

Obviously, we then call {T (s),N(s),B(s)} the Riemannian Frenet-Serret frame for the Riemannian
helix γ.

In particular, helices without torsion gives rise to the following:

Definition 5.8 An arc length parametrized Riemannian circle in (U3,g,∇) is an arc length

parametrized Riemannian helix with torsion τ = 0.

Note that a Riemannian circle is not necessarily a geodesic metric circle as we have
defined those previously – in chapter 4 – via the Exponential map. Moreover, as we shall
see by example below, a Riemannian circle is in general not even a closed curve.
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Arc length parametrized Riemannian circles must then necessarily satisfy the following properties:

Observation 5.9 Let κ > 0 and let γ denote a smooth regular curve parametrized by arc

length. Then γ is a Riemannian circle in (U3,g,∇) with curvature κ if T = γ ′ together with the induced
orthogonal unit vector field N along γ satisfies the equations:

∇γ ′T (s) = κ ·N(s)

∇γ ′N(s) = −κ ·T (s) .
(5.8)

EXERCISE 5.10

Show that a Euclidean helix in (R3,gE) with vanishing torsion and curvature κ > 0 is an ordinary
Euclidean circle with radius 1/κ.

The system (5.7) is translated directly into (5.4) if we apply an auxiliary orthonormal parallel
frame field {E1,E2,E3} along γ in which we express the vector functions T , N, and B. Indeed, as
we know from chapter 3, if V is a vector field along γ with coordinate functions vi(s) with respect
to the parallel frame {E1,E2,E3}, then

∇γ ′V (s) = ∑
i
(vi)′(s) ·Ei(γ(s)) , (5.9)

and thence, if we denote the coordinate columns for T , N, and B with respect to {E1,E2,E3} with
the same capital letters, we get precisely the system (5.4).

The main difference, however, is that we do not in advance know a parallel frame along γ since
we do not, of course, know the curve in advance. Therefore we have to solve the parallel transport
problem for each Ei along γ simultaneously with the Frenet-Serret differential equations.

To be a bit more concrete, we let Ek
i (s) denote the k’th coordinate function of Ei with respect to

the standard fixed basis {e1,e2,e3}. Then

γ
′(s) = T i(s) ·Ek

i (s) · ek , (5.10)

and the condition for Ei to be parallel along γ now reads for each k = 1,2,3, i.e. a total of 9
equations:

d
dt

Ek
i (s)+∑

`
∑
m

∑
j

V m
i (s) ·T j(s) ·E`

j(s) ·Γk
`m(γ(s)) = 0 . (5.11)

In this way we end up with a system of (nonlinear) coupled differential equations for the parallel
frame fields involving both the unknown vector field T (s) and the curve γ itself (via the Christoffel
symbols). This system is then coupled with the Frenet-Serret differential equations for T , N,
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and B in the coordinate form of (5.4). In total we get a coupled system of 21 equations, i.e
9 for the coordinates of Ei and 9 for the coordinates of T , N and B respectively, and finally 3
for the coordinates of γ. They are then solved from a corresponding set of 21 initial data, in-
cluding the initial starting point of γ, etc. A couple of examples are displayed in figures 5.2 and 5.3.

See also the references [21] and [6], where the latter may indicate an interesting application of
Riemannian helices to the study of the van Allen belts around the Earth. These belts consists of
spiralling charged particles that are trapped in the Earth’s magnetic field.

Figure 5.2: Two helices in the Poincaré half space with different initial conditions at (0,0,1).

EXERCISE 5.11

We let (U3,g,∇)) denote the Riemannian manifold with metric matrix defined in the half space U3

of R3 where x1 > 0 as follows:

G =

 1 0 0
0 (x1)2 0
0 0 1

 . (5.12)

Let γ0 denote the following simple curve in U3 for any fixed choice of R > 0:

γ0(s) = (R , s/R , 0) , s ∈R . (5.13)

a) Show that γ0 is arc length parametrized by s in (U3,g,∇)).

b) Show that γ0 is a Riemannian circle in (U3,g,∇)).
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c) Determine the constant curvature κ0 of γ0.

More generally, let k ∈R be a constant and let ηk denote the following curve segment in U3:

ηk(t) = (R , t , k · t) , t ∈ ]−π,π[ . (5.14)

d) Find an arc length re-parametrization γk of ηk.

e) Show that γk is a Riemannian helix in (U3,g,∇)) for every k ∈R.

f) Determine the constant curvature κk and the constant torsion τk of γk .

g) Find an isometry ψ of an open set of (U3,g,∇) into Euclidean space (R3,gE) and show, that
ψ(γk) is a segment of a standard helix in standard position in (R3,gE). Hint: You may want to
have a look at the 2D isometry in example 3.3 in chapter 3.

Note that the last question in the above exercise 5.11 is but a strong token of the fact,
that we have only used isometry-invariant concepts to define the Riemannian helices and
circles, so it is only natural that they are themselves invariant under ambient isometries.

5.2.1 The Feynman wall

Suppose we have already constructed an interesting 2-dimensional Riemannian manifold (U2,g,∇g),
with a given metric g with matrix function G. Then we can easily extend the manifold to a 3-
dimensional Riemannian manifold (U3,h,∇h) by a simple extension of the old metric to the
following:

H =

 g11 g12 0
g21 g22 0
0 0 1

 . (5.15)

EXERCISE 5.12

The above metric h induces (in principle, i.e. without using symmetry) 27 Christoffel symbol functions
for ∇h in (U3,h,∇h). They are clearly related to – and can be expressed in terms of – the (in principle)
8 Christoffel symbol functions for ∇g in (U2,g,∇g). Find these expressions/relations, either in general
or just for the simpler, more concrete, metric h given in equation (5.16) below.

One interesting and non-trivial 2-dimensional Riemannian manifold is Feynman’s example in
section chapter 4. Choosing the metric g from there we get the following extended metric matrix
function for a metric h in U = R3:

H =

 µ(x1) 0 0
0 µ(x1) 0
0 0 1

 , (5.16)
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where µ is governed by two positive constants α and β as follows:

µ(x1) = µα,β(x
1) = 1+

α

2
·
(
1+ tanh

(
β · x1)) . (5.17)

In chapter 4 we noted how geodesics were bent/broken (according to Snell’s law) when penetrating
through the soft/hard (beach/water-) line x1 = 0. Similarly we will refer to the plane x1 = 0 in R3

as the ’soft Feynman wall’. The softness of the wall is clearly governed by the choice of constants
α and β for the function µα,β(x1).

For the displays in figure 5.3 we have chosen values α = 4 and β = 7.

Figure 5.3: Left: A helix in a Poincaré ball. Middle and right: A standard helix approaches from
x1 < 0 a soft ’Feynman wall’ at x1 = 0 orthogonally and is then during penetration through the
wall bent into an ’elliptic helix’ with another angle to the wall; In the top view in the right hand
display, the classical helix approaches the wall from the right x1 < 0; the bending angle is clearly
dependent on the direction of first impact with the wall.

EXERCISE 5.13

Explain the fact, which is clearly visible in figure 5.3, that the approaching helix (before the wall) has
a standard circular (cross sectional) appearance whereas the transmitted helix (after the wall) has an
elliptic (cross sectional) appearance. Hint: The metric matrix is almost constant away from the wall:
µ(x1) ≈ 1 for x1 << 0 and µ(x1) ≈ 5 for x1 >> 0.

5.3 The Frenet-Serret apparatus for general curves

Suppose now that γ is a smooth arc length parametrized curve – not necessarily a helix – in a
3-dimensional Riemannian manifold (U,g,∇). And suppose that the geodesic curvature κ

g
γ(s)

is positive for all s. Then γ still admits a unique Frenet-Serret frame {T (s),N(s),B(s)} which
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satisfies the Frenet-Serret system equations as in (5.18), but now obviously with varying curvature
function κ(s) = κ

g
γ(s) and varying torsion function τ(s):

Proposition 5.14 Let γ be a unit speed parametrized curve (U,g,∇) with positive geodesic

curvature κ
g
γ (s) = κ(s). Then, along γ, there is a positively oriented g-orthonormal frame field

{T (s),N(s),B(s)} with T (s) = γ ′(s) and a smooth torsion function τ(s), so that:

∇γ ′T (s) = κ(s) ·N(s)

∇γ ′N(s) = −κ(s) ·T (s)+ τ(s) ·B(s)
∇γ ′B(s) = − τ(s) ·N(s) ,

(5.18)

Definition 5.15 The frame field {T (s),N(s),B(s)} together with the functions κ(s) and τ(s)

is called the Frenet-Serret apparatus for the curve γ.

Conversely, the fundamental theorem of curves in Riemannian geometry states:

Theorem 5.16 Suppose κ(s) is a given positive smooth function of a parameter s ∈ [0,`]

and that τ(s) is a given smooth function of s. Let {T0,N0,B0} denote a positively oriented basis of
TpU3 in a 3-dimensional Riemannian manifold (U,g,∇). Then there exists (for sufficiently small
value of `) a unique unit speed parametrized curve γ(s) with γ(0) = p and with Frenet-Serret apparatus
{{T (s),N(s),B(s)} , κ(s),τ(s)} so that {T (0),N(0),B(0)}= {T0,N0,B0}.

The proof of this theorem clearly again hinges on the existence and uniqueness of solutions to
(typically nonlinear) ordinary differential equation systems (21 equations and 21 initial conditions)
– a topic which is still beyond the primary scopes of these notes.

Except from the existence and uniqueness statement in theorem 5.16 there is one
more obvious question to think about: The g-orthonormality of the vector fields
{T (s),N(s),B(s)} generated along the solution curve γ is clearly satisfied by assumption
at s = 0, since it is part of the specified initial conditions. But why and how does (5.18)
guarantee by itself, that they stay orthonormal for all s? Hint: The structure matrix on
the right hand side of (5.18) is skew symmetric. In a parallel frame field along γ this
means that it is closely related to the s-derivative of an s-dependent rotation matrix. And
rotation matrices keep orthonormality.
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Example 5.17

Let κ(s) = s, τ(s) = 0 and {T0,N0,B0} = {e1,e2,e3} at p = (0,0,0) in Euclidean 3-space (R3,gE).
The curve with these Frenet-Serret (initial) data (and given initial point) is displayed in figure 5.4. This
is the famous Euler spiral, which is much used in the design and construction of roads and other smooth
pathways, see that Wikipedia posting. With the methods introduced above we can study and use similar
curves and their properties in the much wider context of Riemannian manifolds, see figure 5.5.

EXERCISE 5.18

Show that the planar Euler spiral in figure 5.4 with initial data as given in example 5.17 can be
expressed analytically by the following explicit parametrization:

γc(s) =
(∫ s

0
cos
(
u2/2

)
du ,

∫ s

0
sin
(
u2/2

)
du , 0

)
, s ∈R . (5.19)

EXERCISE 5.19

Explain how negative curvature can be allowed and well defined and used for planar curves – like for
the Euler spiral in example 5.17, where we have κ(s) = s for all s ∈R, i.e. including the negative
values of s and thence of κ(s). Hint: Only in the plane, or more generally in an oriented 2-dimensional
Riemannian manifold, is it possible to define anti-clockwise (positive) turning of the tangent vector
field T to a given curve corresponding to positive curvature, and clockwise (negative) turning of the
tangent vector field corresponding to negative curvature of the curve.

As a converse to the construction of curves via given curvature and torsion functions we finally
present the following constructive method for finding the Frenet-Serret apparatus for a given
curve γ in a 3-dimensional Riemannian manifold without assuming, that the curve is arc length
parametrized.

For this we shall use an invariant g-version of the cross product operation:

Definition 5.20 Let V and W denote two linearly independent vectors in a given tangent space

TpU3 for a Riemannian manifold (U,g,∇). The cross product V ×g W of V and W is then defined as
the unique vector in TpU which satisfies the following (natural) conditions:

g(V ×g W , V ) = 0

g(V ×g W , W ) = 0

The triple {V ,W ,V ×g W} is a positively oriented basis for TpU
‖V ×g W‖g = ‖V‖g · ‖W‖g · sin (^g(V ,W )) ,

(5.20)

https://en.wikipedia.org/wiki/Euler_spiral
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Figure 5.4: The planar Euler spiral in Euclidean space.

Figure 5.5: An Euler spiral with κ(s) = s on a saddle surface.
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where the angle ^g(V ,W ) denotes the unique angle θ in [0,π] with

cos (θ) =
g(V ,W )

‖V‖g · ‖W‖g
. (5.21)

EXERCISE 5.21

Show that the conditions in definition 5.20 determine a unique cross product ×g in TpU. Hint:
Introduce a g-orthonormal basis {E1,E2,E3} and apply the coordinates of V and W with respect to
that basis.

Theorem 5.22 Let γ(t), t ∈ I, be a smooth regular curve in (U3,g,∇). In particular we need

regularity, i.e. γ ′(t) 6= 0. The t-parametrized Frenet-Serret apparatus for γ can then be obtained as
follows:

Firstly, we define the speed of the curve parametrization:

v(t) = ‖γ ′(t)‖g > 0 . (5.22)

Secondly, remember that we have previously (in chapter 3) defined the acceleration of the t-
parametrized curve as the following vector field along γ:

accγ(t) =
D
dt

γ
′(t) = ∇γ ′γ

′(t) (5.23)

Thirdly, we will also apply the double covariant derivative of γ ′(t), i.e.

D
dt

accγ(t) = ∇γ ′ (∇γ ′γ
′(t)) . (5.24)

Fourthly, we apply the following shorthand notation for the ’space product’:

[V , W , U ] = g (V ×g W , U) . (5.25)

With these ingredients we then generate the Frenet-Serret apparatus in the following way (note the
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appearance of the condition κ(t) > 0):

T (t) =
1

v(t)
· γ ′(t)

κ(t) =
‖T (t) ×g accγ(t)‖

v2(t)

τ(t) =

[
T (t) , accγ(t) , D

dt accγ(t)
]

v(t) · ‖T (t) ×g accγ(t)‖2 for κ(t) > 0

B(t) =
T (t) ×g accγ(t)
‖T (t) ×g accγ(t)‖

for κ(t) > 0

N(t) = B(t) ×g T (t) for κ(t) > 0 .

