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0. Introduction.

As is well known [1,4] symmetry analysis of nonlinear dynamical systems on
a smooth manifold M gives rise in many cases to exhibiting its many hidden
but interesting properties, in particular such as being integrable by quadratures
due to the Liouville-Arnold theorem [2]. In case when the manifold M can
be represented as the cotangent space T �(K) to some subgroup K of a Lie
group G naturally acting on it, the study of the corresponding ow can be
recast via the reduction method [3] into the Hamiltonian framework due to
the existence on T �(K) the canonical Poisson structure. Furthermore, if the
symmetry group G naturally generalizes to the loop group G+(�) over � 2 D0 �
C , then the corresponding momentum mapping l : T �(K)! G�+(�) provides us
with a Lax type representation and related with it a complete set of commuting
invariants . Such a scheme appeared to be very useful when proving the Liouville
integrability of many �nite-dimensional systems such as Kowalevskaya's top [3],
Neumann type systems [5,6] and other. Below we study complete integrability
of nonlinear oscillatory dynamical systems connected in particular both with the
Cartan decomposition of a Lie algebra G = K+P, where K is the Lie algebra
of a �xed subgroup K � G with respect to an involution � : G ! G on the
Lie group G, and with a Poisson action of special type on a symplectic matrix
manifold.

1.Integrable systems on T �(K) :the general scheme.

Consider a Lie group G and an involution � on G: If K � G is its �xed
subgroup, then the Lie algebra G of the Lie group G admits the Cartan de-
composition G = K+P with the induced involution mapping � = id on K and
� = �id on P. Denote also G�= K�+P� the dual decomposition of the adjoint
space G�: The cotangent space T �(K) ' K � K� by means of left translations
on K: Assume now that the natural group action of G on T �(K) is extended to
that of the loop group G+(�), � 2 D0; where D0 � C 1 is a disc containing zero.
Let G+(�) be the Lie algebra of the loop group G+(�) acting on the cotangent
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bundle T �(K) ' K � K�: If the action is Hamiltonian [1], one can de�ne the
corresponding momentum mapping l : T �(K)! G�+(�). Here the adjoint space
G�+(�) is de�ned with respect to the following invariant and symmetric scalar
product on G+(�):

< �(�); �(�) >�1= res�2D0
1=� < �(�); �(�) >G (1.1)

for any �(�) 2 G�+(�); �(�) 2 G+(�), where < �; � >G denotes the standard
Killing form on G. Any orbit passing through a point l(u; v;�) 2 G�+(�); with
(u; v) 2 T �(K) being �xed, is de�ned naturally as

Spanf
x(�)2G+(�)

PrG+(�)(Ad
�
exp(�x(�))l(u; v;�))g; (1.2)

where PrG+(�) : G
�(�; ��1) ! G�+(�) denotes the projection upon G�+(�) paral-

lelly to the subspace G��(�); G
�(�; ��1) := G�+(�) � G

�
�(�) with G

�
+(�) = G�(�)

and x(�) 2 G+(�) is arbitrary element. Let G+(�) = f
P

i2Z+
xi�

i : xi 2 G;

�xi = (�1)ixi for all i 2 Z+g; so G�+(�) = f
P

j2Z+
yj�

�(j+1) : yj 2 G�;

�yj = (�1)j+1yj for all j 2 Z+g: Having for instance taken �lb(u; v;�) =
v(u) + ��1b 2 G�+(�); one can derive that

lb(u; v;�) := Ad�exp(�x(�))
�lb(u; v;�) = Ad�u�1v(u) + ��1Ad�u�1b = (1.3)

v(e) + ��1Ad�u�1b

for any (u; v) 2 K � K with u := exp x0 2 K and b 2 G�: Consider now an
element a� 2 G�(�; ��1); where a 2 G� is constant. Since also

(a�; [G�(�);G�(�)])�1 = 0 = (a�;G+(�))�1 (1.4)

for any a 2 G�, we see that the element a� 2 G�(�; ��1) is an in�nitesimal
character of the Lie subalgebra G�(�): Based now on the well known Adler-
Kostant-Symes (AKS) theorem [10], one can formulate the following theorem.

