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Abstract

The regularization problem of  degenerated system of  equations / inequalities in Banach spaces is
considered.  Our  approach  is  based  on  the  explicit  parametrization  of  input  data  and  on  the
utilization of the multy-valued mapping techniques. We suggest an extended minimization method
that resolves both regularization and data correction problems simultaneously. According to the
method an ill-posed problem should be replaced by a search of  the minimal norm element in the
join of solution sets of the family of problems that are equivalent to the initial one with respect to
input  data  accuracy.  We  named  this  element  as  generalized  normal  solution  (GNS)  of  a  given
ill-posed  problem.  Theoretical  results  on  regularization  property  of  this  method  as  well  as
problems of  its approximation and numeric implementations via linearization and normal spline
collocation methods are presented here.

Keywords:  degenerated  equations,  inequalities,  ill-posed  problems,
regularization,  multy-valued  mappings,  linearization,  normal  splines.
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1. Introduction

If we increase complexity of mathematical models then we can get an ill-posed numerical problem
connected  with  them.  There  are  rather  developed  regularization  theory  and  numeric
implementation  technique  for  linear  problems,  see  A.N.Tikhonov  and  V.Ya.Arsenin  [17],
V.K.Ivanov  et  al.  [11],  V.A.Morozov  [14].  But  in  non-linear  cases  it  is  not  the  case.  The  most
known  regularization  methods  for  ill-posed  non-linear  operator  equations  are  the  Ivanov’s
quasi-decision  method  and  Tikhonov’s  regularization.  We note,  following  to  Morozov  [14],  the
completed  theory  of  non-linear  problems  regularization  is  absent  up  to  day.

In 1980 Tikhonov formulated in [16] a new regularization concept for the linear equations system.
According to the concept an ill-posed computational problem should be replaced by a search of the
minimal norm element in the join of solution sets of the family of problems which are equivalent
to  the  initial  one  with  respect  to  input  data  accuracy.  Tikhonov  restricted  oneself  to  linear
equations  with  disturbed  matrices.  In  this  case  numeric  implementations  coincided  with  the
generalized  discrepancy  method  suggested  by  V.Goncharsky  et  al.  [4].  However  this  concept
yields nontrivial advance in nonlinear ill-posed problems. It was obtained in our works [5,7,9] for
nonlinear  equations  /  inequalities  systems  and  extremum  problems  due  to  the  explicit



parametrization  of  input  data  and  to  the  utilization  of  the  multy-valued  mapping  technique.  It
allows  to  state  numeric  problems  that  take  into  account  the  detailed  data  structure  and  gives  a
solution of  the data correction problem. The corresponding regularization problem was named a
generalized  normal  solution  (GNS)  of  the  initial  ill-posed  one.  The  explicit  parametrization  of
input  data  has  allowed  to  specify  concepts  of  degeneration,  singularity  and  ill-posedness  of
equations, as well as inequalities, in terms of the theory of multiple-valued mappings. 

Here  we  describe  the  extended  minimization  method  for  the  GNS  construction.  The  seeking
variables in the method are initial desired ones and input date. Therefore both regularization and
data correction problems are being resolved simultaneously. The consequent numeric problem can
be  rather  complicated  and  we  give  a  GNS  approximation  method.  It  included  in  separation  of
given  degenerated  system  some  regular  part  and  minimization  of  a  penalty  function  of  the
complement  subsystem  under  separated  regular  constraints.  If  we’ve  got  a  close  GNS
approximation  then  we  can  to  precise  it  thereby  the  linearization  method.  This  approach  is
illustrated on example of singular ordinary differential equations.

2. Problem statement and definitions

We consider the problem to solve the system

, (1)

with respect to x when y is input data. Transformations F and g act from the product of a Banach space
X  and  a  metric  compact Y .  Ranges  of  values  are  a  Banach  space  Z  and the  arithmetic  space Rm

respectively  (inequality  subsystem is  a  finite  one).  In  the  case  of  differential  equations  it  is  useful  to

assume that x belongs to some linear manifold D  X  (possible D=X). Both transformations F and g
are assumed being continuous ones. 

