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Results pointed out in this paper, are inspired by papers O. A. Goroshko and N. P.
Puchko (see Ref. [13] and [14]), about Lagrange's equations for the multybodies hereditary
systems, and a rheological models of the bodes properties presented in the monography written
by G.M. Savin and Ya.Ya. Ruschitsky (see Ref. [24]), as well as a monography on rheonimic
dynamics written by V.A. Vuji~i} (see [6]). By using rhelogical body models for designing
deformable rheological hereditary elements with hybrid rheological elastoviscosic and/or
viscoelastic properties (see Ref. [23], [24] and [18]), discrete oscillatory systems with
hereditary elements as a constraints, are designed, as systems with one degree of freedom as
well as with many degrees of freedom. For these oscillatory hereditary systems, the integro-
differential equations second and/or third kind are composed. The solutions of these
integrodifferential equations are studied. Energy transfer from one kind to other is studied for
the multy-frequency forced vibrations of the hereditary systems. For example, the rheological
pendulum on the wool's thread with changeable length is modeled by rheonomic coordinate as
well as by Burgers rheological hereditary element. By using defined rheological pendulum basic
properties of the rheonomic coordinate in the sense of the Vuji~i}'s rheonomic coordinate are
introduced. The force, as well as the power of the rate of rheological and rheonomic constraints
change are determined.

For the designed discrete hereditary systems with corresponding rheological and
relaxational hereditary elements the integrodifferential equations second and/or third kind are
composed. On the basis of the analysis of the discrete hereditary oscillatory systems the
Goroshko's definition on dynamically determinated or indeterminated discrete hereditary
systems was confirmed.

Keywords: oscillatory hereditary systems. rheological elements, rheonomic coordinate,
rheological pendulum, rheological and relaxational kernels.

l. Introduction

The paper of academician Goroshko (see Ref. [13] and [14]) was inspiration for research
in area of hereditary discrete systems, as well as a mutual work on the monography: Analytical
Dynamics of the Discrete Hereditary Systems which is in preparation for publishing in Serbian
as well as in English. Some examples were consider in the following papers: [27], [28], [32],
[33] and [34].

For active constructions we can use various types of control and regulation of dynamical
system parameters. In the modeling of an active construction, different kinds of active element
can be used. Some of these elements are active hereditary elements with different kinds of
viscoelasticity or hereditary elasticity, with different time relaxation, as well as time retardation
(see Ref. [23], [24], [25] and [18]. See also [29], and [30].). Active properties of construction
can arise by active force or external excitations, active temperature fields, active electrical or



optical fields, or by changeable distances between bearings, as a rheonomic coordinate, as well
as by changeable rigidity. Active construction can be realized by subsystem as an active element
with external excitation.

As in the active constructions is not possible control without sensors as well sensors
work by modulations of amplitude, phase as well as by modulations of frequency it is necessary
to introduce the sensors parameters as a active excitations into active elements as well into
active construction. Par example, optical sensors work by modulations of amplitude, of phase as
well as by modulations of frequency of light waves, which arises with changeable optical
parameters of material in the changes of stress and strain state in the material of construction
during the way of the light waves.

Active elements are elements by the use of which we can observe and control stress and
strain states in construction, as well as a temperature field state, by the use of sensor observed
active parameters of the dynamical state of construction.

Active elements can be designed by the use of properties of dynamical adaptations, as an
electromechanical, termomechanical or mechanical. In mechanical way the construction rigidity
of the defined sections can be made changeable.

In this paper we would like to investigate equations of dynamics of active discrete
hereditary elements as well as systems by introducing rheonomic coordinate in the standard
hereditary element.

We will consider [10, [11], [12], [16], [17], [4] and [15] as well as [20], [21], [22] and
[31] to be our basic literature.

I1. EQUATIONS OF DYNAMICS OF A DISCRETE SYSTEM WITH FINITE
CONSTRAINTS AND STANDARD HEREDITARY ELEMENTS

We investigate dynamical system (see Figure No.1) of N material particles with masses
m,, v=123,..,N, the vector positions of which are T, =y'&,=123; v=123,..,N.
Material particles are constrained by S finite constraints (see [1], [2], [3], [26], [16], [17], [11],
[10] and [12]):

£ By )= £, (05 Y2 y™) 1=123.,8 (1)

and where we introduce the following notations: y = y* ¢ k=123 m,,_, =m, k=123,
v=123..,N; as well as by K standard hereditary elements neglected mass and material
properties parameters of which are: n, ., , k=123,...,K, are times of relaxation, and
Cywepi @Nd Cg, .y, - are an instantaneous rigid stifness modulus as prolonged ones.

Relations between reactions and deformations of the hereditary element in the discrete
system can be defined in one of the following ways:
* in the relaxational forms by using integral stress strain state relations:

0 t _ O
Povsnk = Cuwak Ep(v,vﬂ)k (t) _J.R(V vk (t - T)p(v,v+l)k (T)dT E’ 2
0

v=123.,N, k=123...,K,
where are

—_~ t-1
)= Cw vk ~ C vk o Mo

Ry (t-T , v=123.,N,k=123..,K, (3)

r](v,v+1)kC(v,v+1)k
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Figure No. 1. Model of discrete hereditary system with rheonomic
constraints and with N material particles

a* Hereditary and rheonomic elements in series

kernels of relaxation ( see Ref. [15] and [13], [14]), and

P vk =‘p(v,v+1)k‘ Vs _F(v)k‘

Puyvik = ‘ﬁ(v,vﬂ)k ~ Pwwko F(u+1)|< - F(v)k‘ ~ Pwko -

(@)



and P, ,.y0 1S natural length of a hereditary element in natural stress-strain state, when the

strain and stress in the element are equal to zero.
* in the retardation forms by using integral stress strain state relations:

