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Abstract

It is emphasized that the initial step after the hydrolysis of ATP is a quantum mechanical
state of the protein which catalyses the reaction. The Davdydov/Scott model proposes
a very speci�c state for this step, namely, a well-known vibrational excited state of the
peptide group called amide I. According to equations (6,7) in section 2, which satisfy both
the quantum statistics of the amide I excitation and the classical statistics of lattice, the
amide I excitation follows a stochastic path from the active site to other regions of the
protein. This is a robust way of transferring energy without loss and may constitute the
�rst step in the many cellular processes which are powered by the hydrolysis of ATP.

1Copyright c1997, by Leonor Cruzeiro-Hansson, all rights reserved.

1



1 Introduction

Many proteins function by changing conformation. Such conformational changes are
triggered by many types of actions, including chemical reactions (e.g the hydrolysis of
Adenosinetriphosphate - ATP) and ligand binding (either ions or small molecules). How
is it that these relatively low energy actions, in small regions of the proteins, manage
to induce the large scale domain motions that characterize conformational changes [1] ?
While the concerted motion of a group of atoms is a classical phenomenon, the underly-
ing hypothesis in this work is that the initial result of the triggers of protein action is a
quantum vibrational excited state of a local group in the protein.

At �rst sight, the possibility that proteins, which are systems with hundreds to tens
of thousands of atoms, have a quantum stage may seem very speculative. In fact, at
least in some cases, it is trivial. E.g., the hydrolysis of ATP is a chemical reaction and
a chemical reaction is a quantum process. It is thus straightforward to assume that the
initial outcome of the hydrolysis of ATP is a quantum state of the protein. Although
perhaps not so intuitive, quantum excitations can also be created by ligand binding [2].
Therefore, the question is not whether proteins have a quantum stage but what form this
stage assumes, how long it lasts and which role it takes. In the Davydov/Scott model
studied here [3, 4], it is assumed that the initial quantum state is a well-known vibrational
mode of the peptide groups called amide I, consisting essentially of the stretching of the
C=O bond. This article deals with the dynamics of this quantum state as a function of
temperature.

In section 2 the Davydov/Scott model is introduced and in section 3 the states pre-
dicted by the Davydov/Scott model are presented as a function of temperature. The
article ends with a discussion of the biological signi�cance of the Davydov model and its
integration within the protein work cycle.

2 The Davydov/Scott model

Davydov's Hamiltonian is formally similar to the Fr�ohlich/Holstein Hamiltonian for the
interaction of electrons with a polarisable lattice. Thus, the Hamiltonian, Ĥ, is:

Ĥ = Ĥqp + Ĥph + Ĥint (1)

where Ĥqp is the quasiparticle Hamiltonian, which describes the motion of the amide I

excitations between adjacent sites, Ĥph is the phonon Hamiltonian, which describes the

vibrations of the lattice, and Ĥint is the interaction Hamiltonian, which describes the
interaction of the amide I excitation with the lattice. The quasiparticle Hamiltonian Ĥqp

is:

Ĥqp = �
NX

n=1

Ây
nÂn � V

NX

n=1

[(Ây
nÂn�1 + Ây

nÂn+1)] (2)

where � is the energy of the amide I vibration, �V is the dipole-dipole interaction energy
of the amide I excitations in neighbouring sites, Ây

n(Ân) is the boson creation(annihilation)
operator for a quasiparticle at site n and N is the number of peptide groups in the lattice.
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The phonon Hamiltonian Ĥph is:

Ĥph =
1

2

NX

n=1

[� (Ûn � Ûn�1)
2 +

P̂ 2
n

M
] (3)

where Ûn is the displacement operator from the equilibrium position of site n, P̂n is the
momentum operator of site n, M is the mass of each peptide group and � is the elasticity
constant of the lattice.
Finally, the interaction Hamiltonian Ĥint is

Ĥint = �
NX

n=1

[(Ûn+1 � Ûn�1) Â
y
nÂn] (4)

where � is an anharmonic parameter arising from the coupling between the quasiparticle
and the lattice displacements.

A general solution for the one quantum state of the mixed quantum/classical Davy-
dov/Scott system in which the motion of the lattice sites is treated classically is [5]:

j >=
NX

j=1

'j(fung; fpng; t) Â
y
j j0 > (5)

where 'j is the probability amplitude for an excitation in site j and the dependence of
'j on the classical displacements fung and momenta fpng of the lattice is not speci�ed a
priori. Inserting (5) in the Schr�odinger equation, and using the Hamilton equations for
the lattice variables, it is possible to derive the following equations of motion [6-8]:

E'n = �'n � V ('n�1 + 'n+1) + � (un+1 � un�1)'n (6)

M
d2un

dt2
= � (j 'n+1 j

2 � j 'n�1 j
2) + � (un+1 + un�1 � 2 un) (7)

+Fn(t)� �
dun

dt

where the stochastic forces Fn(t) and the friction terms ��dun
dt

obey the uctuation-
dissipation relation < Fn(t)Fm(t

0) >= 2M�kBT�nm�(t � t0). These equations are valid
when the quantum excitation is much faster than the lattice, as was discussed in [8]. The
equations of motion (6,7) are integrated by solving the eigenvalue problem (6) at each
time step and applying the Metropolis scheme [9] to choose which energy state E will drive
the lattice equations (7), at that time step. As was shown in [8] eqs. (6,7) satisfy both
the classical statistics of the lattice and the quantum statistics of the amide I excitation.
In the next section the motion of the amide I as a function of temperature, as predicted
by eqs. (6,7), is presented.

