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Abstract

The aim is to create a mathematical models for a fishing rod and the action of casting with a bait.
A static fishing rod is modeled and the model is then transformed into a system of differential
equations which is then solved numerically. For the motion of the fishing rod, a dynamic equation
is formed where the position of each part of the fishing rod, which is bent, is found as function of
time. Then the optimal casting angle is found. Another approach in solving the problem is then
proposed for future work.
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1 Introduction

When fishing with a fishing rod it is sometimes desirable to be able to cast the bait long distances.
This enables the fisher to cover a greater area of the water and also lets the fisher target fishing
spots otherwise difficult to reach. The aim is to create mathematical models for a fishing rod and
the action of casting with a bait. The model will be simplified by assuming the rod moves in a
vertical plane and try to find a technique which increases the travel distance of the bait when it is
released by the fisher.

Equipment: Bait casting equipment consists of four pieces: a rod, a reel, a line and a lure. The rod
is made out of tubular or solid glass or sometimes bamboo or metal and is from 1.5m to 2.5m long.
It is classified by action (weight) as medium, light or very light. The reel houses a spool operated
with a right-hand crank, which turns the spool, winding the lane. Reel capacity for holding line
varies by brand, size and price. The line is available in a variety of breaking strengths, from 200
Pa to 1000 Pa. In our case, the fishing rod is made by carbon fibre. The length of the fishing rod
is 2.5m.

Figure 5.1: Bait casting rod.

2 Approach I

2.1 Model of static fishing rod

In order to find out the mathematical model for a fishing rod and the action of casting with a bait,
the task is divided into two steps. The first step is to model a static fishing rod held by a fisherman
and the second step is to model the action of casting with a bait. In the first step, the static fishing
rod is considered as a elastic beam with one end fixed. The beam will bend because the effect of
the weight of bait. Figure [5.2] shows the phenomenon described above.

To simplify the problem, the fishing rod is assumed weightless and the bending is only caused by
the weight of bait. Then the handle is ignored and the whole fishing rod is considered as a tube
with varied cross section. Figure 5.3 is the simplification of figure 5.2, from which the mathematical
variables describing the physical phenomenon are defined.
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Figure 5.2: Bending of the Static Fishing Rod

Figure 5.3: Simplification of the Bending Fishing Rod
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Now focusing on a small part of the bending fishing rod and analyzing the force acting on it, figure
[5.4] is aquired as shown below. According to this picture, there are two types of forces and one type

Figure 5.4: Analysis of the Fishing Rod

of moment acting on the small region. Since the fishing rod is static, all those forces and moments
should be in balance. By decomposing the forces into x and y direction, the below equations are
derived .

(N + dN) cos dΦ−N − (v + dv) sin dΦ = 0 (5.1)

(V + dV ) cos dΦ− V + (N + dN) sin dΦ = 0 (5.2)

M + dM −M + (V + dV )ds− V + (N + dN)ds sin dΦ = 0 (5.3)

Since dΦ � 1, it is approximated that cos dΦ ≈ 1 and sin dΦ ≈ dΦ, which leads to three new
equations.

dN − (v + dv)dΦ = 0 (5.4)

dV + (N + dN)dΦ = 0 (5.5)

dM + dV s + (N + dN)dsdΦ = 0 (5.6)

Because ds → 0 and dΦ, dN, dT → 0, by ignoring the second order term, the new equations are
demonstrated below:

dN

dΦ
= V (5.7)

dV

dΦ
= −N (5.8)

dM + dV s = 0 (5.9)

From the equation 5.7 and equation 5.8, the relationship between N and V is derived:

dN

dV
= −V

N
⇒ N2 + V 2 = C (5.10)

In order to find out the constant C, we look at the figure 5.5:
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Figure 5.5: Relationship between Forces

From that figure, the relation N2 + V 2 = W 2 can be seen.
Now considering the bending moment acting on the fishing rod, according to the definition of first
moment of area about the z direction, the following integral is derived:

Iz =
∫

z2dA = Iy =
1
2

∫
r2dA =

1
2

∫ 2π

0

∫
r
1r2r3drdθ =

π

4
(r4

2 − r4
1) (5.11)

From figure of relationship for moment, the equation is derived:

dΦ =
ds

r
=

(1 + ε)ds

y + r
(5.12)

ε =
y

r
= yK (5.13)

σ = Eε (5.14)

Where E is Young’s module.
Inserting the equation [5.13] to the equation [??] yields:

σ = −Ey

r
= EyKε (5.15)

Since N =
∫
A σdA and M = y ·N Now the moment is found:

M =
∫

A
yσdA =

E

r

∫
A

y2dA =
E

r
Iz = EIz

1
r

= EIz
dφ

ds
(5.16)

In all, the mathematical model is derived:

d

ds
(EIz(s)

dφ

ds
) = W · cos(φ) (5.17)
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Figure 5.6: Cross Section of the Fishing Rod Figure 5.7: Relationship for Moment

2.2 Solution for the Model of Static Fishing Rod

In the last section, the mathematical model for the static fishing rod was derived:

d

ds
(EIz(s)

dφ

ds
) = w · cos(φ) (5.18)

where
Iz(s) =

π

4
(r4

2(s)− r4
1(s)) (5.19)

First the left side of equation 5.18 is expanded.

E
d

ds

[
π

4
(r4

2(s)− r4
1(s))

dφ

ds

]
= w · cos(φ) (5.20)

πE

4
[
r4
2(s)− r4

1(s)
] d2φ

ds2
+ πE

[
r3
2(s)

dr2

ds
− r3

1(s)
dr1

ds

]
dφ

ds
= w · cos(φ) (5.21)

πE

4w

[
r4
2(s)− r4

1(s)
] d2φ

ds2
+

πE

w

[
r3
2(s)

dr2

ds
− r3

1(s)
dr1

ds

]
dφ

ds
= cos(φ) (5.22)

The the inner and outer radii for the fishing rod are approximated to be linear functions of s.

r1(s) = a1s + b1 (5.23)

r2(s) = a2s + b2 (5.24)
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2.3 Normalization of the equation

Since equation 5.22 has many components of different units, the equation is normalized. First
variable along the rod is normalized by introducing a new variable s’ which is on the interval [0,1]:

s = R · s′ (5.25)

where R = 2.1m is the length of the rod. Now the following equations are derived:

r2(s) = R · r′2(s′)
r1(s) = R · r′1(s′)

(5.26)

so

r′2(s
′) =

1
R

(Rs′) =
1
R

(a2Rs′ + b2) (5.27)

and therefore the normalized radii functions are derived.

r′2(s
′) =

r2(s)
R

r′1(s
′) =

r1(s)
R

(5.28)

and differentiated:
dr′2
ds′

=
1
R

d

ds′
r′2(Rs′) =

1
R

r′2(Rs) ·R (5.29)

Therefore:

dr′2
ds′

=
dr2

ds
dr′1
ds′

=
dr1

ds

(5.30)

This means that the derivatives are dimensionless. Now the normalized functions for the radii are
set in the equation 5.22.