Most advanced models in our investigations are:

a. b.v. / i.v. problems in degenerated (singular) ODE systems

; (1a)

b. finite dimensional system (possibly inconsistent)

, (1b)

especially  Afriat  systems of  Inverse Rational  Consumption Problem, see H.Varian [18] and our paper
[8].

Denote a solution set of (1) by

, (2)



such that  P will  be a multi-valued mapping of  Y onto set of  closed subset of  D .  Introduction of  this
mapping allows to specify concept well-posedness (or regularity) of a solution problem of the system (1)
and  also  ill-posedness,  generalizing  concept  of  degeneracy  (or  singularity)  of  equations  systems  and
degeneracy of inequalities systems. Namely, the solution problem of the system (1) is well-posed one in
sense of  Hadamard (classical correct or regular) if  the mapping P is one-valued continuous function in

some neighborhood of  exact data . Consequently, this problem will be ill-posed (irregular, singular
or degenerated) one if P hasn’t this property.

In  the case when (1)  is  an equations system (inequalities  absent)  with differentiable transformation F
sufficient  regularity  conditions  are  provided by  conditions  of  the  implicit  function  theorem.  However
when  inequalities  present  such  simple  analytical  regularity  conditions  absent.  We say,  an  inequalities
system is degenerated one if it can be inconsistent under disturbed data. 

In order to specify the regularity problem we precise the solution problem of the degenerated system (1)

as  the  seeking  of  its  solution  that  is  closest  one  to  some  given  element   (trial  solution).  The
natural path of the closeness measure changing based on the Tikhonov stabilizing functional (stabilizer)
construction. Its main properties are lower semicontinuity and compactness of  level sets. We note this

functional as  and assume it is defined for . Usually D is a Hilbert space H  that compact

embedded in X, then . We precise the main computing problem for (1) as the y-parametric
Normal Solution (NS) problem for the system (1)

 (3)

The  main  assumption  of  the  regularization  theory  is:  an initial  numeric  problem with  exact  data  is  a

resolvable one. It  means the system (1) with data y0 is consistent one or the set  is nonempty.
Obviously, this assumption implies that the exact problem (3) is solved. According to the remark made
above  classical  correctness  of  the  problem  (3)  means  uniqueness  and  continuity  of  mapping  M .
However,  uniqueness  can  be  difficulty  achievable  and  it  is  an  excessiveness  property  for  practical
purposes. 

Denote the semi-deviation of a set A from a set B in some metric space by

 sup .

Therefore  the  Hadamard  distance  between  A  and B  will  be  h(A,B)=  max{ ,  }

We introduced in [5,7,9] the next notions: 

Definition 1. The mapping P is said to be a compact -continuous one at point y if  for any compact K

the mapping is -continuous one at y, i.e.



. 

This  property  is  called  also  upper  semi-continuous of  multy-valued  mapping  P.  Continuity  of
transformations  F  and g  provides  in  common  case  validity  of  this  property  for  mapping  (2),  see
V.Fedorov [3; lemma 1.3].

Definition 2. The mapping P is said to be regular one on Y if  for any compact K the mapping is
h-continuous one on Y, i.e. 

.

This  property  is  called  also  Hadamard-continuous of  mapping  P.  In  finite-dimensional  case  it  holds
when Jacobeans of  active subsystems of (1) is non-degenerate. Consequently, this property of mapping
(2) is a generalization of  the implicit function theorem conditions for inequality systems. Also it holds

(in Banach space) when P is -continuous one-valued mapping.

Definition 3. The problem (3) is said to be semi-correct one on Y if  its solution set  is non-empty

and compact set for , and the mapping M is - continuous on Y. 

This  notion  is  a  generalization  of  classical  (Hadamard’s)  correctness  and  coincides  with  it  if  M  in
addition is one-valued mapping. New notion relaxes the regularization problem if the solution set 

 has a small diameter. The common condition of semi-correctness of (3) yields the next 

Theorem 1. If  the system (1) with exact data is consistent one and P generated by the system is regular
mapping on Y, then the NS problem (3) is semi-correct one on Y. 

This theorem is a simple corollary of known property of marginal mappings (see Aubin J.P. and Ekland

I. [1; ch. 3, st. 23]) and compact property of stabilizer . 

Corollary:  If  M  is  one-valued  mapping  (ex.  if  P  is  convex),  then  the  NS  problem  (3)  is
Hadamard-correct one. 