3 Results

In �gures 1-3 the evolution, at three temperatures, of the exact minimum energy one
quantum state is displayed. The coupling to the thermal bath involves stochastic and
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Figure 1: Time dependence of the probability for an excitation in site n, j'nj
2, and

of its correlated lattice distortion �(ucn+1 � ucn�1), in �A, calculated by integration of
equations (6,7). The initial condition is the exact minimum energy one quantum state
of the mixed quantum/classical Davydov/Scott model. The temperature is T = 0:1 K.
Other parameters are: V = 1:55 10�22 J, � = 39 N/m, � = 62pN, and M = 5:7 10�25

Kg. Stochastic forces and damping terms are applied every 0.05 ps.

damping forces applied to all sites every 0.05 picoseconds. This allows for a clear view of
the mechanism of decay of the initial soliton state.

In the absence of the bath, the excitation and the associated lattice distortion would
not move, because the initial condition is an exact stationary state of the system. At �-
nite temperature, however, the phonons induced by the presence of the excitation, which
are responsible for the lattice distortion, are scattered by thermal phonons. The lattice
con�guration thus starts to change. According to eq. (6), for each lattice con�guration
de�ned by a set of displacements fung, there are N possible states for the amide I ex-
citation. As the lattice con�guration changes, this band of N states also changes. At
low temperature, thermal phonons merely scatter the initial lattice distortion without
distroying it. The lattice distortion moves along the chain and the amide I excitation
follows it. This is observed in �gure 1 and, apart from the lattice disorder visible even at
such a low temperature, it is very similar to the coherent propagation of a soliton.

            

Figure 2: Same plot as �gure 1 but for T = 0:5 K.
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As temperature increases, the impacts of thermal phonons are stronger leading both
to a faster movement of the lattice distortion and to a greater degree of disorder, as seen
in �gure 2. Following the lattice distortion, however, is only one of the causes of the
movement of the amide I excitation at �nite temperature. A second cause is quantum
transitions. When the temperature is su�ciently low so that, for each lattice con�gura-
tion, kT is much smaller than the energy gap between the lowest energy level and the next
level, only the lowest level is populated and quantum transitions between the N levels in
the band do not occur. Above a threshold temperature, it becomes possible for higher
levels to be occupied. In a disordered lattice, the higher levels are also localised states, but
located around lattice sites which may not overlap with that of the main lattice distortion.
At low temperature, if such a quantum transition occurs, the amide I excitation is still
able to induce a distortion in the new site which is larger than the average disorder in
the lattice. Examples of such quantum transitions are displayed in �gure 2, for instance,
approximately 0.2 ps into the dynamical simulation.

            

Figure 3: Same plot as �gure 1 but for T = 10 K.

At higher temperatures, both causes of motion are important and the lattice distortions
due to thermal motion are much larger than the lattice distortions induced by the presence
of the excitation. Thus, the lattice distortion correlated with the excitation disappears in
the thermal noise in the subpicosecond timescale. The motion of the amide I excitation
is that of a Brownian particle in a disordered lattice as is illustrated in �gure 3.

4 Discussion

Equations (5 - 7) are valid in the mixed quantum/classical regime in which the amide I
excitation is treated quantum mechanically and the motion of the latttice sites is treated
classically. The assumption that the lattice can be treated as a classical entity has been
made by many other authors [3, 4, 10, 11]. The validity of this approximation was as-
sessed by comparing the results of a Monte Carlo simulation for the full quantum system
with the corresponding results for the mixed quantum /classical system [12]. Since the
di�erence between the two approaches lies in the treatment of the lattice, the lattice
distortion correlated with the position of the excitation was the variable chosen for the
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comparison. It was found that while at very low temperature (i.e., below 11 K) quantum
e�ects led to a 23 % stronger correlation for the full quantum system, above 11 K, the
lattice distortion of the mixed quantum/classical system was indistinguishable from that
of the full quantum system. Thus, the results of the mixed quantum/classical system at
low temperatures, such as presented in �gures 1-3, underestimate the lattice distortion
due to the excitation. On the other hand, at biological temperatures the mixed quan-
tum/classical system provides a good description of the motion of the amide I excitation.

