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Abstract

We consider the class of nonlinear evolution equations that have N-soliton solutions for the dependent
variable u(z,t), where u = 2(In f);, and f is obtainable by Hirota’s method. The N-soliton solution is
decomposed into a sum Zi:l ui, where, in the hmits t — £o00, each u; is a 1-soliton solution to the original
governing equation. During interaction ‘mass’ is conserved for each u;. Our formulation of the decomposition
does not use the inverse scattering technique and is similar to that used for the KdV equation by Yoneyama
(1984b) and Moloney & Hodnett (1989). Focusing on the case N = 2, we discuss the properties of u; and usz,
and our results are illustrated by considering an extended KdV equation and the Sawada-Kotera equation.
Also, for each of these equations, the corresponding ‘interacting soliton’ equations are derived for general N.

1 Introduction

The KdV 2-soliton solution regarded as the interaction of two single solitons has been investi-
gated by several authors [1] - [5]. In [1] - [3] the decomposition of the 2-soliton solution was
achieved via inverse scattering transform theory. In [4, 5], however, the Hirota formalism was
used. The results in [3] and [4, 5] were later extended to the KdV N-soliton solution; see [6]
and [7] respectively.

The decomposition in [6] and [7] is, in fact, applicable to a wide class of nonlinear evolution
equations of which the KdV equation is a member, and it is this class of equations that is consid-
ered here. In §2 we summarise the formulation of the decomposition of the N-soliton solution.
In §3 we focus on the case N = 2. In §4 and §5 we illustrate our results by considering an
extended KdV equation and the Sawada-Kotera equation respectively. Future work is outlined

in §6.

2 General Formulation

Let w(x,t) be the N-soliton solution to a given nonlinear evolution equation. Suppose that u
may be expressed in the form

u="2(n f)s
where

f=fln,...,nn), n = ki(x — cit) + 6,



and k;, ¢; and §; are constants. We express u in the form

N

u = Uj, 2.1
2 (2.1)
=1

where
u; = (W), and w; = 2k;(In f).,,. (2.2)
Hirota’s method leads to an expression for f as a series involving f; := e*%, (j =1,..., N). For
a given 1 the series may be written in the form
[ =hi+hifi,

where h; and h; do not involve f;. It now follows that

w; = 2k;(1 + tanh g;)

where B
e () )
si=n+3mn( o
and so
s = 2k (g:), sech? g (2.4)

It is clear from the following results that (2.1) with (2.2) is the desired decomposition:
(i) On using (2.4) we have [*0_ w; dv = 4k; so the ‘mass’ of u; is conserved.
(ii) From (2.3), as t — +oo with »; fixed, g; — n; + constant and so
u; — 2k? sech?[k;(x — ¢;t) + constant],
namely a 1-soliton solution to the original evolution equation.
Maloney & Hodnett [7] discuss the trajectories of the ‘centres of the masses’. We prefer to
consider the trajectories of the ‘centres of mass’. The ‘centre of mass’ of w;, :L'g), is defined by

41@':1;8) = /OO zu; dz. (2.5)

From (2.2) and (2.5) it may be shown that the velocity vg) of the ‘centre of mass’ of u; is given
by

vg) = df =c + " /_Oo 2T} dx, (2.6)
where T} is the ‘transfer function” defined by
N
W+
T; = -
Z:l dx
]_
and W;; is given by
Wi = (i = ¢;)k;(wi)y,- (2.7)

From (2.6) it can be seen clearly that the trajectory of u; is affected by the presence of the other
uj, (j # 1)

Finally, we note an additional useful property of u;. If u = w, then

U, = kiwm. (28)



3 The Case N =2

Without loss of generality we assume that ky > k;. Hirota’s method gives
f=1+h+ L+ Nf b>0,

where b is a function of ky and ky that depends on the nonlinear evolution equation being
considered. The trajectories of the centres of mass of u; and us intersect at the origin in z-¢
space if 20; = 20, = —1In b, and then, as t — Fo0,

w — 2kisech’[ki (v — eit) F lelndb],
uy — 2k3sech®[ky(x — cot) £ %cln b],

where € = sgn(c; — ¢1).
We wish to study the dynamical evolution of the interaction between w; and wuy for —oo <
t < oo. To do this the following results are useful. Here the subscript zero denotes evaluation
at t =0,¢t =0, and
kg — kl r—1 . kg

b( = = R th = 1,
Kdv k2—|—k1 T—|—1 ™ " k1>

where by gy is the expression for b associated with the KdV equation
uy + O6uty + Uppr = 0.
o ujp <0 for 0 <b<bggy and ug = 0 for b = bgy, otherwise ug > 0; ugg > 0 and ug > 0.
o For 0 < b < bgav, up has two zeros at @ — ¢t = £p/ky, where p is the root of
cosh2p = [(1 — b*)r — (1 + b*)]/2b. (3.1)
For b = biqv, p = 0 and w19 has one zero at © — ¢t = 0. For b > b gy, uy; has no zeros.
® Uio =0, U0 =0 and u,g = 0.

