The internal structure of the two-soliton solution to nonlinear evolution equations of a certain class

Fiona Campbell and John Parkes
Department of Mathematics, University of Strathclyde,
Glasgow G1 1XH, U.K.
Tel: + 44 (0) 1415524400
Fax: + 44 (0) 1415528657
http://www.maths.strath.ac.uk/
e-mail: f.m.campbell@strath.ac.uk and e.j.parkes@strath.ac.uk.

Abstract

We consider the class of nonlinear evolution equations that have N-soliton solutions for the dependent variable $u(x, t)$, where $u=2(\ln f)_{x x}$ and f is obtainable by Hirota's method. The N-soliton solution is decomposed into a sum $\sum_{i=1}^{N} u_{i}$, where, in the limits $t \rightarrow \pm \infty$, each u_{i} is a 1 -soliton solution to the original governing equation. During interaction 'mass' is conserved for each u_{i}. Our formulation of the decomposition does not use the inverse scattering technique and is similar to that used for the KdV equation by Yoneyama (1984b) and Moloney \& Hodnett (1989). Focusing on the case $N=2$, we discuss the properties of u_{1} and u_{2}, and our results are illustrated by considering an extended KdV equation and the Sawada-Kotera equation. Also, for each of these equations, the corresponding 'interacting soliton' equations are derived for general N.

1 Introduction

The KdV 2-soliton solution regarded as the interaction of two single solitons has been investigated by several authors [1] - [5]. In [1] - [3] the decomposition of the 2 -soliton solution was achieved via inverse scattering transform theory. In [4, 5], however, the Hirota formalism was used. The results in [3] and [4, 5] were later extended to the KdV N-soliton solution; see [6] and [7] respectively.

The decomposition in [6] and [7] is, in fact, applicable to a wide class of nonlinear evolution equations of which the KdV equation is a member, and it is this class of equations that is considered here. In $\S 2$ we summarise the formulation of the decomposition of the N-soliton solution. In $\S 3$ we focus on the case $N=2$. In $\S 4$ and $\S 5$ we illustrate our results by considering an extended KdV equation and the Sawada-Kotera equation respectively. Future work is outlined in $\S 6$.

2 General Formulation

Let $u(x, t)$ be the N-soliton solution to a given nonlinear evolution equation. Suppose that u may be expressed in the form

$$
u=2(\ln f)_{x x}
$$

where

$$
f=f\left(\eta_{1}, \ldots, \eta_{N}\right), \quad \eta_{i}=k_{i}\left(x-c_{i} t\right)+\delta_{i},
$$

and k_{i}, c_{i} and δ_{i} are constants. We express u in the form

$$
\begin{equation*}
u=\sum_{i=1}^{N} u_{i}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i}=\left(w_{i}\right)_{x} \quad \text { and } \quad w_{i}=2 k_{i}(\ln f)_{\eta_{i}} . \tag{2.2}
\end{equation*}
$$

Hirota's method leads to an expression for f as a series involving $f_{j}:=e^{2 \eta_{j}},(j=1, \ldots, N)$. For a given i the series may be written in the form

$$
f=h_{i}+\bar{h}_{i} f_{i}
$$

where h_{i} and \bar{h}_{i} do not involve f_{i}. It now follows that

$$
w_{i}=2 k_{i}\left(1+\tanh g_{i}\right)
$$

where

$$
\begin{equation*}
g_{i}=\eta_{i}+\frac{1}{2} \ln \left(\frac{\overline{h_{i}}}{h_{i}}\right) \tag{2.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
u_{i}=2 k_{i}\left(g_{i}\right)_{x} \operatorname{sech}^{2} g_{i} \tag{2.4}
\end{equation*}
$$

It is clear from the following results that (2.1) with (2.2) is the desired decomposition:
(i) On using (2.4) we have $\int_{-\infty}^{\infty} u_{i} d x=4 k_{i}$ so the 'mass' of u_{i} is conserved.
(ii) From (2.3), as $t \rightarrow \pm \infty$ with η_{i} fixed, $g_{i} \rightarrow \eta_{i}+$ constant and so

$$
u_{i} \rightarrow 2 k_{i}^{2} \operatorname{sech}^{2}\left[k_{i}\left(x-c_{i} t\right)+\text { constant }\right],
$$

namely a 1 -soliton solution to the original evolution equation.
Maloney \& Hodnett [7] discuss the trajectories of the 'centres of the masses'. We prefer to consider the trajectories of the 'centres of mass'. The 'centre of mass' of $u_{i}, x_{G}^{(i)}$, is defined by

$$
\begin{equation*}
4 k_{i} x_{G}^{(i)}=\int_{-\infty}^{\infty} x u_{i} d x \tag{2.5}
\end{equation*}
$$

