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Abstract
We study the influence of small perturbations of symplectic structure and of
Hamiltonian function on the behavior of a completely integrable Hamiltonian
system whose phase space is stratified by the Lagrangian invariant tori. It
is shown that, in quite general case, near certain family of these tori there
appears a domain which contains a Cantor set of coisotropic invariant tori of
the perturbed system. The relative measure of such a set tends to one when
the magnitude of the perturbations decreases to zero.

1 Introduction

Let (M,ω2
0) be 2n-dimensional symplectic manifold with symplectic structure

ω2
0, H0 : M 7→ R be a Hamiltonian function of completely integrable Hamil-

tonian system, and F := (F1, . . . , Fn) : M 7→ Rn be a mapping whose com-
ponents forms a complete involutive collection of the system’s first integrals.
The standard KAM-theory [1, 2] deals with perturbations of Hamiltonian
function of the form H0 7→ H0 + µH1 where µ is a small parameter.

In this report we discuss a more general situation when not only the
Hamiltonian but also the symplectic structure is perturbed, i.e. ω2

0 7→
ω2

0 + µω2
1 where ω2

1 is a closed but not exact 2-form on M . Such kind of
problems, for example, naturally arises when the motions of nearly integrable
mechanical systems are examined in the presence of weak magnetic field with
certain singularities. (The treatment of symplectic structure deformation as
the influence of the magnetic field was suggested by S. P. Novikov [3]). As
far as we know, until recent time the above perturbations in general case has
not yet been studied within the framework of KAM-theory. Some special
results in this direction were obtained in [4].
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The goal of this report, which is based on the paper [5], is to show that
perturbations of symplectic structure may cause transformations of some La-
grangian invariant tori of the integrable Hamiltonian system into coisotropic
invariant tori of the perturbed one. Quasiperiodic motions on such tori rep-
resent relatively new object of study in the nonlinear oscillations theory
[6, 7, 8, 9]. In our case on each coisotropic invariant torus of dimension
r > n one can point out n fast and r − n slow angle variables.

It should be noted that in this work we use the concept of bifurcation a
little conditionally because the above coisotropic invariant tori do not depend
continuously on parameter µ. Besides, here we observe the bifurcation not
of an individual torus, but of quite massive set of tori localized in a neigh-
borhood of certain family of unperturbed Lagrangian tori. We can describe
this ”generating” family of tori in a following way. Let c ∈ Rn be such
a value of F that the set F−1(c) has a compact connected component Mc.
As is well known [1] Mc is diffeomorphic to n-dimensional torus. In some
neighborhood N(Mc) of Mc a free symplectic action of n-dimensional torus
T n = Rn/2πZn = {φ = (φ1, . . . , φn)| mod 2π} naturally arises. This action is
determined by a mapping Φ : T n×N(Mc) 7→ N(Mc) and leaves invariant any
common level manifold of functions F1, . . . , Fn which intersects with N(Mc).
For any fixed φ ∈ T n we define a mapping Φφ = Φ(φ, ·) : N(Mc) 7→ N(Mc).
Now in Rn consider the Liouville system Ḟ = µG(x, µ) := {F,H′ + µH1}µ
which governs the evolution of the functions F1, . . . , Fn via the flow of the
perturbed system (here {·, ·}µ stands for the Poisson brackets corresponding
to the perturbed symplectic structure). Usually, one starts the bifurcation
analysis from studying the averaged vector field

∫
Tn G(Φφ(x), 0) dφ := G0(F ).

We suppose that G0(F ) has a stable singular point F∗. As we shall see later,
if this point satisfies certain non-degeneracy conditions then there exists a
k0-dimensional (k0 < n) manifold F of stable singular points. It turns out
that for sufficiently small µ the perturbed system has coisotropic invariant
tori which form a set Tµ localized near the ”generating” family of Lagrangian
tori W = {x ∈ M : F (x) = c, c ∈ F}. Moreover, there exists a domain
Dµ ⊃ Tµ which shrinks to W as µ → 0 and in which the coisotropic in-
variant tori occupy a set of relative Lebesgue measure close to 1, namely,
mes(Tµ

⋂Dµ)/mesDµ → 1 as µ→ 0.
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2 Quasistationary points

Let us put into correspondence to any a ∈ Rn the vector field Xa =
d
dt
|t=0 Φat. By means of the the averaged 2-form ω̄2

1 =
∫
Tn(Φφ)∗ω2

1 dφ
we introduce a skew-symmetric bilinear form on Rn as follows: C(a, b) =
ω̄2

1(Xa, Xb), a, b ∈ Rn. This form is correctly determined: it does not depend
on points of M . If C is nontrivial, then the torus action is non-exact. This
means that someXa do not have global corresponding Hamiltonians. It is just
the case we are interested in. Namely, we suppose that k0 := dim ker C 6= 0
and, moreover, that the vectors σ1, . . . , σk0 which form a basis in ker C satisfy
the following number-theoretic conditions:

H0: ∃γ0 > 0 ∀m ∈ Zn\{0} max1≤i≤k0 |〈m,σi〉| ≥ γ0|m|−n.