_ 1 O ! O
p(v V+)k R — W(v vk (t) +IK(V,V+1)|< (t - T)P(v,v+l)k (T)dT Ch (4)
vk [ 0 O

v=123...N,k=123..,K
where are

(t_T)E(v W)k

g ety =123 N, k=123,...K, (5)

C(v,v+1)k - C(v,v+1)k

K(v,v+l)k (t - T) =

n(v WV +1)k C(v WV +L)k

is a kernel of rheology, and o, , . = |By k| = |Fwsnn = T

* in differential form:

n(v,v+1)k Ij(v V+k (t) + P(v,v+1)k (t) = n(v ,v+1)kC(v,v+1)k ﬁ(v V+)k + E(v,v+1)k ﬁ(v V+)k (6)
v=123..,N, k=123...,K

Finite constraints (1) must satisfy the following velocity condition:

a=3N
“=0,a0=123,...3N , u=123,...,5S (7
as well as the acceleration conditions:
a=3N a 3N B=3N 02
y'y? =0 (8)
ST Y

As this finite constraints are mdependent the differential determinate of matrix is different them
zero:

f
A=|D,|= > L120 ,0=12.3,..,3N,u=123..,S 9)
y
By using previous velocity conditions we can write ortogonality conditions (gradv fu,v ) 0,

v=12.3,..,N,u=12.3,...,S between mass particles and gradients of the finite constraints ,
for ideal constraints reactions we can write the following:

Hu=s
=S Auorad, f, (7,0 Fy ), v=1230N (10)
pu=1
in which the A, are Lagrange's multiplikators of the finite constraints, as well as
I P
gradV fH =1 &)/3\/—3 + J WSV_Z +k W3V_1 (10*)

The resulting reactions of the K standard hereditary elements into v-rd ( v +1 with
opposite direction) mass material particle iS'

p(v v+1)k r-(v +1)k r-(v)k
v v+1 Z I:)(v v+1)k Z P(v v+1)k (11)

| (v v+l)k (v+l)k r(v)k
Resulting reaction forces of finite constraints and hereditary elements in the observed system
are:

u=s
IEév = )\ugradv fu (ﬁ!"'!FN)+Pv,v+l(t)+§vT (12*)
- S
Rv = )‘ygradv fu(ﬁ’FZ""’FN)+ Z P(vv+l)k(t)M+R (12)
u=1 =l (v+1)k I'-(v )k




From a principle of the work on the virtual system displacements can be written in the
following form:

v=N . N N N N
Z{IV+FV+RV+PV+RVT}6Fr/ :O (13*)
VEl
or.
g = r(v+1)k Tk 5
Z[mvrv Z)\ grad, f 1, . Z (VV+1)k f -R,; @, =0 (13)
VE a Fwsyk ~ Tk Q

Dynamical Lagrange's equatlons first kind arise from previous equation in the following form

- r a ~ Ty
=F (t)+ A Larad, f Z Py ()2 4R (14)

L= (v+l)k LY

v=123..N

Lets define some relations by which the investigation and description of the dynamics of
this problem is simpler. For this reason the equations (14) are rewritten for v and v +1 in the
forms:

= _ 1 % = SR il ook ~Tow 5 =
r =— v(t)+ ZAygradv f/,l (rll""rN)+ Z I:)(v,v+1)k (t)f-FRVTD (15)
m, H IE = Fwsne ~ Tk =
= 1 r(v+2)k Mok | = H
rv+l - v+1 Z)\ gradv+l y 1’ " Z I:)(v+1v+2)k - +Rv+lT D
M, H Moo ~ r(v+1)k|
v=123,..,N
By subtraction of the previous equations (15) result becomes:
hd . = 1= = 1 <
r-v+1 _rv - m v+l()_m_VFv (t)+ o A gradv+l fu( ’rN) mv £ A grad f ( N)+
r . 1 r -r, 1 - 1 5
P v+ +_ va+ — _‘./ + Rv+ __Rv 16
My Zl vl F T Zl v r R my T m, (49
v=123,..,N
The last relation may be written as:
= o1 = . 1 L o \d
r,-r = — F..@) Z)\ gradv+l fu( o Ty )—m—vgradv fu(rl,..., My )E+
ks Val pv+,v+ 1 ﬁv,v+ E 1 = 1 =
+ L P(v+lv+2)k (t)u B P(v,v+1)k (t) S o+ Rv+1T T RvT (16*)
=1 Qn +1 p(v+l,v+2)k mv p(v,v+1)k a mv+1 mv
v=123..N

By using the fact that distance, between any two material particles, from the system, is
changeable, a constraint is expressed by equation of the form ﬁfm = (FV+l -, )2 . By two time

derivatives of this constraint relation and knowing that V..., =V,., = r. —T, is relative

velocity of v+1st material mass particle around v-st material mass particle in the relative
rotation, we can write the following relation (see Ref. [8]):

(r I’-v’rv+1 v)_ pv+lv +pv+lvpv+1v v2+1,v 1 v :1’213""’N (17)
Having in mind the pEEVIOUS relations (16*) the previous relation (17) becomes:
k:K"Q 1 ﬁ(v+ v+2)k p(v,w )k 1 E . "
Z b I:)(v+1,v+2)k (t) s e I:>(v,v+1)k (t)p(v,v+1)k = pv2+1,v + pv+1,v pv+1,v - Vv2+1,v -
=1 v+1 p(v +Lv+2)k mv E



_ %{i (f:wl (t)’ ﬁ"'”l)_miv(r:v (t), f)wﬂ)g— Eﬁ(ﬁwﬂ ) ﬁv,v+l)_miv(ﬁvT , ﬁv,v+1)§_

u=S O B } i i .
- uzzl/\u Hﬁ(gradvﬂ fu (Fl’---; FN )! pv,v+1)_mi(gradv fﬂ (rl,..., Iy ), pv,v+l)% (18)

v=123..,N

Into previous equation (18) , the expression of the reaction-force of the standard
hereditary element by using relations (2) of the stress-strain state or coordinates of deformation,
or by using relations (4) should be introduced, or the corresponding equations (6) should join
these equations (18) . The resulting system of equations can be solved as an explicit independent
system of equations in relation to the coordinates of vector positions of mass particles. This is
for the reason that we separate only equations with "internal™ system coordinate by the use of
which the internal relative positions between material mass particles are defined. We must have
in mind that stress-strain relations use coordinates of hereditary element deformations
Pyyii = Pyysa ~ Py Which differ between relative coordinate p, ., - distance between two

material particles and their distance P, , .y, in hereditary element natural state if it was in such

state at the initial moment.