(5.26)

Note that T (t) and B(t) is – most effectively – calculated before N(t).

The Frenet-Serret vector functions T (t), N(t), and B(t) and the curvature and torsion functions κ(t)
and τ(t) then satisfy the following system of equations, which is precisely the general t-version of
proposition 5.14:

∇γ ′T (t) = v(t)κ(t)N(t)

∇γ ′N(t) = −v(t)κ(t)T (t)+ v(t)τ(t)B(t)

∇γ ′B(t) = − v(t)τ(t)N(t) .

(5.27)

In this way we have then constructed the general t-version of the Frenet-Serret apparatus
for any given smooth regular curve parametrized by t and with κ(t) > 0 for all t, i.e.
{{T (t),N(t),B(t)} , κ(t),τ(t)}.

The statements in this theorem 5.22 are not surprising – in view of our previous discussion of
helices. Moreover, the proof is also fairly straightforward – in particular if everything is expressed
in coordinates with respect to a parallel frame field along γ.

We ’illustrate’ the methods involved in the general construction of the Frenet-Serret apparatus via
the following exercises:

EXERCISE 5.23

We consider the t-parametrized helix (without reparametrization) in Euclidean 3-space:

γ(t) = (a · cos(t) , a · sin(t) , b · t) , t ∈R . (5.28)

Apply theorem 5.22 directly and re-find the Frenet-Serret apparatus for γ as functions of the given
parameter t.



176 CHAPTER 5. HELICES, CIRCLES, AND THE FRENET-SERRET APPARATUS

EXERCISE 5.24

Consider the t-parametrized curve in Euclidean 3-space:

γ(t) = (t , t2 , t3) , t ∈R . (5.29)

Apply theorem 5.22 and find the Frenet-Serret apparatus for γ at the point γ(0), i.e. for t = 0. Note
that even for this simple curve it is not a simple matter to first find an arc length parametrization of the
curve.

EXERCISE 5.25

We let (U3,g,∇) denote the half-space in R3 with x1 > 0 and with the previously encountered metric
– from exercise 5.11:

G =

 1 0 0
0 (x1)2 0
0 0 1

 . (5.30)

Suppose now that a smooth regular t-parametrized curve is given in U3 by the following simple
parametrization:

µ(t) = (1, cos(t) , sin(t)) , t ∈R . (5.31)

Apply theorem 5.22 and find the curvature and torsion for µ as functions of the given parameter t.



Chapter 6

Curvature

The curvature of a Riemannian Manifold M = (U,g,∇) at a point p ∈U is a measure of the local
deformation of the tangent space TpU that is performed by the Exponential map Expp when it
maps a metric ball Bρ(p) into U.

Remember that Expp maps the straight radial lines (i.e. the straight lines in TpU through the
origin in TpU) into radial geodesic curves in U issuing from p. In figures 6.1 and 6.2 we display
two geodesic variations H in two very different 2-dimensional Riemannian manifolds. All the
geodesics in both cases have the same length, ρ, so they define geodesic circles of that same
radius ρ centered at the respective base points. It is visibly clear that the corresponding orthogonal
variation vector fields V (in light blue) – based on the green geodesics – have different length
functions ‖V (s)‖g, s ∈ [0,ρ]. The g-length of the variation vector field along the base geodesic
is a measure of how fast the geodesics spread apart from each other, respectively how fast they
re-approach each other.

The purpose of this chapter is to show how that behaviour of nearby geodesics in a geodesic
variation is determined by the curvature tensor, to be defined below: If the curvature is large and
positive then the geodesics in a geodesic variation issuing from p will tend to converge back to
the base geodesic of the variation; if the curvature is very negative, then the geodesics will tend to
diverge away from the base geodesic of the variation.

6.1 The curvature operator

Since the variation vector field V of a geodesic variation H is already a first order derivative,
the development of V along the base geodesic – i.e. its convergence or divergence – must be
determined by an operator which contains some combination of second order derivatives of H
that are invariant under isometries. The curvature operator is precisely designed for this purpose:
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Figure 6.1: A geodesic variation in the Euclidean plane. The variation vector field is indicated in
light blue along the green base geodesic of the spray. The simple (scaled) indicatrix field of the
metric tensor is also indicated along the base geodesic.

Definition 6.1 Let Mn = (Un,g,∇) denote a Riemannian manifold. Let X and Y denote

smooth vector fields in X(U). Then the curvature operator R(X ,Y ) is a smooth mapping which acts
on vector fields Z ∈ X(U) and produces a fourth vector field in X(U) as follows:

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z for all Z ∈ X(U) . (6.1)

Since, as claimed, R(X ,Y )Z is a vector field in U, it has coordinates with respect to the canonical
basis vector fields e1, · · · ,en. We will see how these coordinates unfold in proposition 6.3 below.
For this to work we need to know first, that the curvature operator is tensorial in the following two
senses:

Proposition 6.2 The curvature operator R is bilinear over F(U) in its first two arguments, X

and Y :
R( f ·X1 + h ·X2 , Y )Z = f ·R(X1 , Y )Z + h ·R(X2 , Y )Z

R(X , f ·Y1 + h ·Y2)Z = f ·R(X , Y1)Z + h ·R(X , Y2)Z
(6.2)

for all f and h in F(U) and all X1, X2, Y1, and Y2 in X(U).

And R is linear over F(U) in its third argument, Z:

R(X ,Y )(Z +W ) = R(X ,Y )Z +R(X ,Y )W

R(X ,Y )( f ·Z) = f ·R(X ,Y )Z
(6.3)

for all f in F(U) and all X , Y , Z and W in X(U).
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Figure 6.2: A geodesic variation in a Local Riemannian Manifold with metric given as in exercise
6.10 below. The variation vector field is indicated in light blue along the green base geodesic of
the spray. The simple (scaled) indicatrix field of the metric tensor is also indicated along the base
geodesic. See also figure 6.3.

Proof. We only prove the last identity, R(X ,Y )( f ·Z) = f ·R(X ,Y )Z. For this we calculate:

∇X ∇Y ( f ·Z) = ∇X ( f ·∇Y Z +Y ( f ) ·Z)
= f ·∇X ∇Y Z +(X( f )) ·∇Y Z +(X( f )) ·∇Y Z +(X (Y ( f ))) ·Z ,

(6.4)

so that
∇X ∇Y ( f ·Z)−∇Y ∇X ( f ·Z) =

f · (∇X ∇Y −∇Y ∇X )Z +((XY −Y X) ( f )) ·Z
(6.5)

and thence

R(X ,Y )( f ·Z) = f ·∇X ∇Y Z− f ·∇Y ∇X Z +([X ,Y ] f ) ·Z− f ·∇[X ,Y ]Z− ([X ,Y ] f ) ·Z
= f ·R(X ,Y )Z .

(6.6)

Using the linearity of the curvature operator, we can now express the vector field value of R(X ,Y )Z
in coordinates:

Proposition 6.3 With respect to the canonical basis ei we denote the coordinate functions

for X , Y , and Z as follows:

X = ∑
i

ui · ei , Y = ∑
j

v j · e j , Z = ∑
k

wk · ek . (6.7)
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Then we have directly from the linearity of the curvature operator established in proposition 6.2 that
there exist unique coefficient functions Rm

i j k, so that

R(X ,Y )Z = ∑
i j k m

Rm
i j k ·ui · v j ·wk · em (6.8)

The coefficient functions Rm
i j k = Rm

i j k(x
1, · · · ,xn) are determined from the Christoffel symbol functions

as follows:

Rm
i j k =

∂

∂xi Γm
j k−

∂

∂x j Γm
ik +∑

s
Γs

j k ·Γm
is−∑

s
Γs

ik ·Γm
j s , (6.9)

Proof. The coefficient functions can be generated by calculating R(ei,e j)ek:

R(ei,e j)ek = ∑
i j k m

Rm
i j k · em

= ∇ei∇e jek−∇e j∇eiek−∇[ei,e j ]ek

= ∇ei∇e jek−∇e j∇eiek

= ∇ei

(
Γm

j k · em

)
−∇e j (Γ

m
ik · em)

= ei

(
Γm

j k

)
· em− e j (Γm

ik) · em +∑
s

Γs
j k ·Γ

m
is · em−∑

s
Γs

ik ·Γ
m
j s · em

=

(
ei

(
Γm

j k

)
− e j (Γm

ik)+∑
s

Γs
j k ·Γ

m
is−∑

s
Γs

ik ·Γ
m
j s

)
· em

=

(
∂

∂xi

(
Γm

j k

)
− ∂

∂x j (Γ
m
ik)+∑

s
Γs

j k ·Γ
m
is−∑

s
Γs

ik ·Γ
m
j s

)
· em .

(6.10)

6.2 The curvature tensor

The curvature operator gives rise to the curvature tensor as follows:

Definition 6.4 Let Mn = (Un,g,∇) denote a Riemannian manifold. Let X , Y , Z, and U denote

smooth vector fields in X(U). Then the Riemannian curvature tensor R is defined as follows:

R (X ,Y ,Z,U) = g (R(X , Y )Z , U) . (6.11)
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Figure 6.3: The example considered in figure 6.2, but now with a full angular spray of geodesics
of length ρ in all directions. Obviously, the geodesics tend to re-focus at some point (0,−1)
’outside’ the blue boundary geodesic circle. This phenomenon of having geodesics refocusing at a
well defined ’antipodal’ point is well known from the usual sphere surface in 3D. As we shall
see, this analogy is no coincidence: The surface metric and the metric used for this example are
isometric. See also the zoomed-in version of this figure in figure 6.2.

In coordinates we therefore get the following expression for the coordinate functions of the
curvature tensor via the coordinate functions for the curvature operator:

R i j k m = ∑
s

Rs
i j k ·gsm

= ∑
s

(
∂

∂xi Γs
j k−

∂

∂x j Γs
ik +∑

p
Γp

j k ·Γ
s
i p−∑

p
Γp

ik ·Γ
s
j p

)
·gsm .

(6.12)

The curvature operator and curvature tensor carry the following symmetry properties:

Proposition 6.5 Let X , Y , Z, and U denote smooth vector fields in X(U). Then

R(X ,Y )Z = −R(Y ,X)Z

R(X ,Y )Z +R(Y ,Z)X +R(Z,X)Y = 0

R (X ,Y ,Z,U) = −R (X ,Y ,U ,Z)

R (X ,Y ,Z,U) = R (Z,U ,X ,Y ) .

(6.13)
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EXERCISE 6.6

Prove these symmetries. Hint: See [4, p. 91], but beware of the sign difference in do Carmo’s
definition of the curvature operator.

The coordinate functions for the curvature tensor therefore satisfy the following symmetries:

R i j k m = −R j i k m = −R i j mk

R i j k m = R k mi j

0 = R i j k m +R i k m j +R im j k

(6.14)

In particular, in dimension n = 2 there is essentially only one coordinate function for the curvature
tensor – all other non-zero coordinate functions can be obtained from it via an application of one
or more of the above symmetries; it is represented by

R 1221 = R (e1,e2,e2,e1) = g (R(e1,e2)e2 , e1) . (6.15)

EXERCISE 6.7

Verify, that in 2D the curvature tensor is determined in the way explained by the coordinate function
expressed in equation (6.15).

EXERCISE 6.8

We consider the Euclidean plane (U,g,∇) with the usual Cartesian coordinates and g = gE , the
Euclidean metric tensor. Find the coordinate function R 1221 for this Riemannian manifold.

EXERCISE 6.9

Consider the Poincaré half plane (U,g,∇) with g represented in the usual way by the metric matrix
function (we use now coordinates (x1,x2) instead of the previously used (y1,y2)):

G(x1,x2) =

(
1
x2

)2

·
[

1 0
0 1

]
. (6.16)

Find the coordinate function R 1221(x1,x2) for this Riemannian manifold.

EXERCISE 6.10

Consider the Local Riemannian Manifold (U,g,∇) with g represented by the metric matrix function
(note that it is not the Poincaré disk)

G(x1,x2) =

(
2

1+(x1)2 +(x2)2

)2

·
[

1 0
0 1

]
. (6.17)

Find the coordinate function R 1221(x1,x2) for this Riemannian manifold.
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6.3 Sectional curvature

In higher dimensions than 2 we can consider several two-dimensional sections in each tangent
space TpU of a local Riemannian manifold (U,g,∇). To each such section spanned by two
linearly independent vectors in the tangent space we associate a curvature, the sectional curvature
of the section as follows:

Definition 6.11 Let Xp and Yp denote two linearly independent vectors in TpU. Then the

squared area spanned by the two vectors is

Area2(Xp,Yp) = ‖Xp‖2
g · ‖Yp‖2

g− (g (Xp,Yp))
2 . (6.18)

The sectional curvature of M at p is then defined to be the following real value, which is well defined
since the curvature tensor only depends on the point wise values of X and Y :

K(Xp,Yp) =
R (Xp,Yp,Yp,Xp)

Area2(Xp,Yp)
. (6.19)

If X and Y are everywhere linearly independent vectorfields in X(U), then the sectional curvature
function is a smooth function in F(U):

K(X ,Y ) =
R (X ,Y ,Y ,X)

Area2(X ,Y )
. (6.20)

EXERCISE 6.12

Show that if Xp and Yp span the same 2-plane as Up and Vp in TpU, i.e.

span{Xp,Yp}= span{Up,Vp} , (6.21)

then
K(Xp,Yp) = K(Up,Vp) . (6.22)

EXERCISE 6.13

We consider again the three metric tensor fields considered in exercises 6.8, 6.9, and 6.10. In these 2D
examples there is only one two-plane to choose in each tangent space, namely the tangent plane itself
which is spanned by e1 and e2. In consequence K(X ,Y ) = K(e1,e2) is in each case a smooth function
on U. Find these respective sectional curvature functions associated with the given three metric tensor
fields.
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Example 6.14

For surfaces in R3 we would of course like to recover the Gaussian curvature as the sectional curvature
associated with the induced metric tensor on the surface. We illustrate that this is indeed the case by
considering a graph surface over U = R2:

Sa,b : r(x1,x2) = (x1 , x2 , a · (x1)2 + b · (x2)2) , (6.23)

where a and b are constants in R. The metric matrix function induced in U from the surface is:

G =

[
1+ 4 ·a2 · (x1)2 4 ·a ·b · x1 · x2

4 ·a ·b · x1 · x2 1+ 4 ·b2 · (x2)2

]
. (6.24)

The Gaussian curvature function of such a surface is classically known to be the following – see e.g.
[25, 30, 5]

K(x1,x2) =
4 ·a ·b

(1+ 4 ·a2 · (x1)2 + 4 ·b2 · (x2)2)2 . (6.25)

In particular, the curvature is positive when a and b have the same sign, negative when a and b have
opposite signs and K is zero if one or both of a and b is zero. See figure 6.4.