Here 〈·, ·〉 stands for the standard scalar product in the coordinate vector
space and |m| = max1≤i≤n |mi|.

As is well known, in N(Mc) there exist action-angle coordinates p =
(p1, . . . , pn), q = (q1, . . . , qn)| mod 2π for the unperturbed system. On the
basis of the Darboux-Weinstein theorem (see e.g. [10]) and a Moser’s theorem
[11] one can construct a coordinate transformation p 7→ p + O(µ), q 7→ q +
O(µ) which reduces the perturbed Hamiltonian and the perturbed symplectic
structure, respectively, to the form

H = H0(p) + µH1(p, q;µ), ω2 = dp ∧ dq +
µ

2

n∑
i,j=1

cijdqi ∧ dqj

where cij (i, j = 1, . . . , n) are constants. Henceforth we shall assume the
functionsH0, H1 to be real analytic inDn

R0
×Πn

R0
×D1

µ0
for some R0 > 0, µ0 >

0, where we put Dn
R = {x ∈ Cn : |x| < R}, Πn

R = {x ∈ Cn : |Im x| < R} for
any R > 0.

Obviously, the Poisson brackets corresponding to ω2 now can be written
as

{pi, pj} = µcij, {qi, pj} = δij (i, j = 1, . . . , n),

where δij is the Kronecker symbol. Here and in the sequel the unwritten
elements of the Poissonian structure matrix will be treated as zero.

Denote by C the linear operator in Rn with matrix {cij}ni,j=1 and consider
the Poissonian system ṗ = CgradH0(p). This system has a collection of
geometric first integrals Ji(p) = 〈σi, p〉 (i = 1, . . . , k0) which are the Casimir
functions for the Poisson brackets. Now we suppose that
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H1: the vector field X := CgradH0 has a singular point p∗.

We shall call p∗ the quasistationary point (with respect to the perturbed
system).

Let Yp∗ be the restriction of X to that common level manifold of functions
Ji(p) (i = 1, . . . , k0) which passes through p∗. Denote by DYp∗ the linear
operator corresponding to linearization of Yp∗ at p∗ and assume that

H2: the eigenvalues of DYp∗ are purely imaginary and pair-wise different.

We denote them as ±iλj(p∗) (j = 1, . . . ,m := (n− k0)/2). Now it is easy to
see that near p∗ the set of quasistationary points forms a k0-dimensional man-
ifoldW which locally is the image of a real analytic mapping p0(·) : U 7→ Rn

where U is a neighborhood of the origin in Rk0 , p0(0) = p∗. Hence-
forth the eigenvalues ±iλj(p0(η)) (j = 1, . . . ,m) corresponding to quasis-
tationary point p∗ = p0(η) (η ∈ U) will be denoted as ±iλj(η). Put
Λj(η) = ∂H0(p0(η))/∂ηj (j = 1, . . . , k0). Now we are in position to formulate
the Rüssmann’s non-degeneracy conditions [12]:

H3: The functions Λ1(η), . . . ,Λk0(η), λ1(η), . . . , λm(η) are linearly inde-
pendent in U .

3 Preliminary transformations

In this section we shall consider p0 as an n-dimensional parameter but in the
sequel we shall put p0 = p0(η). Let us introduce the following ”resonant” set

<n = <n(T, γ, τ, ε) :=
⋃

m∈KN
{ω ∈ Cn : |〈m,ω〉| < γ|m|−τ}

where T, γ, τ, ε are positive numbers, N = N(T, ε) := ln ε−T , KN = {m ∈
Zn : 1 ≤ |m| ≤ N}.

It turns out that for any fixed R1 < R0, for sufficiently large T , all
sufficiently small µ > 0, all ε ∈ (0, 1), and all p0 ∈ {p ∈ DR1 : H ′0(p) 6∈ <n}
there exists a change of variables

p 7→ p0 + µf(p, q; p0,
√
µ), q 7→ q + µg(p, q; p0,

√
µ),

which reduces the perturbed Poisson brackets and the perturbed Hamiltonian
function, respectively, to the form

{pi, pj} = cij, {qi, pj} = δij, (1)
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H ′0(p0)p+ µ[
1

2
H ′′0 (p0)p2 + 〈G0(p0), p〉+

√
µĤ2(p; p0,

√
µ)] +O(µ4 + ε), (2)

with some real analytic mapping G0 : DR1 7→ Cn and function Ĥ2 : DR0 ×
DR1 ×Dµ0 7→ C.