® U0 > 0 for 0 < b < by, otherwise .0 < 0, where

392 1 41/ 167 =3
bcl - .
(14+7r)3

Ugzpro 2> 0 for by < b < by with 1 <r <4/1+ 2/\/§, otherwise ug,.0 < 0, where

r(3—r3) £ v/=3rt +6r2 +1
(14+7r)3 '

bc2:|: =

Upzo > 0 for b < b < by with 1 <r </24 V'3, otherwise w0 < 0, where

ct —

—rt+6r* -1+ r\/8(—7“4 +4r? — 1)
(I4r)4 '

e From (2.7) we have

Wiy = 8(01 - Cz)lﬁszlfz(bQ - 1)/f2 = —Wy.



4 Example: The extended KdV Equation
The extended KdV (eKdV) equation [8] is

we + p(3u® 4 gy ) + o (10u” + 5u2 4+ 10Uty + Uppes)r = 0, (4.1)

where y and o are arbitrary constants. (4.1) reduces to the KdV equation when p =1, o = 0,
and to the 5th-order KdV equation (Lax hierarchy) when p =0, o = 1.

Write v = w, in (4.1) and integrate with respect to x with the conditions that w; and «
derivatives of w vanish as + — +o00. On applying the operator k;0/dn; to the resulting equation
and using (2.8) we obtain the ‘interacting soliton equations’ for i = 1,..., N, namely

The Hirota form for (4.1) is

3
DDy D+ GD2) = Z DD - 1) =0,

Do(Dr + D)) f-f)=0
from which it follows that

C; = 4/,L]€Z2 + 160‘]624 and beKdV = bKdV-

As b = bggy, the dynamics of the two soliton interaction are similar to those given in [2] and
[5] for the KdV equation.

We deduce the following features during interaction.

e u; has one zero and its trajectory is @ — ¢yt = 0.

® Ui, 0> 0= u; has two maxima.

e forl <r« \/5, Uoezo > 0 = up has two maxima;
for r > \/5, Uzpro < 0 = us has one maximum.

e forl <r« \/g, Uzzo > 0 = u has two maxima;
for r > \/g, Uzpzo < 0 = v has one maximum.

As an illustrative example, take 1 = o = 1 in (4.1) and soliton parameters ky = 1 and
ky = 1.6. In this case r = 1.6 so that v/2 < r < /3. Figure 1 illustrates the evolution of u;
and uy in a frame of reference moving with speed ¢;. In this figure the evolution is symmetric
about the origin since our choice of é; and d, ensures symmetry about the origin in -t space.
In particular we have chosen ¢t = 0, £0.01 and +0.05. Figure 1 shows clearly that the zero of u,
is stationary in the frame of reference that moves with speed ¢y. Figure 2 shows the behaviour
of vg) and vg) as functions of time during the interaction as calculated from (2.6). The figure
shows that, as uy accelerates, u; decelerates and vice versa and, for a while, the velocity of u;
is negative. Figure 3 shows the trajectories of the centres of mass of w; and uy in the z-t plane
as calculated from (2.5) and illustrates clearly the temporary backward motion of u;.

We used Mathematica to perform all the calculations to produce the figures.
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Figure 1: u; & us for the eKdV Equation
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Figure 2: v(Gl)(t) & v(Gz)(t) for the eKdV Equation Figure 3: x(Gl)(t) & l‘(GZ)(t) for the eKdV Equation



5 Example: The Sawada-Kotera Equation
The Sawada-Kotera (SK) equation [9] is
wp + (15u” + 15Uty + Uppzs)r = 0, (5.1)

By using the method outlined in §4 we obtain the ‘interacting soliton equations’ for ¢ =
1,..., N, namely

The Hirota form for (5.1) is
Do(Di+D3)(f-f)=0

from which it follows that

1+r2—r/r—1
= 16k and  bsg = 1/ ( )
¢ i St 1+r24+r\r+1

We deduce the following features during interaction.

e u; has two zeros and their trajectories are & — cot = £p/ks respectively, where p (> 0) is
given by (3.1) with b = bsk.

® Ui, 0> 0= u; has two maxima.

o For 1 < r < 1.4596, uz.20 > 0 = uy has two maxima;
for r > 1.4596, u2..0 < 0 = ug has one maximum.

e For 1 < r < 1.8566, g > 0 = u has two maxima;
for r > 1.8566, U0 < 0 = u has one maximum.

As an illustrative example, take soliton parameters ky = 1 and ks = 1.3. In this case r = 1.3
so that 1 < r < 1.4596. Figures 4 to 6 for the SK equation are analogous to Figures 1 to 3 for
the eKdV equation. The profiles in Figure 4 are plotted for ¢ = 0, £0.025 and 4+0.15. This figure
shows clearly that, as predicted, the two zeros of u; are stationary and disposed symmetrically
about the origin in the frame of reference that moves with speed c¢;.

6 Future Work

We are considering other evolution equations such as the Boussinesq equation [10]. This equa-
tion has soliton solutions that propagate in either direction and so head-on collisions may be
investigated. We aim to study interactions for the N = 3 case and apply the results to a variety
of equations; this would generalise the results of Moloney & Hodnett [11] who considered only
the KdV equation.
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Figure 4: u; & us for the SK Equation
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Figure 5: v(Gl)(t) & v(Gz)(t) for the SK Equation Figure 6: J:(Gl)(t) & x(Gz)(t) for the SK Equation
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