We accept that, at initial moment, the hereditary element was in natural state without
deformation, without stress as well as without strain. If we suppose that hereditary elements
have history than into stress-strain relations boundaries of integral are different: boundaries:
from zero to t changes into boundaries: from —Xto t .

t
]
I:)(v,v+l)k = C(v,v+1)k gp(v,vﬂ)k (t)_ p(v,v+1)k0] _IR(V,V+1)k (t - T)[p(v,vﬂ)k (T)_ p(v,v+l)k0]d.[% (19)
0
v=123..,N, k=123,...,K,

2
v+lv

=t —F of relative motion v +1st material particle around v-th

v
material particle be expressed by sphere coordinate in relation to the relative pole. Than the
radius p,,,,, and circular and meridional angles: ¢,,,, and are used. For next

coordinates of the material mass particle in relation to the previous mass particle coordinate we
can write:

yl =y k=123 m,_, =m
1 — 1

yv+1 - yv + pv,v+1 Coswvﬂ,v COS¢V+1,V
2 —_ 2 H

yv+1 - yv + pv,v+1 Coswvﬂ,v sin ¢v+1,v (20)

You =Y + Py SINY, 4y
If we observe vth set of coordinates of the vth mass particle in relation to the set
coordinates of first mass particle we can write:

When we observe system in space, than it is useful, that square v of relative

rel(v+ly) — Vv +1v

velocity v

v+ly

k=123 v=123,..,N

v

k=v
1 1
yv+1 - yl + Z pk,k+1 Coswkﬂ,k COS¢k+1,k
) ) k=v
Yo =Y. T Z Pr s COSYysq SINP gy (21)

k=v
3 — 3 H
yv+1 - yl + Z pk,k+1 Smwkﬂ,k



2

i_’:/+1 = ﬁ/ d {pv v+l[I Coswvﬂv COS¢V+1V + J Coswvﬂv Sm¢v+lv + ksmwvﬂv]} (22)

d 2
Now in the pair from the system (15) and by using system (21) we can write:
= 1 p(v v+)k 5 E
r =— A,grad, f ey Py s +R,;0 (15%)

m, E Z u " Z ( l)k P vk ' E
- 1 HES p(v+lv+2)k = H
r-\;+ = v+ gradv+ Pv+ v+ +Rv+

1 m, ., % 1 uzz 1 u Z (v+1, 2)k p(v+1v+2)k 1T5

v=123..,N

We can see that a system can be obtained from which the Descartes coordinate
y = y* 7 k =1,2,3; by the use of which absolute positions of mass particles of the system

are defined, are eliminated. These equations contain system of generalized coordinates without
absolute coordinates of first mass particle. These chosen coordinates are internal coordinates of
the system by the use of which the internal relative positions between mass particles of the
system are determined.

For example, by using (16) or (16*) and the last relation (22) we can obtain:

d2 d d -+ - — .
Ny T, =—F {pwﬂl i cosy,.,, Cos@,,,, +jcosy,,,sing, ., +ksing,,, | =
dt

I

1 - ; il
:mv+l = (t)- Z/\ H’n_grad“” (s )——Vgrad f, (7. N)El+
gl E 1 p(v+1v+2)k 1 p(v v+1)k E l = 1 =
+ Y OGPy )= =Py )220+ R, ——R, 1 (16*%)
Z + v 2)k( )p(v+1,v+2)k mv v 1)k()p(v,vﬂ)k E rnv+1 o mv '
v=123..,N

in which only internal coordinates of the system are contained: mutual distances of mass
particles p,,.,,, and circular and meridional angles: ¢,,,, i ¢,,,,, relative rotation motion

v +1st material particle around v-th mass particle. Square of the relative velocity of the relative

rotation motion v +1st material particle around v-th mass particle is:
2

. 2
Vv+l,v = pvz,v+l + [pv,v+l¢v+l,v Coswvﬂ,v] + pvz,v+lwvz,v+l (23)
v=123..,N
For the case that we have plane discrete system motion previous relation becomes:

k=v
1 — 4yl
yv+1 - yl + ; pk,k+1 Cos¢k+1,k

k=v
yv2+1 = y:L2 + Z pk,k+1 Sin¢k+l,k (24)
2
F\./+l - ﬁ/ d 2 {pv v+l[I Cos¢v+lv + JSIn¢v+lv]} (25)
v=123..,N

In similar way as in the case of the space system motion the relation became:
2

d g rd -
rv+1 - rv = d 2 {pv,v+l[| Cos¢v+l,v + J S|n¢v+l,v} =

1

- " O
= F . (t)- Z/\ H’n_grad“” (e )——grad f ( N)El+

V

m

v+l



k=K, = -
+ Z %LP(VH,\HZ)k (t) Py s1v+2)k _ 1 p (t) Py vk %4_ 1

T Nwv+k
p(v+1,v+2)k mv p(v,v+1)k E I"nv+1

Rv+lT_iRvT (26)

mV

v=,23..,N

For that case we suppose that all active forces are in the same motion plane of the
discrete mass particle system.