For any fixed ε ∈ (0, 1) the above change of variables is real analytic
with respect to p, q, p0,

√
µ. (The rigorous formulation of this statement is

somewhat cumbersome and we omit it here).
Let us give a sketch of the proof. First we carry out the scale transfor-

mation p 7→ p0 +
√
µp. The perturbed system becomes the Hamiltonian one

with respect to Poissonian structure

{pi, pj} =
√
µcij, {qi, pj} = δij, (3)

and its Hamiltonian function can be represented in the form

H ′0(p0)p+
√
µ[

1

2
H ′′0 (p0)p2 +H1(p0, q, 0)] + µH2(p, q; p0,

√
µ).

Now we can use a symplectic averaging procedure to eliminate all harmonics
exp(i〈m, q〉), 0 < |m| ≤ N(T, ε), in function’s H1, H2 coefficients multi-
plying

√
µ, µ, . . . , µ4, provided that H ′0(p0) 6∈ <n. Taking into account that

H1(p0, q, 0) does not depend on p, we are able to construct a symplectic (with
respect to (3)) transformation of the type p 7→ p + O(

√
µ), q 7→ q + O(µ),

which reduces the Hamiltonian to the form

H ′0(p0)p+
√
µ[

1

2
H ′′0 (p0)p2 + H̄1(p0)] + µH̄2(p; p0,

√
µ) +

√
µO(µ4 + ε),

The bars over symbols of the functions mean their averaged values with
respect to q. The term

√
µH̄1(p0) is inessential and can be omitted. After

one more scaling transformation p 7→ √µp we arrive at the required result.
Note that in formula (2) G0(p0) = ∂H̄2(0, p0, 0)/∂p.

4 Action-angle coordinates in a neighbor-

hood of quasistationary points

Let us now restrict the parameter p0 in Hamiltonian (2) to the set of quasista-
tionary points. Thus we put p0 = p0(η) where p0(·) : U 7→ Rn is the mapping
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introduced in the Section 2. We may assume that |p0(η)| < R1, η ∈ U . It is
not hard to show that there exists a linear change of variables p 7→ (J, u, v) =
(J1, . . . , Jk0 , u1, . . . , um, v1, . . . , vm), dependent on the k0-dimensional param-
eter η, which reduces the pair (1), (2) to

{vi, uj} = δij, {q, Jj} = σj, {qi, qj} = νij(η), (4)

and

〈Λ(η), J〉+µ
[
1

2
〈L(η)w,w〉+G1(J ; η) +

√
µG2(J, w; η,

√
µ)
]
+O(µ4+ε), (5)

respectively. Here

Λ(η) = (Λ1(η), . . . ,Λk0(η)),

L(η) = diag(λ1(η), . . . , λm(η), λ1(η), . . . , λm(η)).

and w = (u, v) = (u1, . . . , um, v1, . . . , vm). Now let us formulate our main
preliminary result.

Proposition 1 For any R > 0, ρ ∈ (0, R2/2), τ > 0, γ > 0 there ex-
ist numbers T = T (R, ρ) > 0, µ∗(R, ρ, τ, γ) > 0, and for any ε ∈ (0, 1)
there exists such a change of variables (J, u, v) 7→ (J, I, φ| mod 2π) (I =
(I1, . . . , Im), φ = (φ1, . . . , φm)) of the form

ui =
√
ξ2
i + 2Ii cosφi +

√
µUi(J, I, φ; η, ξ,

√
µ),

vi =
√
ξ2
i + 2Ii sinφi +

√
µVi(J, I, φ; η, ξ,

√
µ),

qj = ψj +
√
µQi(J, I, φ; η, ξ,

√
µ) (i = 1, . . . ,m, j = 1, . . . , n),

that in new coordinates the perturbed Hamiltonian function and the perturbed
Poisson brackets are represented as follows:

H = 〈Λ(η), J〉+ µ [〈λ(η), I〉+G1(J, η) +
√
µE(J, I; η, ξ,

√
µ)] +O(µ4 + ε),

(6)
{ψ, Jj} = σj (j = 1, . . . , k0); {φi, Ij} = δij (i, j = 1, . . . ,m);

{ψi, ψj} = νij(η) (i, j = 1, . . . , n).
(7)

