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Abstract

We consider the class of nonlinear evolution equations that have N -soliton solutions for the dependent
variable u(x; t), where u = 2(ln f)xx and f is obtainable by Hirota's method. The N -soliton solution is

decomposed into a sum
PN

i=1
ui, where, in the limits t! �1, each ui is a 1-soliton solution to the original

governing equation. During interaction `mass' is conserved for each ui. Our formulation of the decomposition
does not use the inverse scattering technique and is similar to that used for the KdV equation by Yoneyama
(1984b) and Moloney & Hodnett (1989). Focusing on the case N = 2, we discuss the properties of u1 and u2,
and our results are illustrated by considering an extended KdV equation and the Sawada-Kotera equation.
Also, for each of these equations, the corresponding `interacting soliton' equations are derived for general N .

1 Introduction

The KdV 2-soliton solution regarded as the interaction of two single solitons has been investi-
gated by several authors [1] - [5]. In [1] - [3] the decomposition of the 2-soliton solution was
achieved via inverse scattering transform theory. In [4, 5], however, the Hirota formalism was
used. The results in [3] and [4, 5] were later extended to the KdV N -soliton solution; see [6]
and [7] respectively.

The decomposition in [6] and [7] is, in fact, applicable to a wide class of nonlinear evolution
equations of which the KdV equation is a member, and it is this class of equations that is consid-
ered here. In x2 we summarise the formulation of the decomposition of the N -soliton solution.
In x3 we focus on the case N = 2. In x4 and x5 we illustrate our results by considering an
extended KdV equation and the Sawada-Kotera equation respectively. Future work is outlined
in x6.

2 General Formulation

Let u(x; t) be the N -soliton solution to a given nonlinear evolution equation. Suppose that u
may be expressed in the form

u = 2(ln f)xx

where
f = f(�1; : : : ; �N ); �i = ki(x� cit) + �i;
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and ki, ci and �i are constants. We express u in the form

u =
NX
i=1

ui; (2.1)

where
ui = (wi)x and wi = 2ki(ln f)�i: (2.2)

Hirota's method leads to an expression for f as a series involving fj := e2�j, (j = 1; : : : ; N). For
a given i the series may be written in the form

f = hi + �hifi;

where hi and �hi do not involve fi. It now follows that

wi = 2ki(1 + tanh gi)

where

gi = �i +
1

2
ln
� �hi
hi

�
(2.3)

and so
ui = 2ki(gi)x sech

2 gi: (2.4)

It is clear from the following results that (2.1) with (2.2) is the desired decomposition:

(i) On using (2.4) we have
R
1

�1 ui dx = 4ki so the `mass' of ui is conserved.

(ii) From (2.3), as t! �1 with �i �xed, gi ! �i + constant and so

ui ! 2k2i sech
2[ki(x� cit) + constant];

namely a 1-soliton solution to the original evolution equation.

Maloney & Hodnett [7] discuss the trajectories of the `centres of the masses'. We prefer to

consider the trajectories of the `centres of mass'. The `centre of mass' of ui, x
(i)
G , is de�ned by

4kix
(i)
G =

Z
1

�1

xui dx: (2.5)

From (2.2) and (2.5) it may be shown that the velocity v(i)G of the `centre of mass' of ui is given
by

v
(i)
G :=

dx
(i)
G

dt
= ci +

1

4ki

Z
1

�1

xTi dx; (2.6)

where Ti is the `transfer function' de�ned by

Ti =
NX
j=1

@Wij

@x

and Wij is given by
Wij = (ci � cj)kj(wi)�j : (2.7)

From (2.6) it can be seen clearly that the trajectory of ui is a�ected by the presence of the other
uj, (j 6= i).