The previous relations, now, are explicite function only of the internal coordinates:

mutual distance p,,,,, between two mass particles and circular angles ¢ of the relative

v+Lly
rotation motion v +1st material particle around v-th mass particle in the motion plane. Square
of the relative velocity of the relative rotation motion v +1st material particle around v-th mass
particle is:

V\;2+1,v = pvz,v+1 + [pv,v+1¢v+l,v]2 1 v :1,2,3,---, N (27)

System of N relations (26) is expressed in vectorial forms, and obtains the form of 2N
scalar relation in which apear S <N reactions P, ,, (t) of the stressed hereditary elements and

(N —2) internal system coordinattes: mutual distance between mass particles p, ., , and
circular angles ¢

particle in the motion plane. Square of the relative velocity of the relative rotation motion
v +1st material particle around v-th mass particle in the motion plane is same as (27).
If we have a dynamicaly determined system it is possible to eliminate reactions va+1()

of the stressed hereditary elements and obtain independent system of the internal system
coordinates. By these equations we obtain functional relations between internal coordinates:
angle rotation motion ¢ and distance p, ,.,, between mass particles.

of the relative rotation motion v +1st material particle around v-th mass

v+ly

v+ly

EXAMPLE 1. For the system of two mass particles (see Figure No.2 ) constrained by one
hereditary element in the space from system of the relations (16**) by elimitation reaction of
the stressed hereditary element we can obtain the following relations between internal system
coordinate p, cp and  inthe following forms:

1 [l 1 0
_ +— QAp=—— +— Qt
T Em—{pcosw sin ¢} = Fo, COS E p—— Em—{pcosw cos ¢} o Fyy, COS E

(b)
1 [l 1 0
— cosy sin + cosQt=——- [1— sinyy +—F,,, cos Qt
Coswsing [Flt {P 1] ¢} Oly E siny EFI {P llf} m, Fos, E

from which we obtain:
[p(t)qb‘(t)+ 2p(t)¢(t)] cosy —2p(t)p (thp(t)siny = mi[F01X sing —Fy,, cosq’)] cos Qt

(©)
[p(t)w(t)+ 20t (t )] +plt )[¢>( )]2 cosysiny = <in [FOlZ cosysing - Fy,, smL/l]cos Qt

l
The last system equations yeld relation between angles velocities components
meridional and ¢ circular of the relative rotation motion of the second material particle around
the first mass particle in the space of the dynamic of this discrete mass particles system. We can
see that these angle velocity components of the relative rotation motion of the second material
particle around first mass particle in the space are coupled as functions of distance p between
these mass particles.
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(-

Square of relative motion velocity of the relative rotation motion second material particle
around first mass particle in the space is:



v2 = p? +[pg cosy]’ + p*p? )
By introducing expression (e) of the square relative velocity motion into expression (18)
for the reological reaction Plyz(t): P(t) as a force of the internal influence between mass

particles, we can obtain the following expression:
=2 - = o2 _ R
pt)=- m;m, Ep +(P,P) vp 1 (ﬁﬂ)g m,m Ep 0 OS2 ) — pip? 1 (ﬁ, 1)@

m, +m, p m,p m, + mz m, o
()
By introducing previous expression (f) of the mutual influence force into integral relation (2)
rheological-hereditary relation for the case of the forced motion of the system in space
rheological relation becomes the following integro-diferential form:

){b(t)- pt)? cos®y - plthp? =

p(t)- —jR(t -1)p(r)- p,JdT + c(ml—mz

m, +m,

9)

[F cosy cos¢ + Fy,, cosysing + Fy, sin L//]sin Qt

0lx

(m m,)e
System of coupled differenttial and integrodiferential equations can be transformed into
the following system equation the first kind:

df;_t(t) _u) %(t) =v(t) d‘é’—t(t) = w(t)
du(t) _c(m, +m,)0

i pf)+ o, + [RO-Tol) - par e ol cos’ )+ ol +

dt mm, [

+ mi[Fle cosy(t)cosd(t) + Fyy, cosw(t)sin g (t) + Fyy, sin w(t)]sin Qt

1

d\(;Et) = )ccl)st,l/( 0 RoEhEw)sinw)- 2u(t)\/(t)cosz,u(t)+mil[Fle sin ¢ (t)~ Fyy, cos o (t)] cos Qt@
0)
) ) O cosusinu) Ll cosultsing()- i sinueos

EXAMPLE 2. For the system of a mass material particles couple by one hereditary
element in a plane (see Figure No. 3), by using relation (16**) and by eliminating the reaction of
the hereditary element we can obtain the following relation between internal system coordinates

p and ¢:
d?, . - d? m, :
cos¢ dt—z{psm o :S|n¢dt—2{pcos¢} —m—FmschosQlt (a)

1

[2p9 + pp] = -T2 i sin Beos @t )
1
Solution of this previous equation (b) , which has the form of differential equation of the first
kind of ¢(t) depending of the internal coordinate p(t), takes following form:
_p  Ps My o SO O
o(t)= ¢, %> ——2Fy, sin B~ [ o(r)cos Q,rdT (c)
ol Bl A
Last differential equation (c) gives a relation between angular velocity ¢(t) of the
relative rotation second material particle around first of the system dynamics of these mass
particles and internal coordinate p(t)-distance between mass particles, in the motion plane.
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We can see that the angular velocity ¢(t) of relative rotation of the second material
particle around first of the system dynamics is composed by two members: one is opposite




proportional to the square of the distance p , and second member is in the integral form and is
dependent on the external excitation force. First componet of velocity that corresponds to proper
free motion, arises as the result of the initial conditions perturbation of the equilibrium position.