Theorem 1.1 All functional 
(a;b)
s;n (u; v) := res�2D0

(�slna;b(u; v;�) ), s; n 2
Z, where

la;b(u; v;�) := lb(u; v;�) + a� (1.5)

are involutive on the cotangent space T �(K) ' K �K with respect to the stan-
dard Poisson bracket on T �(K): Since under the involution K 3 u :! u�1 2 K
and T �e (K) 3 v(e) ! w(e) 2 T �(K) ' K� combined with the permutation G� 3
a ! b 2 G� the element la;b(u; v;�)! lb;a(u;w;�); making it possible to rep-

resent the ow on T �(K) generated by the invariant 
(a;b)
1�n;n(u; v) 2 D(T �(K));

n 2 Z+; as the one generated by 
(a;b)
n�3;;n(u;w):

In case when a Lie algebra G is the Lie algebra of the connected subgroup
G of SO(4; 3); the maximal compact subgroup K � G with the Lie algebra K
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is isomorphic to so(4; 3):Thereby this pair (G,K) can be used [11] for construct-
ing integrable ows quadratic in momenta on T �(K) , in particular the four
-dimensional top and its generalizations.

2. Oscillatory dynamical systems on T �(K) : an example.

Consider now the case when a loop group G�(�) acts on T �(K) ' K �K�;
where � 2 D1 and D1 � C is an open disc containing the in�nite point. Put
G�(�) the Lie algebra of the group G�(�) and G��(�) its adjoint space with re-
spect to the scalar product < �(�); �(�) >0:= res�2D1 < �(�); �(�) >G for any
�(�) 2 G��(�) and �(�) 2 G�(�): As before, let G+(�) = f

P
i2Z+

xi�
i : xi 2 G,

�xi = (�1)ixi; i 2 Z+g; G�(�) = f
P

i2Z+
yi�

�(i+1) : yi 2 G, �yi = (�1)i+1yi;

i 2 Z+g:The adjoint space G�+(�) = f
P

i2Z+
ai�

i : ai 2 G�, �xi = (�1)ixi;

i 2 Z+g contains one-parametric orbits of the Ad�- action, which can be in-
terpreted as some �nite-dimensional integrable Hamiltonian systems on T �(K):
For this to be a lot more clari�ed, let us consider an element a�2 2 G��(�) with
a 2 P and calculate its orbit under the action Ad�exp(�x(�)) : G

�
�(�) ! G

�
�(�);

where x(�) 2 G�(�) is some element speci�ed by a point (u; v) 2 T �(K): We
�nd therefore that the orbit of the element a�2 + b 2 G��(�) has the form:

la;b(u; v;�) = a�2 + �[x0; a] + [x1; a] + 1=2[x0; [x0; a]] + b; (2.1)

in which one can make identi�cations [x0; a] := q 2 K?a and [x1; a] = p 2 P?a
with u := (exp x1) 2 K and b := [x0; a] 2 K�a � K

� due to the natural
isomorphisms ad a : K?a ! P

?
a and ad a : P?a ! K

?
a � K

�: Similarly one can
represent the forth element in (2.1) as

�(q) := PrPa1=2[(ad a)
�1q; q]; (2.2)

where evidently � : K?a ! Pa: Having assumed further that an element a 2 P is
such that [G?a ;G

?
a ] � Ga or equivalently G=Ga�G

?
a (the symmetric expansion),

one easily veri�es that [P?a ;K
?
a ] � Pa; or �(q) = 1=2[(ad a)�1q; q] since �(q) 2

Pa for all q 2 K?a : In virtue of the isomorphism between P?a and K?a ; the orbit
(2.1) evidently is di�eomorphic both to K?a � P

?
a and to the cotangent space

T �(K?a ):
The space T �(K?a ) is endowed with the canonical Poissonian structure being

equivalent to the standard Lie-Poisson structure upon the orbit (2.1):

fqi; qjg :=< l; [rqi(l);rqj(l) >0= 0; (2.3)

fqi; pjg :=< l; [rqi(l);rpj(l) >0=< [fj; ei]; a >G ;

fpi; pjg :=< l; [rpi(l);rpj(l) >0=< [fi; fj]; q >G ;

for all i; j = 1; n and any (q; p) 2 T �(K?a ); where r : D(T �(K?a )) ! Ka

denotes the usual gradient mapping on D(T �(K?a )): When deriving (2.3) we
made use of the following relationships: q :=

Pn

i=1 qiei; p :=
Pn

i=1 pifi; where
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fej = [fj ; a] 2 K?a : j = 1; ng and ffj 2 P?a : j = 1; ng are orthogonal bases
in K?a and P?a correspondingly, that is < ei; ej >G= �ij =< fi; fj >G for all
i; j = 1; n:

As was mentioned in [12,13] the elements a 2 P satisfying the property
G=Ga � G?a can be found easily enough if one to consider a dual compact Lie
algebra G=K� iP. Then the Hermitian symmetric expansion G=Gia�G?ia holds
and the problem reduces to recounting all involutions � : G ! G in G commuting
with the above Hermitian expansion and equal to " � id" upon the center of
the Lie algebra Gia: The condition G=Ga � G?a involved above on an element
a 2 P implies obviously that G?a = ad a(G) = ad a(G?a ), since by de�nition ad
a(Ga) = 0: Thus the element a 2 P de�nes the projection operator Pa : G !G
on G compatible with the involution � : G ! G , that is Pa� = �Pa; where
P 2
a = Pa: The latter condition appears to be useful for practical calculations

on which we shall not dwell here. To end this section, let us write down the
corresponding Hamiltonian ows on T �(K?a ) in the componentwise form. The
vector (q; p) 2 T �(K?a ) is a set of canonical coordinates on the orbit (2.1)
since due to the imbedding [P?a ;P

?
a ] � Ka, the bracket fpi; pjg = 0 for all

i; j = 1; n . As a result one obtains the following expression for the orbit point
(2.1) :

la;b(q; p;�) = a�2 + �

nX
i=1

qiei + (
nX

i=1

pifi + 1=2
nX

i;j=1

qiqj[ei; fj ] + b�; (2.4)

where in virtue of (2.3)

fqi; qjg = 0 = fpi; pjg; fpi; qjg =< fj ; fi >G (2.5)

for all i; j = 1; n: Evaluating the functional H = 1=2res�2D1�
�1hla;b(q; p;�); la;b(q; p;�)iG

on the orbit space T �(K?a ) at b 2 Pa, one gets the Hamiltonian function

H(q; p) = 1=2
nX

j=1

p2j + 1=2
nX

i;j=1

qiqjh[ei; fj ]; biG+

1=8
nX

i;j=1

nX
s;l=1

qiqs < [ei; fj]; [es; fl] >G qjql; (2.6)

describing an unharmonic oscillatory dynamical system of particles on the axis
R3 qj ; j = 1; n; interacting with each other by means of a forth order potential.
Based on theorem 1.1. one can formulate the following theorem.

Theorem 2.1. The unharmonic oscillatory dynamical system (2.6) on the
orbit space T �(K?a ) with the Poisson brackets (2.5) is a completely Liouville-
Arnold integrable [1,2,18] Hamiltonian system.

Choosing di�erent semisimple Lie algebras G admitting the Hermitian sym-
metric expansion Ga � G?a = G for some element a 2 P, where G = K� P is
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the Cartan decomposition, one can build all of fourth order potential canonical
Hamiltonian systems on T �(K?a ) ' T �(Rn) from [1].

3. Unharmonic oscillatory Hamiltonian systems and their Lie-

algebraic integrability.

Consider now a dual matrix manifoldM :=Mn;2�Mn;2 of dimension (n�2);
n 2Z+; endowed with the following natural symplectic structure

!(2) = Sp(dQ| ^ dF ); (3.1)

where (F;Q) 2 M and "Sp" means the standard trace operation. Let A+(�)
mean an analytical inside an open ringD0 3 0 loop group acting on the manifold
M as follows: for any (F;Q) 2 M and g(�) 2 A+(�)

F :
g(�)
! Fg(�) := res�2D0

1

� �

Fg�1(�);

Q| :
g(�)
! Q|

g(�) := res�2D0
g(�)Q|

1

�� 

; (3.2)

where 
 2Mn;n is some matrix whose spectrum �(
) � D0: Denote A+(�) the
Lie algebra of the Lie group A+(�) , and put

A+(�) = f
X
j2Z+

aj�
j : aj 2 sl(2;R), j 2Z+g: (3.3)

The group action (3.2) as one can easily verify is Poissonian, leaving the sym-
plectic structure (3.1) invariant. Thus if a one parametric subgroup fexp(a(�)t) :
a(�) 2 A+(�); t 2 Rg acts on M;the corresponding Hamiltonian function comes
as follows:

Ha = �res�2D0
Sp(Q|

1

�� 

Fa(�)) := �2 < l(F;Q;�); a(�) >0; (3.4)

where

l(F;Q;�) :=
1

2
Q|

1

� �

F (3.5)

is the momentum mapping [1,2] and < �; � >r r 2 Z, is a scalar product on
A(�; ��1) de�ned by the expression:

< l(�); a(�) >r := res�2D0
��rSp(l(�)a(�)): (3.6)

It is easy to verify that the momentum mapping l : M ! A�+(�) de�ned by
(3.5) is equivariant [1], that is the diagram

M
l
! A�+(�)

g(�)
?y ??yAd�g�1(�)

M
l
! A�+(�)

(3.7)
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is commutative for all g(�) 2 A�+(�); meaning [1] that the loop group A+(�)
action on M is Hamiltonian.