πE

4w

[
(Rr′2(s

′))4 − (Rr′1(s
′))4
] 1

R2

d2φ

ds′2
+

πE

w

[
(Rr′2(s

′))3
dr′2
ds′

− (Rr′1(s
′))3

dr′1
ds′

]
1
R

dφ

ds′
= cos(φ)

(5.31)

πER2

4w

[
(a2s

′ +
b2

R
)4 − (a1s

′ +
b1

R
)4
]

d2φ

ds′2
+

πER2

w

[
(a2s

′ +
b2

R
)3a2 − (a1s

′ +
b1

R
)3a1

]
dφ

ds′
= cos(φ)

(5.32)
Then the constant γ is defined:

γ =
πER2

w
(5.33)
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so the scale of γ is

[γ] =
N

m2

m2

N
= 1 (5.34)

More constants are also define:

α1 = a1 ; β1 =
b1

R

α1 = a2 ; β2 =
b1

R

(5.35)

Then the equation is dimensionless:

γ

4
[
(α2s

′ + β2)4 − (α1s
′ + β1)4

] d2φ

ds′2
+ γ

[
(α2s

′ + β2)3α2 − (α1s
′ + β1)3α1

] dφ

ds′
= cos(φ) (5.36)

The equation is simplified by introducing function A(s′) and B(s′):

A(s′) :=
γ

4
[
(α2s

′ + β2)4 − (α1s
′ + β1)4

]
B(s′) := γ

[
(α2s

′ + β2)3α2 − (α1s
′ + β1)3α1

] (5.37)

so the equation becomes:

A
d2φ

ds′2
+ B

dφ

ds′
= cos(φ) (5.38)

2.4 Solving the equation numerically

First the equation is transformed into a system of ODE’s by defining:

u1 := φ

u2 :=
dφ

ds

(5.39)

and then the system becomes:[
1 0
0 A

] [
u′1
u′2

]
=
[

u2

cos(u1)−Bu2

]
(5.40)

The paramaters for this system are γ,the α’s and the β’s which are all dimensionless.

Now this system of ODE’s is solved in Matlab using an built-in ODE-solver and φ for every part
of the fishing rod is acquired. Figure 2.4 shows a comparison of the measured form of the fishing
rod and the one acquired by solving the system of ODE’s.
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Figure 5.8: Comparision between the measured and computed bending of the rod

Since the Young’s Module, E was only given to be at some interval, it had be optimized to make
the calculated form of the fishing rod the most like the measured form of the fishing rod. The E
derived was E = 2.5 · 109 while the radii functions were set to:

r1(s) = − 1
1000

s +
3

400
(5.41)

r2(s) = − 1
1000

s +
19

2000
(5.42)

2.5 Description of Movement

In this section the movement of the fishing rod with a bait attached to it’s tip will be discussed.

Just as it is impossible to pull a car with a slack rope, it is impossible to move a fly with a
slack line. Thus we make sure that we start with the line straight. Every casting stroke is a smooth
acceleration followed by a stop. The acceleration bends the rod and loads it like a catapult. While
it is accelerating the bend increases, when it stops the rod recovers and straightens. It is the stop
that transfers the stored energy in the catapult (rod) to the line and makes the cast. The line
always follows the rod tip and when the rod stops the line projects in the direction that the rod tip
is going in when the stop is made.

13



Figure 5.9: motion of the arm with the rod

The expressions for the displacement of the rod at a time t are given by the equations

x(s, t) = r(t)cos(θ(t)) +
∫ s

0
cos(β(s, t))ds, (5.43a)

y(s, t) = r(t)sin(θ(t)) +
∫ s

0
sin(β(s, t))ds (5.43b)

where
xo(t) = r(t)cos(θ(t)) and yo(t) = r(t)sin(θ(t)).

r(t) is the distance between the fisher’s fist and the toes.
θ(t) is the angle between this line and the horizontal.
α(t) is the angle between and r(t)
Taking the second derivative of equations [5.43a] and [5.43b] with respect to t gives

∂2x(L, t)
∂t2

= fx −
∫ L

0
cos(β(s, t)).

(
∂β(s, t)

∂t

)2

+ sin(β(s, t)).
(

∂2β(s, t)
∂t2

)
ds (5.44)

and

∂2y(L, t)
∂t2

= fy +
∫ L

0
cos(β(s, t)).

(
∂2β(s, t)

∂t2

)
− sin(β(s, t)).

(
∂β(s, t)

∂t

)2

ds (5.45)

where

fx =
(

∂2r(t)
∂t2

)
cos(θ(t))− 2

(
∂r(t)
∂t

)
sin(θ(t))− r(t) cos(θ(t))

(
∂θ

∂t

)2

− r(t) sin(θ(t))
(

∂2θ

∂t2

)
and

fy =
(

∂2r(t)
∂t2

)
sin(θ(t)) + 2

(
∂r(t)
∂t

)
cos(θ(t))− r(t) sin(θ(t))

(
∂θ

∂t

)2

+ r(t) cos(θ(t))
(

∂2θ

∂t2

)
14



The rod is assumed weightless and the only force that is acting on the bait is at the tip of the rod.
This force is given by newton’s second law of motion i.e

F = ma (5.46)

where

a =
(

ẍ(L, t)
ÿ(L, t)

)
The momentum of the particle is given by

M(s, t) =
∫ s

L
F.n(σ)dσ (5.47)

also from equation [5.16] momentum is given by

M(s, t) = EIz(s)K (5.48)

equating equations [5.47] and equation [5.48] ,we obtain

EIz(s)K =
∫ s

L
F.n(σ)dσ (5.49)

But from Fig [5.9], it can be seen that

β(s, t) = θ(t)− α(t)− φ(s, t) (5.50)

differentiating equation [5.50] with respect to s leads to

K =
dφ

ds
= −dβ

ds
(5.51)

subsituting the expression for K in [5.49] leads to

EIz(s)(−
dβ

ds
) =

∫ s

L
F.n(σ)dσ (5.52)

the normal vector n to the rod is given by

n(s, t) =
(
− sin(β(s, t))

cos(β(s, t))

)
(5.53)

Therefore, substituting [5.46], and [5.53] into [5.52], we obtain

−EIz(s)
dβ(s, t)

ds
= m.

∫ s

L

[
(− sinβ)fx(t) + sin β

∫ L

0
[sinβ

(
∂2β

∂t2

)
+ cos β

(
∂β

∂t

)2

]ds

]
dσ

+ m

∫ s

L

[
(cos β)fy(t) + cos β

∫ L

0
[− sinβ

(
∂β

∂t

)2

+ cos β

(
∂2β

∂t2

)
]ds

]
dσ

(5.54)
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Therefore re-writing equation [5.54] leads to

−EIz(s)
dβ(s, t)

ds
= m

∫ L

s

[
(sinβ(σ, t))fx(t)− sinβ(σ, t)

∫ L

0
[sinβ

(
∂2β

∂t2

)
+ cos β

(
∂β

∂t

)2

]ds

]
dσ

− m

∫ L

s

[
(cos β(σ, t))fy(t) + cos β(σ, t)

∫ L

0
[− sinβ

(
∂β

∂t

)2

+ cos β

(
∂2β

∂t2

)
]ds

]
dσ

(5.55)

Equation [5.55] is our model equation for the movement of a fishing rod. This equation will be
solved numerically in the next section to obtain value of β . The value of beta obtained can then be
substituted back into equations [5.43a] and [5.43b] to obtain the displacement of the rod. Equations
[5.43a] and [5.43b] are then differentiated to obtain the velocity of the tip of the rod. This velocity
will then be regarded as the initial velocity of the bait as it leaves the tip. In the next subsection,
the equations of motion of the bait as it leaves the tip of the rod is discussed.