The square relative velocity of the relative rotation of the second mass particle around
first is:

m 01 ¢ H
vi=p?+pw® =[p(t) ——2F,,sin B~ [p(r)cosQ,md7 ] (d)
PP B P Pes o
By introducind expression (d) of the square relative velocity of the relative rotation of the
second mass particle around first into expression (18) for the force P, (t)=P(t) of the mutual

influence between mass particles, and after this result has been introduced in relation (2) of the

rheological-hereditary relation for the case of the forced system motion in the plane, and the
rheological relation becomes:

p(t)-p, —iR(t-T)[p(T)—po]dT = _C(nTlmz @}O [p ]g [ Po miFmSinﬁng;[p COSerdT%E

) Plt)
e)

This rheological relation (e) is integro-differntial equation from which we can determine
relative distance p(t) between mass particles as a time function and as a soluttion of this

equation. After solving previous equation we have main part of defined problem solution.

EXAMPLE 3. For the case of the three mass particles connected by the three hereditary
elements in the plane, for the relations between internal system coordinate we obtain the
following:

2

1 1[0 d? d ED
% +_%m( 13 ¢23 )§|n¢12 (p12 C05¢12) C05¢12 (p12 S|n¢12)
L dt’ 17

2

i% (6, - %)gm% (b1 c050.0)-cosd, S (pygsing -
m dt? [0

+
Hgl—‘

()

2 2

O d ED
|} ( 13 ¢23 )|§m ¢12 (p13 Cos ¢13) Cos ¢12 d (p13 Sm ¢13)

0 [0

10 d? d? 1J

_g ( 12 ¢23)|§m¢13 (plz COS¢12) COS¢13 d (plz Slr1¢12 )%

J
% L%In ¢12 ¢23)|§|n ¢l3 (p13 Cos ¢l3) COS¢13 (pl3 Sln ¢l3)
m UD
E; + L Hsin(py, - 9, )3ing d—(p cosd,, )~ cos d—(p sin g, )=
m, 13 23 B 12 g2 P2 12 12 gg2 W2 12 +

2 2

(6 =0 )36, S (o cosg,)—cosgs S o ing )T
1]

1
m;
q2 2

n(p =)0 S (o cosgic)cosgi, S o sing. )
1]

H3||—\
Dgl:l D@D

The third relation is similar to the previous, for permuted index. The following relations
is obtained as well as:



P, sin ¢12 ~ Py sin ¢13
P13 COS¢13 ~ P CO5‘1512
These equations must be solved as a system of coupled equations expressed by internal

coordinates and must be solved together with corresponding of (2) (or (4) or (6)) and (18). This
is a system with complete equations with coresponding number tto the unknown coordinates.

t9p,; = p223 = p122 + p123 = 21,15 COS( 12 _¢13) (f)

1. COVARIANT DIFFERENTIAL EQUATIONS OF THE MOTION OF THE
DISCRETE HEREDITARY SYSTEM

By using principle of the work on the virtual displacemet we can write ( see Ref. [5]):
v=N

Z{Tv+|_:’v+§v+l3v+§vT}&\‘/ :O (13*)
v=l
or
vang r(v+1)k T = %-
m,r, - Z)\ grad f 17 3 Z (vv+l)k f_RvT r, =0 (13)
IE a Fwsyk ~ Tk Q
Now, the virtual displacement can be expressed by using generalized coordinates in the

a=n

form: o, = z —5q and introduced into the previous equation (13) for the work of the active

and reactive forces on the virtual dlsplacements and we obtaine the following:

=n

el E v+ - v a
z%m 2}\ grad, f,(%,...7y )~ ZP(Vvﬂ)k e = T -R,: =0

(v+1)k Lo

B;E
|

=

(27)
Now, by changing order of sumarizing we can obtain:

(v)k O
-T
a=n V=N u=s ( dF k=K, E?V +1k W)k E
o [m\,%v ‘;%% GE— A %;radvf ([} ;% Py ven () %{v £ E0=0
aZl v 0 uZl . i § A Zl o [ r(v)k B a
H g

(27%)
By analysing the member from previous expression we have the following fictive, active

and reactive forces:
v=N vi v N
dﬁ} = — Z mv Vv T ’ —
o dt dq 7 a°

D
§r

v=N .
I, :—vaﬁv,

=n B=n 2* B < B
m ;mﬁﬂqu qy+;:q:q 5:" Ez_[aaﬁ(qﬁ+r)?6quéj=_aaﬁ[)(iit

0(—123 n; n=3N-S (28)
a (29)

SHOL]

v=N U=S
Qf = A Eorad, £, (F,.... Ty ), ‘Fva E=o (30)

EE aq
E: -7 dF(V)k E EO ar-(v)k E

v=Nk=K, (v+Dk vk aqa v=Nk=K, (vv+)k 0qa

Pa = P(v,v+1)k (t) - P(v,v+1)k (t) (31)

v=1 k= v=l k= | (v,v+l)k|

r(v )k r(v )k



Q; = Z E? (), ;F: E (32)

62['a+Qa+Pa+QZ]5Q“ =0 (33)
Dynamic equations system in the covariant coordinates can written in following form:
I,+Q,+P, +Q, =0 a=12,3,..n n=3N-S (34)
or:
Dg” _ . _ Do "
o g =t QP =123..n n=3N-S (34%)

IV. THE RHEONOMIC COORDINATE METHOD APPLIED TO DISCRETE
HEREDITARY SYSTEMS.
MODIFIED SYSTEM OF THE COVATIANT DIFFERENTIAL EQUATIONS OF
MOTION OF A DISCRETE HEREDITARY SYSTEM WITH RHEONOMIC
CONSTRAINTS

v=N
Lets cosider K, K= zK standard hereditary elements of neglected mass and

%
v=l

rheological properties defined by material parameters: n ., , k=12,3,...,K, times of