However, if  the system (1) degenerates, then its mapping P won?t be regular one and we have to state
another correct or semi-correct problem such that solution of new problem will approximate the solution
of the main problem (3). Theorem 1 gives an effective direction for regularizing problems construction.
The very productive regularization method for common non-linear systems is the next one. 

1. Generalized NS problem (extended minimization) 

Let be a data realization,  be a set of  possible data realizations, where parameter is

the estimation of error level. Usually this set is a sphere which diameter is. Then the similar set 



y p

 is  a set of  equivalent data. We stated in [9] the next generalized normal solution (GNS)

problem  for  (1):  to  minimize  functional  provided  that   o

. (4)

Let’s note, this problem is posed as extended minimization in the product of spaces X and Y. We
have to determine both a solution x and an equivalent data y. It is useful to represent the left side of
(4) as the pair of components 

.

Here  is the solution-set and  is the corrected data set. Obviously, if  the GNS problem

(4) is  resolvable one and  is  corrected data,  then the NS problem (3) is also resolvable
one. We have got in [9] the next result on the GNS problem.

Theorem 2. If  the system (1) with exact data y0 is consistent, then the GNS problem (4) is solvable

under each possible data realization, its solution set  is compact one and the next limit
holds: 

. (5)

This  limit  means  that  x -components   of  the  GNS  problem  solution  approximate  normal

solutions of  the exact system (1). If  such NS is unique, then transformation  is a Tikhonov’s
regularization  operator.  Thus,  the  GNS  problem  (4)  resolves  both  regularization  and  data
correction problems. We call the transition from an ill-posed problem (3) to the GNS problem as
the extended minimization method.

In common case an effective numerical method for solving of the problem (4) is the linearization
method (LM), see Pshenichnyj B.N. and Danilin Yu.M. [15]. Previously the initial problem should
be discretizated some way. Peculiarity of the problem (minimizing functional is quadratic one and
admissible  data region is  small)  gives hope for  correct  fulfillness  and efficiency of  the method.
The core of the LM is the quadratic programming (QP) problem. We have constructed (1984, [5])
the  QP  algorithm  for  linear  NS  problems  in  Hilbert  space  (connected  with  integral  equations)
which allows to restrict oneself  to partial discretization of  initial or approximating QP problems.
However,  the  extended  minimization  method  can  be  rather  complicated.  Its  successful
implementation  can  be  fulfilled  when  we  have  a  close  solution  approximation.  Since  the  GNS
problem  approximates  the  normal  solution  of  the  exact  initial  system  (1)  we  may  to  restrict
ourselves to approximation of the NS problem (3).

2. Approximation of the NS problem



Let the system (1) be irregular on the whole and let it is represented as two sub-systems 

, (60)

, (61)

such that (60) is a regular one. It means the set of solutions 

generates the regular mapping . Possible, , , , . 

Let’s introduce certain penalty functions of (61), for example

.

Here positive cutting  is used. 

We  assume  further  the  mapping   and  the  function   are  a  locally  Lipschitzian  ones

Concerning the mapping  it means that for any r> 0 (such that the set  

 is nonempty one) there is a number lP(r)>0 such that for any 

 the inequality 

 (7)

is  fulfilled.  Consequently,  for  the  function  f(x,y)  and  for  any  bounded part   there  are  such

positive  numbers  a,  b,  l f  that  under   the  inequaliti

 (8)

are fulfilled. Also we note, the continuous and convex functional  is a locally Lipschitzian one. It

means there is such number ls>0 that under  the inequality 



 (9)

holds.

We state the next extremum problem:

. (10)

Obviously, if the initial system (1) is consistent one and the problem (10) is resolvable one then 

.  But  when  the  NS  problem  (3)  is  an  ill-posed  one  the  problem  (10)  is  the  same

Let’s introduce the Tikhonov smoothing functional

, (11)

and state the problem

 (12)

This problem unlike of the GNS one is posed in X-space while y is a fixed parameter. 

Theorem 3,  formulated  below,  shows that  the problem (12)  as well  as the GNS approximates the NS
problem.  Consequently  transition  from the  problem (3)  to  (12)  can  be  considered  as  the Regularized
Partial Penalty Function (RPPF) method for non-regular systems of equations / inequalities. Numerical
implementation for the RPPF method in common case can be fulfilled effectively by the LM as well as
for  the GNSP (4).  But  the RPPF is  rather  simpler.  Having a solution of  the (12) one can to solve the
more advanced problem (4).