Motion of the bait from the tip of the fishing rod

In this section,the motion of the fishing bait as it leaves the tip of the rod will be discussed. The
bait’s trajectory is assumed as parabolic when it leaves the tip. The bait that is projected from the
tip of the fishing rod with initial velocity v0 follows a parabolic path as shown in the figure [5.10].
The x and y coordinates of the particle at a time t are given by the equations

Figure 5.10: motion of a bait

x = v0t cos α0 (5.56)

y = h0 + vot sinα0 −
1
2
gt2 (5.57)

where v0 =
[

ẋ(L, t)
ẏ(L, t)

]
and α0 is the initial angle of projection.

The time taken by the bait to land at any given point on a horizontal plane is given by

T =
v0 sinα0 ±

√
v2
0 sin2 α0 + 2gh0

g
. (5.58)
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The horizontal distance w the bait travels is given by

w = v0 cos α0T (5.59)

= v0 cos α0

v0 sinα0 +
√

v2
0 sin2 α0 + 2gh0

g

 (5.60)

2.6 Numerical Analysis of the Dynamic equation for β

In this section the numerical solution of equation [5.55] is discussed. This equation is a non-linear
partial integral differential equation. A closed solution to this equation is complicated, thus we seek
a numerical solution to this equation.

Normalization of the model equation

Since equation [5.55] has many components of different units, the equation is normalized.
At first it is simplified to:

−EIz(s)
dβ(s, t)

ds
= m

∫ L

s

[
sinβ(σ, t)fx(t)− sinβ(σ, t)

∫ L

0

(
sinβ(s, t)

(
d2β(s, t)

dt2

)
+ cosβ(s, t)

(
dβ(s, t)

dt

)2
)

ds

]
dσ

−m

∫ L

s

[
cosβ(σ, t)fx(t) + cosβ(σ, t)

∫ L

0

(
cosβ(s, t)

(
d2β(s, t)

dt2

)
− sinβ(s, t)

(
dβ(s, t)

dt

)2
)

ds

]
dσ

(5.61)

To normalize the equation the following dimensionless variables are introduced:

t′ = Tt

s′ = Ls

σ′ = Lσ

(5.62)

Then the following equations are derived:

I ′z(s
′) = Im · Iz(s)

Im = I ′z(0)
(5.63)

and a dimensionless constant:

γ =
mL3

ImET 2
(5.64)
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Now a normalized function F of β is defined:

F (β) = Iz(s)
dβ(s, t)

ds

+γ

∫ 1

s

[
sinβ(σ, t)fx(t)− sinβ(σ, t)

∫ 1

0

(
sinβ(s, t)

(
d2β(s, t)

dt2

)
+ cosβ(s, t)

(
dβ(s, t)

dt

)2
)

ds

]
dσ

−γ

∫ 1

s

[
cosβ(σ, t)fx(t) + cosβ(σ, t)

∫ 1

0

(
cosβ(s, t)

(
d2β(s, t)

dt2

)
− sinβ(s, t)

(
dβ(s, t)

dt

)2
)

ds

]
dσ

(5.65)

Approximating the equation for β

To solve the equation [5.55] for β is the same as solving F (β) = 0 using equation [5.65]. That is
done using the Newton’s Method.

At first β is discretized both in space (s) and time (t) using finite difference. Then Bk
i ≈ β(si, tk) =

Figure 5.11: discretisation domain

β(i.∆s, k.∆t). The boundary conditions are

∂β(0, t)
∂s

= 0 (5.66)

β(0, t) = θ(t)− α̃(t), φ(0, t) = 0 (5.67)
α̃(t) = π − α(t)

The functions α(t) = π
2 −

π
2 t and θ(t) = 1.73 − 0.46t θ(t), are estimated using measurements of

the traces of the movement of the hand. From the several values obtained from the measurements,
polynomial interpolation is used to estimate the functions.
The initial condition is

β(s, 0) = β0(s) = θ(t)− α(t)− φ(s) (5.68)

Therefore the unknowns are
βk

i (5.69)
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where

i = 1, ..., N

k = 1, ...,M

So β is defined as a matrix:

β =


β1

1 . . . . . . βM
1

β1
2

. . . βM
2

...
. . .

...
β1

N . . . . . . βM
N

 (5.70)

and each column is defined as a vector:

βk =


βk

0

βk
1

βk
2
...

βk
N

 (5.71)

To approximate the derivatives, Finite Difference for are used. For the derivatives of t for k =
1, . . . ,M − 1 they are:

(
dβ

dt

)k

≈ βk+1 − βk−1

2∆t(
d2β

dt2

)k

≈ βk+1 − 2βk + βk−1

(∆t)2

(5.72)

and for k = M they are: (
dβ

dt

)k

≈ βk − βk−1

∆t(
d2β

dt2

)k

≈ βk − 2βk−1 + βk−2

(∆t)2

(5.73)

For the derivatives of s for i = 0 . . . , N − 1 they are(
dβ

ds

)k

i

≈
βk

i+1 − βk
i−1

2∆s
(5.74)

and for i = N they are: (
dβ

ds

)k

i

≈
βk

i − βk
i−1

∆s
(5.75)

To approximate the integrals the Trapezoidal rule is used. First a vector h is defined:
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h =


h(0, t)

h(∆s, t)
...

h(N∆s, t)

 (5.76)

then the Trapezoidal rule gives: ∫ 1

0
h(s, t) ds ≈

[
1
2
1 . . . 1

1
2

]
h∆s (5.77)

For si to 1 the integral becomes:∫ 1

si
h(s, t) ds ≈

[
0 . . . 0

1
2
1 . . . 1

1
2

]
h∆s (5.78)

To represent equation 5.65 on a matrix form, the following matrices are now defined:

D =
1

2∆s


−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−2 2

 an N × (N + 1) matrix, (5.79)

Iz =


Iz(∆s)

Iz(2∆s)
. . .

Iz(N∆s)

 an N ×N matrix, (5.80)

S1[ 1
2 1 . . . 1 1

2 ] an (N + 1)× 1 vector and (5.81)

S2


0 1

2 1 . . . . . . 1 1
2

... 0 1
2 1 . . . 1 1

2
...