A

relaxations; coefficients of rigidity c,,.,, and C ., are an instanteneous rigidity and a

prolonged one. Relations between reaction and deformation of the stressed and strained
hereditary element in the discrete system can be expressed by the following different forms:
* in the relaxational forms by using integral relation:

R ! _ il
I:)(v,v+1)k = C(v,v+1)k l%p(v,vﬂ)k (t) _IR(V WV +1)k (t - T)p(v,v+l)k (T)dT B’ (35)
0

v=12,3,...,N,k=123... K,
where are:
C(v v+1)k _6(\/ v+1)k _n t_;k
Ry t-7)= -2 vl e Mk y=1,2,3,...,N,k=12,3,...,K, (36)
n(v,v+l)k("’(v,v+1)k
a kernel of relaxation, and

~ Pw v+1yko - @

Py = |p(v,v+1)k| =Nk ~Tok| Puvsnk = |p(v,v+l)k| ~ Py viyko = |fwsk ~ Tk

Pwyso 1S the natural state length of the hereditary element without stress and strain, and

without history of stresed and strained states.
If now, between of the hereditary elements and one of the two material particles of the
end of hereditary element we put a rheonomic constarint in the form of the exactly defined

length segment as a function of time in the form ¢, (t)=a,,.,(Qt)=a,,.,(q°) we defined a
hereditary discrete system with rheonomic constraints. In this case we made a new hereditary

element with rheonomic modifications. Hereditary element and rheonomic element are
connected in series.



This rheonomic modification we can introduce into hereditary element simple in paralel,
or serial conection, as well as in other ways, as an element introduced into the complecs system
of the conected hereditary elements.

For that reason , into reserch of the system defined in that way, we introduce a time
function as a rheonomic coordinate in the sence of V. Vuji~i}. As a rheonomic coordinate we
can choose for example the following: q° = Qt.

Follows the idea of V. Vuji~i} (see Ref. [6], [7], for the description of system dynamics
we choose the generalized coordinate, of which number n=3N —S is a diference between
number of 3N positions coordinates and number S of the finite constraints, and we join a
rheonomic coordinate q° as a more them n=3N —S . This rheonomic coordinate q° must be
chosen depending on functions introduced by rheonomic segment of lenght, as it is possible to
see on the figure.

In this case we can choose as a rheonomic coordinate q° : time, or lenght, or for

example q° =Qt where Q is parameter as a frequency. This rheonomic coordinate can be
chosen as dimensionless, or lenth, or an angle in radinas. This depends on the concrete
introduced rheonomic constraints into hereditary system. Next research is for different kinds of
rheonomic coordinate and we have not defined the type of chosen rheonomic coordinate.

In acordance with introduced rheonomic lenth in series conected with hereditary element
we must correct some relations for the stress-strain state of the hereditary element. For that
reason we composed following relations:

pv,v+1 - pv v+l v+1 r | |

= — — | = 0
pv,v+1 - pv,v+1 - p(v,v+1)0 _Ev,vﬂ(Q )_ |rv+l - rv| - p(v,v+l)0 _a'v,v+1(q ) (a*)

For the compositon of dynamical equations of the discrete hereditary system with
rheonomic constraints -lenght as it is defined, we can use the equation of virtual work in the
form:

v=N
ZI{IV+FV+RV+PV+RVT}6FV :O (13*)
or.
v=N _ . r, _
i - ZA grad, 1, (e Z o M-R”%ﬁo 13
v Fwsyk ~ Tk =

Now, the virtual displacement must be expressed by n generalized coordinates with
joined rheonomic coordinate q°, as a system of n+1 coordinates q“,a =0123,....n ,
n=3N-S.

Now we have a modified - extended system of n+1 coordinates, and virtual

a=n

displacement is: or, = d.qu . By introduce this expression into initial vector equation (13),
q=!
this equation takes the following form:
veN r-V+ rV = - dr
Emv v ZA grad f 1’ N’ Zp(vvﬂ)k ( = — RVTD _l;&qa :O
v { Pk ~ Tk = 0
(38)

Now by changing the order of sumarizing we obtain the following:



B % e Fox E O
a=n v=N . u=s k=K, (v+1)k W)k
zéq”XEmV%wﬁL%%(t), WZ,E‘ /\,,%rad f,( Hﬁg%— Poan (t) %w @a% 0
== a aq = 0q = Ty r(v)k a

H -

(39)
For the generalised active and reactive forces in the extended forms we must vrite:

R R R

I 9% " OF, ., OF, Dg”
B
;éhﬁﬁqu q” gaqﬂq 'dan [aaﬂ( +ry6qq ] aﬁ?
0(—0,1,2,3,..., n, n=3N-S (40)
v=N dF
Q,=3 F ) F (41)
25U
v=N u=S
Q! = A, Egrad, £, (7. ,N,t),afg% (42)
v=l = dq
E:( 1)k _F( )k dF(V)k E Ea( 1)k dF(V)k E
v=Nk=K, v vk dqa v=Nk=K, vk dqa
Pa = I:)(v,v+l)k (t) — — = I:)(v,v+1)k (t) (43)
val k= Fwspk ~ Ty val k= |p(V'V+1)k|
=N
> ()2 (44)
= a
Z['a+Qa+Q£+Pa+QZ]5Q“ =0 (44)
Equations of system dynamics into covarint coordintes are written in the following form:
I,+Q,+Q/+P_+Q, =0 a=0123..,mn=3N-S (45)
or,
Qo — dt =Q,+Q,+Q,+P, a=0123,..,nn=3N-S (45%)
The generalized inertia force is
v=N . v=N \j :
o EL““ e @
2! ‘ 2! [t N 0

and Kinetic energy is
v=N v=N =n a=npB=n v=N
E =2y mui=2ym, =2 > 44 Zm XN H(a7)
2 & 2 = 2[,_ “ P

The basic initial equation of the motion is in the form:
<'0d oE, OE, .
L% -Q,-Q!-P,~Q; " =0 a8)
2.0 a ]
From last equation we can write extended and modified system of Lagrange's differential
equations first kind with n+1 equations. These equation contain generalized rheological

reaction of hereditary elements, rheonomic constraints reactions, and other usually active and
reactive forces.