From (2.2) and (2.5) it may be shown that the velocity $v_{G}^{(i)}$ of the 'centre of mass' of u_{i} is given by

$$
\begin{equation*}
v_{G}^{(i)}:=\frac{d x_{G}^{(i)}}{d t}=c_{i}+\frac{1}{4 k_{i}} \int_{-\infty}^{\infty} x T_{i} d x \tag{2.6}
\end{equation*}
$$

where T_{i} is the 'transfer function' defined by

$$
T_{i}=\sum_{j=1}^{N} \frac{\partial W_{i j}}{\partial x}
$$

and $W_{i j}$ is given by

$$
\begin{equation*}
W_{i j}=\left(c_{i}-c_{j}\right) k_{j}\left(w_{i}\right)_{\eta_{j}} \tag{2.7}
\end{equation*}
$$

From (2.6) it can be seen clearly that the trajectory of u_{i} is affected by the presence of the other $u_{j},(j \neq i)$.

Finally, we note an additional useful property of u_{i}. If $u=w_{x}$ then

$$
\begin{equation*}
u_{i}=k_{i} w_{\eta_{i}} \tag{2.8}
\end{equation*}
$$

3 The Case $N=2$

Without loss of generality we assume that $k_{2}>k_{1}$. Hirota's method gives

$$
f=1+f_{1}+f_{2}+b^{2} f_{1} f_{2}, \quad b>0
$$

where b is a function of k_{1} and k_{2} that depends on the nonlinear evolution equation being considered. The trajectories of the centres of mass of u_{1} and u_{2} intersect at the origin in $x-t$ space if $2 \delta_{1}=2 \delta_{2}=-\ln b$, and then, as $t \rightarrow \pm \infty$,

$$
\begin{aligned}
& u_{1} \rightarrow 2 k_{1}^{2} \operatorname{sech}^{2}\left[k_{1}\left(x-c_{1} t\right) \mp \frac{1}{2} \epsilon \ln b\right], \\
& u_{2} \rightarrow 2 k_{2}^{2} \operatorname{sech}^{2}\left[k_{2}\left(x-c_{2} t\right) \pm \frac{1}{2} \epsilon \ln b\right],
\end{aligned}
$$

where $\epsilon=\operatorname{sgn}\left(c_{2}-c_{1}\right)$.
We wish to study the dynamical evolution of the interaction between u_{1} and u_{2} for $-\infty<$ $t<\infty$. To do this the following results are useful. Here the subscript zero denotes evaluation at $x=0, t=0$, and

$$
b_{K d V}:=\frac{k_{2}-k_{1}}{k_{2}+k_{1}}=\frac{r-1}{r+1}, \quad \text { with } \quad r:=\frac{k_{2}}{k_{1}}>1
$$

where $b_{K d V}$ is the expression for b associated with the KdV equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0 .
$$

- $u_{10}<0$ for $0<b<b_{K d V}$ and $u_{10}=0$ for $b=b_{K d V}$, otherwise $u_{10}>0 ; u_{20}>0$ and $u_{0}>0$.
- For $0<b<b_{K d V}, u_{1}$ has two zeros at $x-c_{2} t= \pm p / k_{2}$, where p is the root of

$$
\begin{equation*}
\cosh 2 p=\left[\left(1-b^{2}\right) r-\left(1+b^{2}\right)\right] / 2 b \tag{3.1}
\end{equation*}
$$

For $b=b_{K d V}, p=0$ and u_{10} has one zero at $x-c_{2} t=0$. For $b>b_{K d V}, u_{1}$ has no zeros.

- $u_{1 x 0}=0, u_{2 x 0}=0$ and $u_{x 0}=0$.
- $u_{1 x x 0} \geq 0$ for $0<b \leq b_{c 1}$, otherwise $u_{1 x x 0}<0$, where

$$
b_{c 1}=\frac{3 r^{2}-1+r \sqrt{r^{4}+6 r^{2}-3}}{(1+r)^{3}}
$$

$u_{2 x x 0} \geq 0$ for $b_{c 2-} \leq b \leq b_{c 2+}$ with $1<r<\sqrt{1+2 / \sqrt{3}}$, otherwise $u_{2 x x 0}<0$, where

$$
b_{c 2 \pm}=\frac{r\left(3-r^{2}\right) \pm \sqrt{-3 r^{4}+6 r^{2}+1}}{(1+r)^{3}}
$$