. . . . . .
1
2

1
2

0 . . . . . . 0

 an N × (N + 1) matrix. (5.82)

Now for each column of β, βk the following vectors are defined:

hk
1 := sinβk ∗

(
d2β

dt2

)k

+ cosβk ∗
(

dβk

dt

)2

hk
1 := cosβk ∗

(
d2β

dt2

)k

− sinβk ∗
(

dβk

dt

)2
(5.83)
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So now for each column of β equation 5.65 is represented on a matrix form by:

F (βk) = Iz ·D · βk+

γ∆s · S2

[
sinβkfx(tk)− sinβk(S1 · h1)∆s

]
−γ∆s · S2

[
cosβkfx(tk) + cosβk(S1 · h2)∆s

] (5.84)

2.7 Solving the equation for β using the Newton method

To solve the equation for β, the Newton method is used. First the matrix β is transformed into a
vector by defining:

X :=



β1
1

β1
2
...

β1
N

β2
1
...

βM
N


Then for each iteration the Newton method is used:

Xn+1 = Xn −
F (Xn)
J(Xn)

(5.85)

where an approximation of the Jacobian is as follows:

J(i, j) =
F (Xn+1(i))− F (X∗

n+1(i))
h

(5.86)

for i, j = 1, . . . , N ·M where:
X∗(i) = X(i) + h (5.87)

Then the matrix for β using ∆t and ∆s as 0.1 derived:

t : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s : −−− −−−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
0.0| 0 0.2618 0.5236 0.7854 1.0472 1.3090 1.5708 1.8326 2.0944 2.3562 2.6180
0.1| −0.0142 0.2118 0.4759 0.7468 1.0172 1.2870 1.5562 1.8252 2.0939 2.3626 2.6311
0.2| −0.0446 0.1559 0.4274 0.7080 0.9872 1.2649 1.5417 1.8178 2.0935 2.3689 2.6442
0.3| −0.0939 0.0952 0.3782 0.6690 0.9571 1.2429 1.5272 1.8104 2.0930 2.3753 2.6573
0.4| −0.1634 0.0309 0.3288 0.6301 0.9272 1.2210 1.5127 1.8031 2.0926 2.3816 2.6703
0.5| −0.2539 −0.0351 0.2801 0.5920 0.8980 1.1997 1.4986 1.7959 2.0922 2.3878 2.6829
0.6| −0.3705 −0.1004 0.2336 0.5558 0.8701 1.1794 1.4853 1.7891 2.0917 2.3936 2.6950
0.7| −0.5187 −0.1612 0.1913 0.5230 0.8451 1.1610 1.4732 1.7830 2.0914 2.3989 2.7058
0.8| −0.6979 −0.2129 0.1561 0.4957 0.8242 1.1458 1.4631 1.7779 2.0911 2.4033 2.7148
0.9| −0.9136 −0.2493 0.1316 0.4767 0.8097 1.1353 1.4562 1.7743 2.0908 2.4064 2.7211
1.0| −1.1705 −0.2638 0.1219 0.4692 0.8040 1.1311 1.4534 1.7729 2.0908 2.4076 2.7236

(5.88)

and figure [5.12] shows the fishing rod at different times.
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Figure 5.12: motion of fishing rod at different times

2.8 Discussions and Comments

An experimental method was used for this project. There are a lot of measurements and generally
it is impossible to make an exact measurement, therefore there are uncertainties in measured quan-
tities due to systematic errors, e.g instrumental errors: venire caliper for measuring the outer and
inner radii of the fishing rod and the meter ruler for measuring the lengths, and random errors, e.g
rounding off the lengths as well as parallax. The data is also used to obtain functions for calculating
unknown quantities,therefore there is a possibility of error propagation.

For simplification purposes a number of assumptions are made. The assumptions are that: the
fishing rod is weightless, the difference between the inner and the outer radii is the same at all
points,the fishing rod is made out of only graphite fibres range in order to use its young’s modulus
range (220-1000 GPa). The reel is also assumed to be friction-less.

One person does the casting and the following assumptions are made: his standing point is constant
through out the cast,time for casting is estimated to be 1 seconds since it is difficult to measure
the exact time, the velocity of the motion is assumed to be constant through out, the motion is
sketched on a grid paper in order to measure quantities. Air resistance is neglected.

2.9 Optimal casting angle

By assuming that no forces act on the fishing line when the bait is released, the trajectory from
any casting angle can be found by using equation [5.56]

x = v0t cos α0 (5.89)

y = h0 + vot sin α0 −
1
2
gt2 (5.90)

also the horizontal distance from each cast can be found by using equation 5.59
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w = v0 cos α0T (5.91)

= v0 cos α0

v0 sinα0 +
√

v2
0 sin2 α0 + 2gh0

g

 (5.92)

Where α0(t) = π/2β(L, t) is the initial angle of projection.

Since α0(t) and av0(t) are only found as a discreet function, they are both interpolated using ∆t
and the optimal initial angle within error bounds of ∆t is found by using Matlab.

For ∆ = 0.001 the optimal angle is found to be is α0 = 0.9974 Rad and the longest vertical distance
is therefore w = 6.1129. Figure 5.13 shows trajectories of different casts with the one with the
longest vertical distance highlighted.

Figure 5.13: Trajectories of different casts
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3 Approach II

A flexible beam undergoing large overall motions is typically formulated relative to coordinate sys-
tem that follows the rigid body motion of the beam. The introduction of this floating frame is
motivated by the assumption of infinitesimal stains. With the assumption of small strains, the use
of floating strain allows a simple expression for the total potential energy of the beam. The kinetic
energy of the system is reduced to a quadratic uncoupled form simply by referring the motion of
the system to the inertial frame. This result is a drastic simplification of the inertia operator,
which now becomes linear and uncoupled, while the stiffness operator emanating from the potential
energy functional becomes nonlinear. As a basis for our discussion, a specific problem is chosen to
introduce our formulation: the model problem consists of a flexible beam with one end at the origin
of the inertial frame.

Figure 5.14: Basic Kinematics: Floating and Inertial Frame

Inertial frame: The basic kinematic assumption is the plane sections normal to the axis of the beam
in the undeformed configuration remain plane after deformation:

Φ(X1, X2, t) := Φ0(X1, t) + X2t2(X1, t) (5.93)

where Φ is the position vector of a material particle initially located at x = x1 ∗ e1 + x2 ∗ e2 in the
undeformed configuration.

Kinetic energy: It is possible to show that the kinetic energy of the system relative to the inertial
basis reduces to the standard quadratic uncoupled form. Then the following expressions for the
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kinetic energy of the system are derived:

K =
1
2

∫
[0,L]

[Aρ(u̇2
1 + u̇2

2) + Iρθ̇
2]dX1 (5.94)

Here the inertia coefficients Aρ and Iρ are given by equation

Aρ :=
∫

[−h
2
, h
2
]
ρ(X1, X2)dX2Iρ :=

∫
[−h

2
, h
2
]
ρ(X1, X2)X2

2dX2 (5.95)

Potential energy: The potential energy is expressed as

Π :=
1
2

∫
[0,L]

[EAΓ2
1 + GAsΓ2

2 + WI(θ
′
)2]dS + Πext − T (t)θ(0, t) (5.96)

where Πext is the potential energy of the external loading acting on the beam.