By using extended coordinate system which consists of the ngeneralized coordinates
extended with rheonomic coordinate, the extended and modified system of Lagrange's
differential equations first kind with n+1 equations. must be named as a Lagrage-Vuji~i}-
Goroshko system of differential equations for the discrete hereditary system with rheonomic
constraints. These equations are in the form:

id?k % -Q,-Q/-P,-Q, =0, 0=0,12,3,...,n; n=3N-S (49)
dt 0qa 0qa

Now, we are focused on the analysis of generalized forces work. Generalized reactions
work of the rheonomic constraints (42) is nor equal to zero, as in the case of the scleronomic
finite constraints. By using velocity conditions we can write:

v=N of G, F,,....,T,t
z(gradvf#(Fl,Fz,....,FN,t),vv)+ ,,(rl r;t 'y ):o (50)
v=l
where is:
;L
Wqﬁ (51)

and
o) o

%radf P A A ;d.Tq E» AN q°=0 (52)

We can see that generalized rheonomic reaction work diferent them is zero, and that is
the function of rheonomic coordinates in the form:

ZN“iA %rad £ ( N,t),%%o (53)

The generalized rheological constrint reaction can be expressed by using (43) and
rheological reaction of the stress-strain state of the hereditary element (35):

- Hﬁv)k
v=Nk=K, t DEO(VVWM'*L:E
P - Z Z C(v v +1)k [p(v v 1)k p(v v+1)k0 a(v v+1)k (qo)_J.R(v‘v*rl)k (t - T)[p(v,v+1)k (T) - p(v,v+1)k0 - a(v,\H—l)k (qo(r)jdrgpia(‘q
0 (v,v+1)k
(54)

The generalized rheological constraint reaction can be expressed by two componets: one
as an elastic properties reaction, and one as a rheological properties reaction of the hereditary

element:
(v vk 5 g
¢ _ 0 aq
Pa - Z Z C(v,v+1)k{p(v,v+1)k (t)_ p(v,v+1)k0 _a(v,v+1)k (q }
v=l k= |p(v,v+l)k|

— dr(v)k
v=Nk=K, . 0 (vv+hk 0qor

Z Z Cow vk g W)k (t - T)[p(v,vﬂ)k (T)_ Pwvinko ~ vk (q (T)jdf[}

U |ﬁ(v,v+1)k|

(56)

By multiplying with dgq” and by sumarizing by index o , an after integrations by dr, ,
we can write following expressions::

(55)




(v)k Ej
(v v+1)k !
; dqa = C(v,v+l)k{p(v,v+1)k (t) ~ Puy+ko ~ vk (qo} q (57)

a=n a=nv=Nk=K,

P
a=0 a=0v=l k=1 | (v v+1)k

a= nd . df"
a=n v=N k=K, (v v+l)k ! Z dq
c a —

Pa dq = C vk {p(v vH)k (t) ~ Puyyko ~ Qv (q (58)

a=0 v=l k=1 | (v,v+1)k|

Now we introduce a function as a rheological potential which corresponds to elastic
properties of the hereditary element:

a=nd’ v k=K, [ = . ,d ;
M C ZO IP dq N Z C(v v+l)k {p(v v+l)k( )_ p(v,v+1)k0 - a‘(v,v+l)k (qO} (p(Vv\i X i )k) (59)
a 0 (v,v+1)k

Also, we introduce a functlon as a rheological potential which corresponds to the
rheological properties of the hereditary element

a=nd® V N k=K, g . ’da"
;‘(I;PC dq Z uu+1)kJ-gRV‘“‘1)k t- T)[p(wﬂ)k p(u v+1)k0 a(v v+1)k(q (T)jdl'gw
(60)

By using derivatives of these funtions as a rheological potential we can express a
generalized rheological reactions:
c ¢
pe = - Z';' Pt = - Z';'

(61)

EXAMPLE 4. Rheological rheonomic oscillator [27] is presented on the figure No. 4 and
5. Genralized coordinte is x(t), and rheonomic coordinte is change x, (t) of lenght:

Initial equation is:

mx +P(t) = F(t)
For the standard hereditary element stress-strain relation is:

nP(t)+ P(t) = nelx(t) - ¥ (t)] + E[x(t) - x, ()

Dynamic equation of the rheological-rheonomic oscillator is:
nmx (t) + mx(t) + nex(t) + Ex(t) = n|F (t) + cx, ()] + [F ) + Ex, ()]
and rheonomic reaction is:

= otf(®) - (0] - [RE-1)le) - o e Jor
O 0 O

Potential function of the hereditary element and rheological reactions which correspond
to elastic properties are:

e =—elxt) - x (¢

c__d° c_ O’
o == G =) n] =T =) ()
Rheological potential function of the hereditary element and rheological reactions which
correspond to the rheological properties are:
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Figure No. 5. Classical (a*) , hereditary (b*)and hereditary-
rheonomic (C*) oscillator, excited by S(t)
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Kinetic Energy is:

E, =L

EXAMPLE 5. Rheological pendulum ( see Figure No.6) [28] with a thread whcih
increases its length on one of its segments (for example the unfolding of unstreachable segment
and tied to the segment by a hereditary thread). The system has three degrees of motions which
are defined by coordiantes: rheonomic coordinate p, (t) and generalized coordinates, p and ¢ .

Rheoplogical conncection does not decrease the number of degrees of freedom. The rheonomic
constraint decreases the number of degrees of motion freedom and that is because it assigns one
degree of motion as enforcment.