Theorem 3. If  the mapping  is regular and locally Lipschitzian and the penalty function  is

locally Lipschitzian, then the problem (12) is a compact solvable under all . Moreover, if  

 such that 

, (13)

then the next limit holds: 

 (14)

This theorem is closed on a content and proof techniques to the theorem 2 from Vasil’ev F. [19, chapter



2,  §5].  There  the  problem  of  minimization  of  approximate  function  on  exact  set  (P  is  a  constant
mapping)  is  considered  in  traditional  Tikhonov’s  scheme.  Perturbation  of  admissible  set  P  leads  to
complication of  the theorem 3 proof. Now in addition to proving scheme of  [19] we have to consider

projection of a point on exact set  and projection of 

 on P(y). But parametrization of input data allows to overcome new obstacles.

Thus, the limit equality (14) means the problem (12) as well as the GNS approximates the NS problem.
The supremum on admissible data realizations means stability of (12) and, in accordance of definition 3,
its semi-correctness. 

It is necessary to note, the problem of choosing of regularization parameter  in our method as well as
in  any Tikhonov-type regularization for  nonlinear  problems,  see [14,  19],  has not  exact  decision.  The
given in the theorem 8 rule (13) for concordance of artificial regularization parameter  with a level of

input  data errors is  not effective from a point of  view of  calculus mathematics. Really,  for  a given

level of errors  any parameter  can be considered as a realization of a relation , satisfying
to conditions (13). Such problem is typical in regularization theory. A practical value of such relations is

heuristic. First from relations (13) requires a diminution of a parameter  with a diminution of , but
second requires moderation in it. The final conclusion about magnitude  in an approximating problem
(12) requires the additional analysis outside of a used model. For our approach it is essential that we can
get an appropriate approximation of the normal solution of (15) and then to apply the LM for precizing
this approximation.

 

5. Example: Singular Problem in ODE

Here we’ll illustrate the RPPF method on example of  initial value problem for a singular ODE system

(1a) in :

 (15)

Consideration  of  boundary  value  problem  for  equation  (1a)  is  similar.  The  method  is  being  realized
under fixed input data, therefore we omit the y below.

Denote  and pass from the system (15) to equivalent differential-algebraic system with respect to

variables :

; (16)

. (17)



Its solution {x (t), u (t)} exists under exact data (the main assumption) and belongs to the space 

.

Correctness of  such problems, when the partial Jacobean F’ u(u,x,t) is degenerated, had investigated by

R.März  [13].  Rather  complicated technique for  projection and matrix  pseudoinversion had used there.
The  most  extended  approach  for  numeric  implementation  of  singular  problem  (12)  is  based  on
combination of implicit difference schemes and Newton method, see [12, 13]. 

In order to apply the RPPF method it is convenient to assign as D the Hilbert-Sobolev space [a,b]
with norm

.

This space is compact imbedded in C[a,b] such that . Obviously, subsystem (16) is regular
one,  respectively,  we  introduce  the  penalty  function  of  the  complementary  part  (17)  as

. (18)

By  this  all  components  of  the  RPPF  method  (11),  (12)  are  defined.  The  correct  optimal  problem
connected  with  the  initial  ill-posed  one  is  to  minimize  the  smoothing  functional

, (19)

under conditions (16). 

However, let’s consider detailed scheme of RPPF for singular problem (15). It concluded in minimizing
the functional

, (20)

under conditions (16). Note, the construction of  functional (20) non-completely coincides with abstract

formula (19). We omitted in (20) inessential constant . 

This problem is an ordinary optimal control one with simplest constraints (16). According to the theorem
3 its solution approximates the normal solution of initial singular problem (15) under the circumstances
(13). Having appropriate approximation of  the NS problem’s solution we can apply to the last one the
linearization method. The main component of the LM for the system (15) is the NS problem for singular
linear system



with  initial  (for  problem  (15))  condition  The  effective  method  for  such  problems  is  the
normal spline-collocation one developed in our works [5, 6, 10].
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