Figure 5.15: Physical Interpretation of the Strain Components of a Beam in the Finite Strain Case

Equations of motion: The equations of motion governing the evolution of the system may be
systematically obtained from Hamilton’s principle.
Excursion: Hamilton’s principle. The Lagrangian L is defined as

L = T − V (5.97)

where T is the kinetic energy and V is the potential energy of the system in question. Generally
speaking, the potential energy of a system depends on the coordinates of all its particles; this may
be written as

V = V (x1, y1, z1, x2, y2, z2, ...) (5.98)
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The kinetic energy generally depends on the velocities, which uses the notation vx = dx
dt = x, may

be written
T = T (x1, y1, z1, x2, y2, z2, ...) (5.99)

Thus, a dynamic problem has six dynamic variables for each particle- they are x1, y1, z1 and x2, y2, z2

-and the Lagrangian depends on all 6N variables if there are N particles.

The action, denoted by S, is the time integral of the Lagrangian:

S =
∫

Ldt (5.100)

Let q0 and q1 be the coordinates at respective initial and final times t0 and t1. Using the calculus
of variations, it can be shown the Lagrange’s equations are equivalent to Hamilton’s principle: The
system undergoes the trajectory between t0 and t1 whose action has a stationary value.
By stationary, the action does not vary to first-order for infinitesimal deformations of the trajectory,
with the end-points (q0, t0) and (q1, t1) fixed. Hamilton’s principle can be written as:∫

L4S = 0 (5.101)

Thus, instead of thinking about particles accelerating in response to applied forces, one might think
of them picking out the path with a stationary action.

In terms of the Lagrangian, the classical equations of motion are given by Euler-Lagrange equation:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0 (5.102)

where qi is the general coordinates of the system. An important property of the Lagrangian formu-
lation is that it can be used to obtain the equations of motion of a system in any set of coordinates,
not just the standard Cartesian coordinates.

This approach is concerned on the work of J.C.Simo(stanford University) and L.Vu-Quoc (University
of California). We don’t go to detail this approach due to the time constraint. Another reason is
also the missing accouterment as goniometry or instruments for measurement of the rod. But this
Approach is also a possibility to solve our problem.

4 Conclusion

In this project, the static mathematical model of fishing rod was derived by analyzing the forces
acting on the rod, the dynamic model was derived based on the static model and some assumption
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of movements. The parameters used in the models are derived by measuring method. In order to
simplify the model, some factors which may have slight influence on the distance of bait casting are
excluded. Finally, a system of ODE’s for static model and a system of PDE’s for dynamic model
are derived.

For the static case, the system of ODE’s derived for φ was solved and the young modulus was fitted
to E = 2.5 · 109 and the radii of the fishing to:

r1(s) = − 1
1000

s +
3

400
(5.103)

r2(s) = − 1
1000

s +
19

2000
(5.104)

and then is used in the dynamic case.

For the dynamic case the differential equation for the angle β(s, t) was solved by using the Newton
method with an approximation for the Jacobian. Then the initial casting angle α0(t) = π/2+β(s, t)
was used to find the trajectory of the bait and optimized to give the furthest vertical distance.
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1 Appendix

1.1 Program Used in Static model

• A.m
matlab script :

function res = A(s)

global epsilon alpha1 alpha2 beta1 beta2

res = (epsilon/4)*((alpha2*s+beta2)^4-(alpha1*s+beta1)^4);

• B.m
matlab script :
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function res = B(s)

global epsilon alpha1 alpha2 beta1 beta2

res = epsilon*((alpha2*s+beta2)^3*alpha2-(alpha1*s+beta1)^3*alpha1);

• rod.m
matlab script :

clear all

close all

clc

global gamma alpha1 alpha2 beta1 beta2

x = 0:10:190;

y = [0 0.5 1 1.5 2 2.5 3.8 4.8 6.3 8 10 12 14.5 17.8 21.5 26.6 32.5 40.5 49 68];

xx = 0:1:190;

yy = spline(x,-y,xx);

figure

plot(x,-y,’o’,xx,yy)

axis equal

for i = 2:190

talfa = (yy(i)-yy(i-1))/1;

fi2(i) = atand(talfa);

end;

for i = 2:190

talfa = (yy(i)-yy(i-1))/1;

fiRAD(i) = atan(talfa);

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

options=odeset(’RelTol’,1e-2,’AbsTol’,1e-2,’Mass’,@mass);

%Constants

E = 2.5*10^9;

R = 2.10; % length of rod measured in meters

L = 1;

m = 0.3; % weight in kg

g = 9.8; % [m/s^2]

w = m*g; % Newton

%radii of the rod

% a1 = -1/300;

% a2 = -4/4000;

% b1 = 3/400;

% b2 = 19/2000;
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a1 = -1/1000;

a2 = -1/1000;

b1 = 3/400;

b2 = 19/2000;

%Normalization of the equation

gamma = pi*E*R^2/w;

alpha1 = a1;

alpha2 = a2;

beta1 = b1/R;

beta2 = b2/R;

%Initial values

u0 =[0;0];

[s,fi]=ode15s(@f,[0:1/189:L],u0,options);

%Derivation of coordinates

xc(1) = 0;

yc(1) = 0;

for i = 2:size(s)

xc(i) = xc(i-1) + (s(i)-s(i-1))*cos(fi(i,1));

yc(i) = yc(i-1) + (s(i)-s(i-1))*sin(fi(i,1));

end

figure

plot(xc,-yc)

hold on

xm = linspace(0,190,20)/(100*R);

ym = [0 0.5 1 1.5 2 2.5 3.8 4.8 6.3 8 10 12 14.5 17.8 21.5 26.6 32.5 40.5 49 68]/(100*R);

plot(xm,-ym,’r’)

legend(’calculated’,’mesured’)

• mass.m
matlab script :

function res = mass(s,u)

global gamma alpha1 alpha2 beta1 beta2

res = [1 0;0 A(s)];

• f.m
matlab script :

function du = f(s,u)

global epsilon alpha1 alpha2 beta1 beta2

30



du = zeros(2,1);

du(1) = u(2);

du(2) = cos(u(1))-B(s)*u(2);

1.2 Program Used in Dynamic model

• A.m
matlab script :

function res = A(s)

global epsilon alpha1 alpha2 beta1 beta2

res = (epsilon/4)*((alpha2*s+beta2)^4-(alpha1*s+beta1)^4);

• alpha.m
matlab script :

function a = alpha(t)

alpha0 = theta0(0);

eta = pi / 6;

alpha1 = -(pi - theta0(1) - eta);

a = (alpha1-alpha0)*(t-1) + alpha1;

• B.m
matlab script :

function res = B(s)

global epsilon alpha1 alpha2 beta1 beta2

res = epsilon*((alpha2*s+beta2)^3*alpha2-(alpha1*s+beta1)^3*alpha1);

• d2r0dt2.m
matlab script :

function d2rdt2 = d2r0dt2(t)

d2rdt2 = -0.1318 * 3 * 2 * t - 0.3948 * 2;

d2rdt2 = d2rdt2 / 2.1;

• d2theta0dt2.m
matlab script :
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function d2adt2 = d2theta0dt2(t)

d2adt2 = 0.0;