$u_{x x 0} \geq 0$ for $b_{c-} \leq b \leq b_{c+}$ with $1<r<\sqrt{2+\sqrt{3}}$, otherwise $u_{x x 0}<0$, where

$$
b_{c \pm}=\frac{-r^{4}+6 r^{2}-1 \pm r \sqrt{8\left(-r^{4}+4 r^{2}-1\right)}}{(1+r)^{4}}
$$

- From (2.7) we have

$$
W_{12}=8\left(c_{1}-c_{2}\right) k_{1} k_{2} f_{1} f_{2}\left(b^{2}-1\right) / f^{2}=-W_{21}
$$

4 Example: The extended KdV Equation

The extended $K d V$ (eKdV) equation [8] is

$$
\begin{equation*}
u_{t}+\mu\left(3 u^{2}+u_{x x}\right)_{x}+\sigma\left(10 u^{3}+5 u_{x}^{2}+10 u u_{x x}+u_{x x x x}\right)_{x}=0 \tag{4.1}
\end{equation*}
$$

where μ and σ are arbitrary constants. (4.1) reduces to the KdV equation when $\mu=1, \sigma=0$, and to the 5th-order KdV equation (Lax hierarchy) when $\mu=0, \sigma=1$.

Write $u=w_{x}$ in (4.1) and integrate with respect to x with the conditions that w_{t} and x derivatives of w vanish as $x \rightarrow \pm \infty$. On applying the operator $k_{i} \partial / \partial \eta_{i}$ to the resulting equation and using (2.8) we obtain the 'interacting soliton equations' for $i=1, \ldots, N$, namely

$$
u_{i t}+\mu\left(6 u u_{i x}+u_{i x x x}\right)+\sigma\left(30 u^{2} u_{i x}+10 u_{i x} u_{x x}+10 u u_{i x x x}+10 u_{x} u_{i x x}+u_{i x x x x x}\right)=0 .
$$

The Hirota form for (4.1) is

$$
\begin{gathered}
{\left[D_{x}\left(D_{t}+\mu D_{x}^{3}+\frac{\sigma}{6} D_{x}^{5}\right)-\frac{5 \sigma}{6} D_{x}^{3} D_{\tau}\right](f \cdot f)=0,} \\
D_{x}\left(D_{\tau}+D_{x}^{3}\right)(f \cdot f)=0
\end{gathered}
$$

from which it follows that

$$
c_{i}=4 \mu k_{i}^{2}+16 \sigma k_{i}^{4} \quad \text { and } \quad b_{e K d V}=b_{K d V}
$$

As $b=b_{K d V}$, the dynamics of the two soliton interaction are similar to those given in [2] and [5] for the KdV equation.

We deduce the following features during interaction.

- u_{1} has one zero and its trajectory is $x-c_{2} t=0$.
- $u_{1 x x 0}>0 \Rightarrow u_{1}$ has two maxima.
- For $1<r<\sqrt{2}, u_{2 x x 0}>0 \Rightarrow u_{2}$ has two maxima;
for $r>\sqrt{2}, u_{2 x x 0}<0 \Rightarrow u_{2}$ has one maximum.
- For $1<r<\sqrt{3}, u_{x x 0}>0 \Rightarrow u$ has two maxima;
for $r>\sqrt{3}, u_{x x 0}<0 \Rightarrow u$ has one maximum.
As an illustrative example, take $\mu=\sigma=1$ in (4.1) and soliton parameters $k_{1}=1$ and $k_{2}=1.6$. In this case $r=1.6$ so that $\sqrt{2}<r<\sqrt{3}$. Figure 1 illustrates the evolution of u_{1} and u_{2} in a frame of reference moving with speed c_{2}. In this figure the evolution is symmetric about the origin since our choice of δ_{1} and δ_{2} ensures symmetry about the origin in $x-t$ space. In particular we have chosen $t=0, \pm 0.01$ and ± 0.05. Figure 1 shows clearly that the zero of u_{1} is stationary in the frame of reference that moves with speed c_{2}. Figure 2 shows the behaviour of $v_{G}^{(1)}$ and $v_{G}^{(2)}$ as functions of time during the interaction as calculated from (2.6). The figure shows that, as u_{2} accelerates, u_{1} decelerates and vice versa and, for a while, the velocity of u_{1} is negative. Figure 3 shows the trajectories of the centres of mass of u_{1} and u_{2} in the $x-t$ plane as calculated from (2.5) and illustrates clearly the temporary backward motion of u_{1}.