Here ξ = (ξ1, . . . , ξm) are additional parameters; the functions Ui, Vi,
Qj, H, G1, E are real analytic on the set

B = { (J, I, φ, η, ξ,
√
µ) : J ∈ Dk0

ρ , I ∈ Dm
ρ , φ ∈ Πm

ρ ,
η ∈ U , Ω(η) 6∈ <n, λ(η) 6∈ <m,

√
2ρ < |ξ| < R,

|√µ| < √µ∗ } ,
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where Ω(η) =
∑k0
i=1 Λi(η)σi, λ(η) = (λ1(η), . . . , λm(η)); the functions

Λ(η), λ(η), νij(η) are real analytic in U ; lastly, there exists such a num-
ber K = K(R, ρ, τ, γ) > 0 that

|E(J, I; η, ξ,
√
µ)| ≤ K,

|H − 〈Λ(η), J〉 − µ [〈λ(η), I〉+G1(J, η) +
√
µE(J, I; η, ξ,

√
µ)]| ≤ K(µ4 + ε)

for all (I, J, φ, η, ξ,
√
µ) ∈ B, ψ ∈ Πn

R1
, ε ∈ (0, 1).

5 Main Theorem

Consider now the Hamiltonian

H0 = 〈Λ(η), J〉+ µ [〈λ(η), I〉+G1(J, η) +
√
µE(J, I; η, ξ,

√
µ)] .

The corresponding Hamiltonian system has the form

İ = 0, J̇ = 0,

φ̇ = µ
[
λ(η) +

√
µ∂E∂I

]
, ψ̇ = Ω(η) + µ

∑k0
i=1

∂(G1 +
√
µE)

∂Ji
σi.

(8)

It generates quasiperiodic motions on coisotropic invariant tori which are the
common level manifolds of functions I, J . Using the results of the previous
sections, one can easily show that the torus corresponding to the values
I = 0, J = 0 lies in a O(µ3/2)-neighborhood of the torus T0(η, ξ, µ) which in
the initial coordinates p, q is described by the equation

p = p0(η) + µ(A(η)B(φ)ξ + p1(q; η)).

Here A(η) is (n × 2m)-matrix of rank 2m whose elements are real analytic
functions of η ∈ U ; (2m×m)-matrix B(φ) has the form

B(φ) =

(
diag(cosφ1, . . . , cosφm)

diag(sinφ1, . . . , sinφm)

)
;

the mapping p1 : T n × U 7→ Rn is a C∞-extension of a real analytic one
defined on the direct product of T n and the subset of U specified by the
conditions Ω(η) 6∈ <n, λ(η) 6∈ <m.
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The system with Hamiltonian (5) can be regarded as a perturbation of
that with Hamiltonian H0. We may put ε = µ4 and apply KAM-theory
to establish the existence of quasiperiodic motions in the perturbed system.
Note that since φ̇ = O(µ) the system (8) is close to a degenerate one. For
corresponding KAM-like theorems we refer to [13, 14].

Put Ξ = {(η, ξ) ∈ Rk0 ×Rm : η ∈ U , 0 < ξj < R, j = 1, . . . ,m}. Now
our main result can be formulated as follows.

Theorem 1 Let the symplectic structure ω2
0 and the Hamiltonian H0 of com-

pletely integrable system undergo small perturbations: H0 7→ H0+µH1, ω
2
0 7→

ω2
0 +µω2

1. Suppose that the skew-symmetric bilinear form C corresponding to
ω2

1 and the Hamiltonian H0 satisfy H0 – H3. If µ∗ > 0 is sufficiently small
then the following assertions holds true:
1) for any µ ∈ (0, µ∗) there exists a set Ξµ ⊂ Ξ of Cantor type such that
if (η, ξ) ∈ Ξµ then O(µ3/2)-neighborhood of each torus T0(η, ξ, µ) contains
(m+ n)-dimensional real analytic invariant torus Tµ(η, ξ, µ) of the perturbed
system;
2) any motion on the torus Tµ(η, ξ, µ) is quasiperiodic with everywhere dense
orbit;
3) mes

(⋃
(η,ξ)∈Ξ T0(η, ξ, µ)\⋃(η,ξ)∈Ξµ Tµ(η, ξ, µ)

)
/mes

(⋃
(η,ξ)∈Ξ T0(η, ξ, µ)

)
→

0 as µ→ 0.

Note that applying the technique developed by J. Pöshel, M.R. Herman,
and M.B. Sevryuk (see [15, 9, 14]), one can show that the perturbed invariant
tori from the above theorem can be included into a sufficiently smooth family
of tori dependent on parameters (η, ξ) ∈ Ξ.
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