Figure 1-3 should be contrasted with the early simulations of thermal e�ects on the
motion of the amide I excitation in proteins by Lomdahl and Kerr [10]. The latter led
to the dispersion of the quantum excitation in a few picoseconds. According to the sim-
ulations of Lomdahl and Kerr, for values of the parameters which lead to a soliton at
zero temperature, the lattice distortion associated with the excitation should decrease as
the temperature increases. This result was at odds with the quantum Monte Carlo sim-
ulations of Wang et al. [13], which are numerically exact simulations of the equilibrium
regime of the full quantum system. It was shown that this di�erence was due to the
fact that the coupling of a classical bath to a mixed quantum/classical system leads to a
classical treatment of the quantum part [14]. Equations (6,7) satisfy both the quantum
statistics of the amide I and the classical statistics of the lattice and show that, at �nite
temperature, the amide I excitation is represented by localised states, not very di�erent
from the soliton states which can arise at very low temperatures. The lattice, however, is
in a dynamically disordered state and propagation of the amide I excitation is not coher-
ent, as would happen for a soliton, but stochastic.

The thermal instability of the Davydov soliton does have consequences on the mech-
anisms by which proteins function. In the mechanism of muscle contraction proposed
by Davydov [3], the sliding of the myosin with respect to actin should take place as the
soliton propagates along the myosin. The idea was that the lattice distortion associated
with the position of the excitation lead to the binding of myosin to actin and, as the
soliton moved within myosin, myosin would be dragged along with it. As was emphasized
in a previous paper [7], this mechanism presupposes that the position of the excitation is
always associated with a local lattice contraction. In the stochastic solutions displayed in
�gure 3, however, although the excitation is localised, the position of the excitation is not
always associated with a lattice compression and as the amide I excitation travels through
the protein there is no instantaneous lattice compression travelling with it. The Davydov
mechanism for muscle contraction therefore cannot be sustained by the stochastic motion
predicted by eqs. (6,7).

Another main point to be emphasized is that the fact that a particular solution, and a
particular mechanism related to that solution, are not applicable, does not invalidate all
solutions of the Davydov/Scott model. In the past, the Davydov soliton has often been
equated with the Davydov/Scott model. But the Davydov soliton is only one among an
in�nite number of states of the associated Hilbert space. The suggestion here is that the
Davydov/Scott model is more fundamental than the particular solution which has so far
constituted the focus of most studies in this �eld. As emphasized in the introduction, the
state immediately after the hydrolysis of ATP must be a quantum state of the protein.
From this point of view, the greatest merit of the Davydov/Scott model is the speci�cation
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of the nature of this initial quantum state. I.e., according to the Davydov/Scott model the
initial quantum state is an amide I excitation in the peptide group. It is then important to
have reliable equations to predict the nature of the propagation of the amide I excitation
from the active site to other regions of the protein. According to eqs. (6,7) the states
are localised and follow a stochastic path which can deliver the full energy released at the
active site to other regions in a few picoseconds.

The hydrolysis of ATP acts as an energy donating reaction in many cellular processes.
If the fundamental assumption is correct, the Davydov/Scott model constitutes the �rst
step in these processes. The fact that energy propagation in the Davydov/Scott model
takes place in the picosecond timescale, a much shorter time than protein work cycle of
milisecond or more, may make it di�cult to detect. But it does not make it any less impor-
tant. Coming back to muscle contraction, it is proposed that, rather than explaining the
full cycle of muscle contraction, as Davydov intended, the Davydov/Scott model explains
only a part of this cycle, i.e., the transfer of energy from the active site at the myosin head
to the hinge around which the conformational change takes place. Such a possibility has
also been suggested by Scott [4]. The Davydov/Scott model cannot describe the transfer
of the energy stored in the amide I excitation to the classical, conformational degrees of
freedom of the protein because the amide I excitation is conserved. In order to describe
this process, extra terms must be added, as in the Takeno vibron model [15].

A stochastic mechanism for energy transfer may not appear as interesting as the prop-
agation of a soliton. But this is the physicist's way of looking at it. The biologist's eyes
may instead focus on the robustness of a stochastic mechanism. Indeed, while a soli-
ton follows one pathway only and is thus sensitive to any changes along this pathway, a
stochastic solution can explore many pathways. If a mutation makes one pathway inac-
cessible, a stochastic solution can easily �nd other ways to get to the same spot. The
stochastic mechanism is more resistant to environmental and evolutionary changes.

Two lines of investigation are very important for progress of this �eld. One is exper-
imental and the other is theoretical. On the experimental side it is important to devise
and perform experimental tests on the basic assumption of the Davydov/Scott model,
namely, that the initial carrier of the energy released in the hydrolysis of ATP is the
amide I vibration. Until now, the applicability of the Davydov/Scott Hamiltonian has
only had indirect con�rmation in acetanilide [4, 16], an organic crystal that has the same
hydrogen bonded chains as �-helices. These studies must be extended in order to �nd
out which quantum modes are populated after the hydrolysis of ATP. On the theoretical
side, it is important to study Takeno's vibron to get insights into how the energy of the
amide I excitation is delivered to the classical modes of the protein and thereby generates
conformational changes. Such work in progress.

Acknowledgement: The BBSRC is gratefully acknowledged for �nancial support and
supercomputing facilities.
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