EXERCISE 6.15

Show that the function in equation (6.25) is precisely the sectional curvature function of (U,g,∇) –
computed directly from the surface induced metric matrix function.

Figure 6.4: From left to right, three surfaces from example 6.14: S1,1, S1,0 and S1,−1 with positive,
zero, and negative sectional curvature functions, respectively.
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6.4 Second derivatives of variation vector fields

As already alluded to in the introduction to this chapter, the curvature operator appears naturally
in the second order analysis of a (geodesic) variation H in (U,g,∇). In order to see this, we first
consider again a most general variation of an arc length parametrized base curve η, which is not
necessarily a geodesic:

Definition 6.16 We define a one-parameter family H of regular smooth curves that are

organized as an (u,s)-parametrized smooth surface in Q p so that:

H0(s) = η(s) for all s ∈ [0,L] , and Hu(0) = η(0) = p for all u ∈]− ε , ε[. (6.26)

The parametrized family of curves H is then a variation of the base curve η.

The local linear transverse behaviour of the nearby curves close to η is, for each s0, obtained by
the tangent vectors to the u-curves Hu(s0) at u = 0:

Definition 6.17 In the above setting, the vector field V ∈ X(γ) defined by

V (s) =
∂

∂u
Hu(s)|u=0 (6.27)

is called the variation vector field along γ induced by the variation H of γ.

The vector field V is naturally generalized to a vector field along every (longitudinal) curve Hu0 in
the variation as follows:

V (u0,s) =
∂

∂u
Hu(s)|u=u0 . (6.28)

In the next section we shall consider this extended field in the special case of a geodesic variation,
i.e. where all the longitudinal curves in the variation are geodesics issuing from the same point
p = η(0).

The extended variation vector field V along the longitudinal curves in H is but one example of a
general vector field along H itself:

Definition 6.18 We consider a Local Riemannian Manifold Mn = (U,g,∇). Let H denote a

variation based on a given arc length parametrized regular smooth curve η, so that H(u,s), u ∈ ]−ε , ε[,
s ∈]0,L[, defines a regular smooth surface in Un. A smooth vector field W along H is then defined
as a smooth choice of vector W (u,s) in each tangent space THu(s)U for all u and s in their respective
parameter domains. We write as follows: W ∈ X(H).
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The vector field W along the variation surface H in U is thus to be thought of as an
association of a vector (in TqU) to each point q on the surface without demanding that
the vector lies in the tangent space of that surface.

The natural (coordinate) tangent vectors to the surface H along H itself are, of course, then the
following two fields h1 and h2 in X(H):

h1(u,s) =
∂

∂u
Hu(s)

h2(u,s) =
∂

∂s
Hu(s) .

(6.29)

We then have the following relation.

Lemma 6.19 With the notation above we get:

∇h1∇h2W −∇h2∇h1W = R(h1 , h2)W , (6.30)

or, equivalently, in terms of covariant derivations:

D
∂u

(
D
∂s

W
)
− D

∂s

(
D
∂u

W
)
= R

(
∂

∂u
Hu(s) ,

∂

∂s
Hu(s)

)
W . (6.31)

This lemma may seem obvious in view of the definition of the curvature operator (plus
the fact that the Lie bracket [h1,h2] vanishes everywhere), but it is not that trivial because
the vector fields h1 and h2 are not fields in X(U), only in X(H).

The proof is a long – but fairly direct – calculation. We refer to [4, pp. 98-99] for a detailed
account.

6.5 The Jacobi equation

Suppose now that the variation H considered in the previous section is a geodesic variation, i.e.
every curve Hu, u ∈]− ε , ε[, is a geodesic issuing from the common point p = Hu(0) for all u.
Then we have for all u and all s:

D
∂s

(
∂

∂s
Hu(s)

)
= 0 , (6.32)
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so that lemma 6.19 therefore gives

0 =
D
∂u

(
D
∂s

(
∂

∂s
Hu(s)

))
=

D
∂s

(
D
∂u

(
∂

∂s
Hu(s)

))
+R

(
∂

∂u
Hu(s) ,

∂

∂s
Hu(s)

)
∂

∂s
Hu(s)

=
D
∂s

(
D
∂s

(
∂

∂u
Hu(s)

))
+R

(
∂

∂u
Hu(s) ,

∂

∂s
Hu(∂s)

)
∂

∂s
Hu(s) ,

(6.33)

where we have also used the previously observed fact, that we can interchange the two covariant
derivations:

D
∂u

(
∂

∂s
Hu(s)

)
=

D
∂s

(
∂

∂u
Hu(s)

)
. (6.34)

For geodesic variations we choose to denote and name the variation vector field as follows:

Notation 6.20 Let H be a geodesic variation in U based on a geodesic γ parametrized by arc

length s ∈ [0,L]. The corresponding variation vector field along γ is then denoted as follows:

J(s) =
∂

∂u
Hu(s)|u=0 . (6.35)

Using this expression for J in (6.33) – restricted to the base geodesic γ – we get for all s ∈ [0,L]:

D2

ds2 J(s)+R(J(s) , γ
′(s))γ ′(s) = 0 . (6.36)

Definition 6.21 Let γ be a geodesic in U. A vector field J ∈ X(γ) is called a Jacobi vector

field along γ if it stems from a geodesic variation H as described above, or, equivalently, if it is a vector
field along γ that is g-orthogonal to γ and satisfies the equation (6.36), with J(0) = 0. The equation
(6.36) is called the Jacobi equation along γ.

Note the two claims contained in the definition above. Firstly, that if J stems from a
variation H, then it is g-orthogonal to the base curve (we knew this already from the
Gauss lemma in chapter 4), but secondly also, that if J is a vector field along γ which
is g-orthogonal to γ and satisfies the Jacobi equation with J(0) = 0 then there exists a
variation H that produces the vector field as the variation vector field of H, see e.g. [4, p.
113].

In this sense we are now on the road to actually see what was claimed in the introduction,
e.g. that positive curvature will make nearby geodesics re-converge back to the base
geodesic in a geodesic variation. The length function ‖J(s)‖g of the Jacobi field will
give us a measure of this convergence – or lack of convergence.
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A first observation concerning Jacobi fields is the following, which is well-known from other
linear second order ordinary differential equation systems:

Proposition 6.22 Any Jacobi field along a given geodesic γ is determined by its initial

conditions, J(0) and DJ
ds (0) at γ(0).

Proof. Let {E1(s), · · · ,En(s)} denote a parallel orthonormal frame field along γ, and let us define
unique coefficient functions as follows for all indices i and j:

J(s) = ∑
j

f j(s) ·E j(s)

D
ds

J(s) = ∑
j

f ′j(s) ·E j(s)

D2

ds2 J(s) = ∑
j

f ′′j (s) ·E j(s)

ai j = g (R(Ei(s) , γ
′(s))γ ′(s) , E j(s)) = R (Ei(s) , γ

′(s) , γ
′(s) , E j(s)) .

(6.37)

Then
D2

ds2 J(s) = ∑
i

f ′′i (s) ·Ei(s) (6.38)

and
R(J(s) , γ

′(s))γ ′(s) = ∑
j

g (R(J(s) , γ
′(s))γ ′(s) , E j(s)) ·E j(s)

= ∑
i j

fi(s) ·g (R(Ei(s) , γ
′(s))γ ′(s) , E j(s)) ·E j(s)

= ∑
i j

fi(s) ·ai j(s) ·E j(s) .

(6.39)

The Jacobi equation is then equivalent to the following system of equations

f ′′j (s)+∑
i

fi(s) ·ai j(s) = 0 for all j = 1,2, · · · ,n , (6.40)

which is a linear differential equation system of second order. Given initial conditions as in the
proposition there is thence a unique solution to the Jacobi equation as claimed.
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A second fundamental observation relates directly the behaviour of geodesics close to a point p to
the curvature tensor – in fact to the sectional curvature of two-plane sections in TpU at p, see [4,
pp. 114–115]:

Theorem 6.23 Let γ denote a geodesic in U and let J(s) denote a Jacobi field along γ with

initial conditions J(0) = 0 and DJ
ds (0) = w. Then the Taylor expansion of ‖J(s)‖2 at s = 0 is given by:

‖J(s)‖2
g = s2− 1

3
R (w , γ

′(0) , γ
′(0) , w) · s4 + ε(s) · s4 , (6.41)

where ε(s) is an epsilon function of s, i.e. ε(s) 7−→ 0 for s 7−→ 0.

Proof. We use shorthand notation as follows: J′ = J′(s) = D
dsJ(s), J′′ = J′′(s) = D2

ds2 J(s) etc.
Moreover we will also denote g(X ,Y ) by 〈X ,Y 〉, so that we can write as follows – evaluating
derivatives at s = 0 in the usual way when setting up Taylor’s formula:

〈J,J〉′ = 2 · 〈J,J′〉= 0

〈J,J〉′′ = 2 · 〈J′,J〉′ = 2 · 〈J′′,J〉+ 2 · 〈J′,J′〉= 2 · 〈w,w〉= 2

〈J,J〉′′′ = 2 · 〈J′′,J〉′+ 2 · 〈J′,J′〉′ = 2 · 〈J′′′,J〉+ 6 · 〈J′′,J〉= 0

〈J,J〉′′′′ = 2 · 〈J′′′,J〉′+ 6 · 〈J′′,J′〉′

= 2 · 〈J′′′′,J〉+ 8 · 〈J′′′,J′〉+ 6 · 〈J′′,J′′〉
= −8 · 〈(R(J,γ ′)γ ′)′,w〉 ,

(6.42)

where – to get the last expression – we have used that J′(0) = w and that J(s) satisfies the Jacobi
equation,

J′′(s) = −R(J(s),γ ′(s))γ ′(s) , (6.43)

so that
J′′′(s) = − (R(J(s),γ ′(s))γ ′(s))′ , (6.44)

and, at s = 0:
J′′(0) = −R(J(0),γ ′(0))γ ′(0) = 0 . (6.45)

At this point we need the following identity, which holds for any W ∈ X(γ):〈
D
ds

(R(J,γ ′)γ ′),W
〉
= 〈(R(J,γ ′)γ ′)′ ,W 〉= 〈R(J′,γ ′)γ ′,W 〉 . (6.46)

Indeed, we have – using the symmetries of proposition 6.5 and the rules for covariant differentia-
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tion: 〈
D
ds

(R(J,γ ′)γ ′),W
〉
=

d
ds
〈R(J,γ ′)γ ′,W 〉−〈R(J,γ ′)γ ′,W ′〉

=
d
ds
〈R(W ,γ ′)γ ′,J〉−0

=

〈
D
ds

(R(W ,γ ′)γ ′),J
〉
+ 〈R(J′,γ ′)γ ′,W 〉

= 〈R(J′,γ ′)γ ′,W 〉 .

(6.47)

Therefore, inserting into the last expression in equation (6.42), we get:

〈J,J〉′′′′ = −8 · 〈(R(J′,γ ′)γ ′),w〉= −8 ·R (w , γ
′(0) , γ

′(0) , w) . (6.48)

Using Taylor’s theorem for h(s) = 〈J,J〉(s) at s = 0 then gives the theorem as stated.

Note that if w is g-orthogonal to γ ′(0) with ‖w‖g = 1 we get from ‖γ ′(s)‖g = 1 that

R (w , γ
′(0) , γ

′(0) , w) = Kp(γ
′(0),w) , (6.49)

and thence the following consequence from theorem 6.23:

Corollary 6.24

‖J(s)‖2
g = s2− 1

3
Kp(γ

′(0),w) · s4 + ε(s) · s4 , (6.50)

and therefore, in fact:

‖J(s)‖g = s− 1
6

Kp(γ
′(0),w) · s3 + ε(s) · s3 , (6.51)

In ’continuation’ of the previous figures 6.1 and 6.2 where the (sectional) curvature functions are
constant zero and constant positive, respectively, we must also show a corresponding example of
constant negative curvature, see figure 6.5 below.

6.6 Constant curvature

Definition 6.25 We say that a Local Riemannian Manifold Mn = (U,g,∇) has constant

curvature k if all sectional curvatures of M are identical, i.e. Kp(X ,Y ) = K(X ,Y ) = k for all p ∈U
and for all pairs of linearly independent vectors X and Y in every tangent space TpU.
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Figure 6.5: A geodesic variation in the Poincaré half plane. The variation vector field is again
indicated in light blue along the green base geodesic of the spray. The simple (scaled) indicatrix
field of the metric tensor is also indicated along the base geodesic. In contrast to the previous
figures 6.1 and 6.2 the indicatrix circles become smaller and smaller as they approach the boundary
of the half plane. Although the Euclidean length of the displayed Jacobi field goes to a constant
the g-length of the field becomes exponentially large when it approaches the boundary x2 = 0 – in
precise accordance with the equation (6.51).

The Jacobi fields of geodesic variations in constant curvature manifolds are quite simple:

Proposition 6.26 Let Mn have constant curvature k and suppose that J(s) is an orthogonal

Jacobi field along a geodesic γ in M, parametrized by s ∈ [0,L]. Let w ∈ X(γ) denote a parallel vector
field along γ with w(0) = DJ

ds (0) and ‖w(s)‖g = 1. Then

J(s) =


sin(s·

√
k )√

k
·w(s) if k > 0

s ·w(s) if k = 0
sinh(s·

√
−k )√

−k
·w(s) if k < 0 .