• dr0dt.m
matlab script :

function drdt = dr0dt(t)

drdt = -0.1318 * 3 * t.^2 - 0.3948 * 2 * t + 0.3687;

drdt = drdt / 2.1;

• dtheta0dt.m
matlab script :

function dadt = dtheta0dt(t)

dadt = 0.46;

• f.m
matlab script :

function du = f(s,u)

global epsilon alpha1 alpha2 beta1 beta2

du = zeros(2,1);

du(1) = u(2);

du(2) = cos(u(1))-B(s)*u(2);

• fBox.m
matlab script :

function res = fBox(x)

global n m

BB = reshape(x,n,m);

Fmtx = FF(BB); % matrix F(beta)

res = reshape(Fmtx,n*m,1); % vector col

• FF.m
matlab script :

function x = FF(BB) % BB --> matrix

% BB(i,k) = Beta(s(i),t(k))

% ds step for s

% st dtep for t

global E Gama ds dt t n m L
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Bnew = zeros(n+1,m+1);

Bnew(2:n+1,2:m+1) = BB;

Bnew(:,1) = theta0(0) - alpha(0) - fi(n+1,0); % initial condition

Bnew(1,:) = theta0(t) - alpha(t); % boundry condition

x = zeros(n,m);

D = zeros(n,n+1);

for j = 1:n

D(j,j) = -1;

end

for j =1:n-1

D(j,j+2) = 1;

end

D(n,n) = -2;

D(n,n+1) = 2;

D = 1/(2*ds)*D;

Iz = diag(Iz_nondim(ds:ds:1, L));

s1 = ones(n+1,1);

s1(1) = 1/2;

s1(n+1) = 1/2;

s2 = zeros(n,n+1);

for j =1:n

s2(j,j+1) = 1/2;

for i = j+1:n

s2(j,i+1)=1;

end

s2(j,n+1) = 1/2;

end

for k = 2:m+1

b = Bnew(:,k);

bt = Bnew(:,k-1);

if k == m+1

b2 = Bnew(:,k-2);

h1 = 1/(dt)^2*(sin(b).*(b-2*bt+b2) + cos(b).*((b-bt).^2));

h2 = 1/(dt)^2*(cos(b).*(b-2*bt+b2) - sin(b).*((b-bt).^2));

else

bp = Bnew(:,k+1);

h1 = 1/(dt)^2*(sin(b).*(bp-2*b+bt) + 1/4*cos(b).*((bp-bt).^2));

h2 = 1/(dt)^2*(cos(b).*(bp-2*b+bt) - 1/4*sin(b).*((bp-bt).^2));

end

x(:,k-1) = FunF(b,k,h1,h2,s1,s2,Iz,D) ;

end

• fi.m
matlab script :

33



function result = fi(mm,stAngle);

global epsilon alpha1 alpha2 beta1 beta2

options=odeset(’RelTol’,1e-2,’AbsTol’,1e-2,’Mass’,@mass);

% Constants

E = 18.0*10^8; % Youngs module

R = 2.10; % length of rod measured in meters

m = 0.3; % weight in kg

g = 9.81; % [m/s^2] acceleration of gravity

w = m*g; % Newton

% radii of the rod

a1 = -1/300;

b1 = 3/400;

a2 = -1/1000;

b2 = 19/2000;

% Normalization of the equation

epsilon = pi*E*R^2/w;

alpha1 = a1;

alpha2 = a2;

beta1 = b1/R;

beta2 = b2/R;

% Initial values

u0 =[0;stAngle];

[s,phi] = ode15s(@f,[0:1/(mm-1):1],u0,options);

result = phi(:,1);

• FishingRod.m
matlab script :

function [beta,BetaOfTips,xLastLine,yLastLine,dt,ds,m] = FishingRod;

global E ds dt t n m mw L T

%Constants

E = 18.0*10^8; % Youngs module

mw = 0.3; % weight of the bait in kg

L = 2.10; % length the fishing rod in m

T = 1; % time the motion of fishing rod in sec

ds = 0.1;

dt = 0.1;

s = 0:ds:1;

t = 0:dt:1; % time :)

n = size(s,2)-1;

m = size(t,2)-1;
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vecB = theta0(t) - alpha(t);

vecB = vecB(2:size(vecB,2));

w = zeros(n,m);

% starting guess - Beta0

% for i=1:m % starting guess from the static

% w(i,:) = fi(n,vecB(i))’; % fishing rod

% end

w = []; % starting guess from the straight

for i=1:n % fishing rod

w = [w;vecB];

end

beta0 = w;

nGuess = 5;

disp(’starting newton’)

beta = NEWTON(beta0,nGuess);

disp(’finished newton’)

Bnew = zeros(n+1,m+1);

Bnew(2:n+1,2:m+1) = beta;

Bnew(:,1) = theta0(0) - alpha(0) - fi(n+1,0); % initial condition

Bnew(1,:) = theta0(t) - alpha(t); % boundry condition

beta = Bnew;

BetaOfTips = beta(end,:);

% plot of the fishing rod

fill([-6.5 1.5 1.5 -6.5],[0 0 4 4],’w’)

x = zeros(n+1,1);

y = zeros(n+1,1);

for k=1:m+1

vec = beta(:,k);

x(1:end,k) = r0((k-1)*dt)*cos(theta0((k-1)*dt));

y(1:end,k) = r0((k-1)*dt)*sin(theta0((k-1)*dt));

for i = 2:n+1

s = [0:i-1]’*ds;

cp = cos(vec(1:i));

sp = sin(vec(1:i));

x(i,k) = x(1,k) + trapz(s,cp);

y(i,k) = y(1,k) + trapz(s,sp);

end

hold on

plot(x(:,k),y(:,k),’k’,’LineWidth’,2)

axis([-6.5 1.5 0 4])

axis equal
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axis([-6.5 1.5 0 4])

P(k) = getframe;

end;

% movie(P)

xLastLine = x(end,:);

yLastLine = y(end,:);

• flight.m
matlab script :

clear all

close all

clc

[beta,BetaOfTips,xLastLine,yLastLine,dt,ds,m] = FishingRod;

g = 9.81; % acceleration of gravity

mw = 0.3; % weight of the bait

% plot of the flight

for k =2 :m+1

hx = xLastLine(k-1);

hy = yLastLine(k-1);

alpha0 = BetaOfTips(k-1)+pi/2;

dBetadt = (BetaOfTips(k)-BetaOfTips(k-1))/dt;

vx = dr0dt((k-1)*dt)*cos(theta0((k-1)*dt))-r0((k-1)*dt)*dtheta0dt((k-1)*dt)*sin(theta0((k-1)*dt))+...

trapz(0:ds:1,-sin(beta(:,k-1))*dBetadt);

vy = dr0dt((k-1)*dt)*sin(theta0((k-1)*dt))+r0((k-1)*dt)*dtheta0dt((k-1)*dt)*cos(theta0((k-1)*dt))+...