De�ne now a Lie algebras homomorphism

� : A+(�)! G+(�) � �2A+(�) � �+R; (3.8)

where for any a(�) 2 A+(�)

�(a)(�) := �2a(�)� a
(0)
21 �+ (3.9)

with �+ =

�
0 1
0 0

�
; �� =

�
0 0
1 0

�
and �0 =

�
1 0
0 �1

�
being a sl(2;R)

matrix basis.. It is veri�ed that the mapping (3.8) is a homomorphism and the
image �A+(�) := G+(�) constitutes a Lie algebra over R. Thus there exists
a loop group G+(�) whose Lie algebra coincides with this Lie algebra G+(�).
Thereby one can de�ne now another loop group G+(�)�action on M de�ned
by the formulas (3.2) but with an element g(�) 2 A+(�) replaced by an element
�g(�) 2 G+(�); where � : A+(�)! G+(�) is the corresponding to the mapping
(3.8) loop groups homomorphism. Therefore, similarly to (3.4) one �nds a
momentum mapping l� : M ! G�+(�) with respect to the modi�ed loop group

action G+(�) � M
�
! M equivalent to that of A+(�) �M ! M: A simple

calculation yields

l�(F;Q;�) = l(F;Q;�) + �l
(0)
12 �

+; (3.10)

where by de�nition, l :=
P

j2Z+
l(j)��(j+1) .When deriving (3.10) we based on

the Hamiltonian function expression

H�
a = �2 < l�(F;Q;�); �(a)(�) >�2 (3.11)

generated by a one parametric subgroup fexp(�a(�)t) 2 G+(�) : a(�) 2 A+(�); t 2
Rg and made use of the properties Sp(���

�) = 1; Sp(���
+) = 0 = Sp(�+�

�)
for the dual bi-orthogonal basis f��, �0g 2 sl�(2;R): Notice now that the el-
ement � := �2�+ � 2� 2 G�(�; ��1) is an in�nitesimal character of the Lie
subalgebra G+(�); where by de�nition G(�; ��1) := G+(�)� G�(�) and

< �; [G+(�);G+(�)] >�2= 0 =< �;G�(�) >�2 : (3.12)

Owing to the property (3.12) and AKS-theorem [7-9], the extended momentum
mapping

S(F;Q;�) := �2�+ � 2� + l�(F;Q;�) (3.13)

generates on the manifold M an involutive with respect to (3.1) invariants
j 2 D(M ); j = �1; n; via the expression:

det S(F;Q;�) = ��2 + ��1 + 0 +
nX

j=1

j
�� 
j

; (3.14)

6



where we have put for de�niteness 
 := diagf
j 2 R=f0g : j = 1; ng; Q := Fh;

h =

�
0 �1
1 0

�
; F :=

�
q1; q2; :::; qn
p1; p2; :::; pn

��
2 Mn;2. As a result of simple

calculation one �nds from (3.14) that

j = �
1

2
p2j +

1

4
< q;
q > q2j� < q; q > 
2

jq
2
j+ (3.15)

1

4

nX
k 6=j=1

(pjqk � pkqj)
2=(
j � 
k);

where j = 1; n; and < �; � > is the usual scalar product in Rn: The cor-
responding symplectic structure (3.1) turns into the following canonical one:
!(2)(F;Q) = 2!(2)(q; p); where !(2)(q; p) :=

Pn

j=1 dpj ^ dqj: Thus all Hamil-
tonian ows generated by invariants (3.15) on the space M ' T �(Rn) are
Liouville-Arnold integrable by quadratures since fj ; kg = 0 for all j; k = �1; n:
In particular for the Hamiltonian function H :=