The potential function of the herediatary element and rheological reaction component
which correspond to elastic properties are:

ne = %C[p(t)- po (t)°

c

c — - - C:_drlcz_ - C:—drlcz
Py = ap, - C[p(t) Po (t)] P, ap C[p(t) Po (t)] Py ) 0
0
po(t)=alt)
a* | | aft)=a,cosQt =a,cosq’;
p(t)+p, (t)+ 14 - q° =Qt

or

_U
-
/
<

: z b* a(t)=a, cosQt =q°;
K h
: V[

Figure No. 6. Rheological-rheonomic hereditary pendulum (Pendulum with a thread whcih
increases its length on one of its segments (for example the unfolding of
unstreachable segment and tied to the segment by a hereditary thread))

Rheological potential as a function of the hereditary element and rheological reactions
which correspond to the rheological properties of the hereditary element are:

1° =c [ RE-rloh)-pu(eor3lo()- o)




Qh()= - =Rl )alr)-p, Yo
sy O
% 0)=-2

Kinetic energy is:
1 . .
£, = 2flrs + 0y 0)+ PO 07 [0 @)+ o}
The expanded system of equations is:

d JE, OE, ; .
dt ﬂ.g ag a £ a a pO p¢

By using previouis equations for each of the coordiantes we determine an equation:

EXAMPLE 6: Motion in the plane of two material particles tied to one another by a
hereditary element and a rheonomical constraint as a connection in a que (series). We are using
the earlier discussed example.

For a system of two material partcicles on interdistance of p in the plane of the system
motion of relations (16**), by eliminatng the reaction of the hereditary element we obtain the
following relation between internal coordinates p and ¢ of the system.

2 2
cos¢ jt—z{psin ¢} =sing jt—z{p cosqb} _ My Fo, Sin BcosQ,t @)
m

1

206 + pg] = -2 F,, sin BeosQt (b)
ml
Solution of the last differential equations (b) which can be observedas a differential
equation of the first order by ¢(t), so that we obtain:
_a P My 01 0
o(t)= ¢, o= ——2F,, sin B~ [o(r)cosQ,mdT ()
ol T m PR

The last differential equation (c) gives the connection between angular velocity qb(t) of
the relative rotating of the second material particles around the first one in the plane of dynamics
of that system of material particles and distnace p between those particles. We can see that
angular velocity ¢(t) of the relative rotating of the second material paritcle around the first
consists of two parts, and that one of the components is opposite proportional to the square of
there interdistance p, and that the second component is in an integral form and depends on the
external enforcement excitation force.The first component corresponds to the case of the own-
free motion of material particles conncected with a hereditary element, when there is no external
enforcement force, while the other is the result of enforced relative rotation as a consequence of
external enforcement force.

The square relative velocity of the relative rotation of the second mass particle around
first one is:

t

v =p?+pPw’ =[p(t) +[p(t)]2§>o ﬁ—ﬂ—jﬁnsin B% jp(r)cosﬂlrdr% (d)

By introducing the expression (d) for the square of the relative velocity of the second
material particle in relation to the first one in the expression (18) for force P,,(t)=P(t) of

interaction of material particles, and then the obtained expression we introduce into the



esxpression for force of interaction of material particles into the integral realtion (2) of
rheological hereditary conncection in series with the rheonomic costraint for the case of enforced
motion of the system in the plane of rhological -rheonomic connection which comes down to the
following integro-differential relation which has the form:

[p(t)—eo—po(t)]—iR(t-r)[p(r)—eo - oyt =

—_&H - 2By _Po_ M, sin g1 T)cos TTEEZH
- C(m1+mz)ép(t) [o(t) go e m, Fou ﬁ%[ﬁ() Q,rd %E

0
()

This rheological-rheonomic connection is an integro-differential nonlinear equation from
which we deteremine the relative distance p(t) of material particles as the function of time, in
which way we in fact solved the basic problem.

Everything else is simple.

Instead of the previous connection we can write:

* for the standard hereditary element in series (que) with a reheonomical segment of the
thread:

nP(t)+Pt)=nc[p(t)- oo )] +Elolt) - 2o — oo (1)

While from dynamic equations of force of material particles interaction it is:

P(t)=- ( m, M, E(t - p(t)gipo ﬁ M2 £ sin B%j"p(r)cos erdrg

7 P
m1+m2)g

By eliminating the force P(t) from the last two realtions we obtain:

m,

0 O

mlmzH Yo P M 01 i,
" em gy PO R T, R PO

+(m +m2 2n[p ]E¢o[p ]z_m pl( Fmslnﬁlp coserdT%tﬁo[p(’P' Fmslnﬁ [«)—!p coserdr%

1

= nelp(t)- o (t] +Elolt)- 1o - po(t]

For the case of free motion without the effects of an external force, only under the
influence of the initial disturbance of equilibrium system position, and the excitation by a
rheonomic constraint-conncection the previous equation for determining the distance between
the material particles is:

-%Enp( )+[p(t)-3np(t ]E¢o [p%‘J)] gg nc[p(t) - o (] +Elo(t)- £, - po )]0
o)+ o)+ Peclol)- oy 0]+ T B [o) - oo () + 9 [p‘(’g]4 ()~ p(t] =0

V. CONCLUDING REMARKS

In this paper we derive the covariant differential equations of the disrete hereditary systems with
rheonomic constraints between mass particles and hereditary element. In this paper we show



applications of the rheonomic coordinate method to the dynamiccs of the discrete hereditary
system. By introducing rheonomic coordinate in the sense of V. Vuji~i} we derive an extended
system of differenttial equations in covariant form and coresponding generalizer reaktive forces
for generalized coordinates in extendend form. We consider some special examples of the
discrete hereditary systems. We introduce expressions of the rheological potential which
corresponds to elastic and hereditary properties.
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