(6.52)

Proof. Since K(X ,Y ) = k for all X and Y , we also have that R (X ,Y ,Y ,X) = k for all orthogonal
vectors X and Y with ‖X‖= ‖Y‖= 1 – since then Area2(X ,Y ) = 1. In the notation of the proof
of proposition 6.22 we therefore have

ai j(s) = k ·δi j =

{
k if i = j

0 if i 6= j
(6.53)
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so that the Jacobi equation becomes equivalent with

f ′′j (s)+ k · f j(s) = 0 for all j = 1,2, · · · ,n . (6.54)

However, by choosing E1(s) = w(s) only f1(s) is non-zero, because

D
ds

J(0) = ∑
j

f ′j(0) ·E j(0) = w(0) . (6.55)

Finally we therefore just need to solve

J(s) = f1(s) ·E1(s) = f1(s) ·w(s)
0 = f ′′1 (s)+ k · f1(s)

(6.56)

with f1(0) = 0 and f ′1(0) = 1. The unique solutions are precisely the ones given in equation
(6.52).

EXERCISE 6.27

Suppose Mn has constant curvature k. Show by explicit calculation from (6.52) that ‖J(s)‖g can be
expressed as follows for small at s. Hint: Apply Taylor expansion of ‖J(s)‖2

g at s = 0 and compare as
in Corolllary 6.24.

‖J(s)‖g = s− 1
6

k · s3 + ε(s) · s3 . (6.57)

6.7 Sectional geodesic circles

In a given tangent space TpU of (U,g,∇) we consider a 2-plane section σ spanned by two
g-orthogonal vectors v and w, σ = span(v,w). The exponential map Expp restricted to σ is – in
a sufficiently small 2-dimensional metric disc Bσ

p(ρ) around the origin in σ – a diffeomorphism
onto the image geodesic disc Dσ

p(ρ) = Expp(B
σ
p(ρ)) in U. We use, for example, in accordance

with previous notation:
Bσ

p(ρ) = {V ∈ σ | ‖V‖g ≤ ρ} . (6.58)

We can– and will – consider Dσ
p(ρ) as a geodesic variation surface based on any one of the

geodesics γθ issuing from p in Exp(σ) in the direction of cos(θ) · v+ sin(θ) ·w for any given
θ ∈]−π , π].

The boundaries of the two discs Bσ
p(ρ) and Dσ

p(ρ) will be called the sectional metric circle in
TpU and the sectional geodesic circle in U, respectively. They will be denoted by ∂Bσ

p(ρ) and
Dσ

p(ρ).
We want to compare the g-length of the sectional metric circle with the g-length of the sectional
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geodesic circle. First, we observe that

L(∂Bσ
p(ρ)) = 2 ·π ·ρ . (6.59)

EXERCISE 6.28

Show that the length of the metric circle of radius ρ in σ is indeed given by equation 6.59. Hint: The
metric circle is an ellipse determined by the constant metric gp in TpU restricted to σ. The ellipse is
the intersection of σ with the indicatrix Ip of g at p. The exercise is to show that the length of that
ellipse with respect to that constant metric – which thus defines it – is precisely 2 ·π ·ρ. Better hint:
Express/parametrize the metric circle in a g-orthonormal basis in σ.

For each radial base geodesic γθ the geodesic variation H gives a Jacobi field of length ‖Jθ(s)‖
along γ, s ∈ [0,ρ]. Since this is the orthogonal transverse variation vector field of the variation
surface, the length of the sectional geodesic circle of geodesic radius ρ from p is:

L(Dσ
p(ρ)) =

∫
θ=π

θ=−π

‖Jθ(ρ)‖g dθ . (6.60)

Inserting the Taylor series estimate of ‖Jθ(ρ)‖g from (6.51) we get, in terms of the sectional
curvature at p – for small ρ:

L(Dσ
p(ρ)) = 2 ·π ·

(
ρ− 1

6
Kp(v,w) ·ρ3 + ε(ρ) ·ρ3

)
(6.61)

In short, we have shown the following infinitesimal comparison theorem:

Theorem 6.29 Using notation as above, we can construct the value of the sectional curvature

Kp(σ) = Kp(v,w) as follows – using only the values of the lengths of small sectional geodesic circles
centered at p in U:

Kp(σ) = lim
ρ7−→0

(
3
π

)
·
(

2πρ−L(Dσ
p(ρ))

ρ3

)
. (6.62)

EXERCISE 6.30

Suppose that Mn
k = (U,g,∇) has constant sectional curvature k. Find the exact expression for the

length L(Dσk
p (ρ)) of the geodesic circles in Mn

k for each k, all p, all ρ, and all two-plane sections σk.
Show that your expression gives back the respective values of k when the expression is inserted into
equation (6.62).
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Figure 6.6: Geodesic circles (in blue) in metrics of constant curvature – from the left: Constant
curvature −1, 0, and 1, respectively. Although all three geodesic circles have the same radius,
ρ = 3, they have dramatically different total lengths, cf. equation (6.61) and exercise 6.30.

6.8 From sectional curvatures to the curvature tensor

In the previous section we have seen how all the sectional curvatures of a Local Riemannian
Manifold can be obtained very concretely – simply from first sampling lengths of small geodesic
circles and then comparing them with the lengths of standard metric circles of the same radii. It is
now natural to ask if the sectional curvatures themselves give ’access’ to more information about
the full curvature tensor R . The following result shows that indeed they do. In fact, two curvature
tensors cannot have the same sectional curvatures without being identical. Moreover, we display
an interesting – but somewhat lengthy – explicit formula which gives the curvature tensor in terms
of sectional curvatures:

Proposition 6.31 Let Mn = (U,g,∇). Let R̂ denote a multi-linear mapping at p with the

same symmetry properties as R , see propositions 6.2 and 6.5. Suppose that the two mappings give
rise to the same sectional curvatures for all two-plane sections σ in TpU, i.e. K̂(σ) = K(σ). Then
R̂ = R , i.e.

R̂ (X ,Y ,Z,U) = R (X ,Y ,Z,U) for all X , Y , Z, and U in TpU . (6.63)

In fact, the value of R (X ,Y ,Z,U) can be spelled out directly in terms of addends of sectional-curvature-
like values of the following bi-quadratic function:

κ(X ,Y ) = R (X ,Y ,Y ,X) . (6.64)
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The expansion of R (X ,Y ,Z,U) in terms of κ follows:

6 ·R (X ,Y ,Z,U) = κ(X +U ,Y +Z)−κ(X ,Y +Z)−κ(U ,Y +Z)−κ(Y +U ,X +Z)

+κ(Y ,X +Z)+κ(U ,X +Z)−κ(X +U ,Y )+κ(X ,Y )

+κ(U ,Y )−κ(X +U ,Z)+κ(X ,Z)+κ(U ,Z)

+κ(Y +U ,X)−κ(Y ,X)

−κ(U ,X)+κ(Y +U ,Z)

−κ(Y ,Z)−κ(U ,Z) .

(6.65)

The proofs of these results are fairly simple and purely algebraic applications of the common
symmetry properties of the curvature mappings. See [4, p. 95] and [16, pp. 252–253] for direct
and crisp accounts.

In consequence: If we know the lengths of all sufficiently small sectional geodesic circles
in a Riemannian manifold of any dimension, then we can extract the curvature tensor
from these lengths.

6.9 Two dimensions; more examples

We finish this chapter with a few illustrations, which show (in the same way as in the above
figures) wedges of geodesic sprays, Jacobi fields along chosen geodesics, and the corresponding
(sectional) geodesic circles for two-dimensional Local Riemannian Manifolds M2 = (U2,g,∇).
These examples typically have variable curvature – like the surfaces Sa,b in example 6.14, but
there are nice benefits to harvest in the low dimension.

In dimension 2 the Jacobi equation is particularly simple. First we observe, that since the Jacobi
fields are orthogonal to their base geodesic, they are automatically proportional to the unique
vector field w ∈ X(γ) which is everywhere orthogonal to γ ′ and having g

(DJ
ds (0),w

)
= 1 :

J(s) = f (s) ·w(s) . (6.66)

In this simple setting the Jacobi equation (with initial conditions) reduces to:

f ′′(s)+K(s) · f (s) = 0 , f (0) = 0 , f ′(0) = 1 , (6.67)

where K is the sectional curvature of M2 along γ:

K(s) = K(γ(s))

= K(γ ′(s),w(s))

= R (w(s),γ ′(s),γ ′(s),w(s))

= R 1221(γ(s)) .

(6.68)
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EXERCISE 6.32

The surfaces Sa,b, that were studied in example 6.14, have curvature functions as given in equation
(6.25). Given a and b, show that the coordinate curves η1(t) = (t,0) and η2(t) = (0, t) can be
reparametrized to geodesic curves γ1(s) and γ2(s) with γ1(0) = γ2(0) = (0,0) in (U,g,∇). Let J1

and J2 denote the corresponding Jacobi fields along γ1 and γ2, respectively. Show that for any given
a and b there exists a positive exponent α so that 1

sα · ‖J1(s)‖g and 1
sα · ‖J2(s)‖g approach constant

values when s goes to infinity. Extra: What is the smallest value of α that will work for a given pair
(a,b)?

Figure 6.7: Geodesic variations and Jacobi fields in the (U,g,∇)-representations of three surfaces
Sa,b from example 6.14. From the left: a positive and b zero; a positive and b negative; a and b
both positive. The surfaces and the corresponding lifted geodesic variations and Jacobi fields are
displayed in figure 6.8 below. Note that the Jacobi fields are not necessarily Euclidean-orthogonal
to the base curves in (U,g,∇) – they are g-orthogonal to the base curves. Compare with figure
6.8 below.
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Figure 6.8: Geodesic variations and Jacobi fields on three surfaces Sa,b from example 6.14.
From the left: a positive and b zero; a positive and b negative; a and b both positive. The
corresponding displays in the respective parameter domains with the surface induced metric tensor
fields are shown in figure 6.7 above. Note that the Jacobi fields are visually orthogonal to the base
curves in the Euclidean metric inherited by the surfaces from the ambient Euclidean space. The
orthogonality is represented as g-orthogonality in (U,g,∇), see figure 6.7.
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Chapter 7

Tensor fields

We have already encountered two tensor fields – and already named them so: The metric tensor
field g in a Local Riemannian Manifold (Un,g,∇), and the ensuing curvature tensor field R .
They deserve the name of tensors because they are pointwise multilinear maps of vector fields in
X(U) into F(U) in the sense already established for these two particular tensor fields:

7.1 The tensor property

Definition 7.1 Let X1,X2, · · · ,Xq denote q≥ 1 vector fields in X(U). A tensor field T of type

q is a multilinear mapping from q copies of X(U) into F(U):

T : X(U)×X(U)×·· ·×X(U) 7−→ F(U) , (7.1)

which means that T (X1, · · · ,Xq) is a smooth function on U which is linear at each point and in each of
the q arguments as illustrated here:

T (X1, · · · , f ·Y + h ·Z , · · · ,Xq) = f ·T (X1, · · · , Y , · · · ,Xq)+ h ·T (X1, · · · , Z , · · · ,Xq) (7.2)

for all real values of f and h.

It is important to note, that once the tensor field is given, then the evaluation of the
real value T (X1, · · · , f ·Y + h ·Z , · · · ,Xq) at a given point p ∈U can be obtained from
knowing only the vector values of the vector fields in TpU and the values of the functions
f and h at the point p. It is not needed to know the vector values or the function values
in a neighborhood around p – as it would have been needed if the tensor evaluation had
been depending on, say covariant derivatives of the vector fields or derivatives of the
functions.
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Notation 7.2 The set of smooth tensor fields of type q on U is denoted by Tq(U), q > 1.

The metric tensor field g of (U,g,∇) is indeed a tensor field of type 2, since it was already ’born’
as a pointwise 2-linear mapping on each pair of vectors from the tangent space TpU. So we can
write g ∈ T2(U).

The curvature tensor field R is a tensor field of type 4, i.e. R ∈ T4(U). Indeed, we just have to
recall the multilinearities of the curvature operator R from chapter 5:

Proposition 7.3 The curvature operator R is bilinear in its first two arguments, X and Y :

R( f ·X1 + h ·X2 , Y )Z = f ·R(X1 , Y )Z + h ·R(X2 , Y )Z

R(X , f ·Y1 + h ·Y2)Z = f ·R(X , Y1)Z + h ·R(X , Y2)Z
(7.3)

for all f and h in F(U) and all X1, X2, Y1, and Y2 in X(U).

And R is linear in its third argument, Z:

R(X ,Y )(Z +W ) = R(X ,Y )Z +R(X ,Y )W

R(X ,Y )( f ·Z) = f ·R(X ,Y )Z
(7.4)

for all f in F(U) and all X , Y , Z and W in X(U).

It follows in particular therefore that R (X ,Y ,Z,U) = g (R(X ,Y )Z,U) satisfies all the tensor
properties as illustrated here:

R (X1, · · · , f ·Y + h ·Z , · · · ,X4) =

f ·R (X1, · · · , Y , · · · ,X4)

+h ·R (X1, · · · , Z , · · · ,X4)

(7.5)

One could think, that we might be able to produce a tensor field of type 3 out of the
covariant derivative operator as follows:

C(X ,Y ,Z) = g (∇XY , Z) for all X , Y , Z in X(U). (7.6)

But this C is not a tensor field, see exercise 7.4.
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EXERCISE 7.4

Show that the mapping C defined in equation (7.6) is not a tensor field.

EXERCISE 7.5

Show that the mapping defined by

B(X ,Y ,Z) = g (g(X ,Y ) ·Z , X) for all X , Y , and Z in X(U) (7.7)

is not a tensor field.

EXERCISE 7.6

Let W denote a fixed given vector field in X(U). Show that the mapping defined by

Q(X) = g(W ,X) for all X in X(U) (7.8)

is a tensor field of type 1.

Proposition 7.7 Let f denote a smooth function in F(U). The Hessian of f was introduced

in chapter 3, definition 3.51:

Hess( f )(X ,Y ) = X(Y ( f ))− (∇XY ) ( f ) for all X and Y in X(U). (7.9)

The Hessian Hess( f ) is a symmetric tensor field of type 2, i.e. Hess( f ) ∈ T2(U).