Pn

j=1 
jj the corresponding
dynamical system on T �(Rn) is given as follows:

dqj=dx = pj; dpj=dx+
2
jqj � 
jqj < q; q >= (3.16)

qj(< q;
q > �3=4 < q; q >3);

where j = 1; n: Similar to (3.16) oscillatory equations constrained to live on the
cotangent space T �(Sn�1) to the unit sphere Sn�1 = fq 2 Rn :< q; q >= 1g
were for the �rst time derived and studied in detail in [5,14], having based
exclusively on the algebraic-geometric techniques [15]. Later on these results
were rederived in [5,16] from the Lie-algebraic viewpoint [6]. As was shown in
[17] by means of direct calculation, the extended momentum mapping (3.13)
satis�es the following dynamical r�matrix identity:

fS(q; p;�);�S(q; p;�)g = [r12(�; �); S(q; p;�)
 I]� [r21(�; �);I
S(q; p;�)];
(3.17)

where r21(�; �) := r12(�; �) and

r12(�; �) = P=(�� �)� (< q; q > �� � �)�� 
 �+; (3.18)

Px
 y := y 
 x for any x; y 2 R2 and all � 6= � 2 C : There is an important
problem of deriving this r�matrix (3.18) from the pure Lie-algebraic viewpoint
as it was done in [17] subject to the Calogero type models.

4. Acknowledgements.

The author acknowledges an AGH-local grant he bene�ted at the very begin-
ning of work upon the problem. He is also grateful to his students for discussion
of many aspects of the reduction structures considered in the article.

7



References

[1] Abraham R., Marsden J. Foundations of Mechanics, Addison Wesley ,Cum-
mings Publ., NY (1978).

[2] Arnold V.I. Mathematical Methods of classical mechanics. Springer, NY
(1984)

[3] Marsden J., Ratiu T., Weinstein A. Semidirect product and reduction in
mechanics. Trans. AMS, 231, 147-178 (1984)

[4] Fomenko A.T. Integrability and nonintegrability in classical mechanics.
Dordrecht Reidel, (1986)

[5] Prykarpatsky A.K., Mykytiuk I.V. Algebraic integrability of nonlinear dy-
namical system on manifolds.Kluwer, Dordrecht, the Netherlands, (1998).

[6] Adams M.R., Harnard J., Hurtubise J. Dual moment maps into loop alge-
bras. Lett Math. Physics, 20, 299-308 (1998)

[7] Symes W.W. Systems of Toda type, inverse spectral problems and repre-
sentation theory. Invent. Math., 59(1), 13-59 (1980)

[8] Kostant B. The solution to generalized Toda lattice and representation
theory. Adv. Math., 34(2), 195-338 (1979)

[9] Adler M. On a trace functional for formal pseudo-di�erential operators and
the symplectic structure for the Korteweg de Vries type equations. Invent..
Math., 50, 219-248 (1979)

[10] Reiman A., Semenov-Tian-Shansky A. A set of Hamiltonian structures, a
hierarchy of Hamiltonians and reduction for �rst order matrix di�erential
operators. Funct. Anal. and Appl., 14, 77-78 (1990)(in Russian)

[11] Reiman A.G.,Semenov-Tian-Shansky A.M. A new integrable case of the
motion of the 4-dimensional rigid body. Comm.Math. Phys., 105, 461-472
(1986)

[12] Reiman A.G. The orbit interpretation of oscillatory type Hamiltonian sys-
tems. LOMI Proceedings, 187-189 (1986)

[13] Fordy A., Wojciechowski S., Marshall I. A family of integrable quartic
potentials related to symmetric spaces. Phys Lett., 113(A), 395-400 (1986)

[14] Mitropolsky Yu., Bogoliubov N., Prykarpatsky A., Samoylenko V., Inte-
grable dynamical systems. Spectral aspects. Kiev, Nauk. Dumka (1987)

[15] Novikov S.P. (Editor) The theory of solitons. Moscow, Nauka (1981)

8



[16] Prykarpatsky A., Hentosh O., Blackmore D. The �nite-dimensional Moser-
type reduction of Modi�ed Boussinesq and super-Korteweg-de Vries Hamil-
tonian Systems via the gradient-holonomic algorithm and dual moment
maps. Part 1. J. Nonl. Math. Phys., 4(3-4), 455-469 (1997)

[17] Avan J., Babelon O., Talon M. Construction of the classical R-matrices
for the Toda and Calogero models. Preprint LPTHE University Paris VI,
CNRR UA 280, PAR IPTHE 93-31, 22p (1993)

[18] Prykarpatsky A.K. The nonabeliean Liouville-Arnold integrability prob-
lem: a symplectic approach. J. Nonl. Math. Physics, 6(4), 384-410 (1999)

9