trapz(0:ds:1,cos(beta(:,k-1))*dBetadt);

v0 = sqrt(vx^2+vy^2)*2

T = (v0*sin(alpha0)+sqrt(v0^2*(sin(alpha0))^2+2*g*hy))/g;

w = v0*cos(alpha0)*T;

maxh = hy+v0^2*(sin(alpha0))^2/(2*g);

t = linspace(0,T);

x = hx + v0*t*cos(alpha0);

y = hy + v0*t*sin(alpha0)-g*t.^2/2;

if k == 7

plot(x,y,’r’,’LineWidth’,2)

else

plot(x,y,’r--’)

end

end

title(’Flight of the bait’)

axis off

• FunF.m
matlab script :
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function xVec = FunF(b,k,h1,h2,s1,s2,I,D)

global E ds dt t L mw T

gamma = mw * L^3 / (E * T^2 * Iz_dimensional(0));

xVec = I*D*b + gamma*ds*(s2*sin(b))* (fx((k-1)*dt) - (s1’*h1)*ds);

xVec = xVec - gamma*ds*(s2*cos(b))* (fy((k-1)*dt) + (s1’*h2)*ds);

• fx.m
matlab script :

function res = fx(t)

%drdt: dr/dt

%d2rdt2: d^2r/dt^2 and so on

%the input are vectors of the values of the functions of r and teta and

%their first an second derivatives

res = d2r0dt2(t)*cos(theta0(t))-2*dr0dt(t)*sin(theta0(t))*dtheta0dt(t)-r0(t)*cos(theta0(t))*dtheta0dt(t)^2-...

r0(t)*sin(theta0(t))*d2theta0dt2(t);

• fy.m
matlab script :

function res = fy(t)

%drdt: dr/dt

%d2rdt2: d^2r/dt^2 and so on

%the input are vectors of the values of the functions of r and teta and

%their first an second derivatives

res = d2r0dt2(t)*sin(theta0(t))+2*dr0dt(t)*cos(theta0(t))*dtheta0dt(t)-r0(t)*sin(theta0(t))*dtheta0dt(t)^2+...

r0(t)*cos(theta0(t))*d2theta0dt2(t);

• Iz dimensional.m
matlab script :

function I = Iz_dimensional(s)

I = pi * (r2N(s).^4 - r1N(s).^4)/4;

• Iz nondim.m
matlab script :

function I = Iz_nondim(s, L)

Im = Iz_dimensional(0);

I = Iz_dimensional(L * s) / Im;

• Jac.m
matlab script :
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function res = Jac(x)

global n m

N = size(x,1); % x vec col

fvec = fBox(x);

ep = sqrt(eps);

for j=1:N

tmp = x(j);

hh = ep*abs(tmp);

if (hh < 1.0e-13)

hh = ep;

end

x(j) = x(j)+hh;

hh = x(j) - tmp;

fnew = fBox(x);

x(j) = tmp;

for i=1:N

res(i,j)=(fnew(i)-fvec(i))/hh;

end

end

• mainNewNorm.m
matlab script :

clear all

close all

clc

global E ds dt t n m mw L T

%Constants

E = 18.0*10^8; % Youngs module

mw = 0.3; % weight of the bait in kg

L = 2.10; % length the fishing rod in m

T = 1; % time the motion of fishing rod in sec

ds = 0.1;

dt = 0.1;

s = 0:ds:1;

t = 0:dt:1; % time :)

n = size(s,2)-1;

m = size(t,2)-1;

% starting guess - Beta0

vecB = theta0(t) - alpha(t); % starting guess from the static

vecB = vecB(2:size(vecB,2)); % fishing rod

w = zeros(n,m);
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% for i=1:m % starting guess from the straight

% w(i,:) = fi(n,vecB(i))’; % fishing rod

% end

w = [];

for i=1:n

w = [w;vecB];

end

beta0 = w;

% x = FF(beta0,n,m);

nGuess = 5;

disp(’starting newton’)

beta = NEWTON(beta0,nGuess);

disp(’finished newton’)

Bnew = zeros(n+1,m+1);

Bnew(2:n+1,2:m+1) = beta;

Bnew(:,1) = theta0(0) - alpha(0) - fi(n+1,0); % initial condition

Bnew(1,:) = theta0(t) - alpha(t); % boundry condition

beta = Bnew;

% plot & movie

fill([-1.3 1.3 1.3 -1.3],[0.2 0.2 2 2],’w’)

x = zeros(n+1,1);

y = zeros(n+1,1);

for k=1:m+1

vec = beta(:,k);

x(1:end) = r0((k-1)*dt)*cos(theta0((k-1)*dt));

y(1:end) = r0((k-1)*dt)*sin(theta0((k-1)*dt));

for i = 2:n+1

s = [0:i-1]’*ds;

cp = cos(vec(1:i));

sp = sin(vec(1:i));

x(i) = x(1) + trapz(s,cp);

y(i) = y(1) + trapz(s,sp);

end

hold on

plot(x,y,’k’,’LineWidth’,2)

axis([-1.3 1.3 0.2 2])

axis equal

axis([-1.3 1.3 0.2 2])

P(k) = getframe;

end;

movie(P)

title(’Motion of fishing rod’)

axis off
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• mass.m
matlab script :

function res = mass(s,u)

global gamma alpha1 alpha2 beta1 beta2

res = [1 0;0 A(s)];

• NEWTON.m
matlab script :

function res = NEWTON(beta,nGuess)

global m n

x0 = reshape(beta,n*m,1);

xOLD = x0;

for k = 1 :nGuess

k

A = fBox(xOLD);

J = Jac(xOLD);

D = -J\A;

xNEW = xOLD + D;

xOLD = xNEW;

end

res = reshape(xNEW,n,m);

• ro.m
matlab script :

function r = r0(t)

r = -0.1318 * t.^3 - 0.3948 * t.^2 + 0.3687 * t + 1.7654;

r = r / 2.1;

• r1N.m
matlab script :

function res = r1N(s)

res = -s/300+3/400;

% inner radius of rod measured in m.

% s measured in m

% r1 measured in m

• r2N.m
matlab script :
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function res = r2N(s)

res = -s/1000+19/2000;

% outer radius of rod measured in m.