Proof. We first observe, that

(∇XY ) ( f ) = (∇Y X) ( f )+ ([X ,Y ])( f )

= (∇Y X) ( f )+X(Y ( f ))−Y (X( f ))
(7.10)

so that
Hess( f )(X ,Y ) = X(Y ( f ))− (∇XY ) ( f )

= X(Y ( f ))− (∇Y X) ( f )−X(Y ( f ))+Y (X( f ))

= Y (X( f ))− (∇Y X) ( f )

= Hess( f )(Y ,X)

(7.11)

which means, that the operator Hess( f ) is symmetric.
To establish the tensor property of Hess( f ) we recall the definition of the gradient of f :

Y ( f ) = g(grad( f ),Y ) for all Y ∈ X(U) . (7.12)
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Therefore

X(Y ( f )) = X(g(grad( f ),Y )) = g(∇X grad( f ),Y )+ g(grad( f ),∇XY )

= g(∇X grad( f ),Y )+ (∇XY )( f ) ,
(7.13)

so that

Hess( f )(X ,Y ) = g(∇X grad( f ),Y )+ (∇XY )( f )− (∇XY )( f ) = g(∇X grad( f ),Y ) . (7.14)

Since ∇X Z is linear in the X-argument, and since g is linear in both of its arguments, we see that
Hess( f ) is in fact linear in both of its arguments, so that it is a tensor field of type 2.

7.2 Tensor coordinates

As was the case for the metric tensor field g and for the curvature tensor field R , every tensor field
in Tq(U) is uniquely determined by its smooth coefficient functions with respect to the canonical
basis vector fields {e1, · · · ,en} in U:

Proposition 7.8 Let T be a tensor of type q in Un and let Xi = ∑
j=n
j=1 u j

i ·e j for q given vector

fields Xi, i = 1, · · · ,q. Then u j
i , j = 1, · · · ,n, are the coefficient functions for Xi, and we have directly

from the multilinearity of T :

T (X1, · · · ,Xq) = T

(
j1=n

∑
j1=1

u j1
1 · e j1 , · · · ,

jq=n

∑
jq=1

u jq
q · e jq

)
= ∑

j1
∑
j2

· · ·∑
jq

u j1
1 · · · ·u

jq
q ·T

(
e j1 , · · · ,e jq

)
= ∑

j1
∑
j2

· · ·∑
jq

u j1
1 · · · ·u

jq
q ·Tj1,··· , jq .

(7.15)

The functions T
(
e j1 , · · · ,e jq

)
= Tj1,··· , jq , where all indices jk run independently through all values

1,2, · · · ,q, are called the components of the tensor field T with respect to the canonical basis vector
fields {e1, · · · ,en}.

Note that the last expression in equation (7.15) is most conveniently written without the
summation signs

u j1
1 · · · ·u

jq
q ·Tj1,··· , jq , (7.16)

which is allowed by Einstein’s summation convention, i.e. summation is tacitly active
whenever the expression in question contains an upper index and a lower index with the
same name. Sometimes, however, it can be relevant to use the explicit summation signs
as a redundant support for the reading.
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In general there are nq component functions for a tensor of type q in a Riemannian manifold of
dimension n. Compare with the number of component functions for g and R – in practice the
number of effectively different component functions can often be reduced due to the symmetries
of the tensor fields in question.

Example 7.9

The coordinate functions of the metric tensor field g in (U,g,∇) with respect to the canonical basis
fields {e1, · · · ,en} are clearly the functions

g(ei,e j) = gi j , (7.17)

so that we (still) have:

g(X ,Y ) = ∑
i

∑
j

ui ·u j ·gi j for all X = ∑
i

ui · ei and all Y = ∑
j

v j · e j. (7.18)

The coordinate functions for the curvature tensor are likewise:

R (ei,e j,ek,em) = R i j k m (7.19)

so that
R (X ,Y ,Z,U) = ∑

i
∑

j
∑
k

∑
m

ui · v j ·wk · rm ·R i j k m (7.20)

for all X = ∑i ui · ei, Y = ∑ j v j · e j, Z = ∑k wk · ek, and U = ∑m rm · em.

7.3 The Ricci curvature and the scalar curvature

Definition 7.10 Let {E1, · · · ,En} denote any choice of a g-orthonormal basis in each tangent

space TpU in a Riemannian manfold (U,g,∇) and let X and Y denote two vector fields in X(U). The
following mapping of (X ,Y ) into F(U) is then well-defined:

Ric(X ,Y ) = ∑
i

R (X ,Ei,Ei,Y ) = ∑
i

R (Ei,X ,Y ,Ei) for all X and Y in X(U). (7.21)

Proposition 7.11 The mapping Ric is a symmetric tensor field of type 2, i.e. Ric ∈ T2(U).

It is called the Ricci tensor field of (U,g,∇).

Proof. The symmetry and multilinearity of Ric follow directly from these properties of the
curvature tensor R . We must then also show that Ric(X ,Y ) is independent of the choice of
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g-orthonormal basis, that is used for its construction. First we observe the following identities
which again follow from the symmetries of R and from its construction from the curvature
operator R – we assume that X and Y are fixed and given vector fields in X(U):

R (X ,Ei,Ei,Y ) = R (Ei,X ,Y ,Ei)

= g(R(Ei,X)Y ,Ei)
(7.22)

Now consider the map (still with X and Y fixed and given):

R(Z) = R(Z,X)Y for all Z in X(U)) , (7.23)

which, for each point p ∈U is a linear map from the vector space TpU into TpU. Expressing this
map in any basis {a1, · · · ,an} of TpU gives a matrix representation h j

i of R:

R(ai) = ∑
j

h j
i ·a j . (7.24)

The trace of the matrix representation is thus:

trace(R) = ∑
i

hi
i . (7.25)

The trace of the matrix representation h j
i is independent of the choice of basis {a1, · · · ,an}

of TpU. Therefore we can just write it like trace(R). The invariance of the trace follows
from the well-known result in matrix linear algebra: trace(D−1 ·A ·D) = trace(A).

We begin to extract the said trace as follows:

g(R(ai),ak) = ∑
j

h j
i ·g(a j,ak) . (7.26)

At this point we now choose any g-orthonormal basis {a1, · · · ,an} = {E1, · · · ,En} as in the
statement of the theorem. Then

g(R(Ei),Ek) = ∑
j

h j
i ·δ j k = hk

i , (7.27)

where as usual

g(E j,Ek) = δ j k =

{
1 for j = k

0 for j 6= k .
(7.28)

It follows that
∑

i
g(R(Ei),Ei) = ∑

i
hi

i = trace(R) (7.29)

independent of choice of g-orthonormal basis {E1, · · · ,En}. In conclusion we have therefore now



7.3. THE RICCI CURVATURE AND THE SCALAR CURVATURE 205

shown that
trace(R) = ∑

i
g(R(Ei),Ei)

= ∑
i

g(R(Ei,X)Y ,Ei)

= ∑
i

R (Ei,X ,Y ,Ei)

= ∑
i

R (X ,Ei,Ei,Y )

= Ric(X ,Y )

(7.30)

– independent of the choice of g-orthonormal basis, which is what we wanted to show.

Proposition 7.12 The coordinate functions of the Ricci tensor with respect to the canonical

basis vector fields {e1, · · · ,en} are determined via the coordinate functions of the curvature tensor as
follows:

Ric j k = Ric(e j,ek) = ∑
i

∑
m

R i j k m ·gim , (7.31)

or, alternatively, using the symmetry of R :

Ricim = Ric(ei,em) = ∑
j
∑
k

R i j k m ·g j k . (7.32)

We have again applied the notation gm j for the elements of the inverse of the metric matrix function
associated to g with respect to the canonical basis.

Proof. We make use of the trace expression in equation (7.25) for Ric(X ,Y ) (from the proof of
proposition 7.11):

Ric(X ,Y ) = trace(R) = ∑
i

hi
i , (7.33)

which now, in the setting of this proposition, specializes to, with X = ew and Y = ed:

Ric(ew,ed) = ∑
k

hk
k , (7.34)

where hk
m is now determined by the following version of equation (7.24) – choosing the canonical

basis {e1, · · · ,en} for {a1, · · · ,an} and Z = ei:

R(ei) = ∑
k

hk
i · ek , (7.35)

with
R(ei) = R(ei,ew)ed , (7.36)
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which means
R(ei,ew)ed = ∑

k
hk

i · ek , (7.37)

and thence

g (R(ei,ew)ed , em) = R iwd m = g

(
∑
k

hk
i · ek , em

)
= ∑

k
hk

i ·gk m , (7.38)

and
∑
m

R iwd m ·gm j = ∑
m

∑
k

hk
i ·gk m ·gm j = h j

i , (7.39)

so that finally:
∑

j
∑
m

R j wd m ·gm j = ∑
j

h j
j = Ric(ew,ed) , (7.40)

which shows the coordinate identities in the proposition.

The Ricci tensor can be obtained from knowledge about Ric solely on identical arguments, like
Ric(X ,X), via polarization:

Ric(X +Y ,X +Y ) = Ric(X ,X)+Ric(Y ,Y )+ 2 ·Ric(X ,Y ) , (7.41)

so that for all vector fields X and Y we have:

Ric(X ,Y ) =
1
2
· (Ric(X +Y ,X +Y )−Ric(X ,X)−Ric(Y ,Y )) . (7.42)

Definition 7.13 Let X ∈ TpU denote a g-unit vector and let {E1, · · · ,En} denote any choice

of a g-orthonormal basis. Then the following real value

Ric(X ,X) = ∑
i

R (X ,Ei,Ei,X) (7.43)

is called the Ricci curvature (at p) in the direction X .

The Ricci curvature Ric(X ,X) in any g-unit vector direction X is the sum of sectional curvatures
of orthogonal 2-plane sections which contain that direction:

Proposition 7.14

Ric(X ,X) =
n

∑
i=2

K(X ,Hi) , (7.44)

where {H1 = X ,H2, · · · ,Hn} is a (special) choice of g-orthonormal basis, where, as indicated, H1 = X
and the other (n−1) g-unit vectors in the basis are g-orthogonal to X and pairwise g-orthogonal.
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Proof. The statement follows directly from the definition of sectional curvatures in chapter 5.
Note that the squared area Area2(X ,Hi) is 1 for all i = 2, · · · ,n.

In other words, the Ricci curvature in direction X is the sum of the sectional curvatures of n−1
pairwise g-orthogonal 2-planes which contain X .

Finally we define the scalar curvature:

Definition 7.15 The scalar curvature of a Local Riemannian Manifold (U,g,∇) is the function

S ∈ F(U) which is obtained as the sum of Ricci curvatures in orthonormal directions, i.e.:

S = ∑
j

Ric(E j,E j) = ∑
j
∑

i
R (E j,Ei,Ei,E j) , (7.45)

where again {E1, · · · ,En} is any choice of g-orthonormal basis in each tangent space TpU.

The scalar curvature is clearly a sum of Ricci curvatures, namely, for any choice of orthonormal
basis {E1, · · · ,En}:

S = ∑
j

Ric(E j,E j) . (7.46)

And thence the scalar curvature is also a sum of sectional curvatures:

S = ∑
i

∑
j 6=i

K(Ei,E j) = 2 ·∑
i< j

K(Ei,E j) . (7.47)

Proposition 7.16 With respect to the canonical basis {e1, · · · ,en} we get from the expression

of the Ricci curvatures in (7.31):

S = ∑
i

∑
j

Rici j ·gi j = ∑
j
∑
k

Ric j k ·g j k = ∑
j
∑
k

∑
i

∑
m

R i j k m ·gim ·g j k . (7.48)

Proof. We represent the Ricci tensor (quadratic form) via a linear map B as follows

Ric(X ,Y ) = g(B(X),Y ) for all X and Y in X(U) (7.49)

with B(ai) = ∑k tk
i ·ak, where tk

i are the coefficient functions of B with respect to any chosen basis
{a1, · · · ,an}, so that

Ric(ai,a j) = g

(
∑

j
tk
i ·ak , a j

)
= ∑

j
tk
i ·gk j . (7.50)
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Consequently

∑
i

∑
j

Ric(ai,a j) ·gi j = ∑
i

∑
j
∑
k

tk
i ·gk j ·gi j = ∑

k
tk
k = trace(B). (7.51)

Since the trace is independent of the chosen basis we get:

∑
i

∑
j

Ric(ei,e j) ·gi j = ∑
i

Ric(Ei,Ei) = S , (7.52)

Obviously, in dimension 2 the Ricci curvature and the scalar curvature reduce to the sectional
curvature function:

Proposition 7.17 Let (U2,g,∇) be a 2-dimensional Riemannian manifold. Then

Ric(X ,X) = K(Y ,Z) for all g-unit X and any g-orthonormal pair Y and Z

S = 2 ·K(Y ,Z) for any g-orthonormal pair Y and Z
(7.53)

Similarly we have:

Proposition 7.18 Let (Un,g,∇) be an n-dimensional Riemannian manifold of constant

(sectional) curvature k. Then

Ric(X ,X) = (n−1) · k for all g-unit vector fields X

S = n · (n−1) · k , i.e. constant on all of U .
(7.54)

7.4 Covariant derivatives of tensor fields

In this section we consider the obvious question of how to use the Levi-Civita connection to define
and study the covariant derivatives of tensor fields – as we have previously done only for vector
fields.

Definition 7.19 We let T denote a tensor field on (U,g,∇) of type r and let X denote a vector

field in X(U). The covariant derivative ∇X T of T with respect to X is then a tensor of the same type r
determined by its operation on r vector fields Y1, · · · ,Yr as follows:

(∇X T )(Y1, · · · ,Yr) = ∇T (Y1, · · · ,Yr,X) , (7.55)
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where ∇T is shorthand for the following tensor field of type r+ 1, called the total covariant derivative
of T :

(∇T )(Y1, · · · ,Yr,X) = X (T (Y1, · · · ,Yr))−T (∇XY1, · · · ,Yr)

−·· ·−T (Y1, · · · ,∇XYr) .
(7.56)

Note that with this definition we get immediately the standard derivation properties including:

Proposition 7.20 Let f ∈ F(U). Then

(∇( f ·T ))(Y1, · · · ,Yr,X) = X( f ) ·T (Y1, · · · ,Yr)+ f · (∇T )(Y1, · · · ,Yr,X) . (7.57)

EXERCISE 7.21

Show the claim, i.e. equation (7.57).