We used Mathematica to perform all the calculations to produce the figures.

Figure 1: $u_{1} \& u_{2}$ for the eKdV Equation

Figure 2: $v_{G}^{(1)}(t) \& v_{G}^{(2)}(t)$ for the eKdV Equation

Figure 3: $x_{G}^{(1)}(t) \& x_{G}^{(2)}(t)$ for the eKdV Equation

5 Example: The Sawada-Kotera Equation

The Sawada-Kotera (SK) equation [9] is

$$
\begin{equation*}
u_{t}+\left(15 u^{3}+15 u u_{x x}+u_{x x x x}\right)_{x}=0 \tag{5.1}
\end{equation*}
$$

By using the method outlined in $\S 4$ we obtain the 'interacting soliton equations' for $i=$ $1, \ldots, N$, namely

$$
u_{i t}+45 u^{2} u_{i x}+15 u_{i x} u_{x x}+15 u u_{i x x x}+u_{i x x x x x}=0 .
$$

The Hirota form for (5.1) is

$$
D_{x}\left(D_{t}+D_{x}^{5}\right)(f \cdot f)=0
$$

from which it follows that

$$
c_{i}=16 k_{i}^{4} \quad \text { and } \quad b_{S K}=\sqrt{\frac{1+r^{2}-r}{1+r^{2}+r}}\left(\frac{r-1}{r+1}\right) .
$$

We deduce the following features during interaction.

- u_{1} has two zeros and their trajectories are $x-c_{2} t= \pm p / k_{2}$ respectively, where $p(>0)$ is given by (3.1) with $b=b_{S K}$.
- $u_{1 x x 0}>0 \Rightarrow u_{1}$ has two maxima.
- For $1<r<1.4596, u_{2 x x 0}>0 \Rightarrow u_{2}$ has two maxima;
for $r>1.4596, u_{2 x x 0}<0 \Rightarrow u_{2}$ has one maximum.
- For $1<r<1.8566, u_{x x 0}>0 \Rightarrow u$ has two maxima;
for $r>1.8566, u_{x x 0}<0 \Rightarrow u$ has one maximum.
As an illustrative example, take soliton parameters $k_{1}=1$ and $k_{2}=1.3$. In this case $r=1.3$ so that $1<r<1.4596$. Figures 4 to 6 for the SK equation are analogous to Figures 1 to 3 for the eKdV equation. The profiles in Figure 4 are plotted for $t=0, \pm 0.025$ and ± 0.15. This figure shows clearly that, as predicted, the two zeros of u_{1} are stationary and disposed symmetrically about the origin in the frame of reference that moves with speed c_{2}.

6 Future Work

We are considering other evolution equations such as the Boussinesq equation [10]. This equation has soliton solutions that propagate in either direction and so head-on collisions may be investigated. We aim to study interactions for the $N=3$ case and apply the results to a variety of equations; this would generalise the results of Moloney \& Hodnett [11] who considered only the KdV equation.

Figure 4: $u_{1} \& u_{2}$ for the SK Equation

Figure 5: $v_{G}^{(1)}(t) \& v_{G}^{(2)}(t)$ for the SK Equation

Figure 6: $x_{G}^{(1)}(t) \& x_{G}^{(2)}(t)$ for the SK Equation

References

[1] Caenepeel S. \& Malfliet W. 1985 Wave Motion 7299.
[2] Malfliet W. \& Van De Velde L. 1985 Lettere Al Nuovo Cimento 42179.
[3] Yoneyama T. 1984a Prog. Theor. Phys. 71843.
[4] Moloney T. P. \& Hodnett P. F. 1986 J. Phys. A: Math. Gen. 19 L1129.
[5] Hodnett P. F. \& Moloney T. P. 1989 SIAM J. Appl. Math. 491174.
[6] Yoneyama T. 1984b Prog. Theor. Phys. 721081.
[7] Moloney T. P. \& Hodnett P. F. 1989 Proc. R. Ir. Acad. 89A 205.
[8] Kichenassamy S. \& Olver P. J. 1992 SIAM J. Math. Anal. 231141.
[9] Drazin P. G. \& Johnson R. S. 1989 Solitons: An Introduction Cambridge University Press, Cambridge.
[10] Hirota R. 1973 J. Math. Phys. 14810.
[11] Moloney T. P. \& Hodnett P. F. 1991 SIAM J. Appl. Math. 51940.