Finally, we note an additional useful property of ui. If u = wx then

ui = kiw�i: (2.8)
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3 The Case N = 2

Without loss of generality we assume that k2 > k1. Hirota's method gives

f = 1 + f1 + f2 + b2f1f2; b > 0;

where b is a function of k1 and k2 that depends on the nonlinear evolution equation being
considered. The trajectories of the centres of mass of u1 and u2 intersect at the origin in x-t
space if 2�1 = 2�2 = � ln b, and then, as t! �1,

u1 ! 2k21 sech
2[k1(x� c1t)� 1

2
� ln b];

u2 ! 2k22 sech
2[k2(x� c2t)� 1

2
� ln b];

where � = sgn(c2 � c1).
We wish to study the dynamical evolution of the interaction between u1 and u2 for �1 <

t < 1. To do this the following results are useful. Here the subscript zero denotes evaluation
at x = 0, t = 0, and

bKdV :=
k2 � k1
k2 + k1

=
r � 1

r + 1
; with r :=

k2
k1

> 1;

where bKdV is the expression for b associated with the KdV equation

ut + 6uux + uxxx = 0:

� u10 < 0 for 0 < b < bKdV and u10 = 0 for b = bKdV , otherwise u10 > 0; u20 > 0 and u0 > 0.

� For 0 < b < bKdV , u1 has two zeros at x� c2t = �p=k2, where p is the root of

cosh 2p = [(1� b2)r � (1 + b2)]=2b: (3.1)

For b = bKdV , p = 0 and u10 has one zero at x� c2t = 0. For b > bKdV , u1 has no zeros.

� u1x0 = 0, u2x0 = 0 and ux0 = 0.

� u1xx0 � 0 for 0 < b � bc1, otherwise u1xx0 < 0, where

bc1 =
3r2 � 1 + r

p
r4 + 6r2 � 3

(1 + r)3
:

u2xx0 � 0 for bc2� � b � bc2+ with 1 < r <
q
1 + 2=

p
3, otherwise u2xx0 < 0, where

bc2� =
r(3 � r2)�p�3r4 + 6r2 + 1

(1 + r)3
:

uxx0 � 0 for bc� � b � bc+ with 1 < r <
q
2 +

p
3, otherwise uxx0 < 0, where

bc� =
�r4 + 6r2 � 1 � r

q
8(�r4 + 4r2 � 1)

(1 + r)4
:

� From (2.7) we have

W12 = 8(c1 � c2)k1k2f1f2(b
2 � 1)=f2 = �W21:
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4 Example: The extended KdV Equation

The extended KdV (eKdV) equation [8] is

ut + �(3u2 + uxx)x + �(10u3 + 5u2x + 10uuxx + uxxxx)x = 0; (4.1)

where � and � are arbitrary constants. (4.1) reduces to the KdV equation when � = 1, � = 0,
and to the 5th-order KdV equation (Lax hierarchy) when � = 0, � = 1.

Write u = wx in (4.1) and integrate with respect to x with the conditions that wt and x
derivatives of w vanish as x! �1. On applying the operator ki@=@�i to the resulting equation
and using (2.8) we obtain the `interacting soliton equations' for i = 1; : : : ; N , namely

uit + �(6uuix + uixxx) + �(30u2uix + 10uixuxx + 10uuixxx + 10uxuixx + uixxxxx) = 0:

The Hirota form for (4.1) is

[Dx(Dt + �D3
x +

�

6
D5

x)�
5�

6
D3

xD� ](f � f) = 0;

Dx(D� +D3
x)(f � f) = 0

from which it follows that

ci = 4�k2i + 16�k4i and beKdV = bKdV :

As b = bKdV , the dynamics of the two soliton interaction are similar to those given in [2] and
[5] for the KdV equation.

We deduce the following features during interaction.

� u1 has one zero and its trajectory is x� c2t = 0.

� u1xx0 > 0) u1 has two maxima.

� For 1 < r <
p
2, u2xx0 > 0) u2 has two maxima;

for r >
p
2, u2xx0 < 0) u2 has one maximum.

� For 1 < r <
p
3, uxx0 > 0) u has two maxima;

for r >
p
3, uxx0 < 0) u has one maximum.

As an illustrative example, take � = � = 1 in (4.1) and soliton parameters k1 = 1 and
k2 = 1:6. In this case r = 1:6 so that

p
2 < r <

p
3. Figure 1 illustrates the evolution of u1

and u2 in a frame of reference moving with speed c2. In this �gure the evolution is symmetric
about the origin since our choice of �1 and �2 ensures symmetry about the origin in x-t space.
In particular we have chosen t = 0, �0:01 and �0:05. Figure 1 shows clearly that the zero of u1
is stationary in the frame of reference that moves with speed c2. Figure 2 shows the behaviour

of v
(1)
G and v

(2)
G as functions of time during the interaction as calculated from (2.6). The �gure

shows that, as u2 accelerates, u1 decelerates and vice versa and, for a while, the velocity of u1
is negative. Figure 3 shows the trajectories of the centres of mass of u1 and u2 in the x-t plane
as calculated from (2.5) and illustrates clearly the temporary backward motion of u1.