This invariant definition is somewhat complicated, but it reduces considerably to something
quite reasonable if we calculate it in the following natural setting: Let α(t) denote a smooth
curve in (U,g,∇) with α(0) = p and α′(t) = X(α(t)), so that – in effect – we assume α is an
integral curve of the vector field X through p. As another hugely simplifying assumption we will
use {E1(t), · · · ,En(t)}, a parallel frame field (of g-orthonormal vector fields) along α, for the
expression of the covariant derivative of T . The restriction of the tensor field T to the curve α has
tensor coordinate functions along α, that we denote by shorthand as follows:

T (E j1(α(t)), · · · ,E jr(α(t))) = T (E j1(t), · · · ,E jr(t))

= Tj1··· jr(t)
(7.58)

Then – by the definition of ∇X T – we get:

(∇X T ) (E j1(t), · · · ,E jr(t)) = X(Tj1··· jr(t))−T (∇X E j1(t), · · · ,E jr(t))

−·· ·−T (E j1(t), · · · ,∇X E jr(t)) .
(7.59)

Since E jk(t) are all parallel along γ we have ∇X E jk(t) = 0 and therefore:

(∇X T ) (E j1(t), · · · ,E jr(t)) = X(Tj1··· jr(t)

=
d
dt

Tj1··· jr(t) ,
(7.60)

which thus constitutes a ’reasonability check’ for the definition 7.19.
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The general coordinate expression for the covariant derivative of T with respect to a vector field
follows directly from the definition 7.19 and it naturally involves the Christoffel symbols Γ`

k m:

Proposition 7.22 Let T
(
e j1 , · · · ,e jq

)
= Tj1,··· , jq denote the component functions of a tensor

field T ∈ Tq(U) with respect to the standard basis vector fields {e1, · · · ,en} in (Un,g,∇). Then the
component functions of the covariant derivative of T are:

(∇eiT ) (e j1 , · · · ,e jr) = ei (Tj1,··· , jr)

−T (∇eie j1 , e j2 , · · · , e jr)

−T (e j1 , ∇eie j2 , · · · , e jr)

· · ·
−T (e j1 , e j2 , · · · , ∇eie jr)

=
∂

∂xi (Tj1,··· , jr)

−∑
m1

Γm1
i j1 ·T (em1 , e j2 , · · · , e jr)

−∑
m2

Γm2
i j2 ·T (e j1 , em2 , · · · , e jr)

· · ·
−∑

mr

Γmr
i jr ·T (e j1 , e j2 , · · · , emr)

=
∂

∂xi (Tj1,··· , jr)

−∑
m1

Γm1
i j1 ·Tm1 j2 ··· jr

−∑
m2

Γm2
i j2 ·Tj1 m2 ··· jr

· · ·
−∑

mr

Γmr
i jr ·Tj1 j2 ···mr

(7.61)

Notation 7.23 A super-shorthand notation for the coordinates of the component functions of

the covariant derivative of T with respect to ei is often used in the literature:

(∇eiT ) (e j1 , · · · ,e jr) = Tj1··· jr ; i . (7.62)

Note the position of the semicolon ; and the position of the index i.
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In particular, if T ∈ T2(U) we get:

(∇eiT ) (ek , e`) = Tk ` ; i =
∂

∂xi Tk `−∑
m

Γm
ik ·Tm`−∑

q
Γq

i` ·Tk q . (7.63)

We illustrate the covariant derivative of tensor fields by stating two key results concerning the
derivative of the metric tensor field and of the curvature tensor field, respectively:

Proposition 7.24 The metric tensor g always has vanishing covariant derivative in (U,g,∇).

Proof. For all X , Y , and Z in X(U) we get:

(∇Zg)(X ,Y ) = (∇g)(X ,Y ,Z) = Z(g(X ,Y ))−g(∇ZX ,Y )−g(X ,∇ZY ) = 0 , (7.64)

because the Levi-Civita connection is – by definition – compatible with the metric.

EXERCISE 7.25

In exercise 7.6 we defined a tensor field Q of type 1 via a fixed vector field W ∈ X(U) as follows:
Q(X) = g(W ,X) for all X ∈ X(U). Show that the total covariant derivative ∇Q of Q is the following
tensor field of type 2:

(∇Q)(Y ,X) = g(∇XW , Y ) for all Y and X in X(U) . (7.65)

The following key result about the covariant derivatives of the curvature tensor is known in the
literature as Bianchi’s second (differential) equality. Note that we now permit ourselves to drop
the somewhat redundant parentheses around the tensor, that is being considered, and just write
∇R for (∇R ):

Proposition 7.26 The covariant derivative of the curvature tensor field R satisfies the

following identity for all vector fields X , Y , Z, U , and W in X(U):

∇R (X ,Y ,Z,U ,W )+∇R (X ,Y ,U ,W ,Z)+∇R (X ,Y ,W ,Z,U) = 0 (7.66)

or, equivalently,

∇W R (X ,Y ,Z,U)+∇ZR (X ,Y ,U ,W )+∇U R (X ,Y ,W ,Z) = 0 . (7.67)
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Interestingly, (7.66) can be used to show the following fact, which is otherwise not so obvious:

Theorem 7.27 Let Mn denote a Local Riemannian Manifold of dimension n≥ 3 which has

isotropic sectional curvatures in the sense that K(X ,Y ) is constant for all linearly independent X and Y
in TpU for each p ∈U. Then K(X ,Y ) does not depend on the point either, i.e. Mn has locally constant
(sectional) curvature.

7.5 Proofs concerning derivatives of the curvature tensor

In the proofs below we will several times use the existence – and the nice properties of – normal
coordinates. They were thoroughly introduced in Chapter 4. For convenience we repeat the main
result about normal coordinates – using the notations and the setting from Chapter 4:

Proposition 7.28 Let zi(Log(q)) denote normal coordinates at p. With respect to these

coordinates we get the following evaluations at p for all i, j, and k:

gi j(p) = g(Ei(p),E j(p)) = δi j

∇EiE j = 0 , i.e. Γk
i j(p) = 0

∂

∂zk gi j = Ek(gi j) = Ek(g(Ei,E j)) = 0 .

(7.68)

Proof of proposition 7.26. The equation

∇W R (X ,Y ,Z,U)+∇ZR (X ,Y ,U ,W )+∇U R (X ,Y ,W ,Z) = 0 . (7.69)

is proved pointwise, i.e at a given point p in U, and with all vectors X , Y , U , W , and Z individually
equal to any choice of one vector from the g-orthonormal basis {E1,E2, · · · ,En} of a normal
coordinate system for (U,g,∇) at p. This is sufficient since we are proving a tensor-identity.
Then the first term in (7.69) is expanded as follows, using first a symmetry of the curvature tensor:

∇W R (X ,Y ,Z,U) = ∇W R (Z,U ,X ,Y )

∇W g (R(Z,U)X , Y ) = g (∇W ∇Z∇U X−∇W ∇U ∇ZX , Y ) .
(7.70)

Now we write this equation three times with a cyclic permutation of W , Z, and U and sum the
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result:
∇W R (X ,Y ,Z,U)+∇ZR (X ,Y ,U ,W )+∇U R (X ,Y ,W ,Z)

= g (∇W ∇Z∇U X−∇W ∇U ∇ZX , Y )

+ g (∇Z∇U ∇W X−∇Z∇W ∇U X , Y )

+ g (∇U ∇W ∇ZX−∇U ∇Z∇W X , Y )

= g (R(W ,Z)∇U X +R(Z,U)∇W X +R(U ,W )∇ZX , Y )

= 0 ,

(7.71)

where the last equality follows from ∇U X = ∇W X = ∇ZX = 0 at the point p – which is again a
consequence of the choice of normal coordinates.

Proof of theorem 7.27. We have already seen in chapter 5 Proposition 5.31, that the sectional
curvatures determine the curvature tensor. If the sectional curvatures at p are independent of the
sections (the two-planes) at each point, it follows that the curvature tensor at p is a constant K(p)
times the following standard curvature-like and squared-area like tensor R 1 at p:

R (X ,Y ,Z,U) = K(p) ·R 1(X ,Y ,Z,U) = K(p) ·g(g(Y ,Z) ·X−g(X ,Z) ·Y , U) , (7.72)

because only then can we get

K(X ,Y ) =
R (X ,Y ,Y ,X)

Area2(X ,Y )
= K(p) for all linearly independent X and Y in TpU . (7.73)

EXERCISE 7.29

Show the claim that R = K(p) ·R 1 under the given conditions.

In consequence we therefore have – now with K as a smooth function on U – and using again
normal coordinates zi based at p and X = E j, Y = Ei, Z = Ek, U = E`, and W = Eh for any
choices of indices:

∇W R (X ,Y ,Z,U) = ∇W (K ·R 1(X ,Y ,Z,U))

= ∇Eh (K ·g(g(Ei,Ek) ·E j−g(E j,Ek) ·Ei , E`))

=
∂

∂zh (K · (δi k ·δ j `−δ j k ·δi`))

=
∂K
∂zh · (δi k ·δ j `−δ j k ·δi`) .

(7.74)
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Now we use the identity (7.69) above and get:

0 = ∇W R (X ,Y ,Z,U)+∇ZR (X ,Y ,U ,W )+∇U R (X ,Y ,W ,Z)

=
∂K
∂zh · (δi k ·δ j `−δ j k ·δi`)

+
∂K
∂zk · (δi` ·δ j h−δih ·δ j `)

+
∂K
∂z`
· (δih ·δ j k−δi k ·δ j h) .

(7.75)

Now, since n≥ 3, if h is given we can find i and j so that i, j, and h are all distinct. Set k = i and
`= j. Then it follows from (7.75) that

∂K
∂zh = 0 for all indices h . (7.76)

So all directional derivatives of the function K vanish at every point. The function, i.e. the
sectional curvature, is therefore locally constant.

7.6 Divergence of type-2 tensors

We first recall the definition of the divergence of vector fields as was presented in chapter 3:

Definition 7.30 Let V ∈ X(U) be a smooth vector field in (U,g,∇) and let {E1, · · · ,En}
denote a g-orthonormal basis in the tangent space TpU at the point p ∈U. The divergence of V at p is
then

div(V ) = ∑
i

g (∇EiV ,Ei) . (7.77)

The divergence of tensor fields of type 2 is similarly defined as follows:

Definition 7.31 Let A ∈ T2(U) be a smooth tensor field of type 2. The divergence of A is

then the following tensor field of type 1, div(A) ∈ T1(U), obtained as follows via any g-orthonormal
frame field {E1, · · · ,En} in U:

(div(A))(V ) = ∑
i
(∇EiA) (V ,Ei) . (7.78)

In general standard coordinates with basis field {e1, · · · , en} the sum on the right hand side can be
expressed as follows:
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Proposition 7.32 Let A ∈ T2(U) with coordinates Ai j with respect to {e1, · · · , en}. Then the

divergence of A has coordinates

(div(A))(ek) = ∑
i

∑
`

gi` ·Ai k ;`

= ∑
i

∑
`

gi` ·

(
∂Ai k

∂x`
−∑

m
Γm
` i ·Amk−∑

q
Γq
`k ·Aiq

)
,

(7.79)

so that when div(A) is evaluated on the vector field V = ∑k vk · ek ∈ X(U) we get the function
(div(A))(V ) ∈ F(U):

(div(A))(V ) = ∑
k

vk ·

(
∑

i
∑
`

gi` ·

(
∂Ai k

∂x`
−∑

m
Γm
` i ·Amk−∑

q
Γq
`k ·Aiq

))
. (7.80)

We have already encountered a number of type-2 tensors, and note here their respective diver-
gences:

Since the metric has covariant derivatives 0 we get immediately for all V :

(div(g))(V ) = 0 . (7.81)

Moreover, if we let f ∈ F(U) we then get from proposition 7.20:

(div( f ·g))(V ) = V ( f ) . (7.82)

Next to the metric, the Ricci tensor field Ric is the most prominent tensor field of type 2 – not
least because classical general relativity flows from the Einstein equation, which is formulated in
terms of both of these tensor fields – see section 7.8 below.

We shall need the divergence of the Ricci tensor. It is quite simply expressed via the scalar
curvature function S in U as follows:

Proposition 7.33

(div(Ric))(V ) =
1
2
·V (S) . (7.83)

Proof. We prove this identity most conveniently (again) by using normal coordinates – including
the choice of V = Ek. We have – in particular from the symmetries of the curvature tensor
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(Proposition 5.5):

(div(Ric))(Ek) = ∑
i
(∇Ei Ric) (Ek,Ei)

= ∑
i

∇Ei Ric(Ek,Ei))

= ∑
i

∑
j

∇EiR (E j,Ek,Ei,E j)

=
1
2
·

(
∑

i
∑

j
∇EiR (E j,Ek,Ei,E j)+∑

i
∑

j
∇E jR (Ei,Ek,E j,Ei)

)

= −1
2
·

(
∑

i
∑

j
∇EiR (E j,Ek,E j,Ei)+∑

i
∑

j
∇E jR (Ek,Ei,E j,Ei)

)

=
1
2
·

(
∑

i
∑

j
∇EkR (Ei,E j,E j,Ei)

)
,

(7.84)

where we have also used the identity in proposition 7.26. It now follows that

(div(Ric))(Ek) =
1
2
·∇Ek ∑

i
∑

j
R (Ei,E j,E j,Ei)

=
1
2
·∇EkS

=
1
2
·Ek(S) ,

(7.85)

which was to be proved.