% s measured in m

% r2 measured in m

• theta0.m
matlab script :

function theta = theta0(t)

theta = pi - 1.73 + 0.46 * t;

• BestAlfa.m
matlab script :

clear all

clc

[beta,BetaOfTips,xLastLine,yLastLine,dt,ds,m] = FishingRod;

alfa = BetaOfTips

kx = 0:(size(alfa,2)-1)

% plot(kx,alfa,’o’)

%% SPLINE %%

figure %% continuous version of alfa points

xx = 0:.25:10;

yy = spline(kx,alfa,xx); %% xx corerespond with k (steps)

plot(kx,alfa,’mo’,xx,yy) %% yy corerespond with alfa points (angles of relasing the bait)

• BestFlight.m
matlab script :

function BestFlight(xS,yS,alfaS,v0)

g = 9.81; % acceleration of gravity

mw = 0.3; % weight of the bait

% plot of the best flight

hx = xS;

hy = yS;

alpha0 = alfaS + pi/2;

T = (v0*sin(alpha0)+sqrt(v0^2*(sin(alpha0))^2+2*g*hy))/g;

w = v0*cos(alpha0)*T;
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maxh = hy+v0^2*(sin(alpha0))^2/(2*g);

t = linspace(0,T);

x = hx + v0*t*cos(alpha0);

y = hy + v0*t*sin(alpha0)-g*t.^2/2;

plot(x,y,’r’,’LineWidth’,2)

• FishingRod2.m
matlab script :

function [beta,BetaOfTips,x,y,xLastLine,yLastLine,dt,ds,m] = FishingRod2;

global E ds dt t n m mw L T

%Constants

E = 18.0*10^8; % Youngs module

mw = 0.3; % weight of the bait in kg

L = 2.10; % length the fishing rod in m

T = 1; % time the motion of fishing rod in sec

ds = 0.1;

dt = 0.1;

s = 0:ds:1;

t = 0:dt:1; % time :)

n = size(s,2)-1;

m = size(t,2)-1;

vecB = theta0(t) - alpha(t);

vecB = vecB(2:size(vecB,2));

w = zeros(n,m);

% starting guess - Beta0

% for i=1:m % starting guess from the static

% w(i,:) = fi(n,vecB(i))’; % fishing rod

% end

w = []; % starting guess from the straight

for i=1:n % fishing rod

w = [w;vecB];

end

beta0 = w;

nGuess = 5;

disp(’starting newton’)

beta = NEWTON(beta0,nGuess);

disp(’finished newton’)

Bnew = zeros(n+1,m+1);

Bnew(2:n+1,2:m+1) = beta;

Bnew(:,1) = theta0(0) - alpha(0) - fi(n+1,0); % initial condition
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Bnew(1,:) = theta0(t) - alpha(t); % boundry condition

beta = Bnew;

BetaOfTips = beta(end,:);

% plot of the fishing rod

fill([-6.5 1.5 1.5 -6.5],[0 0 4 4],’w’)

x = zeros(n+1,1);

y = zeros(n+1,1);

for k=1:m+1

vec = beta(:,k);

x(1:end,k) = r0((k-1)*dt)*cos(theta0((k-1)*dt));

y(1:end,k) = r0((k-1)*dt)*sin(theta0((k-1)*dt));

for i = 2:n+1

s = [0:i-1]’*ds;

cp = cos(vec(1:i));

sp = sin(vec(1:i));

x(i,k) = x(1,k) + trapz(s,cp);

y(i,k) = y(1,k) + trapz(s,sp);

end

hold on

plot(x(:,k),y(:,k),’k’,’LineWidth’,1)

axis([-6.5 1.5 0 4])

axis equal

axis([-6.5 1.5 0 4])

P(k) = getframe;

end;

% movie(P)

xLastLine = x(end,:);

yLastLine = y(end,:);

• OptymalSol.m
matlab script :

function [DistMax,alfaMax,HandAlfaMax,xLastMax,yLastMax,xHandMax,yHandMax]=OptymalSol

[r,alfa,HandAlfa,X,Y,xL,yL,V0] = ReachedPoints; %% reached points

h = 0.25; %% spline step

%% reached distances depends on step

rx = 0:(size(r,1)-1);

ry = -r;

%% SPLINE RP %%

%% continuous version of reached points

xx = 0:h:10; %% xx correspond with k (steps)

43



yy = spline(rx,ry,xx); %% yy correspond with RP (reached points)

%% THE FURTHEST FLIGHT

[yMax,kMax] = max(yy); %% yMax is the maximum distance

xMax = xx(kMax); %% xMax correspond with k (steps)

DistMax = yMax;

%% THE BEST ALFA

kx = 0:(size(alfa,2)-1);

%% SPLINE ALFA %%

%% continuous version of alfa points

xx = 0:h:10; %% xx correspond with k (steps)

yy = spline(kx,alfa,xx); %% yy correspond with alfa points (angles of relasing the bait)

alfaMax = yy(kMax);

yy = spline(kx,HandAlfa,xx); %% yy correspond with alfa points (angles of relasing the bait)

HandAlfaMax = yy(kMax);

for i=1:size(X(:,end),1)

yy = spline(kx,X(i,:),xx); %% yy correspond with X points

X_Max(i) = yy(kMax);

yy = spline(kx,Y(i,:),xx); %% yy correspond with Y points

Y_Max(i) = yy(kMax);

% hold on

% plot(X_Max(i),Y_Max(i),’ko’);

end

xLastMax = X_Max(end);

yLastMax = Y_Max(end);

xHandMax = X_Max(1);

yHandMax = Y_Max(1);

% figure

V0 = [V0,V0(end)]; %% fake velocity point

xx = 0:h:10; %% xx correspond with k (steps)

yy = spline(kx,V0,xx); %% yy correspond with start velocity

% plot(kx,V0,’go’,xx,yy)

v0 = yy(kMax);

hold on

BestFlight(xLastMax,yLastMax,alfaMax,v0)

hold on

plot(X_Max,Y_Max,’k’,’LineWidth’,2)

hold on

plot(xLastMax,yLastMax,’ko’)

• ReachedPoints.m
matlab script :
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function [res,alfa,HandAlfa,xx,yy,xL,yL,V] = ReachedPoints % Reached Points / Places

[beta,BetaOfTips,X,Y,xLastLine,yLastLine,dt,ds,m] = FishingRod2;

alfa = BetaOfTips;

HandAlfa = beta(1,:);

xL = xLastLine;

yL = yLastLine;

xx = X;

yy = Y;

g = 9.81; % acceleration of gravity

mw = 0.3; % weight of the bait

% plot of the flight

r = [];

vv = [];

for k =2 :m+1

hx = xLastLine(k-1);

hy = yLastLine(k-1);

alpha0 = BetaOfTips(k-1)+pi/2;

dBetadt = (BetaOfTips(k)-BetaOfTips(k-1))/dt;

vx = dr0dt((k-1)*dt)*cos(theta0((k-1)*dt))-r0((k-1)*dt)*dtheta0dt((k-1)*dt)*sin(theta0((k-1)*dt))+...

trapz(0:ds:1,-sin(beta(:,k-1))*dBetadt);

vy = dr0dt((k-1)*dt)*sin(theta0((k-1)*dt))+r0((k-1)*dt)*dtheta0dt((k-1)*dt)*cos(theta0((k-1)*dt))+...

trapz(0:ds:1,cos(beta(:,k-1))*dBetadt);

v0 = sqrt(vx^2+vy^2)*2;

vv = [vv,v0];

T = (v0*sin(alpha0)+sqrt(v0^2*(sin(alpha0))^2+2*g*hy))/g;

w = v0*cos(alpha0)*T;

maxh = hy+v0^2*(sin(alpha0))^2/(2*g);

t = linspace(0,T);

x = hx + v0*t*cos(alpha0);

y = hy + v0*t*sin(alpha0)-g*t.^2/2;

if k > 4

plot(x,y,’r’)

end

r = [r ; x(end)];

end

title(’Flight of the bait’)

axis off

res = r;

V = vv;
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