We used Mathematica to perform all the calculations to produce the �gures.
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Figure 1: u1 & u2 for the eKdV Equation
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5 Example: The Sawada-Kotera Equation

The Sawada-Kotera (SK) equation [9] is

ut + (15u3 + 15uuxx + uxxxx)x = 0; (5.1)

By using the method outlined in x4 we obtain the `interacting soliton equations' for i =
1; : : : ; N , namely

uit + 45u2uix + 15uixuxx + 15uuixxx + uixxxxx = 0:

The Hirota form for (5.1) is
Dx(Dt +D5

x)(f � f) = 0

from which it follows that

ci = 16k4i and bSK =

s
1 + r2 � r

1 + r2 + r

�
r � 1

r + 1

�
:

We deduce the following features during interaction.

� u1 has two zeros and their trajectories are x� c2t = �p=k2 respectively, where p (> 0) is
given by (3.1) with b = bSK.

� u1xx0 > 0) u1 has two maxima.

� For 1 < r < 1:4596, u2xx0 > 0) u2 has two maxima;

for r > 1:4596, u2xx0 < 0) u2 has one maximum.

� For 1 < r < 1:8566, uxx0 > 0) u has two maxima;

for r > 1:8566, uxx0 < 0 ) u has one maximum.

As an illustrative example, take soliton parameters k1 = 1 and k2 = 1:3. In this case r = 1:3
so that 1 < r < 1:4596. Figures 4 to 6 for the SK equation are analogous to Figures 1 to 3 for
the eKdV equation. The pro�les in Figure 4 are plotted for t = 0, �0:025 and �0:15. This �gure
shows clearly that, as predicted, the two zeros of u1 are stationary and disposed symmetrically
about the origin in the frame of reference that moves with speed c2.

6 Future Work

We are considering other evolution equations such as the Boussinesq equation [10]. This equa-
tion has soliton solutions that propagate in either direction and so head-on collisions may be
investigated. We aim to study interactions for the N = 3 case and apply the results to a variety
of equations; this would generalise the results of Moloney & Hodnett [11] who considered only
the KdV equation.
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Figure 4: u1 & u2 for the SK Equation

-0.1 -0.05 0 0.05 0.1

t

-20

0

20

40

60

80

   
v  [t]
 G

  (1)
v    [t]
 G

  (2)
v    [t]
 G

Figure 5: v(1)
G

(t) & v
(2)
G

(t) for the SK Equation

-3 -2 -1 0 1 2 3 4

   
x  [t]
 G

-0.1

-0.05

0

0.05

0.1

t

  (1)
x    [t]
 G

  (2)
x    [t]
 G

Figure 6: x(1)
G

(t) & x
(2)
G

(t) for the SK Equation

7



References

[1] Caenepeel S. & Maliet W. 1985 Wave Motion 7 299.

[2] Maliet W. & Van De Velde L. 1985 Lettere Al Nuovo Cimento 42 179.

[3] Yoneyama T. 1984a Prog. Theor. Phys. 71 843.

[4] Moloney T. P. & Hodnett P. F. 1986 J. Phys. A: Math. Gen. 19 L1129.

[5] Hodnett P. F. & Moloney T. P. 1989 SIAM J. Appl. Math. 49 1174.

[6] Yoneyama T. 1984b Prog. Theor. Phys. 72 1081.

[7] Moloney T. P. & Hodnett P. F. 1989 Proc. R. Ir. Acad. 89A 205.

[8] Kichenassamy S. & Olver P. J. 1992 SIAM J. Math. Anal. 23 1141.

[9] Drazin P. G. & Johnson R. S. 1989 Solitons: An Introduction Cambridge University Press,
Cambridge.

[10] Hirota R. 1973 J. Math. Phys. 14 810.

[11] Moloney T. P. & Hodnett P. F. 1991 SIAM J. Appl. Math. 51 940.

8