7.7 Einstein metrics

From the definition and properties of the Ricci tensor, that tensor field is formally comparable with
the metric tensor field in any given Riemannian Manifold (U,g,∇) – they are both symmetric
tensor fields of type 2. This, and several other interesting properties of the Ricci tensor – motivates
the following definition:

Definition 7.34 Suppose that the following condition is satisfied in a Local Riemannian

Manifold Mn = (U,g,∇) for some constant (positive, zero, or negative) λ ∈R:

Ric(X ,Y ) = λ ·g(X ,Y ) for all X and Y in X(U) . (7.86)

Then Mn is called an Einstein manifold.
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In all previous chapters we have always assumed, that the metric g of Mn was a given
tensor field in U from which we have then extracted the Levi-Civita connection and
curvatures etc. An equation like (7.86) opens up the possibility of finding and using
specific metrics that are ’balanced’ by its own curvature. This is, in a rather precise sense,
what general relativity is all about. Of course, if equation (7.86) is expressed and spelled
out in local coordinates {x1, · · · ,xn} in U, the resulting equation is a (complicated)
second order partial differential equation system for the elements gi j of the metric tensor
field.

In spite of the comment above, we can, however, already say something:

Proposition 7.35 If Mn has constant (sectional) curvature, then Mn is Einstein.

Proof. In constant (sectional) curvature k we have

Ric(X ,X) = (n−1) · k ·g(X ,X) , (7.87)

so that via polarization:
Ric(X ,Y ) = (n−1) · k ·g(X ,Y ) . (7.88)

Proposition 7.36 In low-dimensions (meaning n = 2 or n = 3) (Un,g,∇) is Einstein if and

only if Mn has constant (sectional) curvature.

Proof. Since in particular

Ric(Ei,Ei) = λ ·g(Ei,Ei) = λ for any orthonormal basis {E1, · · · ,En} , (7.89)

we get (in dimension 2, leaving dimension 3 for the exercise below):

S = 2 ·K = ∑
i

Ric(Ei,Ei) = 2 ·λ , (7.90)

so the sectional curvature is constant K = λ.
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EXERCISE 7.37

Show that (U3,g,∇) is Einstein if and only if it has constant (sectional) curvature.

7.8 The Einstein tensor

An important combination of the metric tensor field g, the Ricci tensor field Ric, and the scalar
curvature function S is the following:

Definition 7.38 Let Mn = (U,g,∇) be a local Riemannian manifold. Then the tensor field

G = Ric−
(

S
2

)
·g (7.91)

is called the Einstein tensor field on Mn.

The Einstein tensor field is obviously of type 2. Moreover, it has zero divergence:

Proposition 7.39
div(G) = 0 . (7.92)

Proof. This is a direct consequence of proposition 7.33.

As previously indicated, the Einstein tensor represents the geometric entrance to general relativity.
Indeed, the simplest Riemannian version of Einstein’s field equations reads – modulo suitable
universal constants:

T = G , (7.93)

where T ∈ T2 is the physical stress-energy tensor field, which therefore tells the manifold how to
curve – via the field equation. Since stress-energy tensors in physics and applications are typically
divergence free, the challenge (at the early days of the development of general relativity) was to
find a purely geometric interpretation and modelling of the stress-energy tensor. In Einstein’s own
words (see [16, p. 330]):

1. The tensor in question should contain no higher than second derivatives of gi j.

2. The tensor should depend linearly on the second derivatives of gi j.

3. The divergence of the tensor should vanish identically.
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EXERCISE 7.40

We know that G satisfies the third condition. Show that the two other conditions are also satisfied.

The Einstein tensor satisfies all three conditions and is in a sense uniquely determined by them.

We refer to the following seminal mathematical monographs for further studies of the differential
geometry of Lorentzian manifolds, relativistic cosmology, and general relativity: [12, 22, 2, 28].

7.9 The volume of geodesic balls

We have seen in chapter 5, theorem 5.29, how the length of small sectional geodesic circles
determine the sectional curvatures of (U,g,∇) and eventually therefore also the full curvature
tensor. In the same vein it is reasonable to expect that the area of small geodesic spheres ∂Dρ(p)
as well as the volume of small geodesic balls Dρ(p) (as defined in chapter 4, Definition 4.7) could
give information about the curvature tensor at the point p – at least in some mean value sense.
And indeed, to complete the picture we indicate below how the scalar curvature of the Riemannian
manifold can be locally re-constructed in both of these ways:

Theorem 7.41 Let (U,g,∇) denote a Local Riemannian Manifold and p a point in Un. The

volumes of the metric ball Bρ(p) of radius ρ in TpU and of the geodesic ball Dρ(p) = Expp(Bρ(p))
of radius ρ in U satisfy the Taylor expansion formula:

Vol(Dρ(p)) = Vol(Bρ(p)) ·
(

1− S(p)
6 · (n+ 2)

·ρ2 + ε(ρ) ·ρ2
)

. (7.94)

The areas (i.e. the (n−1)-dimensional volumes) of the metric sphere ∂Bρ(p) of radius ρ in TpU and
of the geodesic sphere ∂Dρ(p) of radius ρ in U satisfy correspondingly the expansion formula:

Area(∂Dρ(p)) = Area(∂Bρ(p)) ·
(

1− S(p)
6 ·n
·ρ2 + ε(ρ) ·ρ2

)
. (7.95)

In effect, we recover the same phenomenon as we have previously encountered : When
the curvature – in this case the scalar curvature S – is positive, then the Exponential
map is locally contracting the metric spheres when mapping them into U; and when the
curvature is negative, then the Exponential map is locally expanding the metric spheres.

As an immediate consequence of theorem 7.41 we can read off the scalar curvature S(p) as limits
of volume (and area) fractions for ρ 7−→ 0:
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EXERCISE 7.42

Apply the expansions in theorem 7.41 to express S(p) as a second order derivative (at ρ = 0) of a
volume fraction involving the volumes of metric balls and geodesic balls. Express S(p) as a second
order derivative (at ρ = 0) of an area fraction involving the areas of metric spheres and geodesic
spheres.

Sketch of proof of theorem 7.41. For the proof of the theorem we obviously need a measure of
volumes and areas of domains (and their boundaries) in a Local Riemannian manifold. These gen-
eral notions are both motivated by the classical calculations of volumes and areas of parametrized
domains and surfaces in 3D Euclidean space, i.e. via the Jacobians of the respective vector
functions. In our case the vector functions in question are defined by the Exponential map and the
respective Jacobians are correspondingly organized by the (orthogonal) Jacobi fields along the
radial geodesics in the distance balls.
The Exponential map is by standard assumption a diffeomorphism of Bρ(p) onto Dρ(p). Along
each radial geodesic γ from p we consider (n− 1) Jacobi fields Ji(s), i = 1, · · · ,n− 1, along γ

with initial conditions Ji(0) = 0, J′i (0) = Ei, where {E1, · · · ,En = γ′(0)} is an orthonormal basis
at p = γ(0). These Jacobi fields determine the Jacobian matrix of type n× n along γ for the
Exponential map:

Ji j(s) = g(Ji(s),J j(s)) . (7.96)

Vol(Dρ(p)) =
∫

∂B1(p)

∫ t=ρ

t=0

√
Det(Ji j(t)) dt dµ (7.97)

and
Area(Dρ(p)) =

∫
∂B1(p)

√
Det(Ji j(ρ)) dµ , (7.98)

where dµ is the canonical measure (of area) in the tangent space TpU. We have now:∫
∂Bρ(p)

dµ = Vol(Bρ(p)) (7.99)

Vol(Dρ(p)) =
∫ t=ρ

t=0
Area(∂Dt(p))dt , (7.100)

and correspondingly:

Vol(Bρ(p)) =
∫

∂B1(p)

∫ t=ρ

t=0
tn−1 dt dµ =

1
n
·ρn ·Area(∂B1(p)) (7.101)

and
Area(Bρ(p)) =

∫
∂B1(p)

ρ
n−1 dµ = ρ

n−1 ·Area(∂B1(p)) , (7.102)

In particular we already have:

Area(Dρ(p)) =
d

dρ
Vol(Dρ(p)) . (7.103)
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Thence we only need to establish the Taylor expansion formula for the volume fraction. For this
we can apply the previous findings for the Jacobi fields Ji with respect to a parallel frame field
obtained by parallel transport of {E1, · · · ,En = γ′(0)} along γ:

Ji(s) = s ·Ei(s)−
s3

6
·R(Ei(s),γ′(s))γ′(s)+ ε(s) · s3 . (7.104)

The Jacobian matrix J is just a matrix function of s and satisfies therefore the following identity:

d
ds

Det(J (s)) = Det(J (s)) · trace
(

J−1(s) · d
ds

J (s)
)

. (7.105)

The above ingredients can now be put together to give a detailed proof of the theorem, see e.g. [8,
p. 168].

EXERCISE 7.43

Assume that Mn = (U,g,∇) has constant (sectional) curvature in the sense of definition 5.25 in
chapter 5, i.e. all sectional curvatures are identical and the same constant k everywhere. We recall
from equation (7.47) that in such cases we have S = 2 ·∑i< j k = n · (n− 1) · k. Apply the explicit
expressions for the Jacobi fields in proposition 5.26 and the volume and area formulas developed
above to verify the Taylor series expansions for the scalar curvature S in theorem 7.41, and thence also
the limit formulas for S as they appear in exercise 7.42.

7.10 Examples in dimension 3 and beyond

The curvature tensors are obviously most interesting in dimensions greater than 2, because,
according to proposition 7.17, in 2D all the various notions of curvature are essentially equivalent
to one another – via the sectional curvature function K on the Riemannian manifold. In this section
we construct some simple examples, which illustrate some of the simplest curvature features in 3
and higher dimensions.

Example 7.44

We consider U3 ⊂ R3 with the usual coordinates {x1,x2,x3} and the corresponding canonical basis
{e1,e2,e3}. The Euclidean metric gE in U3 has the trivial metric matrix function:

GE =

 1 0 0
0 1 0
0 0 1

 (7.106)

with all its curvatures equal to 0 – all Christoffel symbols vanish. As a first generalization of this metric
we consider the following (so-called conformal) modification of the Euclidean metric:

G(x1,x2,x3) = f 2(x1,x2,x3) ·

 1 0 0
0 1 0
0 0 1

 , (7.107)
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where f is a smooth function on U3.

EXERCISE 7.45

We have already seen the geodesics of one of the metrics expressed in equation (7.107), namely with
f (x1,x2,x3) = 1/x3 with x3 > 0. Show that this choice of f gives a metric g which has constant
(sectional) curvature K = −1.

EXERCISE 7.46

Suppose that we instead modify the above metric as follows:

G(x1,x2,x3) =

 1 0 0
0 f 2(x1,x2,x3) 0
0 0 f 2(x1,x2,x3)

 , (7.108)

again with f (x1,x2,x3) = 1/x3, x3 > 0. Find the scalar curvature S of the corresponding metric.
Find the Ricci curvatures of the metric in the directions of e1, e2, and e3. Find the sectional
curvatures of the metric for the 3 two-planes that are spanned by the three pairs of basis vectors e1,
e2, and e3, i.e. K(e1,e2), K(e1,e3), and K(e2,e3).

EXERCISE 7.47

Suppose that we modify the metric as follows:

G(x1,x2,x3) =

 1 0 0
0 1 0
0 0 f 2(x1,x2,x3)

 , (7.109)

with f (x1,x2,x3) = 1/x3, x3 > 0. Find the scalar curvature S of the corresponding metric. Find the
Ricci curvatures of the metric in the directions of e1, e2, and e3. Find the sectional curvatures of the
metric for the 3 two-planes that are spanned by the three pairs of basis vectors e1, e2, and e3, i.e.
K(e1,e2), K(e1,e3), and K(e2,e3).

EXERCISE 7.48

Let g be determined by the following (so-called warped product) metric matrix for x3 > 0:

G(x1,x2,x3) =

 1 0 0
0 (h(x1)/x3)2 0
0 0 (h(x1)/x3)2

 . (7.110)

Find the scalar curvature S of the corresponding metric for each function h with h(x1)> 0 for all x1.
Show that the metric has constant (sectional) curvature −1 for h(x1) = cosh(x1).

It is a simple matter to construct and to consider higher dimensional examples of Mn = (Un,g,∇)
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along the lines of the examples above. Alternatively, the smooth regular vector functions of Rk

into Rn, n≥ k, also produce a plethora of examples:

Example 7.49

Let r denote the vector function which maps R4 into R6 via the expression:

r(x1,x2,x3,x4) = (x1,x2,x3,x4, f (x1,x2),1) , (7.111)

where f is a smooth function on R2. The Jacobian of this (regular and smooth) vector function gives the
induced metric matrix in the parameter space (U4,g,∇) – in the same way as for surfaces in Euclidean
3-space R3:

G = Jacobi∗r ·Jacobir =


1+

(
∂ f
∂x1

)2 (
∂ f
∂x1

)
·
(

∂ f
∂x2

)
0 0(

∂ f
∂x1

)
·
(

∂ f
∂x2

)
1+

(
∂ f
∂x2

)2
0 0

0 0 1 0
0 0 0 1

 (7.112)

EXERCISE 7.50

Verify the above expression for the metric matrix function that is associated with the metric
tensor field g induced in this way for the 4-dimensional Riemannian manifold M4 = (R4,g,∇),
representing the image of R4 via r in R6.

The determinant of G is

Det(G) = 1+
(

∂ f
∂x1

)2

+

(
∂ f
∂x2

)2

. (7.113)

Suppose we let H denote the (classical Euclidean Hessian) matrix (for f in R2):

H =

 ∂2 f
∂(x1)2

∂2 f
∂x1 ∂x2

∂2 f
∂x2 ∂x1

∂2 f
∂(x2)2

 (7.114)

EXERCISE 7.51

Show that the scalar curvature of M4 is

S = 2 · Det(H)

(Det(G))2 . (7.115)

7.11 Curvature bounds, Laplacian, and distance functions

We are now able to prove and apply a theorem, which is known as Bochner’s formula (after
Salomon Bochner). To state the theorem we need to recall a few notations from previous chapters:

https://mathshistory.st-andrews.ac.uk/Biographies/Bochner/
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We consider a smooth function f ∈ F(U) in a Riemannian manifold (U,gU ,∇), where we use
standard coordinates {xi}, i = 1, · · · ,n, and the corresponding basis vector fields {ei}. Then the
gradient, the Hessian, and the Laplacian of f are, respectively (we refer to definitions and results
in Chapter 3):

grad( f ) = g (grad( f ) , X) = X( f ) for all X ∈ X(U)

Hess( f )(X ,Y ) = Hess( f )(Y ,X) = g (∇X grad( f ) , Y )

∆( f ) = div(grad( f )) = ∑
i

∑
j

Hess( f )(ei,e j) ·gi j .
(7.116)

The Hessian of f is a symmetric quadratic form – a symmetric tensor of type 2, with coordinates
Hi j = Hess( f )(ei,e j) w.r.t. the given basis. The eigenvalues of the associated matrix Ĥ j

i =

∑k Hi k ·gk j are denoted by λ1, · · · ,λn, so that ∆( f ) = trace(Ĥ) = ∑i λi (the trace is independent
of the basis). The so-called Frobenius norm of the Hessian operator is defined via the sum of the
squares of the eigenvalues of Ĥ (which is also basis-independent). We denote the norm squared
as follows:

‖Hess( f )‖2 = trace(Ĥ∗ · Ĥ) = ∑
i

∑
j

(
Ĥ j

i

)2
= ∑

i
λ

2
i . (7.117)

Theorem 7.52 (Bochner’s formula)

1
2

∆(‖grad( f )‖2) = ‖Hess( f )‖2 + g(grad( f ),grad(∆( f )))+Ric(grad( f ),grad( f )) . (7.118)

Proof. We fix a point p and let zi denote normal coordinates (i.e. a new but isometric parameter
domain representation of (U,g,∇), in a neighborhood of p with induced base vector frame fields
Ei. Below we will several times use the fact that at p (using these coordinates) we have gi j = δi j
and ∇EiE j = 0, which in particular also means that e.g. ∇grad( f )E j = 0. Computing everything at
p then gives:

1
2

∆
(
‖grad( f )‖2)= 1

2 ∑
i

Ei (Ei(g(grad( f ),grad( f ))))

= ∑
i

Ei(g(∇Ei grad( f ),grad( f )))

= ∑
i

Ei(Hess( f )(Ei,grad( f )))

= ∑
i

Ei(Hess( f )(grad( f ),Ei))

= ∑
i

Ei(g(∇grad( f ) grad( f ) , Ei))

= ∑
i

g(∇Ei(∇grad( f ) grad( f ) , Ei))

(7.119)

https://en.wikipedia.org/wiki/Matrix_norm
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From this last expression we can now extract the curvature content as follows:

1
2

∆
(
‖grad( f )‖2)= ∑

i
g(R(Ei,grad( f ))grad( f ) , Ei)

+∑
i

g
(

∇grad( f )∇Ei grad( f ) , Ei

)
+∑

i
g
(

∇[Ei , grad( f )] grad( f ) , Ei

) (7.120)

The first term in (7.120) is just Ric(grad( f ),grad( f )) as needed for the theorem. The second
term is

∑
i
(grad( f )) (g(∇Ei grad( f ) , Ei))−∑

i
g(∇Ei grad( f ) , ∇grad( f )Ei)

= (grad( f ))

(
∑

i
g(∇Ei grad( f ) , Ei)

)
−0

= (grad( f ))(∆( f ))

= g(grad( f ) , grad(∆( f ))) .

(7.121)

The third term in (7.120) finally reduces to ‖Hess( f )‖2 via the following steps:

∑
i

g
(

∇[Ei , grad( f )] grad( f ) , Ei

)
= ∑

i
Hess( f )([Ei , grad( f )] , Ei)

= ∑
i

Hess( f )
(

∇Ei grad( f )−∇grad( f )Ei , Ei

)
= ∑

i
Hess( f ) (∇Ei grad( f ) , Ei)−Hess( f )

(
∇grad( f )Ei , Ei

)
= ∑

i
Hess( f ) (∇Ei grad( f ) , Ei)−0

= ∑
i

Hess( f )(Ei , ∇Ei grad( f ))

= ∑
i

g (∇Ei grad( f ) , ∇Ei grad( f )) ,

(7.122)
In the chosen normal coordinates based at p the last sum is precisely ‖Hess( f )‖2. Indeed, we
have in terms of Ĥ j

i with respect to these (orthonormal) coordinates:

Ĥ j
i = g (∇Ei grad( f ),E j) , (7.123)

so that

∑
i

g (∇Ei grad( f ),∇Ei grad( f )) = ∑
i

(
Ĥ j

i

)2
= ∑

i
λ

2
i = ‖Hess( f )‖2 , (7.124)

and this finishes the proof of the theorem.
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According to proposition 4.26 in chapter 4, the distance function ρ(x) = dist(p,x) from p to points
x in the domain Qp (where Logp is a diffeomorphism), has ‖grad(ρ)‖ = 1, so with Bochner’s
formula we get:

Corollary 7.53

0 = ‖Hess(ρ)‖2 + g(grad(ρ),grad(∆(ρ)))+Ric(grad(ρ),grad(ρ)) . (7.125)

The Laplacian of the distance function is the divergence of the gradient field grad(ρ), which is
identical to the tangent vector field given by the geodesics issuing from p. Since such geodesics
that are close to any base geodesic tend to converge back to the base geodesic when they ex-
perience positive curvature along the base geodesic (as we have observed already in terms of
the behaviour of Jacobi fields), it is reasonable to expect, that ∆(ρ) is relatively small when the
curvature of the manifold is relatively large.

Recall, for example, that the ’source’ and ’sink’ vector fields in the Euclidean plane (R2,gE)

V (x1,x2) = (x1,x2)/
√
(x1)2 +(x2)2 has div(V ) > 0 and

W (x1,x2) = −(x1,x2)/
√
(x1)2 +(x2)2 has div(V ) < 0.

(7.126)

Of course, V (x1,x2) is exactly the gradient of the distance function ρ(x) = dist(O,x) from (0,0)
in the Euclidean plane (R2,gE), and in that special case we get:

∆(ρ)|x =
1

ρ(x)
, for all x ∈R2. (7.127)

The two vector fields V and W are thence also roughly the gradient vector fields for the distance
function from the north pole on a standard unit 2-sphere close to the north pole, and close to the
south pole, respectively – see exercise 7.54 below.

EXERCISE 7.54

Show that the distance function ρ from the north pole on a standard sphere S2
R with radius R (and

thence constant sectional curvature K = 1/R2) in Euclidean 3-space has

∆(ρ)|x =
(

1
R

)
· cot

(
ρ(x)

R

)
, for all x ∈ S2

R. (7.128)

Show that ∆(ρ)|x has the Laurent expansion at ρ = 0:

∆(ρ)|x =
(

1
ρ

)
−
(

ρ

3 ·R2

)
+ ε(ρ) ·ρ2 . (7.129)
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The following proposition shows that the above indicated relation between curvature and ∆(ρ) is
indeed true – even on the (mean value, trace) level of the Ricci curvature:

Proposition 7.55 Let Mn = (Un,g,∇) denote a Riemannian manifold with Ricci curvatures

bounded from below as follows:

Ric(X ,X) ≥ (n−1) · k for all unit tangent vectors X and for some constant k ∈R . (7.130)

Then the following inequality holds true for the distance function ρ(x) = dist(p,x) at all points x in
the domain Qp (where Logp is a diffeomorphism):

∆(ρ) ≤


(n−1) ·

√
k · cot(ρ ·

√
k ) if k > 0

(n−1)/ρ if k = 0

(n−1) ·
√
−k · coth(ρ ·

√
−k ) if k < 0 .

(7.131)

Note that the curvature assumption Ric(X ,X) ≥ (n−1) · k for all unit tangent vectors X
and for some constant k ∈R is clearly satisfied if all sectional curvatures K(σ) satisfy
K(σ) ≥ k for all two-planes σ in all tangent spaces for Mn. On this note, compare
proposition 7.55 with the dual proposition 7.58 below.

Proof. At least one of the eigenvalues (λ1, say) is 0 because Ĥ has a null space:

Hess(ρ)(X ,grad(ρ)) = g (∇X grad(ρ) , grad(ρ)) =
(

1
2

)
·X(‖grad(ρ)‖2) = 0 . (7.132)

Using the Cauchy-Schwarz inequality we then get:

‖Hess(ρ)‖2 =
i=n

∑
i=2

λ
2
i ≤

(∑i λi)
2

n−1
=

(
trace(Ĥ)

)2

n−1
=

(∆(ρ))2

n−1
. (7.133)

Now writing shorthand ∂

∂ρ
for grad(ρ), so that g(grad(ρ),grad(∆(ρ))) = ∂

∂r ∆(ρ), and inserting
the assumption on the Ricci curvature into the (distance-)Bochner formula (7.125) we get:

(∆(ρ))2

n−1
+

∂

∂ρ
∆(ρ)+ (n−1) · k ≤ 0 . (7.134)

Letting ψ(ρ) = (n−1)/∆(ρ) then gives:

ψ ′(ρ)

1+ k ·ψ2(ρ)
≥ 1 . (7.135)



We then integrate the inequality on both sides and use (for the lower integral bound) that ψ(ρ) =
ρ+ ε(ρ) for small ρ and obtain for example for k = 1:

arctan(ψ(ρ))≥ ρ , ψ(ρ) ≥ tan(ρ) , ∆(ρ) ≤ (n−1) · cot(ρ) , (7.136)

and similar for the other values of k, which proves the proposition.

EXERCISE 7.56

Verify the claim used in the proof, that ψ(ρ) = ρ+ ε(ρ) for small ρ. Hint: Verify first in (Rn,gE).

EXERCISE 7.57

Show that if Mn = (Un,g,∇) is a Riemannian manifold with constant curvature k, then the equality
holds in equation (7.131).

At this point it is highly appropriate to also mention the following fact, which is dual to proposition
7.55 in the sense that the opposite inequality for the Laplacian of the distance function is obtained
when the sectional curvatures (not the Ricci curvatures) are bounded from above:

Proposition 7.58 Let Mn = (Un,g,∇) denote a Riemannian manifold with sectional curva-

tures bounded from above:

K(σ) ≤ k for all two-planes σ in all tangent spaces and for some constant k ∈R . (7.137)

Then the following inequality holds true for the distance function ρ(x) = dist(p,x) at all points x in
the domain Qp (where Logp is a diffeomorphism) – compare with equation (7.131):

∆(ρ) ≥


(n−1) ·

√
k · cot(ρ ·

√
k ) if k > 0

(n−1)/ρ if k = 0

(n−1) ·
√
−k · coth(ρ ·

√
−k ) if k < 0 .

(7.138)

The proof can be obtained from the so-called Riccati equation or from analysis of the second
variation of geodesics. We refer to [18, p. 332] for a thorough presentation.
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acceleration problem, 88
ambient isometric, 166
autoparallel curve, 109

best fitting geodesics, 161

capacity, 126
catenoid, 59
Cayley transformation, 55
chain rule, 33
Christoffel symbols, 94
compatible with the metric, 91
components of the tensor field, 202
constant curvature, 190
covariant derivative, 91
covariant differentiation, 90
cross product, 172
current vector field, 125
curvature, 27, 166
curvature operator, 178
curvature operator is tensorial, 178
curvature tensor, 177

define a vector derivative, 91
deformation of the tangent space, 177
derivation, 66
diffeomorphism, 33
directional derivative, 66
distance, 144
distance function, 10
divergence, 117
divergence of tensor fields of type 2, 214
double covariant derivative, 174

effective resistance, 126

Einstein manifold, 216
Einstein tensor field, 218
Einstein’s summation convention, 28
electric potential theory, 125
equivalence class, 48
equivalence relation, 48
Euclidean acceleration, 87
Euclidean distance, 27
Euclidean divergence, 65
Euclidean parallel transport, 87
Exponential map, 132

fields of ellipses (or ellipsoids), 27
fingerprint, 27
fisherman’s derivative, 73
Frenet-Serret apparatus, 163, 171
fundamental theorem for space curves, 16
fundamental theorem of curves in Riemannian

geometry, 171

Gaussian curvature, 184
general t-version of the Frenet-Serret apparatus,
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geodesic, 110
geodesic ball, 133
geodesic curvature of a unit speed curve, 110
geodesic sphere, 133
geodesic variations, 177
gradient vector field, 112
Gram-Schmidt orthonormalization, 107

height function potential, 114, 123
helicity, 164
helicoid, 59
helix with curvature κ and torsion τ, 166
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Hessian, 114

indicatrix set, 27
infinitesimal isometry, 77
influence of gravity, 100
integral curve, 69
inverse polar map, 31
isometric, 48
isometric surfaces, 58
isometry, 48
isotropic sectional curvatures, 212

Jacobi equation, 187
Jacobi identity, 74
Jacobi vector field, 187
Jacobian matrices, 32

Killing vector field, 77

Laplacian, 121
length of regular curves, 38
Levi-Civita connnection, 92
Lie bracket, 73
Lie derivative, 73, 77
local isometry, 68
Local Riemannian Manifold, 48
Logarithmic map, 132

maximum principle, 126
meaning of curvature, 27
metric ball, 133
metric matrix function, 40
metric sphere, 133
metric tensor field, 45
metric tensor fields, 27
minimal surfaces, 59
multilinear mapping, 199
multilinearity, 45

normal coordinates, 134
not a tensor field, 200

parallel frame, 107
parallel transport operation, 108
parallel transported, 104

parallel vector field along the curve, 103
Poincaré disk- and half plane models, 54
polar coordinates, 137
polar map, 31
polarization, 206
potential function, 114, 125
pre-geodesic, 110
proper variation, 140
pull back, 73

regular affine map, 29
regular curve, 37
Ricci curvature, 206
Ricci tensor field, 203
Riemannian center of mass, 160
Riemannian circle, 166
Riemannian Frenet-Serret frame, 166
Riemannian helix, 166

scalar curvature, 207
second curvature constant, 165
sectional geodesic circle, 192
sectional metric circle, 192
smooth vector field, 63
standard helix in standard position, 163
static spacetimes, 79
stationary point, 113
strict local maximum point, 116
strict local minimum point, 116

tangent space isometry, 108
tensor field, 199
torsion, 164–166
total covariant derivative, 209

unique covariant derivative, 92

variation of the base curve, 140, 185
variation vector field, 141, 185
vector field W along H, 185

warped product manifold, 127
warping function, 127
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